/inkscape/src/2geom/ |
H A D | bezier-to-sbasis.h | 44 inline SBasis bezier_to_sbasis(Coord const *handles, unsigned order) { 45 if(order == 0) 47 else if(order == 1) 50 return multiply(Linear(1, 0), bezier_to_sbasis(handles, order-1)) + 51 multiply(Linear(0, 1), bezier_to_sbasis(handles+1, order-1)); 56 inline D2<SBasis> handles_to_sbasis(T const &handles, unsigned order) 58 double v[2][order+1]; 59 for(unsigned i = 0; i <= order; i++) 62 return D2<SBasis>(bezier_to_sbasis(v[0], order), 63 bezier_to_sbasis(v[1], order)); 70 handles_to_sbasis(T const& handles, unsigned order) argument [all...] |
H A D | sbasis-math.h | 34 //TODO: define a truncated compose(sb,sb, order) and extend it to pw<sb>. 35 //TODO: in all these functions, compute 'order' according to 'tol'. 66 Piecewise<SBasis> sqrt( SBasis const &f, double tol=1e-3, int order=3); 67 Piecewise<SBasis> sqrt(Piecewise<SBasis>const &f, double tol=1e-3, int order=3); 70 Piecewise<SBasis> cos( SBasis const &f, double tol=1e-3, int order=3); 71 Piecewise<SBasis> cos(Piecewise<SBasis> const &f, double tol=1e-3, int order=3); 72 Piecewise<SBasis> sin( SBasis const &f, double tol=1e-3, int order=3); 73 Piecewise<SBasis> sin(Piecewise<SBasis> const &f, double tol=1e-3, int order=3); 75 Piecewise<SBasis> log( SBasis const &f, double tol=1e-3, int order=3); 76 Piecewise<SBasis> log(Piecewise<SBasis>const &f, double tol=1e-3, int order [all...] |
H A D | bezier.cpp | 52 std::valarray<Coord> d_(order()+1); 58 if(n_derivs > order()) { 59 nn = order()+1; // only calculate the non zero derivs 62 //val_n_der[di] = (casteljau_subdivision(t, &d_[0], NULL, NULL, order() - di)); 63 val_n_der[di] = bernstein_value_at(t, &d_[0], order() - di); 64 for(unsigned i = 0; i < order() - di; i++) { 65 d_[i] = (order()-di)*(d_[i+1] - d_[i]); 79 &left->c_[0], &right->c_[0], order()); 82 &left->c_[0], NULL, order()); 87 NULL, &right->c_[0], order()); [all...] |
H A D | sbasis-math.cpp | 34 //TODO: define a truncated compose(sb,sb, order) and extend it to pw<sb>. 35 //TODO: in all these functions, compute 'order' according to 'tol'. 140 int order){ 142 if(f.isZero() || order == 0){ 146 return sqrt_internal(-f,tol,order); 148 sqrtf.resize(order+1, Linear(0,0)); 151 for(unsigned i = 1; int(i) <= order && i<r.size(); i++) { 155 r.truncate(order+1); 170 sqrtf0 = sqrt_internal(compose(f,Linear(0.,.5)),tol,order); 171 sqrtf1 = sqrt_internal(compose(f,Linear(.5,1.)),tol,order); 138 sqrt_internal(SBasis const &f, double tol, int order) argument 181 sqrt(SBasis const &f, double tol, int order) argument 188 sqrt(Piecewise<SBasis> const &f, double tol, int order) argument 209 sin( SBasis const &f, double tol, int order) argument 215 sin(Piecewise<SBasis> const &f, double tol, int order) argument 222 cos(Piecewise<SBasis> const &f, double tol, int order) argument 237 cos( SBasis const &f, double tol, int order) argument 274 truncateResult(Piecewise<SBasis> &f, int order) argument 329 reciprocal(SBasis const &f, double tol, int order) argument 335 reciprocal(Piecewise<SBasis> const &f, double tol, int order) argument [all...] |
H A D | bezier.h | 77 * @param order Order of the input polynomial, equal to one less the number of coefficients 80 inline T casteljau_subdivision(double t, T const *v, T *left, T *right, unsigned order) { argument 83 T val = bernstein_value_at(t, v, order); 91 std::copy(v, v + order + 1, left); 93 for (std::size_t i = order; i > 0; --i) { 94 for (std::size_t j = i; j <= order; ++j) { 98 left[order] = val; 99 return left[order]; 103 std::copy(v, v + order + 1, right); 105 for (std::size_t i = 1; i <= order; 147 unsigned order() const { return c_.size()-1;} function in class:Geom::Bezier 162 unsigned order; member in struct:Geom::Bezier::Order [all...] |
H A D | sbasis-geometric.h | 57 double tol=.01, unsigned order=3); 61 double tol=.01, unsigned order=3); 65 double tol=.01, unsigned order=3); 69 double tol=.01, unsigned order=3); 73 double tol=.01, unsigned order=3); 76 double tol=.01, unsigned order=3); 95 unsigned order=3, 99 unsigned order=3,
|
H A D | sbasis-geometric.cpp | 153 \param order the maximum degree to use for approximation 157 Geom::atan2(Piecewise<D2<SBasis> > const &vect, double tol, unsigned order){ argument 166 angle = divide (x*derivative(y)-y*derivative(x), x*x+y*y, tol, order); 184 \param order the maximum degree to use for approximation 188 Geom::atan2(D2<SBasis> const &vect, double tol, unsigned order){ argument 189 return atan2(Piecewise<D2<SBasis> >(vect),tol,order); 195 \param order the maximum degree to use for approximation 199 Geom::tan2(SBasis const &angle, double tol, unsigned order){ argument 200 return tan2(Piecewise<SBasis>(angle), tol, order); 206 \param order th 210 tan2(Piecewise<SBasis> const &angle, double tol, unsigned order) argument 225 unitVector(D2<SBasis> const &V_in, double tol, unsigned order) argument 305 unitVector(Piecewise<D2<SBasis> > const &V, double tol, unsigned order) argument 402 arc_length_parametrization(D2<SBasis> const &M, unsigned order, double tol) argument 434 arc_length_parametrization(Piecewise<D2<SBasis> > const &M, unsigned order, double tol) argument [all...] |
H A D | solve-bezier.cpp | 61 while(bz.order() > 0 && bz[0] == 0) { 66 if (bz.order() > 0) { 77 dt = double(i) / bz.order(); 93 while(bzr.order() > 0 && bzr[0] == 0) { 104 while(bzr.order() > 0 && fabs(bzr[0]) <= 1e-10) { 243 while(Right.order() > 0 && fabs(Right[0]) <= 1e-10) { 250 if (Right.order() > 0) {
|
H A D | bezier-curve.h | 59 /** @brief Get the order of the Bezier curve. 60 * A Bezier curve has order() + 1 control points. */ 61 unsigned order() const { return inner[X].order(); } function in class:Geom::BezierCurve 63 unsigned size() const { return inner[X].order() + 1; } 65 * @param ix The (zero-based) index of the control point. Note that the caller is responsible for checking that this value is <= order(). 70 * @return Vector with order() + 1 control points. */ 75 * @param ix The zero-based index of the point to modify. Note that the caller is responsible for checking that this value is <= order(). 82 * @param ps Vector which must contain order() + 1 points. 84 * @throws LogicalError Thrown when the size of the vector does not match the order [all...] |
H A D | sbasis.cpp | 616 TODO: compute order according to tol? 619 SBasis compose_inverse(SBasis const &f, SBasis const &g, unsigned order, double zero){ argument 620 SBasis result(order, Linear(0.)); //result 623 Pk.truncate(order); 624 Qk.truncate(order); 625 Pk.resize(order,Linear(0.)); 626 Qk.resize(order,Linear(0.)); 627 r.resize(order,Linear(0.)); 634 for (unsigned k=0; k<order; k+=vs){ 657 Pk.resize(order,Linea [all...] |
H A D | sbasis-roots.cpp | 56 are in [0,1] for polys of order 5. I spent some time working out whether eigenvalue root finding 121 OptInterval bounds_fast(const SBasisOf<double> &sb, int order) { argument 123 OptInterval bounds_fast(const SBasis &sb, int order) { 127 for(int j = sb.size()-1; j>=order; j--) { 148 if (order>0) res*=std::pow(.25,order); 152 /** Find a small interval that bounds a(t) for t in i to order order 155 \param order number of terms 160 OptInterval bounds_local(const SBasisOf<double> &sb, const OptInterval &i, int order) { argument [all...] |
H A D | piecewise.cpp | 158 Piecewise<SBasis> pw_compose_inverse(SBasis const &f, SBasis const &g, unsigned order, double zero){ 181 SBasis foginv = compose_inverse( f, g01, order, zero ); 189 result = pw_compose_inverse(f_portion, g_portion, order, zero); 194 result_next = pw_compose_inverse(f_portion, g_portion, order, zero);
|
H A D | d2.h | 524 //bounds specializations with order 525 inline OptRect bounds_fast(D2<SBasis> const & s, unsigned order=0) { argument 527 OptInterval xint = bounds_fast(s[X], order); 529 OptInterval yint = bounds_fast(s[Y], order); 536 inline OptRect bounds_local(D2<SBasis> const & s, OptInterval i, unsigned order=0) { argument 538 OptInterval xint = bounds_local(s[X], i, order); 539 OptInterval yint = bounds_local(s[Y], i, order);
|
H A D | sbasis.h | 261 OptInterval bounds_fast(SBasis const &a, int order = 0); 262 OptInterval bounds_local(SBasis const &a, const OptInterval &t, int order = 0); 375 // return a kth order approx to 1/a) 410 SBasis compose_inverse(SBasis const &f, SBasis const &g, unsigned order=2, double tol=1e-3);
|
H A D | bezier-curve.cpp | 44 * @brief Two-dimensional Bezier curve of arbitrary order. 47 * Linear segments in 2Geom are in fact Bezier curves of order 1. 50 * of order \f$n\f$ defined by the points \f$\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_n\f$. 51 * Bezier curve of order 1 is a linear interpolation curve between two points, defined as 54 * by linear interpolations, we get the definition of a Bezier curve of order 2, also called 61 * we get a Bezier curve of order 3, called a cubic Bezier curve. 67 * In general, a Bezier curve or order \f$n\f$ can be recursively defined as 89 * The order of a Bezier curve is immuable once it has been created. Normally, you should 90 * know the order at compile time and use the BezierCurveN template. If you need to determine 91 * the order a [all...] |
/inkscape/src/filters/ |
H A D | convolvematrix.cpp | 33 this->order.set("3 3"); 57 this->readAttr( "order" ); 113 this->order.set(value); 116 if (this->order.optNumIsSet() == false) { 117 this->order.setOptNumber(this->order.getNumber()); 121 this->targetX = (int) floor(this->order.getNumber()/2); 125 this->targetY = (int) floor(this->order.getOptNumber()/2); 195 if (read_int < 0 || read_int > this->order.getNumber()){ 197 read_int = (int) floor(this->order [all...] |
H A D | convolvematrix.h | 29 NumberOptNumber order; member in class:SPFeConvolveMatrix
|
/inkscape/src/libvpsc/ |
H A D | blocks.h | 73 void dfsVisit(Variable *v, std::list<Variable*> *order);
|
H A D | blocks.cpp | 47 list<Variable*> *order = new list<Variable*>; local 53 dfsVisit(vs[i],order); 56 return order; 58 // Recursive depth first search giving total order by pushing nodes in the DAG 60 void Blocks::dfsVisit(Variable *v, list<Variable*> *order) { argument 66 dfsVisit(c->right, order); 71 f<<" order="<<*v<<endl; 73 order->push_front(v);
|
/inkscape/src/helper/ |
H A D | geom.cpp | 170 unsigned order = 0; local 172 order = b->order(); 175 if (order == 1) { // line segment 181 } else if (order == 3) { // cubic bezier 354 unsigned order = 0; local 356 order = b->order(); 358 if (order == 1) { 374 else if (order [all...] |
/inkscape/share/extensions/ |
H A D | jessyInk_summary.py | 134 if not effects.has_key(dictio["order"]): 135 effects[dictio["order"]] = [] 137 effects[dictio["order"]].append(dictio) 145 if not effects.has_key(dictio["order"]): 146 effects[dictio["order"]] = [] 148 effects[dictio["order"]].append(dictio) 155 if not effects.has_key(dictio["order"]): 156 effects[dictio["order"]] = [] 158 effects[dictio["order"]].append(dictio) 160 order [all...] |
H A D | lindenmayer.py | 28 self.OptionParser.add_option("-o", "--order", 30 dest="order", default=3, 98 if level < self.options.order:
|
/inkscape/src/libavoid/ |
H A D | vpsc.cpp | 420 // Because the constraint list is not order dependent we just 465 list<Variable*> *order = new list<Variable*>; local 471 dfsVisit(vs[i],order); 474 return order; 476 // Recursive depth first search giving total order by pushing nodes in the DAG 478 void Blocks::dfsVisit(Variable *v, list<Variable*> *order) { argument 484 dfsVisit(c->right, order); 489 f<<" order="<<*v<<endl; 491 order->push_front(v); 914 // in order t [all...] |
H A D | vpsc.h | 204 void dfsVisit(Variable *v, std::list<Variable*> *order);
|
/inkscape/src/extension/internal/ |
H A D | cairo-render-context.h | 158 bool renderPathVector(Geom::PathVector const &pathv, SPStyle const *style, Geom::OptRect const &pbox, CairoPaintOrder order = STROKE_OVER_FILL);
|