VBoxRecompiler.c revision 240f7d7012a5f64bcde850bcf048531a710d81cf
/* $Id$ */
/** @file
* VBox Recompiler - QEMU.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_REM
#include "vl.h"
#include "osdep.h"
#include "exec-all.h"
void cpu_exec_init_all(unsigned long tb_size);
#include <VBox/rem.h>
#include <VBox/vmapi.h>
#include <VBox/tm.h>
#include <VBox/ssm.h>
#include <VBox/em.h>
#include <VBox/trpm.h>
#include <VBox/iom.h>
#include <VBox/mm.h>
#include <VBox/pgm.h>
#include <VBox/pdm.h>
#include <VBox/dbgf.h>
#include <VBox/dbg.h>
#include <VBox/hwaccm.h>
#include <VBox/patm.h>
#include <VBox/csam.h>
#include "REMInternal.h"
#include <VBox/vm.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/semaphore.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/thread.h>
#include <iprt/string.h>
/* Don't wanna include everything. */
extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
extern void tlb_flush(CPUState *env, int flush_global);
extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
extern void sync_ldtr(CPUX86State *env1, int selector);
extern int sync_tr(CPUX86State *env1, int selector);
#ifdef VBOX_STRICT
unsigned long get_phys_page_offset(target_ulong addr);
#endif
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** Copy 80-bit fpu register at pSrc to pDst.
* This is probably faster than *calling* memcpy.
*/
#define REM_COPY_FPU_REG(pDst, pSrc) \
do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
static void remR3StateUpdate(PVM pVM);
static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** @todo Move stats to REM::s some rainy day we have nothing do to. */
#ifdef VBOX_WITH_STATISTICS
static STAMPROFILEADV gStatExecuteSingleInstr;
static STAMPROFILEADV gStatCompilationQEmu;
static STAMPROFILEADV gStatRunCodeQEmu;
static STAMPROFILEADV gStatTotalTimeQEmu;
static STAMPROFILEADV gStatTimers;
static STAMPROFILEADV gStatTBLookup;
static STAMPROFILEADV gStatIRQ;
static STAMPROFILEADV gStatRawCheck;
static STAMPROFILEADV gStatMemRead;
static STAMPROFILEADV gStatMemWrite;
static STAMPROFILE gStatGCPhys2HCVirt;
static STAMPROFILE gStatHCVirt2GCPhys;
static STAMCOUNTER gStatCpuGetTSC;
static STAMCOUNTER gStatRefuseTFInhibit;
static STAMCOUNTER gStatRefuseVM86;
static STAMCOUNTER gStatRefusePaging;
static STAMCOUNTER gStatRefusePAE;
static STAMCOUNTER gStatRefuseIOPLNot0;
static STAMCOUNTER gStatRefuseIF0;
static STAMCOUNTER gStatRefuseCode16;
static STAMCOUNTER gStatRefuseWP0;
static STAMCOUNTER gStatRefuseRing1or2;
static STAMCOUNTER gStatRefuseCanExecute;
static STAMCOUNTER gStatREMGDTChange;
static STAMCOUNTER gStatREMIDTChange;
static STAMCOUNTER gStatREMLDTRChange;
static STAMCOUNTER gStatREMTRChange;
static STAMCOUNTER gStatSelOutOfSync[6];
static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
static STAMCOUNTER gStatFlushTBs;
#endif
/*
* Global stuff.
*/
/** MMIO read callbacks. */
CPUReadMemoryFunc *g_apfnMMIORead[3] =
{
remR3MMIOReadU8,
remR3MMIOReadU16,
remR3MMIOReadU32
};
/** MMIO write callbacks. */
CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
{
remR3MMIOWriteU8,
remR3MMIOWriteU16,
remR3MMIOWriteU32
};
/** Handler read callbacks. */
CPUReadMemoryFunc *g_apfnHandlerRead[3] =
{
remR3HandlerReadU8,
remR3HandlerReadU16,
remR3HandlerReadU32
};
/** Handler write callbacks. */
CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
{
remR3HandlerWriteU8,
remR3HandlerWriteU16,
remR3HandlerWriteU32
};
#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
/*
* Debugger commands.
*/
static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
/** '.remstep' arguments. */
static const DBGCVARDESC g_aArgRemStep[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
};
/** Command descriptors. */
static const DBGCCMD g_aCmds[] =
{
{
.pszCmd ="remstep",
.cArgsMin = 0,
.cArgsMax = 1,
.paArgDescs = &g_aArgRemStep[0],
.cArgDescs = ELEMENTS(g_aArgRemStep),
.pResultDesc = NULL,
.fFlags = 0,
.pfnHandler = remR3CmdDisasEnableStepping,
.pszSyntax = "[on/off]",
.pszDescription = "Enable or disable the single stepping with logged disassembly. "
"If no arguments show the current state."
}
};
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void remAbort(int rc, const char *pszTip);
extern int testmath(void);
/* Put them here to avoid unused variable warning. */
AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
/* Why did this have to be identical?? */
AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
#else
AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
#endif
/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
uint8_t* code_gen_prologue;
/**
* Initializes the REM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
REMR3DECL(int) REMR3Init(PVM pVM)
{
uint32_t u32Dummy;
unsigned i;
int rc;
/*
* Assert sanity.
*/
AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
Assert(!testmath());
#endif
/*
* Init some internal data members.
*/
pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
pVM->rem.s.Env.pVM = pVM;
#ifdef CPU_RAW_MODE_INIT
pVM->rem.s.state |= CPU_RAW_MODE_INIT;
#endif
/* ctx. */
pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
/* ignore all notifications */
pVM->rem.s.fIgnoreAll = true;
code_gen_prologue = RTMemExecAlloc(_1K);
cpu_exec_init_all(0);
/*
* Init the recompiler.
*/
if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
{
AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
return VERR_GENERAL_FAILURE;
}
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
/* allocate code buffer for single instruction emulation. */
pVM->rem.s.Env.cbCodeBuffer = 4096;
pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
/* finally, set the cpu_single_env global. */
cpu_single_env = &pVM->rem.s.Env;
/* Nothing is pending by default */
pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
/*
* Register ram types.
*/
pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
/* stop ignoring. */
pVM->rem.s.fIgnoreAll = false;
/*
* Register the saved state data unit.
*/
rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
NULL, remR3Save, NULL,
NULL, remR3Load, NULL);
if (RT_FAILURE(rc))
return rc;
#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
/*
* Debugger commands.
*/
static bool fRegisteredCmds = false;
if (!fRegisteredCmds)
{
int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
if (RT_SUCCESS(rc))
fRegisteredCmds = true;
}
#endif
#ifdef VBOX_WITH_STATISTICS
/*
* Statistics.
*/
STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
#endif
#ifdef DEBUG_ALL_LOGGING
loglevel = ~0;
#endif
return rc;
}
/**
* Terminates the REM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
REMR3DECL(int) REMR3Term(PVM pVM)
{
return VINF_SUCCESS;
}
/**
* The VM is being reset.
*
* For the REM component this means to call the cpu_reset() and
* reinitialize some state variables.
*
* @param pVM VM handle.
*/
REMR3DECL(void) REMR3Reset(PVM pVM)
{
/*
* Reset the REM cpu.
*/
pVM->rem.s.fIgnoreAll = true;
cpu_reset(&pVM->rem.s.Env);
pVM->rem.s.cInvalidatedPages = 0;
pVM->rem.s.fIgnoreAll = false;
/* Clear raw ring 0 init state */
pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
/* Flush the TBs the next time we execute code here. */
pVM->rem.s.fFlushTBs = true;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
{
/*
* Save the required CPU Env bits.
* (Not much because we're never in REM when doing the save.)
*/
PREM pRem = &pVM->rem.s;
LogFlow(("remR3Save:\n"));
Assert(!pRem->fInREM);
SSMR3PutU32(pSSM, pRem->Env.hflags);
SSMR3PutU32(pSSM, ~0); /* separator */
/* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
return SSMR3PutU32(pSSM, ~0); /* terminator */
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
uint32_t u32Dummy;
uint32_t fRawRing0 = false;
uint32_t u32Sep;
int rc;
PREM pRem;
LogFlow(("remR3Load:\n"));
/*
* Validate version.
*/
if ( u32Version != REM_SAVED_STATE_VERSION
&& u32Version != REM_SAVED_STATE_VERSION_VER1_6)
{
AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Do a reset to be on the safe side...
*/
REMR3Reset(pVM);
/*
* Ignore all ignorable notifications.
* (Not doing this will cause serious trouble.)
*/
pVM->rem.s.fIgnoreAll = true;
/*
* Load the required CPU Env bits.
* (Not much because we're never in REM when doing the save.)
*/
pRem = &pVM->rem.s;
Assert(!pRem->fInREM);
SSMR3GetU32(pSSM, &pRem->Env.hflags);
if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
{
/* Redundant REM CPU state has to be loaded, but can be ignored. */
CPUX86State_Ver16 temp;
SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
}
rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
if (RT_FAILURE(rc))
return rc;
if (u32Sep != ~0U)
{
AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
/* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
SSMR3GetUInt(pSSM, &fRawRing0);
if (fRawRing0)
pRem->Env.state |= CPU_RAW_RING0;
if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
{
unsigned i;
/*
* Load the REM stuff.
*/
rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
if (RT_FAILURE(rc))
return rc;
if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
{
AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
for (i = 0; i < pRem->cInvalidatedPages; i++)
SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
}
rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
if (RT_FAILURE(rc))
return rc;
/* check the terminator. */
rc = SSMR3GetU32(pSSM, &u32Sep);
if (RT_FAILURE(rc))
return rc;
if (u32Sep != ~0U)
{
AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
/*
* Get the CPUID features.
*/
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
/*
* Sync the Load Flush the TLB
*/
tlb_flush(&pRem->Env, 1);
/*
* Stop ignoring ignornable notifications.
*/
pVM->rem.s.fIgnoreAll = false;
/*
* Sync the whole CPU state when executing code in the recompiler.
*/
CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
return VINF_SUCCESS;
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM_RUN
/**
* Single steps an instruction in recompiled mode.
*
* Before calling this function the REM state needs to be in sync with
* the VM. Call REMR3State() to perform the sync. It's only necessary
* (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
* and after calling REMR3StateBack().
*
* @returns VBox status code.
*
* @param pVM VM Handle.
*/
REMR3DECL(int) REMR3Step(PVM pVM)
{
int rc, interrupt_request;
RTGCPTR GCPtrPC;
bool fBp;
/*
* Lock the REM - we don't wanna have anyone interrupting us
* while stepping - and enabled single stepping. We also ignore
* pending interrupts and suchlike.
*/
interrupt_request = pVM->rem.s.Env.interrupt_request;
Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
pVM->rem.s.Env.interrupt_request = 0;
cpu_single_step(&pVM->rem.s.Env, 1);
/*
* If we're standing at a breakpoint, that have to be disabled before we start stepping.
*/
GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
/*
* Execute and handle the return code.
* We execute without enabling the cpu tick, so on success we'll
* just flip it on and off to make sure it moves
*/
rc = cpu_exec(&pVM->rem.s.Env);
if (rc == EXCP_DEBUG)
{
TMCpuTickResume(pVM);
TMCpuTickPause(pVM);
TMVirtualResume(pVM);
TMVirtualPause(pVM);
rc = VINF_EM_DBG_STEPPED;
}
else
{
AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
switch (rc)
{
case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
case EXCP_HLT:
case EXCP_HALTED: rc = VINF_EM_HALT; break;
case EXCP_RC:
rc = pVM->rem.s.rc;
pVM->rem.s.rc = VERR_INTERNAL_ERROR;
break;
default:
AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
rc = VERR_INTERNAL_ERROR;
break;
}
}
/*
* Restore the stuff we changed to prevent interruption.
* Unlock the REM.
*/
if (fBp)
{
int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
Assert(rc2 == 0); NOREF(rc2);
}
cpu_single_step(&pVM->rem.s.Env, 0);
pVM->rem.s.Env.interrupt_request = interrupt_request;
return rc;
}
/**
* Set a breakpoint using the REM facilities.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param Address The breakpoint address.
* @thread The emulation thread.
*/
REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
{
VM_ASSERT_EMT(pVM);
if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
{
LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
return VINF_SUCCESS;
}
LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
return VERR_REM_NO_MORE_BP_SLOTS;
}
/**
* Clears a breakpoint set by REMR3BreakpointSet().
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param Address The breakpoint address.
* @thread The emulation thread.
*/
REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
{
VM_ASSERT_EMT(pVM);
if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
{
LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
return VINF_SUCCESS;
}
LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
return VERR_REM_BP_NOT_FOUND;
}
/**
* Emulate an instruction.
*
* This function executes one instruction without letting anyone
* interrupt it. This is intended for being called while being in
* raw mode and thus will take care of all the state syncing between
* REM and the rest.
*
* @returns VBox status code.
* @param pVM VM handle.
*/
REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
{
bool fFlushTBs;
int rc, rc2;
Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
/* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
* CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
*/
if (HWACCMIsEnabled(pVM))
pVM->rem.s.Env.state |= CPU_RAW_HWACC;
/* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
fFlushTBs = pVM->rem.s.fFlushTBs;
pVM->rem.s.fFlushTBs = false;
/*
* Sync the state and enable single instruction / single stepping.
*/
rc = REMR3State(pVM);
pVM->rem.s.fFlushTBs = fFlushTBs;
if (RT_SUCCESS(rc))
{
int interrupt_request = pVM->rem.s.Env.interrupt_request;
Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
Assert(!pVM->rem.s.Env.singlestep_enabled);
#if 1
/*
* Now we set the execute single instruction flag and enter the cpu_exec loop.
*/
TMNotifyStartOfExecution(pVM);
pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
rc = cpu_exec(&pVM->rem.s.Env);
TMNotifyEndOfExecution(pVM);
switch (rc)
{
/*
* Executed without anything out of the way happening.
*/
case EXCP_SINGLE_INSTR:
rc = VINF_EM_RESCHEDULE;
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
break;
/*
* If we take a trap or start servicing a pending interrupt, we might end up here.
* (Timer thread or some other thread wishing EMT's attention.)
*/
case EXCP_INTERRUPT:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
rc = VINF_EM_RESCHEDULE;
break;
/*
* Single step, we assume!
* If there was a breakpoint there we're fucked now.
*/
case EXCP_DEBUG:
{
/* breakpoint or single step? */
RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
int iBP;
rc = VINF_EM_DBG_STEPPED;
for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
{
rc = VINF_EM_DBG_BREAKPOINT;
break;
}
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
break;
}
/*
* hlt instruction.
*/
case EXCP_HLT:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
rc = VINF_EM_HALT;
break;
/*
* The VM has halted.
*/
case EXCP_HALTED:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
rc = VINF_EM_HALT;
break;
/*
* Switch to RAW-mode.
*/
case EXCP_EXECUTE_RAW:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
rc = VINF_EM_RESCHEDULE_RAW;
break;
/*
* Switch to hardware accelerated RAW-mode.
*/
case EXCP_EXECUTE_HWACC:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
rc = VINF_EM_RESCHEDULE_HWACC;
break;
/*
* An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
*/
case EXCP_RC:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
rc = pVM->rem.s.rc;
pVM->rem.s.rc = VERR_INTERNAL_ERROR;
break;
/*
* Figure out the rest when they arrive....
*/
default:
AssertMsgFailed(("rc=%d\n", rc));
Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
rc = VINF_EM_RESCHEDULE;
break;
}
/*
* Switch back the state.
*/
#else
pVM->rem.s.Env.interrupt_request = 0;
cpu_single_step(&pVM->rem.s.Env, 1);
/*
* Execute and handle the return code.
* We execute without enabling the cpu tick, so on success we'll
* just flip it on and off to make sure it moves.
*
* (We do not use emulate_single_instr() because that doesn't enter the
* right way in will cause serious trouble if a longjmp was attempted.)
*/
# ifdef DEBUG_bird
remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
# endif
TMNotifyStartOfExecution(pVM);
int cTimesMax = 16384;
uint32_t eip = pVM->rem.s.Env.eip;
do
{
rc = cpu_exec(&pVM->rem.s.Env);
} while ( eip == pVM->rem.s.Env.eip
&& (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
&& --cTimesMax > 0);
TMNotifyEndOfExecution(pVM);
switch (rc)
{
/*
* Single step, we assume!
* If there was a breakpoint there we're fucked now.
*/
case EXCP_DEBUG:
{
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
rc = VINF_EM_RESCHEDULE;
break;
}
/*
* We cannot be interrupted!
*/
case EXCP_INTERRUPT:
AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
rc = VERR_INTERNAL_ERROR;
break;
/*
* hlt instruction.
*/
case EXCP_HLT:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
rc = VINF_EM_HALT;
break;
/*
* The VM has halted.
*/
case EXCP_HALTED:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
rc = VINF_EM_HALT;
break;
/*
* Switch to RAW-mode.
*/
case EXCP_EXECUTE_RAW:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
rc = VINF_EM_RESCHEDULE_RAW;
break;
/*
* Switch to hardware accelerated RAW-mode.
*/
case EXCP_EXECUTE_HWACC:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
rc = VINF_EM_RESCHEDULE_HWACC;
break;
/*
* An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
*/
case EXCP_RC:
Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
rc = pVM->rem.s.rc;
pVM->rem.s.rc = VERR_INTERNAL_ERROR;
break;
/*
* Figure out the rest when they arrive....
*/
default:
AssertMsgFailed(("rc=%d\n", rc));
Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
rc = VINF_SUCCESS;
break;
}
/*
* Switch back the state.
*/
cpu_single_step(&pVM->rem.s.Env, 0);
#endif
pVM->rem.s.Env.interrupt_request = interrupt_request;
rc2 = REMR3StateBack(pVM);
AssertRC(rc2);
}
Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
return rc;
}
/**
* Runs code in recompiled mode.
*
* Before calling this function the REM state needs to be in sync with
* the VM. Call REMR3State() to perform the sync. It's only necessary
* (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
* and after calling REMR3StateBack().
*
* @returns VBox status code.
*
* @param pVM VM Handle.
*/
REMR3DECL(int) REMR3Run(PVM pVM)
{
int rc;
Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
Assert(pVM->rem.s.fInREM);
TMNotifyStartOfExecution(pVM);
rc = cpu_exec(&pVM->rem.s.Env);
TMNotifyEndOfExecution(pVM);
switch (rc)
{
/*
* This happens when the execution was interrupted
* by an external event, like pending timers.
*/
case EXCP_INTERRUPT:
Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
rc = VINF_SUCCESS;
break;
/*
* hlt instruction.
*/
case EXCP_HLT:
Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
rc = VINF_EM_HALT;
break;
/*
* The VM has halted.
*/
case EXCP_HALTED:
Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
rc = VINF_EM_HALT;
break;
/*
* Breakpoint/single step.
*/
case EXCP_DEBUG:
{
#if 0//def DEBUG_bird
static int iBP = 0;
printf("howdy, breakpoint! iBP=%d\n", iBP);
switch (iBP)
{
case 0:
cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
//pVM->rem.s.Env.interrupt_request = 0;
//pVM->rem.s.Env.exception_index = -1;
//g_fInterruptDisabled = 1;
rc = VINF_SUCCESS;
asm("int3");
break;
default:
asm("int3");
break;
}
iBP++;
#else
/* breakpoint or single step? */
RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
int iBP;
rc = VINF_EM_DBG_STEPPED;
for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
{
rc = VINF_EM_DBG_BREAKPOINT;
break;
}
Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
#endif
break;
}
/*
* Switch to RAW-mode.
*/
case EXCP_EXECUTE_RAW:
Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
rc = VINF_EM_RESCHEDULE_RAW;
break;
/*
* Switch to hardware accelerated RAW-mode.
*/
case EXCP_EXECUTE_HWACC:
Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
rc = VINF_EM_RESCHEDULE_HWACC;
break;
/*
* An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
*/
case EXCP_RC:
Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
rc = pVM->rem.s.rc;
pVM->rem.s.rc = VERR_INTERNAL_ERROR;
break;
/*
* Figure out the rest when they arrive....
*/
default:
AssertMsgFailed(("rc=%d\n", rc));
Log2(("REMR3Run: cpu_exec -> %d\n", rc));
rc = VINF_SUCCESS;
break;
}
Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
return rc;
}
/**
* Check if the cpu state is suitable for Raw execution.
*
* @returns boolean
* @param env The CPU env struct.
* @param eip The EIP to check this for (might differ from env->eip).
* @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
* @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
*
* @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
*/
bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
{
/* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
/* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
/* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
uint32_t u32CR0;
/* Update counter. */
env->pVM->rem.s.cCanExecuteRaw++;
if (HWACCMIsEnabled(env->pVM))
{
CPUMCTX Ctx;
env->state |= CPU_RAW_HWACC;
/*
* Create partial context for HWACCMR3CanExecuteGuest
*/
Ctx.cr0 = env->cr[0];
Ctx.cr3 = env->cr[3];
Ctx.cr4 = env->cr[4];
Ctx.tr = env->tr.selector;
Ctx.trHid.u64Base = env->tr.base;
Ctx.trHid.u32Limit = env->tr.limit;
Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
Ctx.idtr.cbIdt = env->idt.limit;
Ctx.idtr.pIdt = env->idt.base;
Ctx.eflags.u32 = env->eflags;
Ctx.cs = env->segs[R_CS].selector;
Ctx.csHid.u64Base = env->segs[R_CS].base;
Ctx.csHid.u32Limit = env->segs[R_CS].limit;
Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
Ctx.ds = env->segs[R_DS].selector;
Ctx.dsHid.u64Base = env->segs[R_DS].base;
Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
Ctx.es = env->segs[R_ES].selector;
Ctx.esHid.u64Base = env->segs[R_ES].base;
Ctx.esHid.u32Limit = env->segs[R_ES].limit;
Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
Ctx.fs = env->segs[R_FS].selector;
Ctx.fsHid.u64Base = env->segs[R_FS].base;
Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
Ctx.gs = env->segs[R_GS].selector;
Ctx.gsHid.u64Base = env->segs[R_GS].base;
Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
Ctx.ss = env->segs[R_SS].selector;
Ctx.ssHid.u64Base = env->segs[R_SS].base;
Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
Ctx.msrEFER = env->efer;
/* Hardware accelerated raw-mode:
*
* Typically only 32-bits protected mode, with paging enabled, code is allowed here.
*/
if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
{
*piException = EXCP_EXECUTE_HWACC;
return true;
}
return false;
}
/*
* Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
* or 32 bits protected mode ring 0 code
*
* The tests are ordered by the likelyhood of being true during normal execution.
*/
if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
{
STAM_COUNTER_INC(&gStatRefuseTFInhibit);
Log2(("raw mode refused: fFlags=%#x\n", fFlags));
return false;
}
#ifndef VBOX_RAW_V86
if (fFlags & VM_MASK) {
STAM_COUNTER_INC(&gStatRefuseVM86);
Log2(("raw mode refused: VM_MASK\n"));
return false;
}
#endif
if (env->state & CPU_EMULATE_SINGLE_INSTR)
{
#ifndef DEBUG_bird
Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
#endif
return false;
}
if (env->singlestep_enabled)
{
//Log2(("raw mode refused: Single step\n"));
return false;
}
if (env->nb_breakpoints > 0)
{
//Log2(("raw mode refused: Breakpoints\n"));
return false;
}
u32CR0 = env->cr[0];
if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
{
STAM_COUNTER_INC(&gStatRefusePaging);
//Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
return false;
}
if (env->cr[4] & CR4_PAE_MASK)
{
if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
{
STAM_COUNTER_INC(&gStatRefusePAE);
return false;
}
}
if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
{
if (!EMIsRawRing3Enabled(env->pVM))
return false;
if (!(env->eflags & IF_MASK))
{
STAM_COUNTER_INC(&gStatRefuseIF0);
Log2(("raw mode refused: IF (RawR3)\n"));
return false;
}
if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
{
STAM_COUNTER_INC(&gStatRefuseWP0);
Log2(("raw mode refused: CR0.WP + RawR0\n"));
return false;
}
}
else
{
if (!EMIsRawRing0Enabled(env->pVM))
return false;
// Let's start with pure 32 bits ring 0 code first
if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
{
STAM_COUNTER_INC(&gStatRefuseCode16);
Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
return false;
}
// Only R0
if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
{
STAM_COUNTER_INC(&gStatRefuseRing1or2);
Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
return false;
}
if (!(u32CR0 & CR0_WP_MASK))
{
STAM_COUNTER_INC(&gStatRefuseWP0);
Log2(("raw r0 mode refused: CR0.WP=0!\n"));
return false;
}
if (PATMIsPatchGCAddr(env->pVM, eip))
{
Log2(("raw r0 mode forced: patch code\n"));
*piException = EXCP_EXECUTE_RAW;
return true;
}
#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
if (!(env->eflags & IF_MASK))
{
STAM_COUNTER_INC(&gStatRefuseIF0);
////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
//Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
return false;
}
#endif
env->state |= CPU_RAW_RING0;
}
/*
* Don't reschedule the first time we're called, because there might be
* special reasons why we're here that is not covered by the above checks.
*/
if (env->pVM->rem.s.cCanExecuteRaw == 1)
{
Log2(("raw mode refused: first scheduling\n"));
STAM_COUNTER_INC(&gStatRefuseCanExecute);
return false;
}
Assert(PGMPhysIsA20Enabled(env->pVM));
*piException = EXCP_EXECUTE_RAW;
return true;
}
/**
* Fetches a code byte.
*
* @returns Success indicator (bool) for ease of use.
* @param env The CPU environment structure.
* @param GCPtrInstr Where to fetch code.
* @param pu8Byte Where to store the byte on success
*/
bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
{
int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
if (RT_SUCCESS(rc))
return true;
return false;
}
/**
* Flush (or invalidate if you like) page table/dir entry.
*
* (invlpg instruction; tlb_flush_page)
*
* @param env Pointer to cpu environment.
* @param GCPtr The virtual address which page table/dir entry should be invalidated.
*/
void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
{
PVM pVM = env->pVM;
PCPUMCTX pCtx;
int rc;
/*
* When we're replaying invlpg instructions or restoring a saved
* state we disable this path.
*/
if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
return;
Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
//RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
/*
* Update the control registers before calling PGMFlushPage.
*/
pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
pCtx->cr0 = env->cr[0];
pCtx->cr3 = env->cr[3];
pCtx->cr4 = env->cr[4];
/*
* Let PGM do the rest.
*/
rc = PGMInvalidatePage(pVM, GCPtr);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
}
//RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
}
/**
* Called from tlb_protect_code in order to write monitor a code page.
*
* @param env Pointer to the CPU environment.
* @param GCPtr Code page to monitor
*/
void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
{
#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
Assert(env->pVM->rem.s.fInREM);
if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
&& !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
&& (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
&& !(env->eflags & VM_MASK) /* no V86 mode */
&& !HWACCMIsEnabled(env->pVM))
CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
#endif
}
/**
* Called from tlb_unprotect_code in order to clear write monitoring for a code page.
*
* @param env Pointer to the CPU environment.
* @param GCPtr Code page to monitor
*/
void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
{
Assert(env->pVM->rem.s.fInREM);
#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
&& !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
&& (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
&& !(env->eflags & VM_MASK) /* no V86 mode */
&& !HWACCMIsEnabled(env->pVM))
CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
#endif
}
/**
* Called when the CPU is initialized, any of the CRx registers are changed or
* when the A20 line is modified.
*
* @param env Pointer to the CPU environment.
* @param fGlobal Set if the flush is global.
*/
void remR3FlushTLB(CPUState *env, bool fGlobal)
{
PVM pVM = env->pVM;
PCPUMCTX pCtx;
/*
* When we're replaying invlpg instructions or restoring a saved
* state we disable this path.
*/
if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
return;
Assert(pVM->rem.s.fInREM);
/*
* The caller doesn't check cr4, so we have to do that for ourselves.
*/
if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
fGlobal = true;
Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
/*
* Update the control registers before calling PGMR3FlushTLB.
*/
pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
pCtx->cr0 = env->cr[0];
pCtx->cr3 = env->cr[3];
pCtx->cr4 = env->cr[4];
/*
* Let PGM do the rest.
*/
PGMFlushTLB(pVM, env->cr[3], fGlobal);
}
/**
* Called when any of the cr0, cr4 or efer registers is updated.
*
* @param env Pointer to the CPU environment.
*/
void remR3ChangeCpuMode(CPUState *env)
{
int rc;
PVM pVM = env->pVM;
PCPUMCTX pCtx;
/*
* When we're replaying loads or restoring a saved
* state this path is disabled.
*/
if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
return;
Assert(pVM->rem.s.fInREM);
/*
* Update the control registers before calling PGMChangeMode()
* as it may need to map whatever cr3 is pointing to.
*/
pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
pCtx->cr0 = env->cr[0];
pCtx->cr3 = env->cr[3];
pCtx->cr4 = env->cr[4];
#ifdef TARGET_X86_64
rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
if (rc != VINF_SUCCESS)
cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
#else
rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
if (rc != VINF_SUCCESS)
cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
#endif
}
/**
* Called from compiled code to run dma.
*
* @param env Pointer to the CPU environment.
*/
void remR3DmaRun(CPUState *env)
{
remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
PDMR3DmaRun(env->pVM);
remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
}
/**
* Called from compiled code to schedule pending timers in VMM
*
* @param env Pointer to the CPU environment.
*/
void remR3TimersRun(CPUState *env)
{
remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
TMR3TimerQueuesDo(env->pVM);
remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
}
/**
* Record trap occurance
*
* @returns VBox status code
* @param env Pointer to the CPU environment.
* @param uTrap Trap nr
* @param uErrorCode Error code
* @param pvNextEIP Next EIP
*/
int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
{
PVM pVM = env->pVM;
#ifdef VBOX_WITH_STATISTICS
static STAMCOUNTER s_aStatTrap[255];
static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
#endif
#ifdef VBOX_WITH_STATISTICS
if (uTrap < 255)
{
if (!s_aRegisters[uTrap])
{
char szStatName[64];
s_aRegisters[uTrap] = true;
RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
}
STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
}
#endif
Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
if( uTrap < 0x20
&& (env->cr[0] & X86_CR0_PE)
&& !(env->eflags & X86_EFL_VM))
{
#ifdef DEBUG
remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
#endif
if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
{
LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
return VERR_REM_TOO_MANY_TRAPS;
}
if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
pVM->rem.s.cPendingExceptions = 1;
pVM->rem.s.uPendingException = uTrap;
pVM->rem.s.uPendingExcptEIP = env->eip;
pVM->rem.s.uPendingExcptCR2 = env->cr[2];
}
else
{
pVM->rem.s.cPendingExceptions = 0;
pVM->rem.s.uPendingException = uTrap;
pVM->rem.s.uPendingExcptEIP = env->eip;
pVM->rem.s.uPendingExcptCR2 = env->cr[2];
}
return VINF_SUCCESS;
}
/*
* Clear current active trap
*
* @param pVM VM Handle.
*/
void remR3TrapClear(PVM pVM)
{
pVM->rem.s.cPendingExceptions = 0;
pVM->rem.s.uPendingException = 0;
pVM->rem.s.uPendingExcptEIP = 0;
pVM->rem.s.uPendingExcptCR2 = 0;
}
/*
* Record previous call instruction addresses
*
* @param env Pointer to the CPU environment.
*/
void remR3RecordCall(CPUState *env)
{
CSAMR3RecordCallAddress(env->pVM, env->eip);
}
/**
* Syncs the internal REM state with the VM.
*
* This must be called before REMR3Run() is invoked whenever when the REM
* state is not up to date. Calling it several times in a row is not
* permitted.
*
* @returns VBox status code.
*
* @param pVM VM Handle.
* @param fFlushTBs Flush all translation blocks before executing code
*
* @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
* no do this since the majority of the callers don't want any unnecessary of events
* pending that would immediatly interrupt execution.
*/
REMR3DECL(int) REMR3State(PVM pVM)
{
register const CPUMCTX *pCtx;
register unsigned fFlags;
bool fHiddenSelRegsValid;
unsigned i;
TRPMEVENT enmType;
uint8_t u8TrapNo;
int rc;
STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
Log2(("REMR3State:\n"));
pCtx = pVM->rem.s.pCtx;
fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
Assert(!pVM->rem.s.fInREM);
pVM->rem.s.fInStateSync = true;
/*
* If we have to flush TBs, do that immediately.
*/
if (pVM->rem.s.fFlushTBs)
{
STAM_COUNTER_INC(&gStatFlushTBs);
tb_flush(&pVM->rem.s.Env);
pVM->rem.s.fFlushTBs = false;
}
/*
* Copy the registers which require no special handling.
*/
#ifdef TARGET_X86_64
/* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
Assert(R_EAX == 0);
pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
Assert(R_ECX == 1);
pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
Assert(R_EDX == 2);
pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
Assert(R_EBX == 3);
pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
Assert(R_ESP == 4);
pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
Assert(R_EBP == 5);
pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
Assert(R_ESI == 6);
pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
Assert(R_EDI == 7);
pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
pVM->rem.s.Env.regs[8] = pCtx->r8;
pVM->rem.s.Env.regs[9] = pCtx->r9;
pVM->rem.s.Env.regs[10] = pCtx->r10;
pVM->rem.s.Env.regs[11] = pCtx->r11;
pVM->rem.s.Env.regs[12] = pCtx->r12;
pVM->rem.s.Env.regs[13] = pCtx->r13;
pVM->rem.s.Env.regs[14] = pCtx->r14;
pVM->rem.s.Env.regs[15] = pCtx->r15;
pVM->rem.s.Env.eip = pCtx->rip;
pVM->rem.s.Env.eflags = pCtx->rflags.u64;
#else
Assert(R_EAX == 0);
pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
Assert(R_ECX == 1);
pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
Assert(R_EDX == 2);
pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
Assert(R_EBX == 3);
pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
Assert(R_ESP == 4);
pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
Assert(R_EBP == 5);
pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
Assert(R_ESI == 6);
pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
Assert(R_EDI == 7);
pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
pVM->rem.s.Env.eip = pCtx->eip;
pVM->rem.s.Env.eflags = pCtx->eflags.u32;
#endif
pVM->rem.s.Env.cr[2] = pCtx->cr2;
/** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
for (i=0;i<8;i++)
pVM->rem.s.Env.dr[i] = pCtx->dr[i];
/*
* Clear the halted hidden flag (the interrupt waking up the CPU can
* have been dispatched in raw mode).
*/
pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
/*
* Replay invlpg?
*/
if (pVM->rem.s.cInvalidatedPages)
{
RTUINT i;
pVM->rem.s.fIgnoreInvlPg = true;
for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
{
Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
}
pVM->rem.s.fIgnoreInvlPg = false;
pVM->rem.s.cInvalidatedPages = 0;
}
/* Replay notification changes? */
if (pVM->rem.s.cHandlerNotifications)
REMR3ReplayHandlerNotifications(pVM);
/* Update MSRs; before CRx registers! */
pVM->rem.s.Env.efer = pCtx->msrEFER;
pVM->rem.s.Env.star = pCtx->msrSTAR;
pVM->rem.s.Env.pat = pCtx->msrPAT;
#ifdef TARGET_X86_64
pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
/* Update the internal long mode activate flag according to the new EFER value. */
if (pCtx->msrEFER & MSR_K6_EFER_LMA)
pVM->rem.s.Env.hflags |= HF_LMA_MASK;
else
pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
#endif
/*
* Registers which are rarely changed and require special handling / order when changed.
*/
fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
| CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
| CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
{
if (fFlags & CPUM_CHANGED_FPU_REM)
save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
{
pVM->rem.s.fIgnoreCR3Load = true;
tlb_flush(&pVM->rem.s.Env, true);
pVM->rem.s.fIgnoreCR3Load = false;
}
/* CR4 before CR0! */
if (fFlags & CPUM_CHANGED_CR4)
{
pVM->rem.s.fIgnoreCR3Load = true;
pVM->rem.s.fIgnoreCpuMode = true;
cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
pVM->rem.s.fIgnoreCpuMode = false;
pVM->rem.s.fIgnoreCR3Load = false;
}
if (fFlags & CPUM_CHANGED_CR0)
{
pVM->rem.s.fIgnoreCR3Load = true;
pVM->rem.s.fIgnoreCpuMode = true;
cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
pVM->rem.s.fIgnoreCpuMode = false;
pVM->rem.s.fIgnoreCR3Load = false;
}
if (fFlags & CPUM_CHANGED_CR3)
{
pVM->rem.s.fIgnoreCR3Load = true;
cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
pVM->rem.s.fIgnoreCR3Load = false;
}
if (fFlags & CPUM_CHANGED_GDTR)
{
pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
}
if (fFlags & CPUM_CHANGED_IDTR)
{
pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
}
if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
{
pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
}
if (fFlags & CPUM_CHANGED_LDTR)
{
if (fHiddenSelRegsValid)
{
pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
}
else
sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
}
if (fFlags & CPUM_CHANGED_TR)
{
if (fHiddenSelRegsValid)
{
pVM->rem.s.Env.tr.selector = pCtx->tr;
pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
}
else
sync_tr(&pVM->rem.s.Env, pCtx->tr);
/** @note do_interrupt will fault if the busy flag is still set.... */
pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
}
if (fFlags & CPUM_CHANGED_CPUID)
{
uint32_t u32Dummy;
/*
* Get the CPUID features.
*/
CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
}
}
/*
* Update selector registers.
* This must be done *after* we've synced gdt, ldt and crX registers
* since we're reading the GDT/LDT om sync_seg. This will happen with
* saved state which takes a quick dip into rawmode for instance.
*/
/*
* Stack; Note first check this one as the CPL might have changed. The
* wrong CPL can cause QEmu to raise an exception in sync_seg!!
*/
if (fHiddenSelRegsValid)
{
/* The hidden selector registers are valid in the CPU context. */
/** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
/* Set current CPL */
cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
}
else
{
/* In 'normal' raw mode we don't have access to the hidden selector registers. */
if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
{
Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_SS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
}
#endif
}
else
pVM->rem.s.Env.segs[R_SS].newselector = 0;
if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
{
Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_ES].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
}
#endif
}
else
pVM->rem.s.Env.segs[R_ES].newselector = 0;
if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
{
Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_CS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
}
#endif
}
else
pVM->rem.s.Env.segs[R_CS].newselector = 0;
if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
{
Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_DS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
}
#endif
}
else
pVM->rem.s.Env.segs[R_DS].newselector = 0;
/** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
* be the same but not the base/limit. */
if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
{
Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_FS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
}
#endif
}
else
pVM->rem.s.Env.segs[R_FS].newselector = 0;
if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
{
Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_GS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
}
#endif
}
else
pVM->rem.s.Env.segs[R_GS].newselector = 0;
}
/*
* Check for traps.
*/
pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
if (RT_SUCCESS(rc))
{
#ifdef DEBUG
if (u8TrapNo == 0x80)
{
remR3DumpLnxSyscall(pVM);
remR3DumpOBsdSyscall(pVM);
}
#endif
pVM->rem.s.Env.exception_index = u8TrapNo;
if (enmType != TRPM_SOFTWARE_INT)
{
pVM->rem.s.Env.exception_is_int = 0;
pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
}
else
{
/*
* The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
* We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
* for int03 and into.
*/
pVM->rem.s.Env.exception_is_int = 1;
pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
/* int 3 may be generated by one-byte 0xcc */
if (u8TrapNo == 3)
{
if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
}
/* int 4 may be generated by one-byte 0xce */
else if (u8TrapNo == 4)
{
if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
}
}
/* get error code and cr2 if needed. */
switch (u8TrapNo)
{
case 0x0e:
pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
/* fallthru */
case 0x0a: case 0x0b: case 0x0c: case 0x0d:
pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
break;
case 0x11: case 0x08:
default:
pVM->rem.s.Env.error_code = 0;
break;
}
/*
* We can now reset the active trap since the recompiler is gonna have a go at it.
*/
rc = TRPMResetTrap(pVM);
AssertRC(rc);
Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
}
/*
* Clear old interrupt request flags; Check for pending hardware interrupts.
* (See @remark for why we don't check for other FFs.)
*/
pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
|| VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
/*
* We're now in REM mode.
*/
pVM->rem.s.fInREM = true;
pVM->rem.s.fInStateSync = false;
pVM->rem.s.cCanExecuteRaw = 0;
STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
Log2(("REMR3State: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Syncs back changes in the REM state to the the VM state.
*
* This must be called after invoking REMR3Run().
* Calling it several times in a row is not permitted.
*
* @returns VBox status code.
*
* @param pVM VM Handle.
*/
REMR3DECL(int) REMR3StateBack(PVM pVM)
{
register PCPUMCTX pCtx = pVM->rem.s.pCtx;
unsigned i;
STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
Log2(("REMR3StateBack:\n"));
Assert(pVM->rem.s.fInREM);
/*
* Copy back the registers.
* This is done in the order they are declared in the CPUMCTX structure.
*/
/** @todo FOP */
/** @todo FPUIP */
/** @todo CS */
/** @todo FPUDP */
/** @todo DS */
/** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
pCtx->fpu.MXCSR = 0;
pCtx->fpu.MXCSR_MASK = 0;
/** @todo check if FPU/XMM was actually used in the recompiler */
restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
#ifdef TARGET_X86_64
/* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
pCtx->r8 = pVM->rem.s.Env.regs[8];
pCtx->r9 = pVM->rem.s.Env.regs[9];
pCtx->r10 = pVM->rem.s.Env.regs[10];
pCtx->r11 = pVM->rem.s.Env.regs[11];
pCtx->r12 = pVM->rem.s.Env.regs[12];
pCtx->r13 = pVM->rem.s.Env.regs[13];
pCtx->r14 = pVM->rem.s.Env.regs[14];
pCtx->r15 = pVM->rem.s.Env.regs[15];
pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
#else
pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
#endif
pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
#ifdef VBOX_WITH_STATISTICS
if (pVM->rem.s.Env.segs[R_SS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
}
if (pVM->rem.s.Env.segs[R_GS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
}
if (pVM->rem.s.Env.segs[R_FS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
}
if (pVM->rem.s.Env.segs[R_ES].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
}
if (pVM->rem.s.Env.segs[R_DS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
}
if (pVM->rem.s.Env.segs[R_CS].newselector)
{
STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
}
#endif
pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
#ifdef TARGET_X86_64
pCtx->rip = pVM->rem.s.Env.eip;
pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
#else
pCtx->eip = pVM->rem.s.Env.eip;
pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
#endif
pCtx->cr0 = pVM->rem.s.Env.cr[0];
pCtx->cr2 = pVM->rem.s.Env.cr[2];
pCtx->cr3 = pVM->rem.s.Env.cr[3];
pCtx->cr4 = pVM->rem.s.Env.cr[4];
for (i=0;i<8;i++)
pCtx->dr[i] = pVM->rem.s.Env.dr[i];
pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
{
pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
STAM_COUNTER_INC(&gStatREMGDTChange);
VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
}
pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
{
pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
STAM_COUNTER_INC(&gStatREMIDTChange);
VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
}
if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
{
pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
STAM_COUNTER_INC(&gStatREMLDTRChange);
VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
}
if (pCtx->tr != pVM->rem.s.Env.tr.selector)
{
pCtx->tr = pVM->rem.s.Env.tr.selector;
STAM_COUNTER_INC(&gStatREMTRChange);
VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
}
/** @todo These values could still be out of sync! */
pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
/** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
/* Sysenter MSR */
pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
/* System MSRs. */
pCtx->msrEFER = pVM->rem.s.Env.efer;
pCtx->msrSTAR = pVM->rem.s.Env.star;
pCtx->msrPAT = pVM->rem.s.Env.pat;
#ifdef TARGET_X86_64
pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
#endif
remR3TrapClear(pVM);
/*
* Check for traps.
*/
if ( pVM->rem.s.Env.exception_index >= 0
&& pVM->rem.s.Env.exception_index < 256)
{
int rc;
Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
AssertRC(rc);
switch (pVM->rem.s.Env.exception_index)
{
case 0x0e:
TRPMSetFaultAddress(pVM, pCtx->cr2);
/* fallthru */
case 0x0a: case 0x0b: case 0x0c: case 0x0d:
case 0x11: case 0x08: /* 0 */
TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
break;
}
}
/*
* We're not longer in REM mode.
*/
pVM->rem.s.fInREM = false;
STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* This is called by the disassembler when it wants to update the cpu state
* before for instance doing a register dump.
*/
static void remR3StateUpdate(PVM pVM)
{
register PCPUMCTX pCtx = pVM->rem.s.pCtx;
unsigned i;
Assert(pVM->rem.s.fInREM);
/*
* Copy back the registers.
* This is done in the order they are declared in the CPUMCTX structure.
*/
/** @todo FOP */
/** @todo FPUIP */
/** @todo CS */
/** @todo FPUDP */
/** @todo DS */
/** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
pCtx->fpu.MXCSR = 0;
pCtx->fpu.MXCSR_MASK = 0;
/** @todo check if FPU/XMM was actually used in the recompiler */
restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
#ifdef TARGET_X86_64
pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
pCtx->r8 = pVM->rem.s.Env.regs[8];
pCtx->r9 = pVM->rem.s.Env.regs[9];
pCtx->r10 = pVM->rem.s.Env.regs[10];
pCtx->r11 = pVM->rem.s.Env.regs[11];
pCtx->r12 = pVM->rem.s.Env.regs[12];
pCtx->r13 = pVM->rem.s.Env.regs[13];
pCtx->r14 = pVM->rem.s.Env.regs[14];
pCtx->r15 = pVM->rem.s.Env.regs[15];
pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
#else
pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
#endif
pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
#ifdef TARGET_X86_64
pCtx->rip = pVM->rem.s.Env.eip;
pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
#else
pCtx->eip = pVM->rem.s.Env.eip;
pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
#endif
pCtx->cr0 = pVM->rem.s.Env.cr[0];
pCtx->cr2 = pVM->rem.s.Env.cr[2];
pCtx->cr3 = pVM->rem.s.Env.cr[3];
pCtx->cr4 = pVM->rem.s.Env.cr[4];
for (i=0;i<8;i++)
pCtx->dr[i] = pVM->rem.s.Env.dr[i];
pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
{
pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
STAM_COUNTER_INC(&gStatREMGDTChange);
VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
}
pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
{
pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
STAM_COUNTER_INC(&gStatREMIDTChange);
VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
}
if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
{
pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
STAM_COUNTER_INC(&gStatREMLDTRChange);
VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
}
if (pCtx->tr != pVM->rem.s.Env.tr.selector)
{
pCtx->tr = pVM->rem.s.Env.tr.selector;
STAM_COUNTER_INC(&gStatREMTRChange);
VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
}
/** @todo These values could still be out of sync! */
pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
/** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
/* Sysenter MSR */
pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
/* System MSRs. */
pCtx->msrEFER = pVM->rem.s.Env.efer;
pCtx->msrSTAR = pVM->rem.s.Env.star;
pCtx->msrPAT = pVM->rem.s.Env.pat;
#ifdef TARGET_X86_64
pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
#endif
}
/**
* Update the VMM state information if we're currently in REM.
*
* This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
* we're currently executing in REM and the VMM state is invalid. This method will of
* course check that we're executing in REM before syncing any data over to the VMM.
*
* @param pVM The VM handle.
*/
REMR3DECL(void) REMR3StateUpdate(PVM pVM)
{
if (pVM->rem.s.fInREM)
remR3StateUpdate(pVM);
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM
/**
* Notify the recompiler about Address Gate 20 state change.
*
* This notification is required since A20 gate changes are
* initialized from a device driver and the VM might just as
* well be in REM mode as in RAW mode.
*
* @param pVM VM handle.
* @param fEnable True if the gate should be enabled.
* False if the gate should be disabled.
*/
REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
{
bool fSaved;
LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
VM_ASSERT_EMT(pVM);
fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
pVM->rem.s.fIgnoreAll = fSaved;
}
/**
* Replays the invalidated recorded pages.
* Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
*
* @param pVM VM handle.
*/
REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
{
RTUINT i;
VM_ASSERT_EMT(pVM);
/*
* Sync the required registers.
*/
pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
/*
* Replay the flushes.
*/
pVM->rem.s.fIgnoreInvlPg = true;
for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
{
Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
}
pVM->rem.s.fIgnoreInvlPg = false;
pVM->rem.s.cInvalidatedPages = 0;
}
/**
* Replays the handler notification changes
* Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
*
* @param pVM VM handle.
*/
REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
{
/*
* Replay the flushes.
*/
RTUINT i;
const RTUINT c = pVM->rem.s.cHandlerNotifications;
LogFlow(("REMR3ReplayInvalidatedPages:\n"));
VM_ASSERT_EMT(pVM);
pVM->rem.s.cHandlerNotifications = 0;
for (i = 0; i < c; i++)
{
PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
switch (pRec->enmKind)
{
case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
REMR3NotifyHandlerPhysicalRegister(pVM,
pRec->u.PhysicalRegister.enmType,
pRec->u.PhysicalRegister.GCPhys,
pRec->u.PhysicalRegister.cb,
pRec->u.PhysicalRegister.fHasHCHandler);
break;
case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
REMR3NotifyHandlerPhysicalDeregister(pVM,
pRec->u.PhysicalDeregister.enmType,
pRec->u.PhysicalDeregister.GCPhys,
pRec->u.PhysicalDeregister.cb,
pRec->u.PhysicalDeregister.fHasHCHandler,
pRec->u.PhysicalDeregister.fRestoreAsRAM);
break;
case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
REMR3NotifyHandlerPhysicalModify(pVM,
pRec->u.PhysicalModify.enmType,
pRec->u.PhysicalModify.GCPhysOld,
pRec->u.PhysicalModify.GCPhysNew,
pRec->u.PhysicalModify.cb,
pRec->u.PhysicalModify.fHasHCHandler,
pRec->u.PhysicalModify.fRestoreAsRAM);
break;
default:
AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
break;
}
}
VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
}
/**
* Notify REM about changed code page.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param pvCodePage Code page address
*/
REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
{
#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
int rc;
RTGCPHYS PhysGC;
uint64_t flags;
VM_ASSERT_EMT(pVM);
/*
* Get the physical page address.
*/
rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
if (rc == VINF_SUCCESS)
{
/*
* Sync the required registers and flush the whole page.
* (Easier to do the whole page than notifying it about each physical
* byte that was changed.
*/
pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
}
#endif
return VINF_SUCCESS;
}
/**
* Notification about a successful MMR3PhysRegister() call.
*
* @param pVM VM handle.
* @param GCPhys The physical address the RAM.
* @param cb Size of the memory.
* @param fFlags Flags of the MM_RAM_FLAGS_* defines.
*/
REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
{
uint32_t cbBitmap;
int rc;
Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
VM_ASSERT_EMT(pVM);
/*
* Validate input - we trust the caller.
*/
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(cb);
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
/*
* Base ram?
*/
if (!GCPhys)
{
phys_ram_size = cb;
phys_ram_dirty_size = cb >> PAGE_SHIFT;
#ifndef VBOX_STRICT
phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
AssertRC(rc);
phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
#endif
memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
}
/*
* Register the ram.
*/
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
#ifdef VBOX_WITH_NEW_PHYS_CODE
if (fFlags & MM_RAM_FLAGS_RESERVED)
cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
else
cpu_register_physical_memory(GCPhys, cb, GCPhys);
#else
if (!GCPhys)
cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
else
{
if (fFlags & MM_RAM_FLAGS_RESERVED)
cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
else
cpu_register_physical_memory(GCPhys, cb, GCPhys);
}
#endif
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
#ifndef VBOX_WITH_NEW_PHYS_CODE
/**
* Notification about a successful PGMR3PhysRegisterChunk() call.
*
* @param pVM VM handle.
* @param GCPhys The physical address the RAM.
* @param cb Size of the memory.
* @param pvRam The HC address of the RAM.
* @param fFlags Flags of the MM_RAM_FLAGS_* defines.
*/
REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
{
Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
VM_ASSERT_EMT(pVM);
/*
* Validate input - we trust the caller.
*/
Assert(pvRam);
Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
Assert(fFlags == 0 /* normal RAM */);
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
cpu_register_physical_memory(GCPhys, cb, GCPhys);
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
/**
* Grows dynamically allocated guest RAM.
* Will raise a fatal error if the operation fails.
*
* @param physaddr The physical address.
*/
void remR3GrowDynRange(unsigned long physaddr)
{
int rc;
PVM pVM = cpu_single_env->pVM;
const RTGCPHYS GCPhys = physaddr;
LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
rc = PGM3PhysGrowRange(pVM, &GCPhys);
if (RT_SUCCESS(rc))
return;
LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
AssertFatalFailed();
}
#endif /* !VBOX_WITH_NEW_PHYS_CODE */
/**
* Notification about a successful MMR3PhysRomRegister() call.
*
* @param pVM VM handle.
* @param GCPhys The physical address of the ROM.
* @param cb The size of the ROM.
* @param pvCopy Pointer to the ROM copy.
* @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
* This function will be called when ever the protection of the
* shadow ROM changes (at reset and end of POST).
*/
REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
{
Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
VM_ASSERT_EMT(pVM);
/*
* Validate input - we trust the caller.
*/
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(cb);
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
Assert(pvCopy);
Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
/*
* Register the rom.
*/
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
/**
* Notification about a successful memory deregistration or reservation.
*
* @param pVM VM Handle.
* @param GCPhys Start physical address.
* @param cb The size of the range.
* @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
* reserve any memory soon.
*/
REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
{
Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
VM_ASSERT_EMT(pVM);
/*
* Validate input - we trust the caller.
*/
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(cb);
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
/*
* Unassigning the memory.
*/
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
/**
* Notification about a successful PGMR3HandlerPhysicalRegister() call.
*
* @param pVM VM Handle.
* @param enmType Handler type.
* @param GCPhys Handler range address.
* @param cb Size of the handler range.
* @param fHasHCHandler Set if the handler has a HC callback function.
*
* @remark MMR3PhysRomRegister assumes that this function will not apply the
* Handler memory type to memory which has no HC handler.
*/
REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
{
Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
enmType, GCPhys, cb, fHasHCHandler));
VM_ASSERT_EMT(pVM);
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
if (pVM->rem.s.cHandlerNotifications)
REMR3ReplayHandlerNotifications(pVM);
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
if (enmType == PGMPHYSHANDLERTYPE_MMIO)
cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
else if (fHasHCHandler)
cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
/**
* Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
*
* @param pVM VM Handle.
* @param enmType Handler type.
* @param GCPhys Handler range address.
* @param cb Size of the handler range.
* @param fHasHCHandler Set if the handler has a HC callback function.
* @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
*/
REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
{
Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
VM_ASSERT_EMT(pVM);
if (pVM->rem.s.cHandlerNotifications)
REMR3ReplayHandlerNotifications(pVM);
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
if (enmType == PGMPHYSHANDLERTYPE_MMIO)
cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
else if (fHasHCHandler)
{
if (!fRestoreAsRAM)
{
Assert(GCPhys > MMR3PhysGetRamSize(pVM));
cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
}
else
{
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
cpu_register_physical_memory(GCPhys, cb, GCPhys);
}
}
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
/**
* Notification about a successful PGMR3HandlerPhysicalModify() call.
*
* @param pVM VM Handle.
* @param enmType Handler type.
* @param GCPhysOld Old handler range address.
* @param GCPhysNew New handler range address.
* @param cb Size of the handler range.
* @param fHasHCHandler Set if the handler has a HC callback function.
* @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
*/
REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
{
Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
VM_ASSERT_EMT(pVM);
AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
if (pVM->rem.s.cHandlerNotifications)
REMR3ReplayHandlerNotifications(pVM);
if (fHasHCHandler)
{
Assert(!pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = true;
/*
* Reset the old page.
*/
if (!fRestoreAsRAM)
cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
else
{
/* This is not perfect, but it'll do for PD monitoring... */
Assert(cb == PAGE_SIZE);
Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
}
/*
* Update the new page.
*/
Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
Assert(pVM->rem.s.fIgnoreAll);
pVM->rem.s.fIgnoreAll = false;
}
}
/**
* Checks if we're handling access to this page or not.
*
* @returns true if we're trapping access.
* @returns false if we aren't.
* @param pVM The VM handle.
* @param GCPhys The physical address.
*
* @remark This function will only work correctly in VBOX_STRICT builds!
*/
REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
{
#ifdef VBOX_STRICT
unsigned long off;
if (pVM->rem.s.cHandlerNotifications)
REMR3ReplayHandlerNotifications(pVM);
off = get_phys_page_offset(GCPhys);
return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
|| (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
|| (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
#else
return false;
#endif
}
/**
* Deals with a rare case in get_phys_addr_code where the code
* is being monitored.
*
* It could also be an MMIO page, in which case we will raise a fatal error.
*
* @returns The physical address corresponding to addr.
* @param env The cpu environment.
* @param addr The virtual address.
* @param pTLBEntry The TLB entry.
*/
target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
{
PVM pVM = env->pVM;
if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
{
target_ulong ret = pTLBEntry->addend + addr;
AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
(RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
return ret;
}
LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
"*** handlers\n",
(RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
LogRel(("*** mmio\n"));
DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
LogRel(("*** phys\n"));
DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
(RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
AssertFatalFailed();
}
/** Validate the physical address passed to the read functions.
* Useful for finding non-guest-ram reads/writes. */
#if 0 //1 /* disable if it becomes bothersome... */
# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
#else
# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
#endif
/**
* Read guest RAM and ROM.
*
* @param SrcGCPhys The source address (guest physical).
* @param pvDst The destination address.
* @param cb Number of bytes
*/
void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
{
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
#ifdef DEBUG_PHYS
LogRel(("read(%d): %p\n", cb, SrcGCPhys));
#endif
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
}
/**
* Read guest RAM and ROM, unsigned 8-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
{
uint8_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
#ifdef DEBUG_PHYS
LogRel(("readu8: %x <- %p\n", val, SrcGCPhys));
#endif
return val;
}
/**
* Read guest RAM and ROM, signed 8-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
{
int8_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
#ifdef DEBUG_PHYS
LogRel(("reads8: %x <- %p\n", val, SrcGCPhys));
#endif
return val;
}
/**
* Read guest RAM and ROM, unsigned 16-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
{
uint16_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
#ifdef DEBUG_PHYS
LogRel(("readu16: %x <- %p\n", val, SrcGCPhys));
#endif
return val;
}
/**
* Read guest RAM and ROM, signed 16-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
{
uint16_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
#ifdef DEBUG_PHYS
LogRel(("reads16: %x <- %p\n", val, SrcGCPhys));
#endif
return val;
}
/**
* Read guest RAM and ROM, unsigned 32-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
{
uint32_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
#ifdef DEBUG_PHYS
LogRel(("readu32: %x <- %p\n", val, SrcGCPhys));
#endif
return val;
}
/**
* Read guest RAM and ROM, signed 32-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
{
int32_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
#ifdef DEBUG_PHYS
LogRel(("reads32: %x <- %p\n", val, SrcGCPhys));
#endif
return val;
}
/**
* Read guest RAM and ROM, unsigned 64-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
{
uint64_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
return val;
}
/**
* Read guest RAM and ROM, signed 64-bit.
*
* @param SrcGCPhys The source address (guest physical).
*/
int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
{
int64_t val;
STAM_PROFILE_ADV_START(&gStatMemRead, a);
VBOX_CHECK_ADDR(SrcGCPhys);
val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
return val;
}
/**
* Write guest RAM.
*
* @param DstGCPhys The destination address (guest physical).
* @param pvSrc The source address.
* @param cb Number of bytes to write
*/
void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
{
STAM_PROFILE_ADV_START(&gStatMemWrite, a);
VBOX_CHECK_ADDR(DstGCPhys);
PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
#ifdef DEBUG_PHYS
LogRel(("write(%d): %p\n", cb, DstGCPhys));
#endif
}
/**
* Write guest RAM, unsigned 8-bit.
*
* @param DstGCPhys The destination address (guest physical).
* @param val Value
*/
void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
{
STAM_PROFILE_ADV_START(&gStatMemWrite, a);
VBOX_CHECK_ADDR(DstGCPhys);
PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
#ifdef DEBUG_PHYS
LogRel(("writeu8: %x -> %p\n", val, DstGCPhys));
#endif
}
/**
* Write guest RAM, unsigned 8-bit.
*
* @param DstGCPhys The destination address (guest physical).
* @param val Value
*/
void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
{
STAM_PROFILE_ADV_START(&gStatMemWrite, a);
VBOX_CHECK_ADDR(DstGCPhys);
PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
#ifdef DEBUG_PHYS
LogRel(("writeu16: %x -> %p\n", val, DstGCPhys));
#endif
}
/**
* Write guest RAM, unsigned 32-bit.
*
* @param DstGCPhys The destination address (guest physical).
* @param val Value
*/
void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
{
STAM_PROFILE_ADV_START(&gStatMemWrite, a);
VBOX_CHECK_ADDR(DstGCPhys);
PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
#ifdef DEBUG_PHYS
LogRel(("writeu32: %x -> %p\n", val, DstGCPhys));
#endif
}
/**
* Write guest RAM, unsigned 64-bit.
*
* @param DstGCPhys The destination address (guest physical).
* @param val Value
*/
void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
{
STAM_PROFILE_ADV_START(&gStatMemWrite, a);
VBOX_CHECK_ADDR(DstGCPhys);
PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM_MMIO
/** Read MMIO memory. */
static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
{
uint32_t u32 = 0;
int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
return u32;
}
/** Read MMIO memory. */
static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
{
uint32_t u32 = 0;
int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
return u32;
}
/** Read MMIO memory. */
static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
{
uint32_t u32 = 0;
int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
return u32;
}
/** Write to MMIO memory. */
static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
{
int rc;
Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
}
/** Write to MMIO memory. */
static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
{
int rc;
Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
}
/** Write to MMIO memory. */
static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
{
int rc;
Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM_HANDLER
/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
{
uint8_t u8;
Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
return u8;
}
static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
{
uint16_t u16;
Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
return u16;
}
static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
{
uint32_t u32;
Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
return u32;
}
static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
{
Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
}
static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
{
Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
}
static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
{
Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
}
/* -+- disassembly -+- */
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM_DISAS
/**
* Enables or disables singled stepped disassembly.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param fEnable To enable set this flag, to disable clear it.
*/
static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
{
LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
VM_ASSERT_EMT(pVM);
if (fEnable)
pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
else
pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
return VINF_SUCCESS;
}
/**
* Enables or disables singled stepped disassembly.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param fEnable To enable set this flag, to disable clear it.
*/
REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
{
PVMREQ pReq;
int rc;
LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
if (VM_IS_EMT(pVM))
return remR3DisasEnableStepping(pVM, fEnable);
rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
AssertRC(rc);
if (RT_SUCCESS(rc))
rc = pReq->iStatus;
VMR3ReqFree(pReq);
return rc;
}
#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
/**
* External Debugger Command: .remstep [on|off|1|0]
*/
static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
{
bool fEnable;
int rc;
/* print status */
if (cArgs == 0)
return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
/* convert the argument and change the mode. */
rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
rc = REMR3DisasEnableStepping(pVM, fEnable);
if (RT_FAILURE(rc))
return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
return rc;
}
#endif
/**
* Disassembles n instructions and prints them to the log.
*
* @returns Success indicator.
* @param env Pointer to the recompiler CPU structure.
* @param f32BitCode Indicates that whether or not the code should
* be disassembled as 16 or 32 bit. If -1 the CS
* selector will be inspected.
* @param nrInstructions Nr of instructions to disassemble
* @param pszPrefix
* @remark not currently used for anything but ad-hoc debugging.
*/
bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
{
int i, rc;
RTGCPTR GCPtrPC;
uint8_t *pvPC;
RTINTPTR off;
DISCPUSTATE Cpu;
/*
* Determin 16/32 bit mode.
*/
if (f32BitCode == -1)
f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
/*
* Convert cs:eip to host context address.
* We don't care to much about cross page correctness presently.
*/
GCPtrPC = env->segs[R_CS].base + env->eip;
if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
{
Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
/* convert eip to physical address. */
rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
GCPtrPC,
env->cr[3],
env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
(void**)&pvPC);
if (RT_FAILURE(rc))
{
if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
return false;
pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
+ (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
}
}
else
{
/* physical address */
rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
(void**)&pvPC);
if (RT_FAILURE(rc))
return false;
}
/*
* Disassemble.
*/
off = env->eip - (RTGCUINTPTR)pvPC;
Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
//Cpu.dwUserData[0] = (uintptr_t)pVM;
//Cpu.dwUserData[1] = (uintptr_t)pvPC;
//Cpu.dwUserData[2] = GCPtrPC;
for (i=0;i<nrInstructions;i++)
{
char szOutput[256];
uint32_t cbOp;
if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
return false;
if (pszPrefix)
Log(("%s: %s", pszPrefix, szOutput));
else
Log(("%s", szOutput));
pvPC += cbOp;
}
return true;
}
/** @todo need to test the new code, using the old code in the mean while. */
#define USE_OLD_DUMP_AND_DISASSEMBLY
/**
* Disassembles one instruction and prints it to the log.
*
* @returns Success indicator.
* @param env Pointer to the recompiler CPU structure.
* @param f32BitCode Indicates that whether or not the code should
* be disassembled as 16 or 32 bit. If -1 the CS
* selector will be inspected.
* @param pszPrefix
*/
bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
{
#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
PVM pVM = env->pVM;
RTGCPTR GCPtrPC;
uint8_t *pvPC;
char szOutput[256];
uint32_t cbOp;
RTINTPTR off;
DISCPUSTATE Cpu;
/* Doesn't work in long mode. */
if (env->hflags & HF_LMA_MASK)
return false;
/*
* Determin 16/32 bit mode.
*/
if (f32BitCode == -1)
f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
/*
* Log registers
*/
if (LogIs2Enabled())
{
remR3StateUpdate(pVM);
DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
}
/*
* Convert cs:eip to host context address.
* We don't care to much about cross page correctness presently.
*/
GCPtrPC = env->segs[R_CS].base + env->eip;
if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
{
/* convert eip to physical address. */
int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
GCPtrPC,
env->cr[3],
env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
(void**)&pvPC);
if (RT_FAILURE(rc))
{
if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
return false;
pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
+ (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
}
}
else
{
/* physical address */
int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
if (RT_FAILURE(rc))
return false;
}
/*
* Disassemble.
*/
off = env->eip - (RTGCUINTPTR)pvPC;
Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
//Cpu.dwUserData[0] = (uintptr_t)pVM;
//Cpu.dwUserData[1] = (uintptr_t)pvPC;
//Cpu.dwUserData[2] = GCPtrPC;
if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
return false;
if (!f32BitCode)
{
if (pszPrefix)
Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
else
Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
}
else
{
if (pszPrefix)
Log(("%s: %s", pszPrefix, szOutput));
else
Log(("%s", szOutput));
}
return true;
#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
PVM pVM = env->pVM;
const bool fLog = LogIsEnabled();
const bool fLog2 = LogIs2Enabled();
int rc = VINF_SUCCESS;
/*
* Don't bother if there ain't any log output to do.
*/
if (!fLog && !fLog2)
return true;
/*
* Update the state so DBGF reads the correct register values.
*/
remR3StateUpdate(pVM);
/*
* Log registers if requested.
*/
if (!fLog2)
DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
/*
* Disassemble to log.
*/
if (fLog)
rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
return RT_SUCCESS(rc);
#endif
}
/**
* Disassemble recompiled code.
*
* @param phFileIgnored Ignored, logfile usually.
* @param pvCode Pointer to the code block.
* @param cb Size of the code block.
*/
void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
{
if (LogIs2Enabled())
{
unsigned off = 0;
char szOutput[256];
DISCPUSTATE Cpu;
memset(&Cpu, 0, sizeof(Cpu));
#ifdef RT_ARCH_X86
Cpu.mode = CPUMODE_32BIT;
#else
Cpu.mode = CPUMODE_64BIT;
#endif
RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
while (off < cb)
{
uint32_t cbInstr;
if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
RTLogPrintf("%s", szOutput);
else
{
RTLogPrintf("disas error\n");
cbInstr = 1;
#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
break;
#endif
}
off += cbInstr;
}
}
NOREF(phFileIgnored);
}
/**
* Disassemble guest code.
*
* @param phFileIgnored Ignored, logfile usually.
* @param uCode The guest address of the code to disassemble. (flat?)
* @param cb Number of bytes to disassemble.
* @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
*/
void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
{
if (LogIs2Enabled())
{
PVM pVM = cpu_single_env->pVM;
RTSEL cs;
RTGCUINTPTR eip;
/*
* Update the state so DBGF reads the correct register values (flags).
*/
remR3StateUpdate(pVM);
/*
* Do the disassembling.
*/
RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
cs = cpu_single_env->segs[R_CS].selector;
eip = uCode - cpu_single_env->segs[R_CS].base;
for (;;)
{
char szBuf[256];
uint32_t cbInstr;
int rc = DBGFR3DisasInstrEx(pVM,
cs,
eip,
0,
szBuf, sizeof(szBuf),
&cbInstr);
if (RT_SUCCESS(rc))
RTLogPrintf("%VGp %s\n", uCode, szBuf);
else
{
RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
cbInstr = 1;
}
/* next */
if (cb <= cbInstr)
break;
cb -= cbInstr;
uCode += cbInstr;
eip += cbInstr;
}
}
NOREF(phFileIgnored);
}
/**
* Looks up a guest symbol.
*
* @returns Pointer to symbol name. This is a static buffer.
* @param orig_addr The address in question.
*/
const char *lookup_symbol(target_ulong orig_addr)
{
RTGCINTPTR off = 0;
DBGFSYMBOL Sym;
PVM pVM = cpu_single_env->pVM;
int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
if (RT_SUCCESS(rc))
{
static char szSym[sizeof(Sym.szName) + 48];
if (!off)
RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
else if (off > 0)
RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
else
RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
return szSym;
}
return "<N/A>";
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM
/* -+- FF notifications -+- */
/**
* Notification about a pending interrupt.
*
* @param pVM VM Handle.
* @param u8Interrupt Interrupt
* @thread The emulation thread.
*/
REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
{
Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
pVM->rem.s.u32PendingInterrupt = u8Interrupt;
}
/**
* Notification about a pending interrupt.
*
* @returns Pending interrupt or REM_NO_PENDING_IRQ
* @param pVM VM Handle.
* @thread The emulation thread.
*/
REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
{
return pVM->rem.s.u32PendingInterrupt;
}
/**
* Notification about the interrupt FF being set.
*
* @param pVM VM Handle.
* @thread The emulation thread.
*/
REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
{
LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
(pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
if (pVM->rem.s.fInREM)
{
if (VM_IS_EMT(pVM))
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
else
ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
CPU_INTERRUPT_EXTERNAL_HARD);
}
}
/**
* Notification about the interrupt FF being set.
*
* @param pVM VM Handle.
* @thread Any.
*/
REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
{
LogFlow(("REMR3NotifyInterruptClear:\n"));
if (pVM->rem.s.fInREM)
cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
/**
* Notification about pending timer(s).
*
* @param pVM VM Handle.
* @thread Any.
*/
REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
{
#ifndef DEBUG_bird
LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
#endif
if (pVM->rem.s.fInREM)
{
if (VM_IS_EMT(pVM))
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
else
ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
CPU_INTERRUPT_EXTERNAL_TIMER);
}
}
/**
* Notification about pending DMA transfers.
*
* @param pVM VM Handle.
* @thread Any.
*/
REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
{
LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
if (pVM->rem.s.fInREM)
{
if (VM_IS_EMT(pVM))
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
else
ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
CPU_INTERRUPT_EXTERNAL_DMA);
}
}
/**
* Notification about pending timer(s).
*
* @param pVM VM Handle.
* @thread Any.
*/
REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
{
LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
if (pVM->rem.s.fInREM)
{
if (VM_IS_EMT(pVM))
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
else
ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
CPU_INTERRUPT_EXTERNAL_EXIT);
}
}
/**
* Notification about pending FF set by an external thread.
*
* @param pVM VM handle.
* @thread Any.
*/
REMR3DECL(void) REMR3NotifyFF(PVM pVM)
{
LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
if (pVM->rem.s.fInREM)
{
if (VM_IS_EMT(pVM))
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
else
ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
CPU_INTERRUPT_EXTERNAL_EXIT);
}
}
#ifdef VBOX_WITH_STATISTICS
void remR3ProfileStart(int statcode)
{
STAMPROFILEADV *pStat;
switch(statcode)
{
case STATS_EMULATE_SINGLE_INSTR:
pStat = &gStatExecuteSingleInstr;
break;
case STATS_QEMU_COMPILATION:
pStat = &gStatCompilationQEmu;
break;
case STATS_QEMU_RUN_EMULATED_CODE:
pStat = &gStatRunCodeQEmu;
break;
case STATS_QEMU_TOTAL:
pStat = &gStatTotalTimeQEmu;
break;
case STATS_QEMU_RUN_TIMERS:
pStat = &gStatTimers;
break;
case STATS_TLB_LOOKUP:
pStat= &gStatTBLookup;
break;
case STATS_IRQ_HANDLING:
pStat= &gStatIRQ;
break;
case STATS_RAW_CHECK:
pStat = &gStatRawCheck;
break;
default:
AssertMsgFailed(("unknown stat %d\n", statcode));
return;
}
STAM_PROFILE_ADV_START(pStat, a);
}
void remR3ProfileStop(int statcode)
{
STAMPROFILEADV *pStat;
switch(statcode)
{
case STATS_EMULATE_SINGLE_INSTR:
pStat = &gStatExecuteSingleInstr;
break;
case STATS_QEMU_COMPILATION:
pStat = &gStatCompilationQEmu;
break;
case STATS_QEMU_RUN_EMULATED_CODE:
pStat = &gStatRunCodeQEmu;
break;
case STATS_QEMU_TOTAL:
pStat = &gStatTotalTimeQEmu;
break;
case STATS_QEMU_RUN_TIMERS:
pStat = &gStatTimers;
break;
case STATS_TLB_LOOKUP:
pStat= &gStatTBLookup;
break;
case STATS_IRQ_HANDLING:
pStat= &gStatIRQ;
break;
case STATS_RAW_CHECK:
pStat = &gStatRawCheck;
break;
default:
AssertMsgFailed(("unknown stat %d\n", statcode));
return;
}
STAM_PROFILE_ADV_STOP(pStat, a);
}
#endif
/**
* Raise an RC, force rem exit.
*
* @param pVM VM handle.
* @param rc The rc.
*/
void remR3RaiseRC(PVM pVM, int rc)
{
Log(("remR3RaiseRC: rc=%Vrc\n", rc));
Assert(pVM->rem.s.fInREM);
VM_ASSERT_EMT(pVM);
pVM->rem.s.rc = rc;
cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
}
/* -+- timers -+- */
uint64_t cpu_get_tsc(CPUX86State *env)
{
STAM_COUNTER_INC(&gStatCpuGetTSC);
return TMCpuTickGet(env->pVM);
}
/* -+- interrupts -+- */
void cpu_set_ferr(CPUX86State *env)
{
int rc = PDMIsaSetIrq(env->pVM, 13, 1);
LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
}
int cpu_get_pic_interrupt(CPUState *env)
{
uint8_t u8Interrupt;
int rc;
/* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
* In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
* with the (a)pic.
*/
/** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
/** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
* if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
* remove this kludge. */
if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
{
rc = VINF_SUCCESS;
Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
}
else
rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
if (RT_SUCCESS(rc))
{
if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
env->interrupt_request |= CPU_INTERRUPT_HARD;
return u8Interrupt;
}
return -1;
}
/* -+- local apic -+- */
void cpu_set_apic_base(CPUX86State *env, uint64_t val)
{
int rc = PDMApicSetBase(env->pVM, val);
LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
}
uint64_t cpu_get_apic_base(CPUX86State *env)
{
uint64_t u64;
int rc = PDMApicGetBase(env->pVM, &u64);
if (RT_SUCCESS(rc))
{
LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
return u64;
}
LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
return 0;
}
void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
{
int rc = PDMApicSetTPR(env->pVM, val);
LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
}
uint8_t cpu_get_apic_tpr(CPUX86State *env)
{
uint8_t u8;
int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
if (RT_SUCCESS(rc))
{
LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
return u8;
}
LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
return 0;
}
uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
{
uint64_t value;
int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
if (RT_SUCCESS(rc))
{
LogFlow(("cpu_apic_rdms returns %#x\n", value));
return value;
}
/** @todo: exception ? */
LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
return value;
}
void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
{
int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
/** @todo: exception if error ? */
LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
}
/* -+- I/O Ports -+- */
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM_IOPORT
void cpu_outb(CPUState *env, int addr, int val)
{
int rc;
if (addr != 0x80 && addr != 0x70 && addr != 0x61)
Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
if (RT_LIKELY(rc == VINF_SUCCESS))
return;
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
remR3RaiseRC(env->pVM, rc);
return;
}
remAbort(rc, __FUNCTION__);
}
void cpu_outw(CPUState *env, int addr, int val)
{
//Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
if (RT_LIKELY(rc == VINF_SUCCESS))
return;
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
remR3RaiseRC(env->pVM, rc);
return;
}
remAbort(rc, __FUNCTION__);
}
void cpu_outl(CPUState *env, int addr, int val)
{
int rc;
Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
if (RT_LIKELY(rc == VINF_SUCCESS))
return;
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
remR3RaiseRC(env->pVM, rc);
return;
}
remAbort(rc, __FUNCTION__);
}
int cpu_inb(CPUState *env, int addr)
{
uint32_t u32 = 0;
int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
if (RT_LIKELY(rc == VINF_SUCCESS))
{
if (/*addr != 0x61 && */addr != 0x71)
Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
return (int)u32;
}
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
remR3RaiseRC(env->pVM, rc);
return (int)u32;
}
remAbort(rc, __FUNCTION__);
return 0xff;
}
int cpu_inw(CPUState *env, int addr)
{
uint32_t u32 = 0;
int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
if (RT_LIKELY(rc == VINF_SUCCESS))
{
Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
return (int)u32;
}
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
remR3RaiseRC(env->pVM, rc);
return (int)u32;
}
remAbort(rc, __FUNCTION__);
return 0xffff;
}
int cpu_inl(CPUState *env, int addr)
{
uint32_t u32 = 0;
int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
if (RT_LIKELY(rc == VINF_SUCCESS))
{
//if (addr==0x01f0 && u32 == 0x6b6d)
// loglevel = ~0;
Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
return (int)u32;
}
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
remR3RaiseRC(env->pVM, rc);
return (int)u32;
}
remAbort(rc, __FUNCTION__);
return 0xffffffff;
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_REM
/* -+- helpers and misc other interfaces -+- */
/**
* Perform the CPUID instruction.
*
* ASMCpuId cannot be invoked from some source files where this is used because of global
* register allocations.
*
* @param env Pointer to the recompiler CPU structure.
* @param uOperator CPUID operation (eax).
* @param pvEAX Where to store eax.
* @param pvEBX Where to store ebx.
* @param pvECX Where to store ecx.
* @param pvEDX Where to store edx.
*/
void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
{
CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
}
#if 0 /* not used */
/**
* Interface for qemu hardware to report back fatal errors.
*/
void hw_error(const char *pszFormat, ...)
{
/*
* Bitch about it.
*/
/** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
* this in my Odin32 tree at home! */
va_list args;
va_start(args, pszFormat);
RTLogPrintf("fatal error in virtual hardware:");
RTLogPrintfV(pszFormat, args);
va_end(args);
AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
/*
* If we're in REM context we'll sync back the state before 'jumping' to
* the EMs failure handling.
*/
PVM pVM = cpu_single_env->pVM;
if (pVM->rem.s.fInREM)
REMR3StateBack(pVM);
EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
AssertMsgFailed(("EMR3FatalError returned!\n"));
}
#endif
/**
* Interface for the qemu cpu to report unhandled situation
* raising a fatal VM error.
*/
void cpu_abort(CPUState *env, const char *pszFormat, ...)
{
va_list args;
PVM pVM;
/*
* Bitch about it.
*/
#ifndef _MSC_VER
/** @todo: MSVC is right - it's not valid C */
RTLogFlags(NULL, "nodisabled nobuffered");
#endif
va_start(args, pszFormat);
RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
va_end(args);
va_start(args, pszFormat);
AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
va_end(args);
/*
* If we're in REM context we'll sync back the state before 'jumping' to
* the EMs failure handling.
*/
pVM = cpu_single_env->pVM;
if (pVM->rem.s.fInREM)
REMR3StateBack(pVM);
EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
AssertMsgFailed(("EMR3FatalError returned!\n"));
}
/**
* Aborts the VM.
*
* @param rc VBox error code.
* @param pszTip Hint about why/when this happend.
*/
static void remAbort(int rc, const char *pszTip)
{
PVM pVM;
/*
* Bitch about it.
*/
RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
/*
* Jump back to where we entered the recompiler.
*/
pVM = cpu_single_env->pVM;
if (pVM->rem.s.fInREM)
REMR3StateBack(pVM);
EMR3FatalError(pVM, rc);
AssertMsgFailed(("EMR3FatalError returned!\n"));
}
/**
* Dumps a linux system call.
* @param pVM VM handle.
*/
void remR3DumpLnxSyscall(PVM pVM)
{
static const char *apsz[] =
{
"sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
"sys_exit",
"sys_fork",
"sys_read",
"sys_write",
"sys_open", /* 5 */
"sys_close",
"sys_waitpid",
"sys_creat",
"sys_link",
"sys_unlink", /* 10 */
"sys_execve",
"sys_chdir",
"sys_time",
"sys_mknod",
"sys_chmod", /* 15 */
"sys_lchown16",
"sys_ni_syscall", /* old break syscall holder */
"sys_stat",
"sys_lseek",
"sys_getpid", /* 20 */
"sys_mount",
"sys_oldumount",
"sys_setuid16",
"sys_getuid16",
"sys_stime", /* 25 */
"sys_ptrace",
"sys_alarm",
"sys_fstat",
"sys_pause",
"sys_utime", /* 30 */
"sys_ni_syscall", /* old stty syscall holder */
"sys_ni_syscall", /* old gtty syscall holder */
"sys_access",
"sys_nice",
"sys_ni_syscall", /* 35 - old ftime syscall holder */
"sys_sync",
"sys_kill",
"sys_rename",
"sys_mkdir",
"sys_rmdir", /* 40 */
"sys_dup",
"sys_pipe",
"sys_times",
"sys_ni_syscall", /* old prof syscall holder */
"sys_brk", /* 45 */
"sys_setgid16",
"sys_getgid16",
"sys_signal",
"sys_geteuid16",
"sys_getegid16", /* 50 */
"sys_acct",
"sys_umount", /* recycled never used phys() */
"sys_ni_syscall", /* old lock syscall holder */
"sys_ioctl",
"sys_fcntl", /* 55 */
"sys_ni_syscall", /* old mpx syscall holder */
"sys_setpgid",
"sys_ni_syscall", /* old ulimit syscall holder */
"sys_olduname",
"sys_umask", /* 60 */
"sys_chroot",
"sys_ustat",
"sys_dup2",
"sys_getppid",
"sys_getpgrp", /* 65 */
"sys_setsid",
"sys_sigaction",
"sys_sgetmask",
"sys_ssetmask",
"sys_setreuid16", /* 70 */
"sys_setregid16",
"sys_sigsuspend",
"sys_sigpending",
"sys_sethostname",
"sys_setrlimit", /* 75 */
"sys_old_getrlimit",
"sys_getrusage",
"sys_gettimeofday",
"sys_settimeofday",
"sys_getgroups16", /* 80 */
"sys_setgroups16",
"old_select",
"sys_symlink",
"sys_lstat",
"sys_readlink", /* 85 */
"sys_uselib",
"sys_swapon",
"sys_reboot",
"old_readdir",
"old_mmap", /* 90 */
"sys_munmap",
"sys_truncate",
"sys_ftruncate",
"sys_fchmod",
"sys_fchown16", /* 95 */
"sys_getpriority",
"sys_setpriority",
"sys_ni_syscall", /* old profil syscall holder */
"sys_statfs",
"sys_fstatfs", /* 100 */
"sys_ioperm",
"sys_socketcall",
"sys_syslog",
"sys_setitimer",
"sys_getitimer", /* 105 */
"sys_newstat",
"sys_newlstat",
"sys_newfstat",
"sys_uname",
"sys_iopl", /* 110 */
"sys_vhangup",
"sys_ni_syscall", /* old "idle" system call */
"sys_vm86old",
"sys_wait4",
"sys_swapoff", /* 115 */
"sys_sysinfo",
"sys_ipc",
"sys_fsync",
"sys_sigreturn",
"sys_clone", /* 120 */
"sys_setdomainname",
"sys_newuname",
"sys_modify_ldt",
"sys_adjtimex",
"sys_mprotect", /* 125 */
"sys_sigprocmask",
"sys_ni_syscall", /* old "create_module" */
"sys_init_module",
"sys_delete_module",
"sys_ni_syscall", /* 130: old "get_kernel_syms" */
"sys_quotactl",
"sys_getpgid",
"sys_fchdir",
"sys_bdflush",
"sys_sysfs", /* 135 */
"sys_personality",
"sys_ni_syscall", /* reserved for afs_syscall */
"sys_setfsuid16",
"sys_setfsgid16",
"sys_llseek", /* 140 */
"sys_getdents",
"sys_select",
"sys_flock",
"sys_msync",
"sys_readv", /* 145 */
"sys_writev",
"sys_getsid",
"sys_fdatasync",
"sys_sysctl",
"sys_mlock", /* 150 */
"sys_munlock",
"sys_mlockall",
"sys_munlockall",
"sys_sched_setparam",
"sys_sched_getparam", /* 155 */
"sys_sched_setscheduler",
"sys_sched_getscheduler",
"sys_sched_yield",
"sys_sched_get_priority_max",
"sys_sched_get_priority_min", /* 160 */
"sys_sched_rr_get_interval",
"sys_nanosleep",
"sys_mremap",
"sys_setresuid16",
"sys_getresuid16", /* 165 */
"sys_vm86",
"sys_ni_syscall", /* Old sys_query_module */
"sys_poll",
"sys_nfsservctl",
"sys_setresgid16", /* 170 */
"sys_getresgid16",
"sys_prctl",
"sys_rt_sigreturn",
"sys_rt_sigaction",
"sys_rt_sigprocmask", /* 175 */
"sys_rt_sigpending",
"sys_rt_sigtimedwait",
"sys_rt_sigqueueinfo",
"sys_rt_sigsuspend",
"sys_pread64", /* 180 */
"sys_pwrite64",
"sys_chown16",
"sys_getcwd",
"sys_capget",
"sys_capset", /* 185 */
"sys_sigaltstack",
"sys_sendfile",
"sys_ni_syscall", /* reserved for streams1 */
"sys_ni_syscall", /* reserved for streams2 */
"sys_vfork", /* 190 */
"sys_getrlimit",
"sys_mmap2",
"sys_truncate64",
"sys_ftruncate64",
"sys_stat64", /* 195 */
"sys_lstat64",
"sys_fstat64",
"sys_lchown",
"sys_getuid",
"sys_getgid", /* 200 */
"sys_geteuid",
"sys_getegid",
"sys_setreuid",
"sys_setregid",
"sys_getgroups", /* 205 */
"sys_setgroups",
"sys_fchown",
"sys_setresuid",
"sys_getresuid",
"sys_setresgid", /* 210 */
"sys_getresgid",
"sys_chown",
"sys_setuid",
"sys_setgid",
"sys_setfsuid", /* 215 */
"sys_setfsgid",
"sys_pivot_root",
"sys_mincore",
"sys_madvise",
"sys_getdents64", /* 220 */
"sys_fcntl64",
"sys_ni_syscall", /* reserved for TUX */
"sys_ni_syscall",
"sys_gettid",
"sys_readahead", /* 225 */
"sys_setxattr",
"sys_lsetxattr",
"sys_fsetxattr",
"sys_getxattr",
"sys_lgetxattr", /* 230 */
"sys_fgetxattr",
"sys_listxattr",
"sys_llistxattr",
"sys_flistxattr",
"sys_removexattr", /* 235 */
"sys_lremovexattr",
"sys_fremovexattr",
"sys_tkill",
"sys_sendfile64",
"sys_futex", /* 240 */
"sys_sched_setaffinity",
"sys_sched_getaffinity",
"sys_set_thread_area",
"sys_get_thread_area",
"sys_io_setup", /* 245 */
"sys_io_destroy",
"sys_io_getevents",
"sys_io_submit",
"sys_io_cancel",
"sys_fadvise64", /* 250 */
"sys_ni_syscall",
"sys_exit_group",
"sys_lookup_dcookie",
"sys_epoll_create",
"sys_epoll_ctl", /* 255 */
"sys_epoll_wait",
"sys_remap_file_pages",
"sys_set_tid_address",
"sys_timer_create",
"sys_timer_settime", /* 260 */
"sys_timer_gettime",
"sys_timer_getoverrun",
"sys_timer_delete",
"sys_clock_settime",
"sys_clock_gettime", /* 265 */
"sys_clock_getres",
"sys_clock_nanosleep",
"sys_statfs64",
"sys_fstatfs64",
"sys_tgkill", /* 270 */
"sys_utimes",
"sys_fadvise64_64",
"sys_ni_syscall" /* sys_vserver */
};
uint32_t uEAX = CPUMGetGuestEAX(pVM);
switch (uEAX)
{
default:
if (uEAX < ELEMENTS(apsz))
Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
else
Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
break;
}
}
/**
* Dumps an OpenBSD system call.
* @param pVM VM handle.
*/
void remR3DumpOBsdSyscall(PVM pVM)
{
static const char *apsz[] =
{
"SYS_syscall", //0
"SYS_exit", //1
"SYS_fork", //2
"SYS_read", //3
"SYS_write", //4
"SYS_open", //5
"SYS_close", //6
"SYS_wait4", //7
"SYS_8",
"SYS_link", //9
"SYS_unlink", //10
"SYS_11",
"SYS_chdir", //12
"SYS_fchdir", //13
"SYS_mknod", //14
"SYS_chmod", //15
"SYS_chown", //16
"SYS_break", //17
"SYS_18",
"SYS_19",
"SYS_getpid", //20
"SYS_mount", //21
"SYS_unmount", //22
"SYS_setuid", //23
"SYS_getuid", //24
"SYS_geteuid", //25
"SYS_ptrace", //26
"SYS_recvmsg", //27
"SYS_sendmsg", //28
"SYS_recvfrom", //29
"SYS_accept", //30
"SYS_getpeername", //31
"SYS_getsockname", //32
"SYS_access", //33
"SYS_chflags", //34
"SYS_fchflags", //35
"SYS_sync", //36
"SYS_kill", //37
"SYS_38",
"SYS_getppid", //39
"SYS_40",
"SYS_dup", //41
"SYS_opipe", //42
"SYS_getegid", //43
"SYS_profil", //44
"SYS_ktrace", //45
"SYS_sigaction", //46
"SYS_getgid", //47
"SYS_sigprocmask", //48
"SYS_getlogin", //49
"SYS_setlogin", //50
"SYS_acct", //51
"SYS_sigpending", //52
"SYS_osigaltstack", //53
"SYS_ioctl", //54
"SYS_reboot", //55
"SYS_revoke", //56
"SYS_symlink", //57
"SYS_readlink", //58
"SYS_execve", //59
"SYS_umask", //60
"SYS_chroot", //61
"SYS_62",
"SYS_63",
"SYS_64",
"SYS_65",
"SYS_vfork", //66
"SYS_67",
"SYS_68",
"SYS_sbrk", //69
"SYS_sstk", //70
"SYS_61",
"SYS_vadvise", //72
"SYS_munmap", //73
"SYS_mprotect", //74
"SYS_madvise", //75
"SYS_76",
"SYS_77",
"SYS_mincore", //78
"SYS_getgroups", //79
"SYS_setgroups", //80
"SYS_getpgrp", //81
"SYS_setpgid", //82
"SYS_setitimer", //83
"SYS_84",
"SYS_85",
"SYS_getitimer", //86
"SYS_87",
"SYS_88",
"SYS_89",
"SYS_dup2", //90
"SYS_91",
"SYS_fcntl", //92
"SYS_select", //93
"SYS_94",
"SYS_fsync", //95
"SYS_setpriority", //96
"SYS_socket", //97
"SYS_connect", //98
"SYS_99",
"SYS_getpriority", //100
"SYS_101",
"SYS_102",
"SYS_sigreturn", //103
"SYS_bind", //104
"SYS_setsockopt", //105
"SYS_listen", //106
"SYS_107",
"SYS_108",
"SYS_109",
"SYS_110",
"SYS_sigsuspend", //111
"SYS_112",
"SYS_113",
"SYS_114",
"SYS_115",
"SYS_gettimeofday", //116
"SYS_getrusage", //117
"SYS_getsockopt", //118
"SYS_119",
"SYS_readv", //120
"SYS_writev", //121
"SYS_settimeofday", //122
"SYS_fchown", //123
"SYS_fchmod", //124
"SYS_125",
"SYS_setreuid", //126
"SYS_setregid", //127
"SYS_rename", //128
"SYS_129",
"SYS_130",
"SYS_flock", //131
"SYS_mkfifo", //132
"SYS_sendto", //133
"SYS_shutdown", //134
"SYS_socketpair", //135
"SYS_mkdir", //136
"SYS_rmdir", //137
"SYS_utimes", //138
"SYS_139",
"SYS_adjtime", //140
"SYS_141",
"SYS_142",
"SYS_143",
"SYS_144",
"SYS_145",
"SYS_146",
"SYS_setsid", //147
"SYS_quotactl", //148
"SYS_149",
"SYS_150",
"SYS_151",
"SYS_152",
"SYS_153",
"SYS_154",
"SYS_nfssvc", //155
"SYS_156",
"SYS_157",
"SYS_158",
"SYS_159",
"SYS_160",
"SYS_getfh", //161
"SYS_162",
"SYS_163",
"SYS_164",
"SYS_sysarch", //165
"SYS_166",
"SYS_167",
"SYS_168",
"SYS_169",
"SYS_170",
"SYS_171",
"SYS_172",
"SYS_pread", //173
"SYS_pwrite", //174
"SYS_175",
"SYS_176",
"SYS_177",
"SYS_178",
"SYS_179",
"SYS_180",
"SYS_setgid", //181
"SYS_setegid", //182
"SYS_seteuid", //183
"SYS_lfs_bmapv", //184
"SYS_lfs_markv", //185
"SYS_lfs_segclean", //186
"SYS_lfs_segwait", //187
"SYS_188",
"SYS_189",
"SYS_190",
"SYS_pathconf", //191
"SYS_fpathconf", //192
"SYS_swapctl", //193
"SYS_getrlimit", //194
"SYS_setrlimit", //195
"SYS_getdirentries", //196
"SYS_mmap", //197
"SYS___syscall", //198
"SYS_lseek", //199
"SYS_truncate", //200
"SYS_ftruncate", //201
"SYS___sysctl", //202
"SYS_mlock", //203
"SYS_munlock", //204
"SYS_205",
"SYS_futimes", //206
"SYS_getpgid", //207
"SYS_xfspioctl", //208
"SYS_209",
"SYS_210",
"SYS_211",
"SYS_212",
"SYS_213",
"SYS_214",
"SYS_215",
"SYS_216",
"SYS_217",
"SYS_218",
"SYS_219",
"SYS_220",
"SYS_semget", //221
"SYS_222",
"SYS_223",
"SYS_224",
"SYS_msgget", //225
"SYS_msgsnd", //226
"SYS_msgrcv", //227
"SYS_shmat", //228
"SYS_229",
"SYS_shmdt", //230
"SYS_231",
"SYS_clock_gettime", //232
"SYS_clock_settime", //233
"SYS_clock_getres", //234
"SYS_235",
"SYS_236",
"SYS_237",
"SYS_238",
"SYS_239",
"SYS_nanosleep", //240
"SYS_241",
"SYS_242",
"SYS_243",
"SYS_244",
"SYS_245",
"SYS_246",
"SYS_247",
"SYS_248",
"SYS_249",
"SYS_minherit", //250
"SYS_rfork", //251
"SYS_poll", //252
"SYS_issetugid", //253
"SYS_lchown", //254
"SYS_getsid", //255
"SYS_msync", //256
"SYS_257",
"SYS_258",
"SYS_259",
"SYS_getfsstat", //260
"SYS_statfs", //261
"SYS_fstatfs", //262
"SYS_pipe", //263
"SYS_fhopen", //264
"SYS_265",
"SYS_fhstatfs", //266
"SYS_preadv", //267
"SYS_pwritev", //268
"SYS_kqueue", //269
"SYS_kevent", //270
"SYS_mlockall", //271
"SYS_munlockall", //272
"SYS_getpeereid", //273
"SYS_274",
"SYS_275",
"SYS_276",
"SYS_277",
"SYS_278",
"SYS_279",
"SYS_280",
"SYS_getresuid", //281
"SYS_setresuid", //282
"SYS_getresgid", //283
"SYS_setresgid", //284
"SYS_285",
"SYS_mquery", //286
"SYS_closefrom", //287
"SYS_sigaltstack", //288
"SYS_shmget", //289
"SYS_semop", //290
"SYS_stat", //291
"SYS_fstat", //292
"SYS_lstat", //293
"SYS_fhstat", //294
"SYS___semctl", //295
"SYS_shmctl", //296
"SYS_msgctl", //297
"SYS_MAXSYSCALL", //298
//299
//300
};
uint32_t uEAX;
if (!LogIsEnabled())
return;
uEAX = CPUMGetGuestEAX(pVM);
switch (uEAX)
{
default:
if (uEAX < ELEMENTS(apsz))
{
uint32_t au32Args[8] = {0};
PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
}
else
RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
break;
}
}
#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
/**
* The Dll main entry point (stub).
*/
bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
{
return true;
}
void *memcpy(void *dst, const void *src, size_t size)
{
uint8_t*pbDst = dst, *pbSrc = src;
while (size-- > 0)
*pbDst++ = *pbSrc++;
return dst;
}
#endif
void cpu_smm_update(CPUState* env)
{
}