Searched defs:roots (Results 1 - 12 of 12) sorted by relevance

/inkscape/src/2geom/
H A Dsbasis-curve.h109 virtual std::vector<Coord> roots(Coord v, Dim2 d) const { return Geom::roots(inner[d] - v); } function in class:Geom::SBasisCurve
H A Dbezier.cpp98 std::vector<Coord> Bezier::roots() const function in class:Geom::Bezier
106 std::vector<Coord> Bezier::roots(Interval const &ivl) const function in class:Geom::Bezier
296 std::vector<Coord> r = derivative(b).roots();
H A Dline.cpp130 std::vector<Coord> Line::roots(Coord v, Dim2 d) const { function in class:Geom::Line
H A Dpiecewise.cpp110 std::vector<std::vector<double> > roots = multi_roots(g, values); local
111 for(unsigned i=0; i<roots.size(); i++){
112 for(unsigned j=0; j<roots[i].size();j++){
113 result[roots[i][j]]=i;
205 std::vector<double> roots(Piecewise<SBasis> const &f){ function in namespace:Geom
208 std::vector<double> rts=roots(f.segs[i]);
H A Dpolynomial.cpp89 std::vector<std::complex<double> > roots; local
90 //roots.resize(p.degree());
98 roots.push_back(std::complex<double> (z[2*i] ,z[2*i+1]));
102 return roots;
106 std::vector<std::complex<double> > roots = solve(p); local
109 for(unsigned int i = 0; i < roots.size(); i++) {
110 if(roots[i].imag() == 0) // should be more lenient perhaps
111 real_roots.push_back(roots[i].real());
241 // two roots
251 // no roots otherwis
[all...]
H A Dray.h92 std::vector<Coord> roots(Coord v, Dim2 d) const { function in class:Geom::Ray
H A Dbezier-curve.h157 virtual std::vector<Coord> roots(Coord v, Dim2 d) const { function in class:Geom::BezierCurve
158 return (inner[d] - v).roots();
H A Dsbasis-roots.cpp36 * It is more efficient to find roots of f(t) = c_0, c_1, ... all at once, rather than iterating.
39 * multi-roots using bernstein method, one approach would be:
41 take median and find roots of that
47 * the gsl poly roots finder is faster than bernstein too, but we don't use it for 3 reasons:
53 c) it finds all roots, even complex ones. We don't want to accidently treat a nearly real root as a real root
55 From memory gsl poly roots was about 10 times faster than bernstein in the case where all the roots
96 vector<double>extrema = roots(df);
106 vector<double>extrema = roots(df);
196 From this we conclude there are no roots befor
210 multi_roots_internal(SBasis const &f, SBasis const &df, std::vector<double> const &levels, std::vector<std::vector<double> > &roots, double htol, double vtol, double a, double fa, double b, double fb) argument
568 subdiv_sbasis(SBasis const & s, std::vector<double> & roots, double left, double right) argument
580 subdiv_sbasis(compose(s, Linear(0, 0.5)), roots, left, middle); local
581 subdiv_sbasis(compose(s, Linear(0.5, 1.)), roots, middle, right); local
614 std::vector<double> roots(SBasis const & s) { function in namespace:Geom
629 std::vector<double> roots(SBasis const & s, Interval const ivl) { function in namespace:Geom
[all...]
H A Delliptical-arc.cpp161 std::vector<Coord> EllipticalArc::roots(Coord v, Dim2 d) const function in class:Geom::EllipticalArc
166 sol = chord().roots(v, d);
362 result = roots(np[Y], Y);
366 result = roots(np[X], X);
374 result = roots(np[X], X);
378 result = roots(np[Y], Y);
392 // std::vector<double> solX = roots(np[X],X);
393 // std::vector<double> solY = roots(np[Y],Y);
H A Dtoposweep.cpp123 std::vector<double> splits = deriv->roots(0, X);
124 concatenate(splits, deriv->roots(0, Y));
137 //d indicates the dimension along which the roots is performed.
140 std::vector<double> roots = s.curve.get(ps).roots(v, d); local
141 for(unsigned j = 0; j < roots.size(); j++)
142 if(Interval(s.f, s.t).contains(roots[j])) return roots[j];
H A Dconicsec.cpp282 std::vector<double> rts = C1.roots(L0);
287 rts = C1.roots(L1);
331 std::vector<double> rts = xC0.roots(Lx);
339 cnrts = C1.roots(L);
341 cnrts = C2.roots(L);
376 std::vector<double> rts = Geom::roots(D);
385 rts = Geom::roots(D);
387 // at this point we have a T and S and perhaps some roots that represent our degenerate conic
502 std::vector<double> rts = Geom::roots(edge_curve);
531 std::vector<double> bisect_rts = this->roots(bisecto
564 std::vector<double> xAx::roots(Point d, Point o) const { function in class:Geom::xAx
607 std::vector<double> xAx::roots(Line const &l) const { function in class:Geom::xAx
1080 void xAx::roots (std::vector<double>& sol, Coord v, Dim2 d) const function in class:Geom::xAx
[all...]
/inkscape/src/live_effects/
H A Dlpe-ruler.cpp143 std::vector<std::vector<double> > roots = multi_roots(arclength, s_cuts); local
145 for (unsigned v=0; v<roots.size();v++){
148 if(roots[v].size()>0)
149 t_cuts.push_back(roots[v][0]);

Completed in 42 milliseconds