/*
* Copyright (C) 2012-2017 Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/* $Id: rbt_test.c,v 1.1.14.8 2012/02/10 16:24:37 ckb Exp $ */
/* ! \file */
#include <config.h>
#include <atf-c.h>
#include <isc/mem.h>
#include <isc/random.h>
#include <isc/string.h>
#include <fcntl.h>
#include <unistd.h>
#ifdef HAVE_INTTYPES_H
#include <inttypes.h> /* uintptr_t */
#endif
#include <dns/rbt.h>
#include <dns/fixedname.h>
#include <dns/result.h>
#include <dns/compress.h>
#include "dnstest.h"
#include <isc/app.h>
#include <isc/buffer.h>
#include <isc/entropy.h>
#include <isc/file.h>
#include <isc/hash.h>
#include <isc/mem.h>
#include <isc/os.h>
#include <isc/string.h>
#include <isc/socket.h>
#include <isc/stdio.h>
#include <isc/task.h>
#include <isc/thread.h>
#include <isc/timer.h>
#include <isc/util.h>
#include <isc/print.h>
#include <isc/time.h>
#include <dns/log.h>
#include <dns/name.h>
#include <dns/result.h>
#include <dst/dst.h>
#include <ctype.h>
#include <stdlib.h>
#include <time.h>
typedef struct {
dns_rbt_t *rbt;
dns_rbt_t *rbt_distances;
} test_context_t;
/* The initial structure of domain tree will be as follows:
*
* .
* |
* b
* / \
* a d.e.f
* / | \
* c | g.h
* | |
* w.y i
* / | \ \
* x | z k
* | |
* p j
* / \
* o q
*/
/* The full absolute names of the nodes in the tree (the tree also
* contains "." which is not included in this list).
*/
static const char * const domain_names[] = {
"c", "b", "a", "x.d.e.f", "z.d.e.f", "g.h", "i.g.h", "o.w.y.d.e.f",
"j.z.d.e.f", "p.w.y.d.e.f", "q.w.y.d.e.f", "k.g.h"
};
static const size_t domain_names_count = (sizeof(domain_names) /
sizeof(domain_names[0]));
/* These are set as the node data for the tree used in distances check
* (for the names in domain_names[] above).
*/
static const int node_distances[] = {
3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2
};
/*
* The domain order should be:
* ., a, b, c, d.e.f, x.d.e.f, w.y.d.e.f, o.w.y.d.e.f, p.w.y.d.e.f,
* q.w.y.d.e.f, z.d.e.f, j.z.d.e.f, g.h, i.g.h, k.g.h
* . (no data, can't be found)
* |
* b
* / \
* a d.e.f
* / | \
* c | g.h
* | |
* w.y i
* / | \ \
* x | z k
* | |
* p j
* / \
* o q
*/
static const char * const ordered_names[] = {
"a", "b", "c", "d.e.f", "x.d.e.f", "w.y.d.e.f", "o.w.y.d.e.f",
"p.w.y.d.e.f", "q.w.y.d.e.f", "z.d.e.f", "j.z.d.e.f",
"g.h", "i.g.h", "k.g.h"};
static const size_t ordered_names_count = (sizeof(ordered_names) /
sizeof(*ordered_names));
static void
delete_data(void *data, void *arg) {
UNUSED(arg);
isc_mem_put(mctx, data, sizeof(size_t));
}
static void
build_name_from_str(const char *namestr, dns_fixedname_t *fname) {
size_t length;
isc_buffer_t *b = NULL;
isc_result_t result;
dns_name_t *name;
length = strlen(namestr);
result = isc_buffer_allocate(mctx, &b, length);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
isc_buffer_putmem(b, (const unsigned char *) namestr, length);
dns_fixedname_init(fname);
name = dns_fixedname_name(fname);
ATF_REQUIRE(name != NULL);
result = dns_name_fromtext(name, b, dns_rootname, 0, NULL);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
isc_buffer_free(&b);
}
static test_context_t *
test_context_setup(void) {
test_context_t *ctx;
isc_result_t result;
size_t i;
ctx = isc_mem_get(mctx, sizeof(*ctx));
ATF_REQUIRE(ctx != NULL);
ctx->rbt = NULL;
result = dns_rbt_create(mctx, delete_data, NULL, &ctx->rbt);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
ctx->rbt_distances = NULL;
result = dns_rbt_create(mctx, delete_data, NULL, &ctx->rbt_distances);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
for (i = 0; i < domain_names_count; i++) {
size_t *n;
dns_fixedname_t fname;
dns_name_t *name;
build_name_from_str(domain_names[i], &fname);
name = dns_fixedname_name(&fname);
n = isc_mem_get(mctx, sizeof(size_t));
*n = i + 1;
result = dns_rbt_addname(ctx->rbt, name, n);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
n = isc_mem_get(mctx, sizeof(size_t));
*n = node_distances[i];
result = dns_rbt_addname(ctx->rbt_distances, name, n);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
}
return (ctx);
}
static void
test_context_teardown(test_context_t *ctx) {
dns_rbt_destroy(&ctx->rbt);
dns_rbt_destroy(&ctx->rbt_distances);
isc_mem_put(mctx, ctx, sizeof(*ctx));
}
/*
* Walk the tree and ensure that all the test nodes are present.
*/
static void
check_test_data(dns_rbt_t *rbt) {
dns_fixedname_t fixed;
isc_result_t result;
dns_name_t *foundname;
size_t i;
dns_fixedname_init(&fixed);
foundname = dns_fixedname_name(&fixed);
for (i = 0; i < domain_names_count; i++) {
dns_fixedname_t fname;
dns_name_t *name;
size_t *n;
build_name_from_str(domain_names[i], &fname);
name = dns_fixedname_name(&fname);
n = NULL;
result = dns_rbt_findname(rbt, name, 0, foundname,
(void *) &n);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(*n, i + 1);
}
}
ATF_TC(rbt_create);
ATF_TC_HEAD(rbt_create, tc) {
atf_tc_set_md_var(tc, "descr", "Test the creation of an rbt");
}
ATF_TC_BODY(rbt_create, tc) {
isc_result_t result;
test_context_t *ctx;
isc_boolean_t tree_ok;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ctx = test_context_setup();
check_test_data(ctx->rbt);
tree_ok = dns__rbt_checkproperties(ctx->rbt);
ATF_CHECK_EQ(tree_ok, ISC_TRUE);
test_context_teardown(ctx);
dns_test_end();
}
ATF_TC(rbt_nodecount);
ATF_TC_HEAD(rbt_nodecount, tc) {
atf_tc_set_md_var(tc, "descr", "Test dns_rbt_nodecount() on a tree");
}
ATF_TC_BODY(rbt_nodecount, tc) {
isc_result_t result;
test_context_t *ctx;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ctx = test_context_setup();
ATF_CHECK_EQ(15, dns_rbt_nodecount(ctx->rbt));
test_context_teardown(ctx);
dns_test_end();
}
ATF_TC(rbtnode_get_distance);
ATF_TC_HEAD(rbtnode_get_distance, tc) {
atf_tc_set_md_var(tc, "descr",
"Test dns_rbtnode_get_distance() on a tree");
}
ATF_TC_BODY(rbtnode_get_distance, tc) {
isc_result_t result;
test_context_t *ctx;
const char *name_str = "a";
dns_fixedname_t fname;
dns_name_t *name;
dns_rbtnode_t *node = NULL;
dns_rbtnodechain_t chain;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ctx = test_context_setup();
build_name_from_str(name_str, &fname);
name = dns_fixedname_name(&fname);
dns_rbtnodechain_init(&chain, mctx);
result = dns_rbt_findnode(ctx->rbt_distances, name, NULL,
&node, &chain, 0, NULL, NULL);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
while (node != NULL) {
const size_t *distance = (const size_t *) node->data;
if (distance != NULL)
ATF_CHECK_EQ(*distance,
dns__rbtnode_getdistance(node));
result = dns_rbtnodechain_next(&chain, NULL, NULL);
if (result == ISC_R_NOMORE)
break;
dns_rbtnodechain_current(&chain, NULL, NULL, &node);
}
ATF_CHECK_EQ(result, ISC_R_NOMORE);
dns_rbtnodechain_invalidate(&chain);
test_context_teardown(ctx);
dns_test_end();
}
ATF_TC(rbt_check_distance_random);
ATF_TC_HEAD(rbt_check_distance_random, tc) {
atf_tc_set_md_var(tc, "descr",
"Test tree balance, inserting names in random order");
}
ATF_TC_BODY(rbt_check_distance_random, tc) {
/* This test checks an important performance-related property of
* the red-black tree, which is important for us: the longest
* path from a sub-tree's root to a node is no more than
* 2log(n). This check verifies that the tree is balanced.
*/
dns_rbt_t *mytree = NULL;
const unsigned int log_num_nodes = 16;
int i;
isc_result_t result;
isc_boolean_t tree_ok;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
result = dns_rbt_create(mctx, delete_data, NULL, &mytree);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
/* Names are inserted in random order. */
/* Make a large 65536 node top-level domain tree, i.e., the
* following code inserts names such as:
*
* savoucnsrkrqzpkqypbygwoiliawpbmz.
* wkadamcbbpjtundbxcmuayuycposvngx.
* wzbpznemtooxdpjecdxynsfztvnuyfao.
* yueojmhyffslpvfmgyfwioxegfhepnqq.
*/
for (i = 0; i < (1 << log_num_nodes); i++) {
size_t *n;
char namebuf[34];
n = isc_mem_get(mctx, sizeof(size_t));
*n = i + 1;
while (1) {
int j;
dns_fixedname_t fname;
dns_name_t *name;
for (j = 0; j < 32; j++) {
isc_uint32_t v;
isc_random_get(&v);
namebuf[j] = 'a' + (v % 26);
}
namebuf[32] = '.';
namebuf[33] = 0;
build_name_from_str(namebuf, &fname);
name = dns_fixedname_name(&fname);
result = dns_rbt_addname(mytree, name, n);
if (result == ISC_R_SUCCESS)
break;
}
}
/* 1 (root . node) + (1 << log_num_nodes) */
ATF_CHECK_EQ(1U + (1U << log_num_nodes), dns_rbt_nodecount(mytree));
/* The distance from each node to its sub-tree root must be less
* than 2 * log(n).
*/
ATF_CHECK((2U * log_num_nodes) >= dns__rbt_getheight(mytree));
/* Also check RB tree properties */
tree_ok = dns__rbt_checkproperties(mytree);
ATF_CHECK_EQ(tree_ok, ISC_TRUE);
dns_rbt_destroy(&mytree);
dns_test_end();
}
ATF_TC(rbt_check_distance_ordered);
ATF_TC_HEAD(rbt_check_distance_ordered, tc) {
atf_tc_set_md_var(tc, "descr",
"Test tree balance, inserting names in sorted order");
}
ATF_TC_BODY(rbt_check_distance_ordered, tc) {
/* This test checks an important performance-related property of
* the red-black tree, which is important for us: the longest
* path from a sub-tree's root to a node is no more than
* 2log(n). This check verifies that the tree is balanced.
*/
dns_rbt_t *mytree = NULL;
const unsigned int log_num_nodes = 16;
int i;
isc_result_t result;
isc_boolean_t tree_ok;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
result = dns_rbt_create(mctx, delete_data, NULL, &mytree);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
/* Names are inserted in sorted order. */
/* Make a large 65536 node top-level domain tree, i.e., the
* following code inserts names such as:
*
* name00000000.
* name00000001.
* name00000002.
* name00000003.
*/
for (i = 0; i < (1 << log_num_nodes); i++) {
size_t *n;
char namebuf[14];
dns_fixedname_t fname;
dns_name_t *name;
n = isc_mem_get(mctx, sizeof(size_t));
*n = i + 1;
snprintf(namebuf, sizeof(namebuf), "name%08x.", i);
build_name_from_str(namebuf, &fname);
name = dns_fixedname_name(&fname);
result = dns_rbt_addname(mytree, name, n);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
}
/* 1 (root . node) + (1 << log_num_nodes) */
ATF_CHECK_EQ(1U + (1U << log_num_nodes), dns_rbt_nodecount(mytree));
/* The distance from each node to its sub-tree root must be less
* than 2 * log(n).
*/
ATF_CHECK((2U * log_num_nodes) >= dns__rbt_getheight(mytree));
/* Also check RB tree properties */
tree_ok = dns__rbt_checkproperties(mytree);
ATF_CHECK_EQ(tree_ok, ISC_TRUE);
dns_rbt_destroy(&mytree);
dns_test_end();
}
static isc_result_t
insert_helper(dns_rbt_t *rbt, const char *namestr, dns_rbtnode_t **node) {
dns_fixedname_t fname;
dns_name_t *name;
build_name_from_str(namestr, &fname);
name = dns_fixedname_name(&fname);
return (dns_rbt_addnode(rbt, name, node));
}
static isc_boolean_t
compare_labelsequences(dns_rbtnode_t *node, const char *labelstr) {
dns_name_t name;
isc_result_t result;
char *nodestr = NULL;
isc_boolean_t is_equal;
dns_name_init(&name, NULL);
dns_rbt_namefromnode(node, &name);
result = dns_name_tostring(&name, &nodestr, mctx);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
is_equal = strcmp(labelstr, nodestr) == 0 ? ISC_TRUE : ISC_FALSE;
isc_mem_free(mctx, nodestr);
return (is_equal);
}
ATF_TC(rbt_insert);
ATF_TC_HEAD(rbt_insert, tc) {
atf_tc_set_md_var(tc, "descr", "Test insertion into a tree");
}
ATF_TC_BODY(rbt_insert, tc) {
isc_result_t result;
test_context_t *ctx;
dns_rbtnode_t *node;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ctx = test_context_setup();
/* Check node count before beginning. */
ATF_CHECK_EQ(15, dns_rbt_nodecount(ctx->rbt));
/* Try to insert a node that already exists. */
node = NULL;
result = insert_helper(ctx->rbt, "d.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_EXISTS);
/* Node count must not have changed. */
ATF_CHECK_EQ(15, dns_rbt_nodecount(ctx->rbt));
/* Try to insert a node that doesn't exist. */
node = NULL;
result = insert_helper(ctx->rbt, "0", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(compare_labelsequences(node, "0"), ISC_TRUE);
/* Node count must have increased. */
ATF_CHECK_EQ(16, dns_rbt_nodecount(ctx->rbt));
/* Another. */
node = NULL;
result = insert_helper(ctx->rbt, "example.com", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_REQUIRE(node != NULL);
ATF_CHECK_EQ(node->data, NULL);
/* Node count must have increased. */
ATF_CHECK_EQ(17, dns_rbt_nodecount(ctx->rbt));
/* Re-adding it should return EXISTS */
node = NULL;
result = insert_helper(ctx->rbt, "example.com", &node);
ATF_CHECK_EQ(result, ISC_R_EXISTS);
/* Node count must not have changed. */
ATF_CHECK_EQ(17, dns_rbt_nodecount(ctx->rbt));
/* Fission the node d.e.f */
node = NULL;
result = insert_helper(ctx->rbt, "k.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(compare_labelsequences(node, "k"), ISC_TRUE);
/* Node count must have incremented twice ("d.e.f" fissioned to
* "d" and "e.f", and the newly added "k").
*/
ATF_CHECK_EQ(19, dns_rbt_nodecount(ctx->rbt));
/* Fission the node "g.h" */
node = NULL;
result = insert_helper(ctx->rbt, "h", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(compare_labelsequences(node, "h"), ISC_TRUE);
/* Node count must have incremented ("g.h" fissioned to "g" and
* "h").
*/
ATF_CHECK_EQ(20, dns_rbt_nodecount(ctx->rbt));
/* Add child domains */
node = NULL;
result = insert_helper(ctx->rbt, "m.p.w.y.d.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(compare_labelsequences(node, "m"), ISC_TRUE);
ATF_CHECK_EQ(21, dns_rbt_nodecount(ctx->rbt));
node = NULL;
result = insert_helper(ctx->rbt, "n.p.w.y.d.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(compare_labelsequences(node, "n"), ISC_TRUE);
ATF_CHECK_EQ(22, dns_rbt_nodecount(ctx->rbt));
node = NULL;
result = insert_helper(ctx->rbt, "l.a", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(compare_labelsequences(node, "l"), ISC_TRUE);
ATF_CHECK_EQ(23, dns_rbt_nodecount(ctx->rbt));
node = NULL;
result = insert_helper(ctx->rbt, "r.d.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "s.d.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_CHECK_EQ(25, dns_rbt_nodecount(ctx->rbt));
node = NULL;
result = insert_helper(ctx->rbt, "h.w.y.d.e.f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
/* Add more nodes one by one to cover left and right rotation
* functions.
*/
node = NULL;
result = insert_helper(ctx->rbt, "f", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "m", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "nm", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "om", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "k", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "l", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "fe", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "ge", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "i", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "ae", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
node = NULL;
result = insert_helper(ctx->rbt, "n", &node);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
test_context_teardown(ctx);
dns_test_end();
}
ATF_TC(rbt_remove);
ATF_TC_HEAD(rbt_remove, tc) {
atf_tc_set_md_var(tc, "descr", "Test removal from a tree");
}
ATF_TC_BODY(rbt_remove, tc) {
/*
* This testcase checks that after node removal, the
* binary-search tree is valid and all nodes that are supposed
* to exist are present in the correct order. It mainly tests
* DomainTree as a BST, and not particularly as a red-black
* tree. This test checks node deletion when upper nodes have
* data.
*/
isc_result_t result;
size_t j;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
/*
* Delete single nodes and check if the rest of the nodes exist.
*/
for (j = 0; j < ordered_names_count; j++) {
dns_rbt_t *mytree = NULL;
dns_rbtnode_t *node;
size_t i;
size_t *n;
isc_boolean_t tree_ok;
dns_rbtnodechain_t chain;
size_t start_node;
/* Create a tree. */
result = dns_rbt_create(mctx, delete_data, NULL, &mytree);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
/* Insert test data into the tree. */
for (i = 0; i < domain_names_count; i++) {
node = NULL;
result = insert_helper(mytree, domain_names[i], &node);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
}
/* Check that all names exist in order. */
for (i = 0; i < ordered_names_count; i++) {
dns_fixedname_t fname;
dns_name_t *name;
build_name_from_str(ordered_names[i], &fname);
name = dns_fixedname_name(&fname);
node = NULL;
result = dns_rbt_findnode(mytree, name, NULL,
&node, NULL,
DNS_RBTFIND_EMPTYDATA,
NULL, NULL);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
/* Add node data */
ATF_REQUIRE(node != NULL);
ATF_REQUIRE_EQ(node->data, NULL);
n = isc_mem_get(mctx, sizeof(size_t));
*n = i;
node->data = n;
}
/* Now, delete the j'th node from the tree. */
{
dns_fixedname_t fname;
dns_name_t *name;
build_name_from_str(ordered_names[j], &fname);
name = dns_fixedname_name(&fname);
result = dns_rbt_deletename(mytree, name, ISC_FALSE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
}
/* Check RB tree properties. */
tree_ok = dns__rbt_checkproperties(mytree);
ATF_CHECK_EQ(tree_ok, ISC_TRUE);
dns_rbtnodechain_init(&chain, mctx);
/* Now, walk through nodes in order. */
if (j == 0) {
/*
* Node for ordered_names[0] was already deleted
* above. We start from node 1.
*/
dns_fixedname_t fname;
dns_name_t *name;
build_name_from_str(ordered_names[0], &fname);
name = dns_fixedname_name(&fname);
node = NULL;
result = dns_rbt_findnode(mytree, name, NULL,
&node, NULL,
0,
NULL, NULL);
ATF_CHECK_EQ(result, ISC_R_NOTFOUND);
build_name_from_str(ordered_names[1], &fname);
name = dns_fixedname_name(&fname);
node = NULL;
result = dns_rbt_findnode(mytree, name, NULL,
&node, &chain,
0,
NULL, NULL);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
start_node = 1;
} else {
/* Start from node 0. */
dns_fixedname_t fname;
dns_name_t *name;
build_name_from_str(ordered_names[0], &fname);
name = dns_fixedname_name(&fname);
node = NULL;
result = dns_rbt_findnode(mytree, name, NULL,
&node, &chain,
0,
NULL, NULL);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
start_node = 0;
}
/*
* node and chain have been set by the code above at
* this point.
*/
for (i = start_node; i < ordered_names_count; i++) {
dns_fixedname_t fname_j, fname_i;
dns_name_t *name_j, *name_i;
build_name_from_str(ordered_names[j], &fname_j);
name_j = dns_fixedname_name(&fname_j);
build_name_from_str(ordered_names[i], &fname_i);
name_i = dns_fixedname_name(&fname_i);
if (dns_name_equal(name_i, name_j)) {
/*
* This may be true for the last node if
* we seek ahead in the loop using
* dns_rbtnodechain_next() below.
*/
if (node == NULL) {
break;
}
/* All ordered nodes have data
* initially. If any node is empty, it
* means it was removed, but an empty
* node exists because it is a
* super-domain. Just skip it.
*/
if (node->data == NULL) {
result = dns_rbtnodechain_next(&chain,
NULL,
NULL);
if (result == ISC_R_NOMORE) {
node = NULL;
} else {
dns_rbtnodechain_current(&chain,
NULL,
NULL,
&node);
}
}
continue;
}
ATF_REQUIRE(node != NULL);
n = (size_t *) node->data;
if (n != NULL) {
/* printf("n=%zu, i=%zu\n", *n, i); */
ATF_CHECK_EQ(*n, i);
}
result = dns_rbtnodechain_next(&chain, NULL, NULL);
if (result == ISC_R_NOMORE) {
node = NULL;
} else {
dns_rbtnodechain_current(&chain, NULL, NULL,
&node);
}
}
/* We should have reached the end of the tree. */
ATF_REQUIRE_EQ(node, NULL);
dns_rbt_destroy(&mytree);
}
dns_test_end();
}
static void
insert_nodes(dns_rbt_t *mytree, char **names,
size_t *names_count, isc_uint32_t num_names)
{
isc_uint32_t i;
dns_rbtnode_t *node;
for (i = 0; i < num_names; i++) {
size_t *n;
char namebuf[34];
n = isc_mem_get(mctx, sizeof(size_t));
ATF_REQUIRE(n != NULL);
*n = i; /* Unused value */
while (1) {
int j;
dns_fixedname_t fname;
dns_name_t *name;
isc_result_t result;
for (j = 0; j < 32; j++) {
isc_uint32_t v;
isc_random_get(&v);
namebuf[j] = 'a' + (v % 26);
}
namebuf[32] = '.';
namebuf[33] = 0;
build_name_from_str(namebuf, &fname);
name = dns_fixedname_name(&fname);
node = NULL;
result = dns_rbt_addnode(mytree, name, &node);
if (result == ISC_R_SUCCESS) {
node->data = n;
names[*names_count] = isc_mem_strdup(mctx,
namebuf);
*names_count += 1;
break;
}
}
}
}
static void
remove_nodes(dns_rbt_t *mytree, char **names,
size_t *names_count, isc_uint32_t num_names)
{
isc_uint32_t i;
UNUSED(mytree);
for (i = 0; i < num_names; i++) {
isc_uint32_t node;
dns_fixedname_t fname;
dns_name_t *name;
isc_result_t result;
isc_random_get(&node);
node %= *names_count;
build_name_from_str(names[node], &fname);
name = dns_fixedname_name(&fname);
result = dns_rbt_deletename(mytree, name, ISC_FALSE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
isc_mem_free(mctx, names[node]);
if (*names_count > 0) {
names[node] = names[*names_count - 1];
names[*names_count - 1] = NULL;
*names_count -= 1;
}
}
}
static void
check_tree(dns_rbt_t *mytree, char **names, size_t names_count,
unsigned int line)
{
isc_boolean_t tree_ok;
UNUSED(names);
ATF_CHECK_EQ_MSG(names_count + 1, dns_rbt_nodecount(mytree),
"line:%u: %lu != %u", line,
(unsigned long)(names_count + 1),
dns_rbt_nodecount(mytree));
/*
* The distance from each node to its sub-tree root must be less
* than 2 * log_2(1024).
*/
ATF_CHECK((2 * 10) >= dns__rbt_getheight(mytree));
/* Also check RB tree properties */
tree_ok = dns__rbt_checkproperties(mytree);
ATF_CHECK_EQ(tree_ok, ISC_TRUE);
}
ATF_TC(rbt_insert_and_remove);
ATF_TC_HEAD(rbt_insert_and_remove, tc) {
atf_tc_set_md_var(tc, "descr",
"Test insert and remove in a loop");
}
ATF_TC_BODY(rbt_insert_and_remove, tc) {
/*
* What is the best way to test our red-black tree code? It is
* not a good method to test every case handled in the actual
* code itself. This is because our approach itself may be
* incorrect.
*
* We test our code at the interface level here by exercising the
* tree randomly multiple times, checking that red-black tree
* properties are valid, and all the nodes that are supposed to be
* in the tree exist and are in order.
*
* NOTE: These tests are run within a single tree level in the
* forest. The number of nodes in the tree level doesn't grow
* over 1024.
*/
isc_result_t result;
dns_rbt_t *mytree = NULL;
/*
* We use an array for storing names instead of a set
* structure. It's slow, but works and is good enough for tests.
*/
char *names[1024];
size_t names_count;
int i;
UNUSED(tc);
isc_mem_debugging = ISC_MEM_DEBUGRECORD;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
result = dns_rbt_create(mctx, delete_data, NULL, &mytree);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
memset(names, 0, sizeof(names));
names_count = 0;
/* Repeat the insert/remove test some 4096 times */
for (i = 0; i < 4096; i++) {
isc_uint32_t num_names;
isc_random_get(&num_names);
if (names_count < 1024) {
num_names %= 1024 - names_count;
num_names++;
} else {
num_names = 0;
}
insert_nodes(mytree, names, &names_count, num_names);
check_tree(mytree, names, names_count, __LINE__);
isc_random_get(&num_names);
if (names_count > 0) {
num_names %= names_count;
num_names++;
} else {
num_names = 0;
}
remove_nodes(mytree, names, &names_count, num_names);
check_tree(mytree, names, names_count, __LINE__);
}
/* Remove the rest of the nodes */
remove_nodes(mytree, names, &names_count, names_count);
check_tree(mytree, names, names_count, __LINE__);
for (i = 0; i < 1024; i++) {
if (names[i] != NULL) {
isc_mem_free(mctx, names[i]);
}
}
dns_rbt_destroy(&mytree);
dns_test_end();
}
#ifdef ISC_PLATFORM_USETHREADS
#ifdef DNS_BENCHMARK_TESTS
/*
* XXXMUKS: Don't delete this code. It is useful in benchmarking the
* RBT, but we don't require it as part of the unit test runs.
*/
ATF_TC(benchmark);
ATF_TC_HEAD(benchmark, tc) {
atf_tc_set_md_var(tc, "descr", "Benchmark RBT implementation");
}
static dns_fixedname_t *fnames;
static dns_name_t **names;
static int *values;
static void *
find_thread(void *arg) {
dns_rbt_t *mytree;
isc_result_t result;
dns_rbtnode_t *node;
unsigned int j, i;
unsigned int start = 0;
mytree = (dns_rbt_t *) arg;
while (start == 0)
start = random() % 4000000;
/* Query 32 million random names from it in each thread */
for (j = 0; j < 8; j++) {
for (i = start; i != start - 1; i = (i + 1) % 4000000) {
node = NULL;
result = dns_rbt_findnode(mytree, names[i], NULL,
&node, NULL,
DNS_RBTFIND_EMPTYDATA,
NULL, NULL);
ATF_CHECK_EQ(result, ISC_R_SUCCESS);
ATF_REQUIRE(node != NULL);
ATF_CHECK_EQ(values[i], (intptr_t) node->data);
}
}
return (NULL);
}
ATF_TC_BODY(benchmark, tc) {
isc_result_t result;
char namestr[sizeof("name18446744073709551616.example.org.")];
unsigned int r;
dns_rbt_t *mytree;
dns_rbtnode_t *node;
unsigned int i;
unsigned int maxvalue = 1000000;
isc_time_t ts1, ts2;
double t;
unsigned int nthreads;
isc_thread_t threads[32];
UNUSED(tc);
srandom(time(NULL));
debug_mem_record = ISC_FALSE;
result = dns_test_begin(NULL, ISC_TRUE);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
fnames = (dns_fixedname_t *) malloc(4000000 * sizeof(dns_fixedname_t));
names = (dns_name_t **) malloc(4000000 * sizeof(dns_name_t *));
values = (int *) malloc(4000000 * sizeof(int));
for (i = 0; i < 4000000; i++) {
r = ((unsigned long) random()) % maxvalue;
snprintf(namestr, sizeof(namestr), "name%u.example.org.", r);
build_name_from_str(namestr, &fnames[i]);
names[i] = dns_fixedname_name(&fnames[i]);
values[i] = r;
}
/* Create a tree. */
mytree = NULL;
result = dns_rbt_create(mctx, NULL, NULL, &mytree);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
/* Insert test data into the tree. */
for (i = 0; i < maxvalue; i++) {
snprintf(namestr, sizeof(namestr), "name%u.example.org.", i);
node = NULL;
result = insert_helper(mytree, namestr, &node);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
node->data = (void *) (intptr_t) i;
}
result = isc_time_now(&ts1);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
nthreads = ISC_MIN(isc_os_ncpus(), 32);
nthreads = ISC_MAX(nthreads, 1);
for (i = 0; i < nthreads; i++) {
result = isc_thread_create(find_thread, mytree, &threads[i]);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
}
for (i = 0; i < nthreads; i++) {
result = isc_thread_join(threads[i], NULL);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
}
result = isc_time_now(&ts2);
ATF_REQUIRE_EQ(result, ISC_R_SUCCESS);
t = isc_time_microdiff(&ts2, &ts1);
printf("%u findnode calls, %f seconds, %f calls/second\n",
nthreads * 8 * 4000000, t / 1000000.0,
(nthreads * 8 * 4000000) / (t / 1000000.0));
free(values);
free(names);
free(fnames);
dns_rbt_destroy(&mytree);
dns_test_end();
}
#endif /* DNS_BENCHMARK_TESTS */
#endif /* ISC_PLATFORM_USETHREADS */
/*
* Main
*/
ATF_TP_ADD_TCS(tp) {
ATF_TP_ADD_TC(tp, rbt_create);
ATF_TP_ADD_TC(tp, rbt_nodecount);
ATF_TP_ADD_TC(tp, rbtnode_get_distance);
ATF_TP_ADD_TC(tp, rbt_check_distance_random);
ATF_TP_ADD_TC(tp, rbt_check_distance_ordered);
ATF_TP_ADD_TC(tp, rbt_insert);
ATF_TP_ADD_TC(tp, rbt_remove);
ATF_TP_ADD_TC(tp, rbt_insert_and_remove);
#ifdef ISC_PLATFORM_USETHREADS
#ifdef DNS_BENCHMARK_TESTS
ATF_TP_ADD_TC(tp, benchmark);
#endif /* DNS_BENCHMARK_TESTS */
#endif /* ISC_PLATFORM_USETHREADS */
return (atf_no_error());
}