/*
* Copyright (C) 2012, 2013, 2015-2017 Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/*! \file */
#include <config.h>
#include <atf-c.h>
#include <unistd.h>
#include <dns/callbacks.h>
#include "dnstest.h"
/*****
***** Commonly used structures
*****/
/*
* An array of these structures is passed to check_text_ok().
*/
struct text_ok {
NULL indicates text_in is invalid */
};
/*
* An array of these structures is passed to check_wire_ok().
*/
struct wire_ok {
};
/*****
***** Convenience macros for creating the above structures
*****/
}
/*****
***** Checking functions used by test cases
*****/
/*
* Test whether converting rdata to a type-specific struct and then back to
* rdata results in the same uncompressed wire form. This checks whether
* tostruct_*() and fromstruct_*() routines for given RR class and type behave
* consistently.
*
* This function is called for every correctly processed input RDATA, from both
* check_text_ok_single() and check_wire_ok_single().
*/
static void
void *rdata_struct;
/*
* Convert from uncompressed wire form into type-specific struct.
*/
"%s (%u): dns_rdata_tostruct() failed",
/*
* Convert from type-specific struct into uncompressed wire form.
*/
&target);
"line %d: %s (%u): dns_rdata_fromstruct() failed",
/*
* Ensure results are consistent.
*/
"line %d: %s (%u): wire form data length changed "
"after converting to type-specific struct and back",
"line %d: %s (%u): wire form data different after "
"converting to type-specific struct and back",
}
/*
* Check whether converting supplied text form RDATA into uncompressed wire
* form succeeds (tests fromtext_*()). If so, try converting it back into text
* form and see if it results in the original text (tests totext_*()).
*/
static void
{
/*
* Try converting text form RDATA into uncompressed wire form.
*/
sizeof(buf_fromtext),
/*
* Check whether result is as expected.
*/
"line %d: '%s': "
"expected success, got failure",
} else {
"line %d: '%s': "
"expected failure, got success",
}
/*
* If text form RDATA was not parsed correctly, performing any
* additional checks is pointless.
*/
if (result != ISC_R_SUCCESS) {
return;
}
/*
* Try converting uncompressed wire form RDATA back into text form and
* check whether the resulting text is the same as the original one.
*/
"line %d: '%s': "
"failed to convert rdata back to text form",
"line %d: '%s': "
"converts back to '%s', expected '%s'",
/*
* Perform two-way conversion checks between uncompressed wire form and
* type-specific struct.
*/
}
/*
* Test whether supplied wire form RDATA is properly handled as being either
* valid or invalid for an RR of given rdclass and type.
*/
static void
{
/*
* Set up len-octet buffer pointing at data.
*/
/*
* Initialize target structures.
*/
/*
* Try converting wire data into uncompressed wire form.
*/
&target);
/*
* Check whether result is as expected.
*/
"line %d: %s (%lu): "
"expected success, got failure",
} else {
"line %d: %s (%lu): "
"expected failure, got success",
}
/*
* If data was parsed correctly, perform two-way conversion checks
* between uncompressed wire form and type-specific struct.
*/
if (result == ISC_R_SUCCESS) {
}
}
/*
* Test fromtext_*() and totext_*() routines for given RR class and type for
* each text form RDATA in the supplied array. See the comment for
* check_text_ok_single() for an explanation of how exactly these routines are
* tested.
*/
static void
{
size_t i;
/*
* Check all entries in the supplied array.
*/
}
}
/*
* For each wire form RDATA in the supplied array, check whether it is properly
* handled as being either valid or invalid for an RR of given rdclass and
* type, then check whether trying to process a zero-length wire data buffer
* yields the expected result. This checks whether the fromwire_*() routine
* for given RR class and type behaves as expected.
*/
static void
{
size_t i;
/*
* Check all entries in the supplied array.
*/
}
/*
* Check empty wire data.
*/
}
/*
* as expected. This is just a helper function which should be the only
* function called for a test case using it, due to the use of dns_test_begin()
* and dns_test_end().
*
* The empty_ok argument denotes whether an attempt to parse a zero-length wire
* data buffer should succeed or not (it is valid for some RR types). There is
* no point in performing a similar check for empty text form RDATA, because
* dns_rdata_fromtext() returns ISC_R_UNEXPECTEDEND before calling fromtext_*()
* for the given RR class and type.
*/
static void
{
}
}
dns_test_end();
}
/*****
***** Individual unit tests
*****/
/*
* CSYNC tests.
*
* RFC 7477:
*
* 2.1. The CSYNC Resource Record Format
*
* 2.1.1. The CSYNC Resource Record Wire Format
*
* The CSYNC RDATA consists of the following fields:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | SOA Serial |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Flags | Type Bit Map /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Type Bit Map (continued) /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 2.1.1.1. The SOA Serial Field
*
* The SOA Serial field contains a copy of the 32-bit SOA serial number
* from the child zone. If the soaminimum flag is set, parental agents
* querying children's authoritative servers MUST NOT act on data from
* zones advertising an SOA serial number less than this value. See
* [RFC1982] for properly implementing "less than" logic. If the
* soaminimum flag is not set, parental agents MUST ignore the value in
* the SOA Serial field. Clients can set the field to any value if the
* soaminimum flag is unset, such as the number zero.
*
* (...)
*
* 2.1.1.2. The Flags Field
*
* The Flags field contains 16 bits of boolean flags that define
* operations that affect the processing of the CSYNC record. The flags
* defined in this document are as follows:
*
* 0x00 0x01: "immediate"
*
* 0x00 0x02: "soaminimum"
*
* The definitions for how the flags are to be used can be found in
* Section 3.
*
* The remaining flags are reserved for use by future specifications.
* Undefined flags MUST be set to 0 by CSYNC publishers. Parental
* agents MUST NOT process a CSYNC record if it contains a 1 value for a
* flag that is unknown to or unsupported by the parental agent.
*
* 2.1.1.2.1. The Type Bit Map Field
*
* The Type Bit Map field indicates the record types to be processed by
* the parental agent, according to the procedures in Section 3. The
* Type Bit Map field is encoded in the same way as the Type Bit Map
* field of the NSEC record, described in [RFC4034], Section 4.1.2. If
* a bit has been set that a parental agent implementation does not
* understand, the parental agent MUST NOT act upon the record.
* Specifically, a parental agent must not simply copy the data, and it
* must understand the semantics associated with a bit in the Type Bit
* Map field that has been set to 1.
*/
}
TEXT_INVALID(""),
TEXT_INVALID("0"),
TEXT_VALID("0 0"),
TEXT_VALID("0 0 A"),
TEXT_VALID("0 0 NS"),
TEXT_VALID("0 0 AAAA"),
TEXT_VALID("0 0 A AAAA"),
TEXT_VALID("0 0 A NS AAAA"),
TEXT_INVALID("0 0 A NS AAAA BOGUS"),
};
/*
* Short.
*/
WIRE_INVALID(0x00),
/*
* Short.
*/
/*
* Short.
*/
/*
* Short.
*/
/*
* Short.
*/
/*
* Serial + flags only.
*/
/*
* Bad type map.
*/
/*
* Bad type map.
*/
/*
* Good type map.
*/
0x02),
/*
* Sentinel.
*/
};
dns_rdatatype_csync, sizeof(dns_rdata_csync_t));
}
/*
* DOA tests.
*
* draft-durand-doa-over-dns-03:
*
* 3.2. DOA RDATA Wire Format
*
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 0: | |
* | DOA-ENTERPRISE |
* | |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 4: | |
* | DOA-TYPE |
* | |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 8: | DOA-LOCATION | DOA-MEDIA-TYPE /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 10: / /
* / DOA-MEDIA-TYPE (continued) /
* / /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* / /
* / DOA-DATA /
* / /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*
* DOA-ENTERPRISE: a 32-bit unsigned integer in network order.
*
* DOA-TYPE: a 32-bit unsigned integer in network order.
*
* DOA-LOCATION: an 8-bit unsigned integer.
*
* DOA-MEDIA-TYPE: A <character-string> (see [RFC1035]). The first
* octet of the <character-string> contains the number of characters to
* follow.
*
* DOA-DATA: A variable length blob of binary data. The length of the
* DOA-DATA is not contained within the wire format of the RR and has to
* be computed from the RDLENGTH of the entire RR once other fields have
* been taken into account.
*
* 3.3. DOA RDATA Presentation Format
*
* The DOA-ENTERPRISE field is presented as an unsigned 32-bit decimal
* integer with range 0 - 4,294,967,295.
*
* The DOA-TYPE field is presented as an unsigned 32-bit decimal integer
* with range 0 - 4,294,967,295.
*
* The DOA-LOCATION field is presented as an unsigned 8-bit decimal
* integer with range 0 - 255.
*
* The DOA-MEDIA-TYPE field is presented as a single <character-string>.
*
* The DOA-DATA is presented as Base64 encoded data [RFC4648] unless the
* DOA-DATA is empty in which case it is presented as a single dash
* character ("-", ASCII 45). White space is permitted within Base64
* data.
*/
}
/*
* Valid, non-empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"text/plain\" Zm9v"),
/*
* Valid, non-empty DOA-DATA with whitespace in between.
*/
TEXT_VALID_CHANGED("0 0 1 \"text/plain\" Zm 9v",
/*
* Valid, unquoted DOA-MEDIA-TYPE, non-empty DOA-DATA.
*/
TEXT_VALID_CHANGED("0 0 1 text/plain Zm9v",
/*
* Invalid, quoted non-empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\" \"Zm9v\""),
/*
* Valid, empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"text/plain\" -"),
/*
* Invalid, quoted empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\" \"-\""),
/*
* Invalid, missing "-" in empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\""),
/*
* Valid, undefined DOA-LOCATION.
*/
TEXT_VALID("0 0 100 \"text/plain\" Zm9v"),
/*
* Invalid, DOA-LOCATION too big.
*/
TEXT_INVALID("0 0 256 \"text/plain\" ZM9v"),
/*
* Valid, empty DOA-MEDIA-TYPE, non-empty DOA-DATA.
*/
TEXT_VALID("0 0 2 \"\" aHR0cHM6Ly93d3cuaXNjLm9yZy8="),
/*
* Valid, empty DOA-MEDIA-TYPE, empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"\" -"),
/*
* Valid, DOA-MEDIA-TYPE with a space.
*/
TEXT_VALID("0 0 1 \"plain text\" Zm9v"),
/*
* Invalid, missing DOA-MEDIA-TYPE.
*/
TEXT_INVALID("1234567890 1234567890 1"),
/*
* Valid, DOA-DATA over 255 octets.
*/
TEXT_VALID("1234567890 1234567890 1 \"image/gif\" "
"/5nMzMzMzACZ/////////////////////yH5BAEKAA8ALAAA"
"AAAoABkAAATH8IFJK5U2a4337F5ogRkpnoCJrly7PrCKyh8c"
"1wd3OAxug0LhnCubcVhsxysQnOt4ATpvvzHlFzl1AwODhWeF"
"pEsAbKGxjHqDSE0Sp6ixN4N1BJmbc7lIhmsBich1awPAjkY1"
"SZR8bJWrz382SGqIBQQFQd4IsUTaX+ceuudPEQA7"),
/*
* Invalid, bad Base64 in DOA-DATA.
*/
TEXT_INVALID("1234567890 1234567890 1 \"image/gif\" R0lGODl"),
/*
* Sentinel.
*/
};
/*
* Valid, empty DOA-MEDIA-TYPE, empty DOA-DATA.
*/
0x01, 0x00),
/*
* Invalid, missing DOA-MEDIA-TYPE.
*/
0x01),
/*
* Invalid, malformed DOA-MEDIA-TYPE length.
*/
0x01, 0xff),
/*
* Valid, empty DOA-DATA.
*/
0x01, 0x03, 0x66, 0x6f, 0x6f),
/*
* Valid, non-empty DOA-DATA.
*/
0x01, 0x03, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72),
/*
* Valid, DOA-DATA over 255 octets.
*/
0x01, 0x06, 0x62, 0x69, 0x6e, 0x61, 0x72, 0x79,
0x00, 0x66, 0x99, 0xff, 0xff, 0xff, 0x33, 0x99,
0xcc, 0xcc, 0xff, 0xff, 0x99, 0xcc, 0xff, 0x33,
0x66, 0x99, 0x66, 0xcc, 0xff, 0x99, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0x00, 0x99, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0x21, 0xf9, 0x04,
0x01, 0x0a, 0x00, 0x0f, 0x00, 0x2c, 0x00, 0x00,
0x00, 0x00, 0x28, 0x00, 0x19, 0x00, 0x00, 0x04,
0xc7, 0xf0, 0x81, 0x49, 0x2b, 0x95, 0x36, 0x6b,
0x8d, 0xf7, 0xec, 0x5e, 0x68, 0x81, 0x19, 0x29,
0x9e, 0x80, 0x89, 0xae, 0x5c, 0xbb, 0x3e, 0xb0,
0x8a, 0xca, 0x1f, 0x1c, 0xdc, 0x78, 0x00, 0x87,
0x34, 0xf7, 0xe4, 0xc0, 0xdb, 0x6e, 0xd3, 0xbb,
0xfc, 0x82, 0x48, 0x1d, 0xb1, 0xa2, 0x3a, 0x26,
0x93, 0xc5, 0x54, 0xe9, 0x49, 0x55, 0x96, 0x2e,
0xa3, 0x6a, 0xd5, 0x45, 0x72, 0x6a, 0x93, 0x52,
0xd7, 0x07, 0x77, 0x38, 0x0c, 0x6e, 0x83, 0x42,
0xe1, 0x9c, 0x2b, 0x9b, 0x71, 0x58, 0x6c, 0xc7,
0x2b, 0x10, 0x9c, 0xeb, 0x78, 0x01, 0x3a, 0x6f,
0xbf, 0x31, 0xe5, 0x17, 0x39, 0x75, 0x03, 0x03,
0x83, 0x85, 0x67, 0x85, 0x02, 0x04, 0x69, 0x7a,
0x7e, 0x7f, 0x52, 0x18, 0x5e, 0x01, 0x83, 0x05,
0x75, 0x40, 0x78, 0x48, 0x57, 0x29, 0x18, 0x41,
0x86, 0x75, 0x07, 0x82, 0x02, 0xa0, 0x41, 0x2d,
0x3b, 0x92, 0x93, 0x7d, 0x04, 0x79, 0x77, 0x7d,
0xa4, 0x4b, 0x00, 0x6c, 0xa1, 0xb1, 0x8c, 0x7a,
0x83, 0x48, 0x4d, 0x12, 0xa7, 0xa8, 0xb1, 0x37,
0x83, 0x75, 0x04, 0x99, 0x9b, 0x73, 0xb9, 0x48,
0x86, 0x6b, 0x01, 0x89, 0xc8, 0x75, 0x6b, 0x03,
0xc0, 0x8e, 0x46, 0x35, 0x49, 0x94, 0x7c, 0x6c,
0x95, 0xab, 0xcf, 0x7f, 0x36, 0x48, 0x6a, 0x88,
0x05, 0x04, 0x05, 0x41, 0xde, 0x08, 0xb1, 0x44,
0xda, 0x5f, 0xe7, 0x1e, 0xba, 0xe7, 0x4f, 0x11,
0x00, 0x3b),
/*
* Sentinel.
*/
};
dns_rdatatype_doa, sizeof(dns_rdata_doa_t));
}
/*
* EDNS Client Subnet tests.
*
* RFC 7871:
*
* 6. Option Format
*
* This protocol uses an EDNS0 [RFC6891] option to include client
* address information in DNS messages. The option is structured as
* follows:
*
* +0 (MSB) +1 (LSB)
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 0: | OPTION-CODE |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 2: | OPTION-LENGTH |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 4: | FAMILY |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 6: | SOURCE PREFIX-LENGTH | SCOPE PREFIX-LENGTH |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 8: | ADDRESS... /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*
* o (Defined in [RFC6891]) OPTION-CODE, 2 octets, for ECS is 8 (0x00
* 0x08).
*
* o (Defined in [RFC6891]) OPTION-LENGTH, 2 octets, contains the
* length of the payload (everything after OPTION-LENGTH) in octets.
*
* o FAMILY, 2 octets, indicates the family of the address contained in
* the option, using address family codes as assigned by IANA in
* Address Family Numbers [Address_Family_Numbers].
*
* The format of the address part depends on the value of FAMILY. This
* document only defines the format for FAMILY 1 (IPv4) and FAMILY 2
* (IPv6), which are as follows:
*
* o SOURCE PREFIX-LENGTH, an unsigned octet representing the leftmost
* number of significant bits of ADDRESS to be used for the lookup.
* In responses, it mirrors the same value as in the queries.
*
* o SCOPE PREFIX-LENGTH, an unsigned octet representing the leftmost
* number of significant bits of ADDRESS that the response covers.
* In queries, it MUST be set to 0.
*
* o ADDRESS, variable number of octets, contains either an IPv4 or
* IPv6 address, depending on FAMILY, which MUST be truncated to the
* number of bits indicated by the SOURCE PREFIX-LENGTH field,
* padding with 0 bits to pad to the end of the last octet needed.
*
* o A server receiving an ECS option that uses either too few or too
* many ADDRESS octets, or that has non-zero ADDRESS bits set beyond
* SOURCE PREFIX-LENGTH, SHOULD return FORMERR to reject the packet,
* as a signal to the software developer making the request to fix
* their implementation.
*
* All fields are in network byte order ("big-endian", per [RFC1700],
* Data Notation).
*/
"OPT RDATA with EDNS Client Subnet manipulations");
}
/*
* Option code with no content.
*/
/*
* Option code family 0, source 0, scope 0.
*/
0x00, 0x00, 0x00, 0x00),
/*
* Option code family 1 (IPv4), source 0, scope 0.
*/
0x00, 0x01, 0x00, 0x00),
/*
* Option code family 2 (IPv6) , source 0, scope 0.
*/
0x00, 0x02, 0x00, 0x00),
/*
* Extra octet.
*/
0x00, 0x00, 0x00, 0x00,
0x00),
/*
* Source too long for IPv4.
*/
0x00, 0x01, 33, 0x00,
0x00, 0x00, 0x00, 0x00),
/*
* Source too long for IPv6.
*/
0x00, 0x02, 129, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00),
/*
* Scope too long for IPv4.
*/
0x00, 0x01, 0x00, 33,
0x00, 0x00, 0x00, 0x00),
/*
* Scope too long for IPv6.
*/
0x00, 0x02, 0x00, 129,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
0x00, 0x00, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
0x00, 0x00, 0x01, 0x00,
0x00),
/*
* When family=0, source and scope should be 0.
*/
0x00, 0x00, 0x00, 0x01,
0x00),
/*
* Length too short for source IPv4.
*/
0x00, 0x01, 32, 0x00,
0x00, 0x00, 0x00),
/*
* Length too short for source IPv6.
*/
0x00, 0x02, 128, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00),
/*
* Sentinel.
*/
};
dns_rdatatype_opt, sizeof(dns_rdata_opt_t));
}
/*
* Successful load test.
*/
"be rejected");
}
0x01, 0x00, 0x00, 0x01, 0x00, 0x00,
0x04, 0x41, 0x42, 0x43, 0x44, 0x00 };
size_t i;
/*
* Fill the rest of input buffer with compression pointers.
*/
hipwire[i] = 0xc0;
}
isc_buffer_setactive(&source, i);
0, &target);
dns_test_end();
}
/*
* ISDN tests.
*
* RFC 1183:
*
* 3.2. The ISDN RR
*
* The ISDN RR is defined with mnemonic ISDN and type code 20 (decimal).
*
* An ISDN (Integrated Service Digital Network) number is simply a
* telephone number. The intent of the members of the CCITT is to
* upgrade all telephone and data network service to a common service.
*
* international plan for POTS (an un-official acronym, meaning Plain
* telephony subscriber may become an ISDN subscriber without a number
* change."
*
* ISDN has the following format:
*
* <owner> <ttl> <class> ISDN <ISDN-address> <sa>
*
* The <ISDN-address> field is required; <sa> is optional.
*
* <ISDN-address> identifies the ISDN number of <owner> and DDI (Direct
* Dial In) if any, as defined by E.164 [8] and E.163 [7], the ISDN and
* PSTN (Public Switched Telephone Network) numbering plan. E.163
* defines the country codes, and E.164 the form of the addresses. Its
* format in master files is a <character-string> syntactically
* identical to that used in TXT and HINFO.
*
* <sa> specifies the subaddress (SA). The format of <sa> in master
* files is a <character-string> syntactically identical to that used in
* TXT and HINFO.
*
* The format of ISDN is class insensitive. ISDN RRs cause no
* additional section processing.
*
* The <ISDN-address> is a string of characters, normally decimal
* digits, beginning with the E.163 country code and ending with the DDI
* if any. Note that ISDN, in Q.931, permits any IA5 character in the
* general case.
*
* The <sa> is a string of hexadecimal digits. For digits 0-9, the
* concrete encoding in the Q.931 call setup information element is
* identical to BCD.
*
* For example:
*
* Relay.Prime.COM. IN ISDN 150862028003217
* sh.Prime.COM. IN ISDN 150862028003217 004
*
* (Note: "1" is the country code for the North American Integrated
* Numbering Area, i.e., the system of "area codes" familiar to people
* in those countries.)
*
* The RR data is the ASCII representation of the digits. It is encoded
* as one or two <character-string>s, i.e., count followed by
* characters.
*/
}
/*
* "".
*/
WIRE_VALID(0x00),
/*
* "\001".
*/
/*
* "\001" "".
*/
/*
* "\001" "\001".
*/
/*
* Sentinel.
*/
};
dns_rdatatype_isdn, sizeof(dns_rdata_isdn_t));
}
/*
* NSEC tests.
*
* RFC 4034:
*
* 4.1. NSEC RDATA Wire Format
*
* The RDATA of the NSEC RR is as shown below:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Next Domain Name /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Type Bit Maps /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 4.1.1. The Next Domain Name Field
*
* The Next Domain field contains the next owner name (in the canonical
* ordering of the zone) that has authoritative data or contains a
* delegation point NS RRset; see Section 6.1 for an explanation of
* canonical ordering. The value of the Next Domain Name field in the
* last NSEC record in the zone is the name of the zone apex (the owner
* name of the zone's SOA RR). This indicates that the owner name of
* the NSEC RR is the last name in the canonical ordering of the zone.
*
* A sender MUST NOT use DNS name compression on the Next Domain Name
* field when transmitting an NSEC RR.
*
* Owner names of RRsets for which the given zone is not authoritative
* (such as glue records) MUST NOT be listed in the Next Domain Name
* unless at least one authoritative RRset exists at the same owner
* name.
*
* 4.1.2. The Type Bit Maps Field
*
* The Type Bit Maps field identifies the RRset types that exist at the
* NSEC RR's owner name.
*
* The RR type space is split into 256 window blocks, each representing
* the low-order 8 bits of the 16-bit RR type space. Each block that
* has at least one active RR type is encoded using a single octet
* window number (from 0 to 255), a single octet bitmap length (from 1
* to 32) indicating the number of octets used for the window block's
* bitmap, and up to 32 octets (256 bits) of bitmap.
*
* Blocks are present in the NSEC RR RDATA in increasing numerical
* order.
*
* Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
*
* where "|" denotes concatenation.
*
* Each bitmap encodes the low-order 8 bits of RR types within the
* window block, in network bit order. The first bit is bit 0. For
* window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
* to RR type 2 (NS), and so forth. For window block 1, bit 1
* corresponds to RR type 257, and bit 2 to RR type 258. If a bit is
* set, it indicates that an RRset of that type is present for the NSEC
* RR's owner name. If a bit is clear, it indicates that no RRset of
* that type is present for the NSEC RR's owner name.
*
* Bits representing pseudo-types MUST be clear, as they do not appear
* in zone data. If encountered, they MUST be ignored upon being read.
*/
}
TEXT_INVALID(""),
TEXT_INVALID("."),
TEXT_VALID(". RRSIG"),
};
WIRE_INVALID(0x00),
};
dns_rdatatype_nsec, sizeof(dns_rdata_nsec_t));
}
/*
* WKS tests.
*
* RFC 1035:
*
* 3.4.2. WKS RDATA format
*
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | ADDRESS |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | PROTOCOL | |
* +--+--+--+--+--+--+--+--+ |
* | |
* / <BIT MAP> /
* / /
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*
* where:
*
* ADDRESS An 32 bit Internet address
*
* PROTOCOL An 8 bit IP protocol number
*
* <BIT MAP> A variable length bit map. The bit map must be a
* multiple of 8 bits long.
*
* The WKS record is used to describe the well known services supported by
* a particular protocol on a particular internet address. The PROTOCOL
* field specifies an IP protocol number, and the bit map has one bit per
* port of the specified protocol. The first bit corresponds to port 0,
* the second to port 1, etc. If the bit map does not include a bit for a
* protocol of interest, that bit is assumed zero. The appropriate values
* and mnemonics for ports and protocols are specified in [RFC-1010].
*
* For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP port
* 25 (SMTP). If this bit is set, a SMTP server should be listening on TCP
* port 25; if zero, SMTP service is not supported on the specified
* address.
*/
}
/*
* Too short.
*/
/*
* Minimal TCP.
*/
/*
* Minimal UDP.
*/
/*
* Minimal other.
*/
/*
* Sentinel.
*/
};
dns_rdatatype_wks, sizeof(dns_rdata_in_wks_t));
}
/*****
***** Main
*****/
return (atf_no_error());
}