FreeTypes.hs revision 542cf2bcd5e1766ec5977ea5b43baff253bfeff9
{- |
Module : $Header$
Description : consistency checking of free types
Copyright : (c) Mingyi Liu and Till Mossakowski and Uni Bremen 2004-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : xinga@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
Consistency checking of free types
-}
module CASL.CCC.FreeTypes where
import CASL.Sign -- Sign, OpType
import CASL.Morphism
import CASL.AS_Basic_CASL -- FORMULA, OP_{NAME,SYMB}, TERM, SORT, VAR
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import CASL.CCC.SignFuns
import CASL.CCC.TermFormula
import CASL.CCC.TerminationProof
import Common.AS_Annotation
import Common.DocUtils
import Common.Doc
import Common.Result
import Common.Id
import Maybe
-- import Debug.Trace
import Data.List (nub,intersect,delete)
{------------------------------------------------------------------------
function checkFreeType:
- check if leading symbols are new (not in the image of morphism),
if not, return them as obligations
- generated datatype is free
- if new sort is not etype or esort, it can not be empty.
- the leading terms consist of variables and constructors only,
if not, return Nothing
- split function leading_Symb into
leading_Term_Predication
and
extract_leading_symb
- collect all operation symbols from recover_Sort_gen_ax fconstrs
(= constructors)
- no variable occurs twice in a leading term, if not, return Nothing
- check that patterns do not overlap, if not, return obligations
This means:
in each group of the grouped axioms:
all patterns of leading terms/formulas are disjoint
this means: either leading symbol is a variable,
and there is just one axiom
otherwise, group axioms according to leading symbol
no symbol may be a variable
check recursively the arguments of
constructor in each group
- sufficient completeness
- termination proof
-------------------------------------------------------------------------}
-- | free datatypes and recursive equations are consistent
checkFreeType :: (Sign () (),[Named (FORMULA ())]) -> Morphism () () ()
-> [Named (FORMULA ())]
-> Result (Maybe (ConsistencyStatus,[FORMULA ()]))
checkFreeType (osig,osens) m fsn
| not $ null notFreeSorts =
let (Id ts _ pos) = head notFreeSorts
sname = concat $ map tokStr ts
in warning Nothing (sname ++ " is not freely generated") pos
| not $ null nefsorts =
let (Id ts _ pos) = head nefsorts
sname = concat $ map tokStr ts
in warning (Just (Inconsistent,[])) (sname ++ " is not inhabited") pos
| elem Nothing l_Syms =
let pos = snd $ head $ filter (\f'-> (fst f') == Nothing) $
map leadingSymPos _axioms
in warning Nothing "axiom is not definitional" pos
| not $ null $ un_p_axioms =
let pos = posOf $ (take 1 un_p_axioms)
in warning Nothing "partial axiom is not definitional" pos
| (length dom_l) /= (length $ nub $ dom_l) =
let pos = posOf $ (take 1 dualDom)
dualOS = head $ filter (\o-> elem o $ delete o dom_l) dom_l
dualDom = filter (\f-> domain_os f dualOS) p_axioms
in warning Nothing "partial axiom is not definitional" pos
| not $ null $ pcheck =
let pos = posOf $ (take 1 pcheck)
in warning Nothing "partial axiom is not definitional" pos
| not $ and $ map (checkTerms tsig constructors) $
map arguOfTerm leadingTerms=
let (Application os _ _) = tt
tt= head $ filter (\t->not $ checkTerms tsig constructors $
arguOfTerm t) $ leadingTerms
pos = axiomRangeforTerm _axioms tt
in warning Nothing ("a leading term of " ++ (opSymName os) ++
" consists of not only variables and constructors") pos
| not $ and $ map (checkTerms tsig constructors) $
map arguOfPred leadingPreds=
let (Predication ps _ pos) = quanti pf
pf= head $ filter (\p->not $ checkTerms tsig constructors $
arguOfPred p) $ leadingPreds
in warning Nothing ("a leading predicate of " ++ (predSymName ps) ++
" consists of not only variables and constructors") pos
| not $ and $ map checkVar_App leadingTerms =
let (Application os _ _) = tt
tt = head $ filter (\t->not $ checkVar_App t) leadingTerms
pos = axiomRangeforTerm _axioms tt
in warning Nothing ("a variable occurs twice in a leading term of " ++
opSymName os) pos
| not $ and $ map checkVar_Pred leadingPreds =
let (Predication ps _ pos) = quanti pf
pf = head $ filter (\p->not $ checkVar_Pred p) leadingPreds
in warning Nothing ("a variable occurs twice in a leading " ++
"predicate of " ++ predSymName ps) pos
| not $ null notcomplete =
let symb_p = leadingSymPos $ head $ head notcomplete
pos = snd $ symb_p
sname = case (fst symb_p) of
Just (Left opS) -> opSymName opS
Just (Right pS) -> predSymName pS
_ -> error "CASL.CCC.FreeTypes.<Symb_Name>"
in warning (Just (Conservative,obligations)) ("the definition of " ++
sname ++ " is not complete") pos
| (not $ null fs_terminalProof) && (proof /= Just True)=
if proof == Just False
then warning (Just (Conservative,obligations))
"not terminating" nullRange
else warning (Just (Conservative,obligations))
"cannot prove termination" nullRange
| not $ null obligations =
return (Just (conStatus,obligations))
| otherwise = return (Just (conStatus,[]))
{-
call the symbols in the image of the signature morphism "new"
- each new sort must be a free type,
i.e. it must occur in a sort generation constraint that is marked as free
(Sort_gen_ax constrs True)
such that the sort is in srts,
where (srts,ops,_)=recover_Sort_gen_ax constrs
if not, output "don't know"
and there must be one term of that sort (inhabited)
if not, output "no"
- group the axioms according to their leading operation/predicate symbol,
i.e. the f resp. the p in
forall x_1:s_n .... x_n:s_n . f(t_1,...,t_m)=t
forall x_1:s_n .... x_n:s_n . phi => f(t_1,...,t_m)=t
Implication Application Strong_equation
forall x_1:s_n .... x_n:s_n . p(t_1,...,t_m)<=>phi
forall x_1:s_n .... x_n:s_n . phi1 => p(t_1,...,t_m)<=>phi
Implication Predication Equivalence
if there are axioms not being of this form, output "don't know"
-}
where
fs = map sentence (filter is_user_or_sort_gen fsn)
fs_terminalProof = filter (\f->(not $ isSortGen f) &&
(not $ is_Membership f) &&
(not $ is_ex_quanti f) &&
(not $ isDomain f)) fs
ofs = map sentence (filter is_user_or_sort_gen osens)
sig = imageOfMorphism m
tsig = mtarget m
oldSorts = (sortSet osig)
oSorts = Set.toList oldSorts
allSorts = sortSet $ tsig
esorts = Set.toList $ emptySortSet tsig
newSorts = Set.filter (\s-> not $ Set.member s oldSorts) allSorts
nSorts = Set.toList newSorts
sR = Rel.toList $ sortRel tsig
subs = map fst sR
axOfS = filter (\f-> (isSortGen f) ||
(is_Membership f)) fs
notFreeSorts = filter (\s->(is_free_gen_sort s axOfS) == Just False) nSorts
oldOpMap = opMap sig
oldPredMap = predMap sig
fconstrs = concat $ map constraintOfAxiom (ofs ++ fs)
(srts,constructors_o,_) = recover_Sort_gen_ax fconstrs
constructors = constructorOverload tsig op_map constructors_o
f_Inhabited = inhabited oSorts fconstrs
gens = intersect nSorts srts
fsorts = filter (\s-> not $ elem s esorts) $ intersect nSorts srts
nefsorts = filter (\s->not $ elem s f_Inhabited) fsorts
op_map = opMap $ tsig
axioms = filter (\f-> (not $ isSortGen f) &&
(not $ is_Membership f) &&
(not $ is_ex_quanti f)) fs
memberships = filter (\f-> is_Membership f) fs
info_subsort = concat $ map (infoSubsort esorts) memberships
dataStatus = if null nSorts then Definitional
else if not $ null $ filter (\s-> (not $ elem s subs) &&
(not $ elem s gens)) nSorts
then Conservative
else Monomorphic
_axioms = map quanti axioms
l_Syms = map leadingSym axioms -- leading_Symbol
{-
check the definitional form of the partial axioms
-}
p_axioms = filter partialAxiom _axioms -- all partial axioms
pax_with_def = filter containDef p_axioms
ax_without_dom = filter (not.isDomain) _axioms
pax_without_def = filter (not.containDef) p_axioms
un_p_axioms = filter (not.correctDef) pax_with_def
dom_l = domainOpSymbs p_axioms
pcheck = filter (\f-> case leadingSym f of
Just (Left opS) ->
elem opS dom_l
_ -> False) pax_without_def
domains = domainList fs
{-
check if leading symbols are new (not in the image of morphism),
if not, return it as proof obligation
-}
op_fs = filter (\f-> case leadingSym f of
Just (Left _) -> True
_ -> False) axioms
pred_fs = filter (\f-> case leadingSym f of
Just (Right _) -> True
_ -> False) axioms
find_ot (ident,ot) = case Map.lookup ident oldOpMap of
Nothing -> False
Just ots -> Set.member ot ots
find_pt (ident,pt) = case Map.lookup ident oldPredMap of
Nothing -> False
Just pts -> Set.member pt pts
oOps = filter (\a-> find_ot $ head $ filterOp $ leadingSym a) op_fs
oPreds = filter (\a-> find_pt $ head $ filterPred $ leadingSym a) pred_fs
{-
the leading terms consist of variables and constructors only
-}
ltp = map leading_Term_Predication _axioms -- leading_term_pred
leadingTerms = concat $ map (\tp->case tp of
Just (Left t)->[t]
_ -> []) $ ltp -- leading Term
leadingPreds = concat $ map (\tp->case tp of
Just (Right f)->[f]
_ -> []) $ ltp
{-
check that patterns do not overlap, if not, return proof obligation.
-}
axGroup = groupAxioms ax_without_dom
axPairs =
case axGroup of
Just sym_fs -> concat $ map pairs $ map snd sym_fs
Nothing -> error "CASL.CCC.FreeTypes.<axPairs>"
olPairs = filter (\a-> checkPatterns $
(patternsOfAxiom $ fst a,
patternsOfAxiom $ snd a)) axPairs
subst (f1,f2) = ((f1,sb1),(f2,sb2))
where p1= patternsOfAxiom f1
p2= patternsOfAxiom f2
(sb1,sb2) = st ((p1,[]),(p2,[]))
st ((pa1,s1),(pa2,s2))
| null pa1 =(s1,s2)
| head pa1 == head pa2 = st ((tail pa1,s1),(tail pa2,s2))
| isVar $ head pa1 = st ((tail pa1,s1++[(head pa2,head pa1)]),
(tail pa2,s2))
| isVar $ head pa2 = st ((tail pa1,s1),
(tail pa2,s2++[(head pa1,head pa2)]))
| otherwise = st (((patternsOfTerm $ head pa1)++(tail pa1),s1),
((patternsOfTerm $ head pa2)++(tail pa2),s2))
olPairsWithS = map subst olPairs
overlap_qu = map overlapQuery olPairsWithS
overlap_query = map (\f-> Quantification Universal
(varDeclOfF f)
f
nullRange) overlap_qu
{-
check the sufficient completeness
-}
axGroups =
case axGroup of
Just sym_fs -> map snd sym_fs
Nothing -> error "CASL.CCC.FreeTypes.<axGroups>"
notcomplete = filter (\f'-> not $ completePatterns constructors $
map patternsOfAxiom f') axGroups
ex_axioms = filter is_ex_quanti $ fs
proof = terminationProof fs_terminalProof domains
obligations = oOps ++ oPreds ++ ex_axioms ++ info_subsort ++ overlap_query
defStatus = if null $ (oOps ++ oPreds ++ ex_axioms ++ overlap_query)
then Definitional
else Conservative
conStatus = if dataStatus == Definitional
then defStatus
else min dataStatus defStatus
data ConsistencyStatus = Inconsistent | Conservative |
Monomorphic | Definitional deriving (Show, Eq, Ord)
instance Pretty ConsistencyStatus where
pretty cs = case cs of
Inconsistent -> keyword "Inconsistent"
Conservative -> keyword "Conservative"
Monomorphic -> keyword "Monomorphic"
Definitional -> keyword "Definitional"
-- | group the axioms according to their leading symbol,
-- output Nothing if there is some axiom in incorrect form
groupAxioms :: [FORMULA f] -> Maybe [(Either OP_SYMB PRED_SYMB,[FORMULA f])]
groupAxioms phis = do
symbs <- mapM leadingSym phis
return (filterA (zip symbs phis) [])
where filterA [] _=[]
filterA (p:ps) symb=
let fp=fst p
p'= if elem fp symb then []
else [(fp,snd $ unzip $ filter (\x->(fst x)==fp) (p:ps))]
symb'= if not $ (elem fp symb) then fp:symb
else symb
in p'++(filterA ps symb')
filterOp :: Maybe (Either OP_SYMB PRED_SYMB) -> [(OP_NAME,OpType)]
filterOp symb = case symb of
Just (Left (Qual_op_name ident (Op_type k ags rs _) _))->
[(ident, OpType {opKind=k, opArgs=ags, opRes=rs})]
_ -> []
filterPred :: Maybe (Either OP_SYMB PRED_SYMB) -> [(OP_NAME,PredType)]
filterPred symb = case symb of
Just (Right (Qual_pred_name ident (Pred_type s _) _)) ->
[(ident, PredType {predArgs=s})]
_ -> []
-- | a leading term and a predication consist of
-- | variables and constructors only
checkTerms :: Sign f e -> [OP_SYMB] -> [TERM f] -> Bool
checkTerms sig cons ts = all checkT ts
where checkT (Sorted_term tt _ _) = checkT tt
checkT (Qual_var _ _ _) = True
checkT (Application subop subts _) =
(isCons sig cons subop) &&
(all checkT subts)
checkT _ = False
-- | no variable occurs twice in a leading term
checkVar_App :: (Eq f) => TERM f -> Bool
checkVar_App (Application _ ts _) = noDuplation $ concat $ map varOfTerm ts
checkVar_App _ = error "CASL.CCC.FreeTypes<checkVar_App>"
-- | no variable occurs twice in a leading predication
checkVar_Pred :: (Eq f) => FORMULA f -> Bool
checkVar_Pred (Predication _ ts _) = noDuplation $ concat $ map varOfTerm ts
checkVar_Pred _ = error "CASL.CCC.FreeTypes<checkVar_Pred>"
-- check whether all element are identic
allIdentic :: (Eq a) => [a] -> Bool
allIdentic ts = if (length $ nub ts) <= 1 then True
else False
-- | there are no duplicate items in a list
noDuplation :: (Eq a) => [a] -> Bool
noDuplation l = if (length $ nub l) == (length l) then True
else False
-- | create all possible pairs from a list
pairs :: [a] -> [(a,a)]
pairs ps= if length ps <=1 then []
else (map (\x'->((head ps),x')) $ tail ps) ++
(pairs $ tail ps)
-- | get the patterns of a term
patternsOfTerm :: TERM f -> [TERM f]
patternsOfTerm t = case t of
Qual_var _ _ _ -> [t]
Application (Qual_op_name _ _ _) ts _-> ts
Sorted_term t' _ _ -> patternsOfTerm t'
Cast t' _ _ -> patternsOfTerm t'
_ -> []
-- | get the patterns of a axiom
patternsOfAxiom :: FORMULA f -> [TERM f]
patternsOfAxiom f = case f of
Quantification _ _ f' _ -> patternsOfAxiom f'
Negation f' _ -> patternsOfAxiom f'
Implication _ f' _ _ -> patternsOfAxiom f'
Equivalence f' _ _ -> patternsOfAxiom f'
Predication _ ts _ -> ts
Existl_equation t _ _ -> patternsOfTerm t
Strong_equation t _ _ -> patternsOfTerm t
_ -> []
-- | check whether two patterns are overlapped
checkPatterns :: (Eq f) => ([TERM f],[TERM f]) -> Bool
checkPatterns (ps1,ps2)
| ps1 == ps2 = True
| (isVar $ head ps1) ||
(isVar $ head ps2) = checkPatterns (tail ps1,tail ps2)
| otherwise = if sameOps_App (head ps1) (head ps2)
then checkPatterns $
((patternsOfTerm $ head ps1)++(tail ps1),
(patternsOfTerm $ head ps2)++(tail ps2))
else False
-- | get the axiom from left hand side of a implication,
-- | if there is no implication, then return atomic formula true
conditionAxiom :: FORMULA f -> [FORMULA f]
conditionAxiom f = case f of
Quantification _ _ f' _ -> conditionAxiom f'
Implication f' _ _ _ -> [f']
_ -> [True_atom nullRange]
-- | get the axiom from right hand side of a equivalence,
-- | if there is no equivalence, then return atomic formula true
resultAxiom :: FORMULA f -> [FORMULA f]
resultAxiom f = case f of
Quantification _ _ f' _ -> resultAxiom f'
Implication _ f' _ _ -> resultAxiom f'
Equivalence _ f' _ -> [f']
_ -> [True_atom nullRange]
-- | get the term from left hand side of a equation in a formula,
-- | if there is no equation, then return a simple id
resultTerm :: FORMULA f -> [TERM f]
resultTerm f = case f of
Quantification _ _ f' _ -> resultTerm f'
Implication _ f' _ _ -> resultTerm f'
Negation (Definedness _ _) _ ->
[Simple_id (mkSimpleId "undefined")]
Strong_equation _ t _ -> [t]
Existl_equation _ t _ -> [t]
_ -> [Simple_id (mkSimpleId "unknown")]
-- | get the sort of a term
sortTerm :: TERM f -> SORT
sortTerm t = case t of
Qual_var _ s _ -> s
Application (Op_name _) _ _ ->
genName "unknown"
Application (Qual_op_name _ ot _) _ _ ->
res_OP_TYPE ot
_ -> genName "unknown"
-- | create the proof obligation for a pair of overlapped formulas
overlapQuery :: Eq f => ((FORMULA f,[(TERM f,TERM f)]),
(FORMULA f,[(TERM f,TERM f)])) -> FORMULA f
overlapQuery ((a1,s1),(a2,s2)) =
case leadingSym a1 of
Just (Left _)
| (containNeg a1) &&
(not $ containNeg a2) ->
Implication (Conjunction [con1,con2] nullRange)
(Negation (Definedness resT2 nullRange)
nullRange)
True
nullRange
| (containNeg a2) &&
(not $ containNeg a1)->
Implication (Conjunction [con1,con2] nullRange)
(Negation (Definedness resT1 nullRange)
nullRange)
True
nullRange
| (containNeg a1) &&
(containNeg a2) ->
True_atom nullRange
| otherwise ->
Implication (Conjunction [con1,con2] nullRange)
(Strong_equation resT1 resT2 nullRange)
True
nullRange
Just (Right _)
| (containNeg a1) &&
(not $ containNeg a2) ->
Implication (Conjunction [con1,con2] nullRange)
(Negation resA2 nullRange)
True
nullRange
| (containNeg a2) &&
(not $ containNeg a1) ->
Implication (Conjunction [con1,con2] nullRange)
(Negation resA1 nullRange)
True
nullRange
| (containNeg a1) &&
(containNeg a2) ->
True_atom nullRange
| otherwise ->
Implication (Conjunction [con1,con2] nullRange)
(Conjunction [resA1,resA2] nullRange)
True
nullRange
_ -> error "CASL.CCC.FreeTypes.<overlapQuery>"
where cond = concat $ map conditionAxiom [a1,a2]
resT = concat $ map resultTerm [a1,a2]
resA = concat $ map resultAxiom [a1,a2]
con1 = substiF s1 $ head cond
con2 = substiF s2 $ last cond
resT1 = substitute s1 $ head resT
resT2 = substitute s2 $ last resT
resA1 = substiF s1 $ head resA
resA2 = substiF s2 $ last resA
-- | check whether the patterns of a function or predicate are complete
completePatterns :: (Eq f) => [OP_SYMB] -> ([[TERM f]]) -> Bool
completePatterns cons pas
| all null pas = True
| all isVar $ map head pas = completePatterns cons (map tail pas)
| otherwise = if elem (con_ts $ map head pas) s_cons
then all id $ map (completePatterns cons) $ pa_group pas
else False
where s_op_os c = case c of
Op_name _ -> []
Qual_op_name on ot _ -> [(res_OP_TYPE ot,on)]
s_sum sns = map (\s->(s, map snd $ filter (\c-> (fst c)==s) sns)) $
nub $ map fst sns
s_cons = s_sum $ concat $ map s_op_os cons
s_op_t t = case t of
Application os _ _ -> s_op_os os
_ -> []
con_ts ts = head $ s_sum $ concat $ map s_op_t ts
opN t = case t of
Application os _ _ -> opSymbName os
_ -> genName "unknown"
pa_group p = map p_g $ map (\o->
filter (\a-> (isVar $ head a) ||
((opN $ head $ a) == o)) p) $
snd $ head $
filter (\sc-> fst sc == (sortTerm $
head $ head p)) s_cons
p_g p = map (\p'-> if isVar $ head p'
then (take (maximum $ map (length.arguOfTerm.head)
p) $ repeat $ head p') ++ tail p'
else (arguOfTerm $ head p') ++ tail p') p