{- |
Module : ./CASL/CCC/FreeTypes.hs
Description : consistency checking of free types
Copyright : (c) Mingyi Liu and Till Mossakowski and Uni Bremen 2004-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
Consistency checking of free types
-}
module CASL.CCC.FreeTypes (checkFreeType) where
import CASL.AlphaConvert
import CASL.AS_Basic_CASL
import CASL.MapSentence
import CASL.Morphism
import CASL.Sign
import CASL.Simplify
import CASL.SimplifySen
import CASL.CCC.TermFormula
import CASL.CCC.TerminationProof (terminationProof)
import CASL.Overload (leqP)
import CASL.Quantification
import CASL.ToDoc
import CASL.Utils
import Common.AS_Annotation
import Common.Consistency (Conservativity (..))
import Common.DocUtils
import Common.Id
import Common.Result
import Common.Utils (number)
import qualified Common.Lib.MapSet as MapSet
import qualified Common.Lib.Rel as Rel
import Control.Monad
import Data.Either
import Data.Function
import Data.List
import Data.Maybe
import qualified Data.Set as Set
-- | check values of constructors (free types have only total ones)
inhabited sorts cons = iterateInhabited sorts where
argsRes = foldr (\ os -> case os of
Qual_op_name _ (Op_type Total args res _) _ -> ((args, res) :)
_ -> id) [] cons
iterateInhabited l =
if changed then iterateInhabited newL else newL where
(newL, changed) = foldr (\ (ags, rs) p@(l', _) ->
if all (`Set.member` l') ags && not (Set.member rs l')
then (Set.insert rs l', True) else p) (l, False) argsRes
-- | just filter out the axioms generated for free types
isGenAx :: Named (FORMULA f) -> Bool
isGenAx ax = case stripPrefix "ga_" $ senAttr ax of
Nothing -> True
Just rname -> all (not . (`isPrefixOf` rname))
["disjoint_", "injective_", "selector_"]
getFs :: [Named (FORMULA f)] -> [FORMULA f]
getFs = map sentence . filter isGenAx
-- | get the constraints from sort generation axioms
constraintOfAxiom :: [FORMULA f] -> [[Constraint]]
constraintOfAxiom = foldr (\ f -> case f of
Sort_gen_ax constrs _ -> (constrs :)
_ -> id) []
recoverSortsAndConstructors fs = let
(srts, cons, _) = unzip3 . map recover_Sort_gen_ax
$ constraintOfAxiom fs
-- check that patterns do not overlap, if not, return proof obligation.
getOverlapQuery :: (FormExtension f, TermExtension f, Ord f) => Sign f e
-> [[FORMULA f]] -> [FORMULA f]
getOverlapQuery sig = filter (not . is_True_atom)
. mapMaybe (retrySubstForm sig) . concatMap pairs
convert2Forms :: (TermExtension f, FormExtension f, Ord f) => Sign f e
-> FORMULA f -> FORMULA f
-> Result ((Subst f, [FORMULA f]), (Subst f, [FORMULA f]))
-> (FORMULA f, FORMULA f, ((Subst f, [FORMULA f]), (Subst f, [FORMULA f])))
convert2Forms sig f1 f2 (Result ds m) =
if null ds then let Just r = m in (f1, f2, r) else let
(f3, c) = alphaConvert 1 id f1
f4 = convertFormula c id f2
Result _ (Just p) = getSubstForm sig f3 f4
in (f3, f4, p)
retrySubstForm :: (FormExtension f, TermExtension f, Ord f) => Sign f e
-> (FORMULA f, FORMULA f) -> Maybe (FORMULA f)
retrySubstForm sig (f1, f2) =
let r@(Result ds m) = getSubstForm sig f1 f2
in case m of
Nothing -> Nothing
Just s -> if null ds then Just $ mkOverlapEq sig s f1 f2
else let (f3, f4, s2) = convert2Forms sig f1 f2 r
in Just . stripQuant sig . convertFormula 1 id
$ mkOverlapEq sig s2 f3 f4
quant :: TermExtension f => Sign f e -> FORMULA f -> FORMULA f
quant sig f = quantFreeVars sig f nullRange
mkOverlapEq :: (TermExtension f, GetRange f, Ord f) => Sign f e
-> ((Subst f, [FORMULA f]), (Subst f, [FORMULA f]))
-> FORMULA f -> FORMULA f -> FORMULA f
mkOverlapEq sig ((s1, fs1), (s2, fs2)) f1 f2 = quant sig . simplifyFormula id
. mkImpl (conjunct $ map (replaceVarsF s1 id) fs2
++ map (replaceVarsF s2 id) fs1)
. overlapQuery (replaceVarsF s1 id $ stripAllQuant f1)
. replaceVarsF s2 id $ stripAllQuant f2
{-
check if leading symbols are new (not in the image of morphism),
if not, return it as proof obligation
-}
getDefsForOld :: GetRange f => Sign f e -> [FORMULA f]
-> [FORMULA f]
getDefsForOld sig axioms = let
oldOpMap = opMap sig
oldPredMap = predMap sig
in filter (\ f -> case leadingSym f of
Just (Left (Qual_op_name ident ot _))
| MapSet.member ident (toOpType ot) oldOpMap -> True
Just (Right (Qual_pred_name ident pt _))
| MapSet.member ident (toPredType pt) oldPredMap -> True
_ -> False) axioms
isFreeSortGen :: FORMULA f -> Bool
isFreeSortGen f = case f of
Sort_gen_ax _ True -> True
_ -> False
-- | non-inhabited non-empty sorts
getNefsorts oldSorts nSorts esorts (srts, cons) =
Set.difference fsorts $ inhabited oldSorts cons where
fsorts = Set.difference (Set.intersection nSorts srts) esorts
getDataStatus nSorts defSubs genSorts
| Set.null nSorts = Def
| otherwise = Cons
getConStatus :: Conservativity -> [FORMULA f] -> Conservativity
getConStatus dataStatus fs = min dataStatus $ if null fs then Def else Cons
-- | check whether it is the domain of a partial function
isDomain :: FORMULA f -> Bool
isDomain = isJust . domainDef
-- | check whether it contains a definedness formula in correct form
correctDef :: FORMULA f -> Bool
correctDef f = case stripAllQuant f of
Relation (Definedness _ _) c _ _ | c /= Equivalence -> True
Negation (Definedness _ _) _ -> True
Definedness _ _ -> True
_ -> False
showForm :: (TermExtension f, FormExtension f) => Sign f e -> FORMULA f
-> String
showForm s = flip showDoc "" . simplifyCASLSen s
-- check the definitional form of the partial axioms
checkDefinitional :: (FormExtension f, TermExtension f)
=> Sign f e -> [FORMULA f] -> Maybe (Result (Conservativity, [FORMULA f]))
checkDefinitional tsig fs = let
formatAxiom = showForm tsig
(noLSyms, withLSyms) = partition (isNothing . fst . snd)
$ map (\ a -> (a, leadingSymPos a)) fs
partialLSyms = foldr (\ (a, (ma, _)) -> case ma of
Just (Left (Application t@(Qual_op_name _ (Op_type k _ _ _) _) _ _))
| k == Partial -> ((a, t) :)
_ -> id) [] withLSyms
(domainDefs, otherPartials) = partition (isDomain . fst) partialLSyms
(withDefs, withOutDefs) = partition (containDef . fst) otherPartials
(correctDefs, wrongDefs) = partition (correctDef . fst) withDefs
grDomainDefs = Rel.partList (on (sameOpSymbs tsig) snd) domainDefs
(multDomainDefs, oneDomainDefs) = partition (\ l -> case l of
[_] -> False
_ -> True) grDomainDefs
singleDomainDefs = map head oneDomainDefs
nonCompleteDomainDefs = filter (\ (da, _) -> case domainDef da of
Just (ta, _) | all isVar $ arguOfTerm ta -> False
_ -> True) singleDomainDefs
domainObls = concatMap (\ (da, dt) -> map (\ (de, _) -> (da, de))
$ filter (sameOpSymbs tsig dt . snd) correctDefs) singleDomainDefs
nonEqDoms = filter (\ (da, de) ->
case (domainDef da, stripAllQuant de) of
(Just (ta, _), Relation (Definedness te _) c _ _)
| c /= Equivalence && sameOpsApp tsig ta te ->
case leadingTermPredication de of
Just (Left t) | eqPattern tsig te t -> False
_ -> True
_ -> True) domainObls
defOpSymbs = Set.fromList $ map (snd . head) grDomainDefs
++ map snd correctDefs
wrongWithoutDefs = filter ((`Set.notMember` defOpSymbs) . snd)
withOutDefs
ds = map (\ (a, (_, pos)) -> Diag
Warning ("missing leading symbol in:\n " ++ formatAxiom a) pos)
noLSyms
++ map (\ (a, t) -> Diag
Warning ("definedness is not definitional:\n " ++ formatAxiom a)
$ getRange t) wrongDefs
++ map (\ l@((_, t) : _) -> Diag Warning (unlines $
("multiple domain axioms for: " ++ showDoc t "")
: map ((" " ++) . formatAxiom . fst) l) $ getRange t)
multDomainDefs
++ map (\ (a, t) -> Diag
Warning ("missing definedness condition for partial '"
++ showDoc t "' in:\n " ++ formatAxiom a)
$ getRange t) wrongWithoutDefs
++ map (\ (da, _) -> Diag
Warning ("non-complete domain axiom:\n " ++ formatAxiom da)
$ getRange da) nonCompleteDomainDefs
++ map (\ (da, de) -> Diag
Warning ("unexpected definedness condition:\n "
++ formatAxiom de
++ "\nin the presence of domain axiom:\n "
++ formatAxiom da) $ getRange de) nonEqDoms
in if null ds then Nothing else Just $ Result ds Nothing
{-
call the symbols in the image of the signature morphism "new"
- each new sort must be a free type,
i.e. it must occur in a sort generation constraint that is marked as free
(Sort_gen_ax constrs True)
such that the sort is in srts,
where (srts,ops,_)=recover_Sort_gen_ax constrs
if not, output "don't know"
and there must be one term of that sort (inhabited)
if not, output "no"
- group the axioms according to their leading operation/predicate symbol,
i.e. the f resp. the p in
forall x_1:s_n .... x_n:s_n . f(t_1,...,t_m)=t
forall x_1:s_n .... x_n:s_n . phi => f(t_1,...,t_m)=t
Implication Application Strong_equation
forall x_1:s_n .... x_n:s_n . p(t_1,...,t_m)<=>phi
forall x_1:s_n .... x_n:s_n . phi1 => p(t_1,...,t_m)<=>phi
Implication Predication Equivalence
if there are axioms not being of this form, output "don't know"
-}
-> Maybe (Result (Conservativity, [FORMULA f]))
checkSort noSentence nSorts defSubsorts gSorts fSorts nefsorts sSig tSig
| noSentence && Set.null nSorts =
let cond = MapSet.null (diffOpMapSet (opMap tSig) $ opMap sSig)
&& MapSet.null (diffMapSet (predMap tSig) $ predMap sSig)
in Just $ justHint (if cond then Def else Cons, [])
$ (if cond then "neither symbols"
else "neither sorts") ++ " nor sentences have been added"
| not $ Set.null notFreeSorts =
mkUnknown "some types are not freely generated" notFreeSorts
| not $ Set.null nefsorts = mkWarn "some sorts are not inhabited"
nefsorts $ Just (Inconsistent, [])
| not $ Set.null genNotNew = mkUnknown "some defined sorts are not new"
genNotNew
| otherwise = Nothing
where
notFreeSorts = Set.intersection nSorts
$ Set.difference gSorts fSorts
genNotNew = Set.difference
(Set.unions [defSubsorts, gSorts, fSorts]) nSorts
mkWarn s i r = Just $ Result [mkDiag Warning s i] r
mkUnknown s i = mkWarn s i Nothing
checkLeadingTerms :: (FormExtension f, TermExtension f, Ord f)
=> Sign f e -> [FORMULA f] -> [OP_SYMB]
-> Maybe (Result (Conservativity, [FORMULA f]))
checkLeadingTerms tsig fsn constructors = let
ltp = mapMaybe leadingTermPredication fsn
formatTerm = flip showDoc "" . simplifyCASLTerm tsig
args = foldr (\ ei -> case ei of
Left (Application os ts qs) ->
((qs, "term for " ++ show (opSymbName os), ts) :)
Right (Predication ps ts qs) ->
((qs, "predicate " ++ show (predSymbName ps), ts) :)
_ -> id) [] ltp
ds = foldr (\ (qs, d, ts) l ->
let vs = concatMap varOfTerm ts
dupVs = vs \\ Set.toList (Set.fromList vs)
nonCs = checkTerms tsig constructors ts
td = " in leading " ++ d ++ ": "
in map (\ v -> Diag Warning
("duplicate variable" ++ td ++ formatTerm v) qs) dupVs
++ map (\ t -> Diag Warning
("non-constructor" ++ td ++ formatTerm t)
qs) nonCs
++ l) [] args
in if null ds then Nothing else Just $ Result ds Nothing
-- check the sufficient completeness
checkIncomplete :: (FormExtension f, TermExtension f, Ord f)
=> Sign f e -> [FORMULA f] -> [OP_SYMB] -> [[FORMULA f]] -> [OP_SYMB]
-> Maybe (Result (Conservativity, [FORMULA f]))
checkIncomplete sig obligations doms fsn cons =
case getNotComplete sig doms fsn cons of
[] -> Nothing
incomplete -> let
formatAxiom = showForm sig
in Just $ Result
(map (\ (Result ds mfs, fs@(hd : _)) -> let
(lSym, pos) = leadingSymPos hd
sname = case fmap extractLeadingSymb lSym of
Just (Left opS) -> opSymbName opS
Just (Right pS) -> predSymbName pS
_ -> error "CASL.CCC.FreeTypes.<Symb_Name>"
in Diag Warning (intercalate "\n" $
("the definition of " ++ show sname
++ (if null ds then " may not be" else " is not") ++ " complete")
: "the defining formula group is:"
: map (\ (f, n) -> " " ++ shows n ". "
++ formatAxiom f) (number fs)
++ map diagString ds
++ maybe []
(map (\ (p, f) -> "possibly incomplete pattern for: " ++ p
++ "\n with completeness condition: "
++ formatAxiom f)) mfs
) pos)
incomplete) $ Just (Cons, obligations)
renameVars :: Int -> [FORMULA f] -> (Int, [FORMULA f])
renameVars c = foldr (\ f (c1, l) ->
let (f2, c2) = alphaConvert c1 id f in
(c2, f2 : l)) (c, [])
checkTerminal :: (FormExtension f, TermExtension f, Ord f)
=> Sign f e -> Conservativity -> [FORMULA f] -> [FORMULA f] -> [FORMULA f]
-> IO (Result (Conservativity, [FORMULA f]))
checkTerminal sig conStatus obligations doms fsn =
if null fsn then return $ justHint (conStatus, obligations)
"no defining sentences"
else do
let (c, domains) = renameVars 1 doms
fs_terminalProof = snd $ renameVars c fsn
(proof, str) <- terminationProof sig fs_terminalProof domains
return $ case proof of
Just True -> justHint (conStatus, obligations) "termination succeeded"
_ -> warning (Cons, obligations)
(if isJust proof then "not terminating"
else "cannot prove termination: " ++ str) nullRange
checkPos :: FORMULA f -> Bool
checkPos f = case f of
Quantification _ _ f' _ -> checkPos f'
Junction _ cs _ -> all checkPos cs
Relation i1 c i2 _ -> let
c1 = checkPos i1
c2 = checkPos i2
in if c == Equivalence then c1 == c2 else c1 <= c2
Negation n _ -> not $ checkPos n
Atom b _ -> b
Predication {} -> True
Membership {} -> True
Definedness {} -> True
Equation {} -> True
Sort_gen_ax cs _ -> case cs of
[c] -> case opSymbs c of
[_] -> True
{- just a single constructor creates a unique value
even for multiple one-point components -}
_ -> False
_ -> False
_ -> False
partitionMaybe :: (a -> Maybe b) -> [a] -> ([b], [a])
partitionMaybe f = foldr (\ a (bs, as) ->
maybe (bs, a : as) (\ b -> (b : bs, as)) $ f a) ([], [])
{- -----------------------------------------------------------------------
function checkFreeType:
- check if leading symbols are new (not in the image of morphism),
if not, return them as obligations
- generated datatype is free
- if new sort is not etype or esort, it can not be empty.
- the leading terms consist of variables and constructors only,
if not, return Nothing
- split function leading_Symb into
leadingTermPredication
and
extractLeadingSymb
- collect all operation symbols from recover_Sort_gen_ax fconstrs
(= constructors)
- no variable occurs twice in a leading term, if not, return Nothing
- check that patterns do not overlap, if not, return obligations
This means:
in each group of the grouped axioms:
all patterns of leading terms/formulas are disjoint
this means: either leading symbol is a variable,
and there is just one axiom
otherwise, group axioms according to leading symbol
no symbol may be a variable
check recursively the arguments of
constructor in each group
- sufficient completeness
- termination proof
------------------------------------------------------------------------
free datatypes and recursive equations are consistent -}
checkFreeType :: (FormExtension f, TermExtension f, Ord f)
=> (Sign f e, [Named (FORMULA f)]) -> Morphism f e m
-> [Named (FORMULA f)] -> IO (Result (Conservativity, [FORMULA f]))
checkFreeType (_, osens) m axs = do
let sig = mtarget m
sSig = imageOfMorphism m
fs = getFs axs -- strip labels and generated sentences
(exQuants, fs2) = partition isExQuanti fs
(memShips, fs3) = partition isMembership fs2
(sortGens1, axioms) = partition isSortGen fs3
(freeSortGens, sortGens) = partition isFreeSortGen sortGens1
(domains, axLessDoms) = partition isDomain axioms
(genSorts1, cons1) =
recoverSortsAndConstructors $ getFs osens
(freeSorts, cons2) =
recoverSortsAndConstructors freeSortGens
(genSorts2, cons3) =
recoverSortsAndConstructors sortGens
sortCons@(genSorts, cons) =
[freeSorts, genSorts2, Set.map (mapSort $ sort_map m) genSorts1]
oldSorts = sortSet sSig
newSorts = Set.difference (sortSet sig) oldSorts
emptySorts = emptySortSet sig
nonInhabitedSorts = getNefsorts oldSorts newSorts emptySorts sortCons
(subsortDefns, memShips2) = partitionMaybe isSubsortDef memShips
defSubsorts = Set.fromList $ map (\ (s, _, _) -> s) subsortDefns
dataStatus = getDataStatus newSorts defSubsorts genSorts
defsForOld = getDefsForOld sSig axioms
opsPredsAndExAxioms = defsForOld ++ exQuants ++ memShips2
conStatus = getConStatus dataStatus opsPredsAndExAxioms
memObl = infoSubsorts emptySorts subsortDefns
axGroup = groupAxioms sig axLessDoms
overLaps = getOverlapQuery sig axGroup
obligations = opsPredsAndExAxioms ++ memObl ++ overLaps
domSyms = lefts $ mapMaybe leadingSym domains
ms =
[ checkDefinitional sig axioms
, checkSort (null axs) newSorts defSubsorts genSorts2 freeSorts
nonInhabitedSorts sSig sig
, checkLeadingTerms sig axioms cons
, checkIncomplete sig obligations domSyms axGroup cons ]
r <- case catMaybes ms of
[] -> checkTerminal sig conStatus obligations domains axLessDoms
a : _ -> return a
return $ case r of
Result ds Nothing ->
case filter (not . checkPos . sentence) $ axs ++ osens of
[] -> justHint (Cons, []) "theory is positive!"
l -> let
ps = map (\ f -> Diag Hint ("formula is not positive:\n "
++ show (printTheoryFormula $ mapNamed (simplifyCASLSen sig) f))
$ getRange f) $ take 2 l
in Result (ps ++ ds) Nothing
_ -> r
{- | group the axioms according to their leading symbol,
output Nothing if there is some axiom in incorrect form -}
groupAxioms :: GetRange f => Sign f e -> [FORMULA f] -> [[FORMULA f]]
groupAxioms sig phis = map (map snd)
$ Rel.partList (\ (e1, _) (e2, _) -> case (e1, e2) of
(Left o1, Left o2) -> sameOpSymbs sig o1 o2
(Right (Qual_pred_name p1 t1 _), Right (Qual_pred_name p2 t2 _)) ->
p1 == p2 && on (leqP sig) toPredType t1 t2
_ -> False)
$ foldr (\ f -> case leadingSym f of
Just ei -> ((ei, f) :)
Nothing -> id) [] phis
-- | return the non-constructor terms of arguments of a leading term
checkTerms :: Sign f e -> [OP_SYMB] -> [TERM f] -> [TERM f]
checkTerms sig cons = concatMap checkT
where checkT t = case unsortedTerm t of
Qual_var {} -> []
Application subop subts _ ->
if isCons sig cons subop then concatMap checkT subts else [t]
_ -> [t]
{- | check whether the operation symbol is a constructor
(or a related overloaded variant). -}
isCons :: Sign f e -> [OP_SYMB] -> OP_SYMB -> Bool
isCons sig cons os = any (sameOpSymbs sig os) cons
-- | create all possible pairs from a list
pairs :: [a] -> [(a, a)]
pairs ps = case ps of
hd : tl@(_ : _) -> map (\ x -> (hd, x)) tl ++ pairs tl
_ -> []
-- | create the proof obligation for a pair of overlapped formulas
overlapQuery :: GetRange f => FORMULA f -> FORMULA f -> FORMULA f
overlapQuery a1 a2 =
case leadingSym a1 of
Just (Left _)
| containNeg a1 && not (containNeg a2) ->
mkImpl (conjunct [con1, con2])
(mkNeg (Definedness resT2 nullRange))
| containNeg a2 && not (containNeg a1) ->
mkImpl (conjunct [con1, con2])
(mkNeg (Definedness resT1 nullRange))
| containNeg a1 && containNeg a2 -> trueForm
| otherwise ->
mkImpl (conjunct [con1, con2])
(mkStEq resT1 resT2)
Just (Right _)
| containNeg a1 && not (containNeg a2) ->
mkImpl (conjunct [con1, con2])
(mkNeg resA2)
| containNeg a2 && not (containNeg a1) ->
mkImpl (conjunct [con1, con2])
(mkNeg resA1)
| containNeg a1 && containNeg a2 -> trueForm
| otherwise ->
mkImpl (conjunct [con1, con2])
(conjunct [resA1, resA2])
_ -> error "CASL.CCC.FreeTypes.<overlapQuery>"
where [con1, con2] = map conditionAxiom [a1, a2]
[resT1, resT2] = map resultTerm [a1, a2]
[resA1, resA2] = map resultAxiom [a1, a2]
getNotComplete :: (Ord f, FormExtension f, TermExtension f)
=> Sign f e -> [OP_SYMB] -> [[FORMULA f]] -> [OP_SYMB]
-> [(Result [(String, FORMULA f)], [FORMULA f])]
getNotComplete sig doms fsn constructors =
let consMap = foldr (\ (Qual_op_name o ot _) ->
MapSet.insert (res_OP_TYPE ot) (o, ot)) MapSet.empty constructors
consMap2 = foldr (\ (Qual_op_name o ot _) ->
MapSet.insert o ot) MapSet.empty constructors
in
filter (\ (Result ds mfs, _) -> not (null ds)
|| maybe False (not . null) mfs)
$ map (\ g ->
(let l = map topIdOfAxiom g in
case Set.toList . Set.fromList $ map fst l of
[(p, i)] -> completePatterns sig doms consMap consMap2
([(showId p "", i)]
, zip g $ map snd l)
l2 -> fail $ "wrongly grouped leading terms "
++ show l2
, g)) fsn
type LeadArgs = [(String, Int)]
getNextArg :: Bool -> String -> LeadArgs -> (Bool, String, LeadArgs)
getNextArg b p l = case l of
[] -> (False, if b then p else "_", [])
h : r -> case h of
(i, c) -> if c == 0 then (b, i, r) else
let (b1, sl, r2) = getNextN c b p r
in (b1, i ++ "(" ++ intercalate ", " sl ++ ")", r2)
getNextN :: Int -> Bool -> String -> LeadArgs -> (Bool, [String], LeadArgs)
getNextN c b p l = if c <= 0 then (b, [], l) else
let (b1, s, r) = getNextArg b p l
(b2, sl, r2) = getNextN (c - 1) b1 p r
in (b2, s : sl, r2)
showLeadingArgs :: String -> LeadArgs -> String
showLeadingArgs p l = let (_, r, _) = getNextArg True p $ reverse l in r
-- | check whether the patterns of a function or predicate are complete
completePatterns :: (Ord f, FormExtension f, TermExtension f) => Sign f e
-> [OP_SYMB] -> MapSet.MapSet SORT (OP_NAME, OP_TYPE)
-> MapSet.MapSet OP_NAME OP_TYPE
-> (LeadArgs, [(FORMULA f, [TERM f])])
-> Result [(String, FORMULA f)]
completePatterns tsig doms consMap consMap2 (leadingArgs, pas)
| all (null . snd) pas =
let fs = checkExhaustive tsig doms $ map fst pas
in return $ map (\ f -> (showLeadingArgs "" leadingArgs, f)) fs
| any (null . snd) pas = fail "wrongly grouped leading terms"
| otherwise = let hds = map (\ (f, hd : _) -> (f, hd)) pas in
if all (isVar . snd) hds
then let
tls = map (\ (f, _ : tl) -> (f, tl)) pas
in completePatterns tsig doms consMap consMap2
(("_", 0) : leadingArgs, tls)
else let
consAppls@(_ : _) = mapMaybe (\ (f, t) -> case unsortedTerm t of
Application (Qual_op_name o ot _) _ _ ->
Just (f, o, Set.filter (sameOpTypes tsig ot)
$ MapSet.lookup o consMap2)
_ -> Nothing) hds
consSrt = foldr1 Set.intersection
$ map (\ (_, _, os) -> Set.map res_OP_TYPE os) consAppls
in case filter (not . Set.null . (`MapSet.lookup` consMap))
$ Set.toList consSrt of
[] -> fail $
"no common result type for constructors found: "
++ showDoc (map snd hds) ""
cSrt : _ -> do
let allCons = MapSet.lookup cSrt consMap
when (Set.null allCons) . fail
$ "no constructors for result type found: " ++ show cSrt
let cons_group = map (\ (c, ct) -> (c, ct,
filter (\ (_, h : _) -> case unsortedTerm h of
Application (Qual_op_name o ot _) _ _ ->
c == o && sameOpTypes tsig ct ot
_ -> False) pas)) $ Set.toList allCons
vars = filter (\ (_, h : _) -> isVar h) pas
ffs <- mapM (\ f -> checkConstructor leadingArgs vars f
>>= completePatterns tsig doms consMap consMap2)
cons_group
return $ concat ffs
mkVars :: [SORT] -> [TERM f]
mkVars = zipWith (\ i -> mkVarTerm (mkSimpleId $ 'c' : show i)) [1 :: Int ..]
checkConstructor :: (Ord f, FormExtension f, TermExtension f)
=> LeadArgs -> [(FORMULA f, [TERM f])]
-> (Id, OP_TYPE, [(FORMULA f, [TERM f])])
-> Result (LeadArgs, [(FORMULA f, [TERM f])])
checkConstructor leadingArgs vars (c, ct, es) = do
let args = args_OP_TYPE ct
nL = (showId c "", length args) : leadingArgs
varEqs = map (\ (f, _ : t) -> (f, mkVars args ++ t)) vars
pat = showLeadingArgs
(showId c "" ++ case args of
[] -> ""
l -> "(" ++ intercalate "," (map (const "_") l) ++ ")")
leadingArgs
case es of
[] -> do
when (null vars) $ justWarn ()
$ "missing pattern for: " ++ pat
return (nL, varEqs)
_ ->
return (nL, varEqs ++ map (\ (f, h : t) -> (f, arguOfTerm h ++ t)) es)
-- | get condition axiom without matching definedness condition
getCond :: (GetRange f, Eq f) => Sign f e -> [OP_SYMB] -> FORMULA f -> FORMULA f
getCond sig doms f =
let (cs, e) = splitAxiom f
in conjunct $ filter (\ c -> case leadingTermPredication e of
l@(Just (Left (Application os _ _)))
| any (sameOpSymbs sig os) doms
-> case c of -- pattern term must be identical
Definedness {} | leadingTermPredication c == l -> False
_ -> True
_ -> True) cs
checkExhaustive :: (Ord f, FormExtension f, TermExtension f)
=> Sign f e -> [OP_SYMB] -> [FORMULA f] -> [FORMULA f]
checkExhaustive sig doms es = case es of
f1 : rs ->
let sfs = map (\ f -> (getSubstForm sig f1 f, f)) rs
overlap = filter (isJust . maybeResult . fst) sfs
simpAndQuant = quant sig . simplifyFormula id
in case overlap of
[] -> filter (not . is_True_atom)
(map (simpAndQuant . getCond sig doms) [f1])
++ checkExhaustive sig doms rs
(r, f2) : rrs -> let
(f3, f4, ((s3, _), (s4, _))) = convert2Forms sig f1 f2 r
in checkExhaustive sig doms
$ (simpAndQuant
. mkImpl (disjunct [ replaceVarsF s3 id $ getCond sig doms f3
, replaceVarsF s4 id $ getCond sig doms f4 ])
. replaceVarsF s3 id $ restAxiom f3) : map snd rrs
[] -> []