/inkscape/src/2geom/ |
H A D | sbasis-curve.h | 109 virtual std::vector<Coord> roots(Coord v, Dim2 d) const { return Geom::roots(inner[d] - v); } function in class:Geom::SBasisCurve
|
H A D | bezier.cpp | 98 std::vector<Coord> Bezier::roots() const function in class:Geom::Bezier 106 std::vector<Coord> Bezier::roots(Interval const &ivl) const function in class:Geom::Bezier 296 std::vector<Coord> r = derivative(b).roots();
|
H A D | line.cpp | 130 std::vector<Coord> Line::roots(Coord v, Dim2 d) const { function in class:Geom::Line
|
H A D | piecewise.cpp | 110 std::vector<std::vector<double> > roots = multi_roots(g, values); local 111 for(unsigned i=0; i<roots.size(); i++){ 112 for(unsigned j=0; j<roots[i].size();j++){ 113 result[roots[i][j]]=i; 205 std::vector<double> roots(Piecewise<SBasis> const &f){ function in namespace:Geom 208 std::vector<double> rts=roots(f.segs[i]);
|
H A D | polynomial.cpp | 89 std::vector<std::complex<double> > roots; local 90 //roots.resize(p.degree()); 98 roots.push_back(std::complex<double> (z[2*i] ,z[2*i+1])); 102 return roots; 106 std::vector<std::complex<double> > roots = solve(p); local 109 for(unsigned int i = 0; i < roots.size(); i++) { 110 if(roots[i].imag() == 0) // should be more lenient perhaps 111 real_roots.push_back(roots[i].real()); 241 // two roots 251 // no roots otherwis [all...] |
H A D | ray.h | 92 std::vector<Coord> roots(Coord v, Dim2 d) const { function in class:Geom::Ray
|
H A D | bezier-curve.h | 157 virtual std::vector<Coord> roots(Coord v, Dim2 d) const { function in class:Geom::BezierCurve 158 return (inner[d] - v).roots();
|
H A D | sbasis-roots.cpp | 36 * It is more efficient to find roots of f(t) = c_0, c_1, ... all at once, rather than iterating. 39 * multi-roots using bernstein method, one approach would be: 41 take median and find roots of that 47 * the gsl poly roots finder is faster than bernstein too, but we don't use it for 3 reasons: 53 c) it finds all roots, even complex ones. We don't want to accidently treat a nearly real root as a real root 55 From memory gsl poly roots was about 10 times faster than bernstein in the case where all the roots 96 vector<double>extrema = roots(df); 106 vector<double>extrema = roots(df); 196 From this we conclude there are no roots befor 210 multi_roots_internal(SBasis const &f, SBasis const &df, std::vector<double> const &levels, std::vector<std::vector<double> > &roots, double htol, double vtol, double a, double fa, double b, double fb) argument 568 subdiv_sbasis(SBasis const & s, std::vector<double> & roots, double left, double right) argument 580 subdiv_sbasis(compose(s, Linear(0, 0.5)), roots, left, middle); local 581 subdiv_sbasis(compose(s, Linear(0.5, 1.)), roots, middle, right); local 614 std::vector<double> roots(SBasis const & s) { function in namespace:Geom 629 std::vector<double> roots(SBasis const & s, Interval const ivl) { function in namespace:Geom [all...] |
H A D | elliptical-arc.cpp | 161 std::vector<Coord> EllipticalArc::roots(Coord v, Dim2 d) const function in class:Geom::EllipticalArc 166 sol = chord().roots(v, d); 362 result = roots(np[Y], Y); 366 result = roots(np[X], X); 374 result = roots(np[X], X); 378 result = roots(np[Y], Y); 392 // std::vector<double> solX = roots(np[X],X); 393 // std::vector<double> solY = roots(np[Y],Y);
|
H A D | toposweep.cpp | 123 std::vector<double> splits = deriv->roots(0, X); 124 concatenate(splits, deriv->roots(0, Y)); 137 //d indicates the dimension along which the roots is performed. 140 std::vector<double> roots = s.curve.get(ps).roots(v, d); local 141 for(unsigned j = 0; j < roots.size(); j++) 142 if(Interval(s.f, s.t).contains(roots[j])) return roots[j];
|
H A D | conicsec.cpp | 282 std::vector<double> rts = C1.roots(L0); 287 rts = C1.roots(L1); 331 std::vector<double> rts = xC0.roots(Lx); 339 cnrts = C1.roots(L); 341 cnrts = C2.roots(L); 376 std::vector<double> rts = Geom::roots(D); 385 rts = Geom::roots(D); 387 // at this point we have a T and S and perhaps some roots that represent our degenerate conic 502 std::vector<double> rts = Geom::roots(edge_curve); 531 std::vector<double> bisect_rts = this->roots(bisecto 564 std::vector<double> xAx::roots(Point d, Point o) const { function in class:Geom::xAx 607 std::vector<double> xAx::roots(Line const &l) const { function in class:Geom::xAx 1080 void xAx::roots (std::vector<double>& sol, Coord v, Dim2 d) const function in class:Geom::xAx [all...] |
/inkscape/src/live_effects/ |
H A D | lpe-ruler.cpp | 143 std::vector<std::vector<double> > roots = multi_roots(arclength, s_cuts); local 145 for (unsigned v=0; v<roots.size();v++){ 148 if(roots[v].size()>0) 149 t_cuts.push_back(roots[v][0]);
|