/inkscape/src/live_effects/ |
H A D | lpe-powerstroke.cpp | 331 Geom::Point start = B[0].at0(); 341 if (!are_near(B[prev_i].at1(), B[i].at0(), tol) ) 347 Geom::Point discontinuity_vec = B[i].at0() - B[prev_i].at1(); 363 B[i].at0(), tang2 ); 366 pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles 372 ellipse = find_ellipse(B[prev_i].at1(), B[i].at0(), *O); 377 pb.lineTo(B[i].at0()); 386 pb.lineTo(B[i].at0()); 391 false, width < 0, B[i].at0() ); 399 Geom::D2<Geom::SBasis> newcurve2 = B[i] * Geom::reflection(rot90(tang2), B[i].at0()); [all...] |
H A D | lpe-sketch.cpp | 136 x = m.segs.front()[0].at0(); 137 y = m.segs.front()[1].at0(); 229 double piece_total_length = piecelength.segs.back().at1()-piecelength.segs.front().at0(); 235 bool closed = piece.segs.front().at0() == piece.segs.back().at1(); 300 //total_length = pathlength.segs.back().at1()-pathlength.segs.front().at0();
|
H A D | lpe-extrude.cpp | 55 if ( ! are_colinear(deriv[i-1].at1(), deriv[i].at0()) ) {
|
H A D | lpe-dynastroke.cpp | 195 if ( m.segs.front().at0() == m.segs.back().at1()){
|
H A D | lpe-patternalongpath.cpp | 204 if(path_i.segs.front().at0() == path_i.segs.back().at1()){
|
/inkscape/src/2geom/ |
H A D | basic-intersection.cpp | 218 av.back()[X].at0() = bv.back()[X].at0() = lerp(0.5, av.back()[X].at0(), bv.back()[X].at0()); 220 av.back()[Y].at0() = bv.back()[Y].at0() = lerp(0.5, av.back()[Y].at0(), bv.back()[Y].at0()); 226 av.back()[X].at0() = bv.back()[X].at0() [all...] |
H A D | sbasis-geometric.cpp | 105 fabs(M[0].at0())<ZERO && 106 fabs(M[1].at0())<ZERO && 113 fabs(M[0].at0())<ZERO && fabs(M[1].at0())<ZERO){ 170 Point vi0 = vi.at0(); 171 angle += -std::atan2(vi0[1],vi0[0]) - angle[0].at0(); 236 Point v0 = unit_vector(V.at0()); 247 double r0 = (k<r_eqn1.size())? r_eqn1.at(k).at0() : 0; 249 double rr0 = (k<r_eqn2.size())? r_eqn2.at(k).at0() : 0; 257 a0 = r0/dot(v0,V.at0())*v [all...] |
H A D | linear.h | 77 Coord at0() const { return a[0]; } 78 Coord &at0() { return a[0]; }
|
H A D | piecewise.cpp | 73 if (fabs(b.at0())>zero && fabs(b.at1())>zero ){ 81 //assert(b.at0()!=0 && b.at1()!=0); 119 while (i<values.size()&&(g.at0()>values[i])) i++; 163 bool flip = ( g01.at0() > g01.at1() ); 166 OptInterval g_range( Interval( g.at0(), g.at1() )); 175 assert( std::abs( g01.at0() - 0. ) < zero );
|
H A D | sbasis-math.cpp | 145 if (f.at0()<-tol*tol && f.at1()<-tol*tol){ 147 }else if (f.at0()>tol*tol && f.at1()>tol*tol){ 161 sqrtf = Linear(std::sqrt(fabs(f.at0())), std::sqrt(fabs(f.at1()))); 238 double alpha = (f.at0()+f.at1())/2.; 356 bump_in -= bump_in.at0();
|
H A D | solve-bezier.cpp | 192 const double Ay = bz.at1() - bz.at0(); 194 solutions.push_back(left_t - Ax*bz.at0() / Ay); 261 double r, fs = bz.at0(), ft = bz.at1();
|
H A D | concepts.h | 79 o = t.at0(); 81 t.at0() = o;
|
H A D | bezier-curve.cpp | 190 if (!are_near(inner.at0(), other->inner.at0(), precision)) return false; 320 Point ip = inner.at0(), fp = inner.at1();
|
H A D | sbasis-curve.h | 89 virtual Point initialPoint() const { return inner.at0(); }
|
H A D | sbasis-to-bezier.cpp | 502 pb.moveTo(B.at0()); 519 Geom::Point start = B[0].at0(); 523 || !are_near(B[i+1].at0(), B[i].at1(), tol) ) 540 start = B[i+1].at0();
|
H A D | d2-sbasis.cpp | 177 Point pt1 = f.segs[cur ].at0(); 208 if (i==(pwsbin.segs.size()-1) || L2(pwsbin.segs[i].at1()- pwsbin.segs[i+1].at0()) > tol){ 293 set_last_point( comp, comp.segs.front().at0() );
|
H A D | bezier.h | 255 Coord at0() const { return c_[0]; } function in class:Geom::Bezier 256 Coord &at0() { return c_[0]; } function in class:Geom::Bezier
|
H A D | elliptical-arc-from-sbasis.cpp | 201 initial_point(curve.at0()), final_point(curve.at1()),
|
H A D | sbasis.h | 211 inline Coord at0() const { return (*this)[0][0]; } 212 inline Coord &at0() { return (*this)[0][0]; }
|
H A D | bezier.cpp | 295 OptInterval ret(b.at0(), b.at1());
|
H A D | nearest-time.cpp | 75 Coord dinitial = L2sq(bez.at0());
|
H A D | d2.h | 121 Point at0() const { function in class:Geom::D2 123 return Point(f[X].at0(), f[Y].at0());
|
H A D | piecewise.h | 261 typename T::output_type y = segs.back().at1() - other.segs.front().at0(); 866 typename T::output_type c = a.segs[0].at0(); 869 result.segs[i]+= c-result.segs[i].at0();
|
H A D | bezier-curve.h | 105 virtual Point initialPoint() const { return inner.at0(); }
|
H A D | conicsec.h | 87 Point at0() const {return P[0];} function in class:Geom::RatQuad
|