InstructionTestGen.py revision c6383709c15c809f8cfb09b5cfe670760f06e2b9
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# $Id$
"""
Instruction Test Generator.
"""
from __future__ import print_function;
__copyright__ = \
"""
Copyright (C) 2012-2013 Oracle Corporation
Oracle Corporation confidential
All rights reserved
"""
__version__ = "$Revision$";
# Standard python imports.
import io;
import os;
from optparse import OptionParser
import random;
import sys;
## @name Exit codes
## @{
RTEXITCODE_SUCCESS = 0;
RTEXITCODE_SYNTAX = 2;
## @}
## @name Various C macros we're used to.
## @{
UINT8_MAX = 0xff
UINT16_MAX = 0xffff
UINT32_MAX = 0xffffffff
UINT64_MAX = 0xffffffffffffffff
def RT_BIT_32(iBit): # pylint: disable=C0103
""" 32-bit one bit mask. """
return 1 << iBit;
def RT_BIT_64(iBit): # pylint: disable=C0103
""" 64-bit one bit mask. """
return 1 << iBit;
## @}
## @name Misc
## @{
def convU32ToSigned(u32):
""" Converts a 32-bit unsigned value to 32-bit signed. """
if u32 < 0x80000000:
return u32;
return u32 - UINT32_MAX - 1;
## @}
## @name ModR/M
## @{
X86_MODRM_RM_MASK = 0x07;
X86_MODRM_REG_MASK = 0x38;
X86_MODRM_REG_SMASK = 0x07;
X86_MODRM_REG_SHIFT = 3;
X86_MODRM_MOD_MASK = 0xc0;
X86_MODRM_MOD_SMASK = 0x03;
X86_MODRM_MOD_SHIFT = 6;
## @}
## @name SIB
## @{
X86_SIB_BASE_MASK = 0x07;
X86_SIB_INDEX_MASK = 0x38;
X86_SIB_INDEX_SMASK = 0x07;
X86_SIB_INDEX_SHIFT = 3;
X86_SIB_SCALE_MASK = 0xc0;
X86_SIB_SCALE_SMASK = 0x03;
X86_SIB_SCALE_SHIFT = 6;
## @}
## @name PRefixes
## @
X86_OP_PRF_CS = 0x2e;
X86_OP_PRF_SS = 0x36;
X86_OP_PRF_DS = 0x3e;
X86_OP_PRF_ES = 0x26;
X86_OP_PRF_FS = 0x64;
X86_OP_PRF_GS = 0x65;
X86_OP_PRF_SIZE_OP = 0x66;
X86_OP_PRF_SIZE_ADDR = 0x67;
X86_OP_PRF_LOCK = 0xf0;
X86_OP_PRF_REPZ = 0xf2;
X86_OP_PRF_REPNZ = 0xf3;
X86_OP_REX_B = 0x41;
X86_OP_REX_X = 0x42;
X86_OP_REX_R = 0x44;
X86_OP_REX_W = 0x48;
## @}
## @name Register names.
## @{
g_asGRegs64NoSp = ('rax', 'rcx', 'rdx', 'rbx', None, 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15');
g_asGRegs64 = ('rax', 'rcx', 'rdx', 'rbx', 'rsp', 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15');
g_asGRegs32NoSp = ('eax', 'ecx', 'edx', 'ebx', None, 'ebp', 'esi', 'edi',
'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d');
g_asGRegs32 = ('eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi',
'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d');
g_asGRegs16NoSp = ('ax', 'cx', 'dx', 'bx', None, 'bp', 'si', 'di',
'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w');
g_asGRegs16 = ('ax', 'cx', 'dx', 'bx', 'sp', 'bp', 'si', 'di',
'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w');
g_asGRegs8 = ('al', 'cl', 'dl', 'bl', 'ah', 'ah', 'dh', 'bh');
g_asGRegs8_64 = ('al', 'cl', 'dl', 'bl', 'spl', 'bpl', 'sil', 'dil', # pylint: disable=C0103
'r8b', 'r9b', 'r10b', 'r11b', 'r12b', 'r13b', 'r14b', 'r15b');
## @}
## @name Random
## @{
g_oMyRand = random.SystemRandom()
def randU16():
""" Unsigned 16-bit random number. """
return g_oMyRand.getrandbits(16);
def randU32():
""" Unsigned 32-bit random number. """
return g_oMyRand.getrandbits(32);
def randU64():
""" Unsigned 64-bit random number. """
return g_oMyRand.getrandbits(64);
def randUxx(cBits):
""" Unsigned 8-, 16-, 32-, or 64-bit random number. """
return g_oMyRand.getrandbits(cBits);
def randUxxList(cBits, cElements):
""" List of nsigned 8-, 16-, 32-, or 64-bit random numbers. """
return [randUxx(cBits) for _ in range(cElements)];
## @}
## @name Instruction Emitter Helpers
## @{
def calcRexPrefixForTwoModRmRegs(iReg, iRm, bOtherRexPrefixes = 0):
"""
Calculates a rex prefix if neccessary given the two registers
and optional rex size prefixes.
Returns an empty array if not necessary.
"""
bRex = bOtherRexPrefixes;
if iReg >= 8:
bRex = bRex | X86_OP_REX_R;
if iRm >= 8:
bRex = bRex | X86_OP_REX_B;
if bRex == 0:
return [];
return [bRex,];
def calcModRmForTwoRegs(iReg, iRm):
"""
Calculate the RM byte for two registers.
Returns an array with one byte in it.
"""
bRm = (0x3 << X86_MODRM_MOD_SHIFT) \
| ((iReg << X86_MODRM_REG_SHIFT) & X86_MODRM_REG_MASK) \
| (iRm & X86_MODRM_RM_MASK);
return [bRm,];
## @}
class TargetEnv(object):
"""
Target Runtime Environment.
"""
## @name CPU Modes
## @{
ksCpuMode_Real = 'real';
ksCpuMode_Protect = 'prot';
ksCpuMode_Paged = 'paged';
ksCpuMode_Long = 'long';
ksCpuMode_V86 = 'v86';
## @}
## @name Instruction set.
## @{
ksInstrSet_16 = '16';
ksInstrSet_32 = '32';
ksInstrSet_64 = '64';
## @}
def __init__(self, sName,
sInstrSet = ksInstrSet_32,
sCpuMode = ksCpuMode_Paged,
iRing = 3,
):
self.sName = sName;
self.sInstrSet = sInstrSet;
self.sCpuMode = sCpuMode;
self.iRing = iRing;
self.asGRegs = g_asGRegs64 if self.is64Bit() else g_asGRegs32;
self.asGRegsNoSp = g_asGRegs64NoSp if self.is64Bit() else g_asGRegs32NoSp;
def isUsingIprt(self):
""" Whether it's an IPRT environment or not. """
return self.sName.startswith('iprt');
def is64Bit(self):
""" Whether it's a 64-bit environment or not. """
return self.sInstrSet == self.ksInstrSet_64;
def getDefOpBits(self):
""" Get the default operand size as a bit count. """
if self.sInstrSet == self.ksInstrSet_16:
return 16;
return 32;
def getDefOpBytes(self):
""" Get the default operand size as a byte count. """
return self.getDefOpBits() / 8;
def getMaxOpBits(self):
""" Get the max operand size as a bit count. """
if self.sInstrSet == self.ksInstrSet_64:
return 64;
return 32;
def getMaxOpBytes(self):
""" Get the max operand size as a byte count. """
return self.getMaxOpBits() / 8;
def getDefAddrBits(self):
""" Get the default address size as a bit count. """
if self.sInstrSet == self.ksInstrSet_16:
return 16;
if self.sInstrSet == self.ksInstrSet_32:
return 32;
return 64;
def getDefAddrBytes(self):
""" Get the default address size as a byte count. """
return self.getDefAddrBits() / 8;
def getGRegCount(self):
""" Get the number of general registers. """
if self.sInstrSet == self.ksInstrSet_64:
return 16;
return 8;
def randGRegNoSp(self):
""" Returns a random general register number, excluding the SP register. """
iReg = randU16();
return iReg % (16 if self.is64Bit() else 8);
def getAddrModes(self):
""" Gets a list of addressing mode (16, 32, or/and 64). """
if self.sInstrSet == self.ksInstrSet_16:
return [16, 32];
if self.sInstrSet == self.ksInstrSet_32:
return [32, 16];
return [64, 64];
## Target environments.
g_dTargetEnvs = {
'iprt-r3-32': TargetEnv('iprt-r3-32', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 3),
'iprt-r3-64': TargetEnv('iprt-r3-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 3),
};
class InstrTestBase(object):
"""
Base class for testing one instruction.
"""
def __init__(self, sName, sInstr = None):
self.sName = sName;
self.sInstr = sInstr if sInstr else sName.split()[0];
def isApplicable(self, oGen):
"""
Tests if the instruction test is applicable to the selected environment.
"""
_ = oGen;
return True;
def generateTest(self, oGen, sTestFnName):
"""
Emits the test assembly code.
"""
oGen.write(';; @todo not implemented. This is for the linter: %s, %s\n' % (oGen, sTestFnName));
return True;
def generateInputs(self, cbEffOp, cbMaxOp, oGen, fLong = False):
""" Generate a list of inputs. """
if fLong:
#
# Try do extremes as well as different ranges of random numbers.
#
auRet = [0, 1, ];
if cbMaxOp >= 1:
auRet += [ UINT8_MAX / 2, UINT8_MAX / 2 + 1, UINT8_MAX ];
if cbMaxOp >= 2:
auRet += [ UINT16_MAX / 2, UINT16_MAX / 2 + 1, UINT16_MAX ];
if cbMaxOp >= 4:
auRet += [ UINT32_MAX / 2, UINT32_MAX / 2 + 1, UINT32_MAX ];
if cbMaxOp >= 8:
auRet += [ UINT64_MAX / 2, UINT64_MAX / 2 + 1, UINT64_MAX ];
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
for cBits, cValues in ( (8, 4), (16, 4), (32, 8), (64, 8) ):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, cValues);
cWanted = 16;
elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
for cBits, cValues in ( (8, 8), (16, 8), (24, 2), (32, 16), (40, 1), (48, 1), (56, 1), (64, 16) ):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, cValues);
cWanted = 64;
else:
for cBits, cValues in ( (8, 16), (16, 16), (24, 4), (32, 64), (40, 4), (48, 4), (56, 4), (64, 64) ):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, cValues);
cWanted = 168;
if len(auRet) < cWanted:
auRet += randUxxList(cbEffOp * 8, cWanted - len(auRet));
else:
#
# Short list, just do some random numbers.
#
auRet = [];
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
auRet += randUxxList(cbMaxOp, 1);
elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
auRet += randUxxList(cbMaxOp, 2);
else:
auRet = [];
for cBits in (8, 16, 32, 64):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, 1);
return auRet;
class InstrTest_MemOrGreg_2_Greg(InstrTestBase):
"""
Instruction reading memory or general register and writing the result to a
general register.
"""
def __init__(self, sName, fnCalcResult, sInstr = None, acbOpVars = None):
InstrTestBase.__init__(self, sName, sInstr);
self.fnCalcResult = fnCalcResult;
self.acbOpVars = [ 1, 2, 4, 8 ] if not acbOpVars else list(acbOpVars);
def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen):
""" Writes the instruction with two general registers as operands. """
if cbEffOp == 8:
oGen.write(' %s %s, %s\n' % (self.sInstr, g_asGRegs64[iOp1], g_asGRegs64[iOp2]));
elif cbEffOp == 4:
oGen.write(' %s %s, %s\n' % (self.sInstr, g_asGRegs32[iOp1], g_asGRegs32[iOp2]));
elif cbEffOp == 2:
oGen.write(' %s %s, %s\n' % (self.sInstr, g_asGRegs16[iOp1], g_asGRegs16[iOp2]));
elif cbEffOp == 1:
oGen.write(' %s %s, %s\n' % (self.sInstr, g_asGRegs8[iOp1], g_asGRegs8[iOp2]));
else:
assert False;
return True;
def writeInstrGregPureRM(self, cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen):
""" Writes the instruction with two general registers as operands. """
if cbEffOp == 8:
oGen.write(' %s %s, [' % (self.sInstr, g_asGRegs64[iOp1],));
elif cbEffOp == 4:
oGen.write(' %s %s, [' % (self.sInstr, g_asGRegs64[iOp1],));
elif cbEffOp == 2:
oGen.write(' %s %s, [' % (self.sInstr, g_asGRegs16[iOp1],));
elif cbEffOp == 1:
oGen.write(' %s %s, [' % (self.sInstr, g_asGRegs8[iOp1],));
else:
assert False;
if iOp2 == 5 and iMod == 0:
oGen.write('VBINSTST_NAME(g_u%sData)' % (cbEffOp * 8,))
if oGen.oTarget.is64Bit():
oGen.write(' wrt rip');
else:
if iMod == 1:
oGen.write('byte %d + ' % (offDisp,));
elif iMod == 2:
oGen.write('dword %d + ' % (offDisp,));
else:
assert iMod == 0;
if cAddrBits == 64:
oGen.write(g_asGRegs64[iOp2]);
elif cAddrBits == 32:
oGen.write(g_asGRegs32[iOp2]);
elif cAddrBits == 16:
assert False; ## @todo implement 16-bit addressing.
else:
assert False, str(cAddrBits);
oGen.write(']\n');
return True;
def generateOneStdTestGregGreg(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult):
""" Generate one standard test. """
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uInput,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
self.writeInstrGregGreg(cbEffOp, iOp1, iOp2, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
_ = cbMaxOp;
return True;
def generateMemSetupPureRM(self, oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp = None):
""" Sets up memory for a pure R/M addressed read, iOp2 being the R/M value. """
oGen.pushConst(uInput);
assert offDisp is None or iMod != 0;
if (iOp2 != 5 and iOp2 != 13) or iMod != 0:
oGen.write(' call VBINSTST_NAME(%s)\n'
% (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iOp2, offDisp),));
else:
## @todo generate REX.B=1 variant.
oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
return True;
def generateOneStdTestGregMemNoSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult):
""" Generate mode 0, 1 and 2 test for the R/M=iOp2. """
if cAddrBits == 16:
_ = cbMaxOp;
else:
iMod = 0; # No disp, except for i=5.
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput);
self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, None, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
iMod = 2;
for offDisp in (127, -128):
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp);
self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
iMod = 2;
for offDisp in (2147483647, -2147483648):
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp);
self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
return True;
def generateStandardTests(self, oGen):
""" Generate standard tests. """
# Parameters.
cbDefOp = oGen.oTarget.getDefOpBytes();
cbMaxOp = oGen.oTarget.getMaxOpBytes();
auShortInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen);
auLongInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen, fLong = True);
iLongOp1 = oGen.oTarget.randGRegNoSp();
iLongOp2 = oGen.oTarget.randGRegNoSp();
oOp2Range = range(oGen.oTarget.getGRegCount());
oOp1MemRange = range(oGen.oTarget.getGRegCount());
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
oOp2Range = [iLongOp2,];
oOp1MemRange = [iLongOp1,];
# Register tests
if False:
for cbEffOp in self.acbOpVars:
if cbEffOp > cbMaxOp:
continue;
for iOp1 in range(oGen.oTarget.getGRegCount()):
if oGen.oTarget.asGRegsNoSp[iOp1] is None:
continue;
for iOp2 in oOp2Range:
if oGen.oTarget.asGRegsNoSp[iOp2] is None:
continue;
for uInput in (auLongInputs if iOp1 == iLongOp1 and iOp2 == iLongOp2 else auShortInputs):
uResult = self.fnCalcResult(cbEffOp, uInput,
oGen.auRegValues[iOp1] if iOp1 != iOp2 else uInput, oGen);
oGen.newSubTest();
self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult);
# Memory test.
for cbEffOp in self.acbOpVars:
if cbEffOp > cbMaxOp:
continue;
for iOp1 in oOp1MemRange:
if oGen.oTarget.asGRegsNoSp[iOp1] is None:
continue;
for cAddrBits in oGen.oTarget.getAddrModes():
for iOp2 in range(len(oGen.oTarget.asGRegs)):
if iOp2 != 4:
for uInput in (auLongInputs if iOp1 == iLongOp1 and False else auShortInputs):
oGen.newSubTest();
if iOp1 == iOp2 and iOp2 != 5 and iOp2 != 13 and cbEffOp != cbMaxOp:
continue; # Don't know the high bit of the address ending up the result - skip it.
uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[iOp1], oGen);
self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp,
iOp1, iOp2, uInput, uResult);
else:
pass; # SIB
break; ## remove me!
break; ## remove me!
break; ## remove me!
return True;
def generateTest(self, oGen, sTestFnName):
oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
#oGen.write(' int3\n');
self.generateStandardTests(oGen);
#oGen.write(' int3\n');
oGen.write(' ret\n');
oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
return True;
class InstrTest_Mov_Gv_Ev(InstrTest_MemOrGreg_2_Greg):
"""
Tests MOV Gv,Ev.
"""
def __init__(self):
InstrTest_MemOrGreg_2_Greg.__init__(self, 'mov Gv,Ev', self.calc_mov);
@staticmethod
def calc_mov(cbEffOp, uInput, uCur, oGen):
""" Calculates the result of a mov instruction."""
if cbEffOp == 8:
return uInput & UINT64_MAX;
if cbEffOp == 4:
return uInput & UINT32_MAX;
if cbEffOp == 2:
return (uCur & 0xffffffffffff0000) | (uInput & UINT16_MAX);
assert cbEffOp == 1;
return (uCur & 0xffffffffffffff00) | (uInput & UINT8_MAX);
class InstrTest_MovSxD_Gv_Ev(InstrTest_MemOrGreg_2_Greg):
"""
Tests MOVSXD Gv,Ev.
"""
def __init__(self):
InstrTest_MemOrGreg_2_Greg.__init__(self, 'movsxd Gv,Ev', self.calc_movsxd, acbOpVars = [ 8, 4, 2, ]);
def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen):
if cbEffOp == 8:
oGen.write(' %s %s, %s\n' % (self.sInstr, g_asGRegs64[iOp1], g_asGRegs32[iOp2]));
elif cbEffOp == 4 or cbEffOp == 2:
abInstr = [];
if cbEffOp != oGen.oTarget.getDefOpBytes():
abInstr.append(X86_OP_PRF_SIZE_OP);
abInstr += calcRexPrefixForTwoModRmRegs(iOp1, iOp2);
abInstr.append(0x63);
abInstr += calcModRmForTwoRegs(iOp1, iOp2);
oGen.writeInstrBytes(abInstr);
else:
assert False;
assert False;
return True;
def isApplicable(self, oGen):
return oGen.oTarget.is64Bit();
@staticmethod
def calc_movsxd(cbEffOp, uInput, uCur, oGen):
"""
Calculates the result of a movxsd instruction.
Returns the result value (cbMaxOp sized).
"""
_ = oGen;
if cbEffOp == 8 and (uInput & RT_BIT_32(31)):
return (UINT32_MAX << 32) | (uInput & UINT32_MAX);
if cbEffOp == 2:
return (uCur & 0xffffffffffff0000) | (uInput & 0xffff);
return uInput & UINT32_MAX;
## Instruction Tests.
g_aoInstructionTests = [
InstrTest_Mov_Gv_Ev(),
#InstrTest_MovSxD_Gv_Ev(),
];
class InstructionTestGen(object):
"""
Instruction Test Generator.
"""
## @name Test size
## @{
ksTestSize_Large = 'large';
ksTestSize_Medium = 'medium';
ksTestSize_Tiny = 'tiny';
## @}
kasTestSizes = ( ksTestSize_Large, ksTestSize_Medium, ksTestSize_Tiny );
def __init__(self, oOptions):
self.oOptions = oOptions;
self.oTarget = g_dTargetEnvs[oOptions.sTargetEnv];
# Calculate the number of output files.
self.cFiles = 1;
if len(g_aoInstructionTests) > self.oOptions.cInstrPerFile:
self.cFiles = len(g_aoInstructionTests) / self.oOptions.cInstrPerFile;
if self.cFiles * self.oOptions.cInstrPerFile < len(g_aoInstructionTests):
self.cFiles += 1;
# Fix the known register values.
self.au64Regs = randUxxList(64, 16);
self.au32Regs = [(self.au64Regs[i] & UINT32_MAX) for i in range(8)];
self.au16Regs = [(self.au64Regs[i] & UINT16_MAX) for i in range(8)];
self.auRegValues = self.au64Regs if self.oTarget.is64Bit() else self.au32Regs;
# Declare state variables used while generating.
self.oFile = sys.stderr;
self.iFile = -1;
self.sFile = '';
self.dCheckFns = dict();
self.dMemSetupFns = dict();
self.d64BitConsts = dict();
#
# Methods used by instruction tests.
#
def write(self, sText):
""" Writes to the current output file. """
return self.oFile.write(unicode(sText));
def writeln(self, sText):
""" Writes a line to the current output file. """
self.write(sText);
return self.write('\n');
def writeInstrBytes(self, abInstr):
"""
Emits an instruction given as a sequence of bytes values.
"""
self.write(' db %#04x' % (abInstr[0],));
for i in range(1, len(abInstr)):
self.write(', %#04x' % (abInstr[i],));
return self.write('\n');
def newSubTest(self):
"""
Indicates that a new subtest has started.
"""
self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], __LINE__\n');
return True;
def needGRegChecker(self, iReg1, iReg2):
"""
Records the need for a given register checker function, returning its label.
"""
assert iReg1 < 32; assert iReg2 < 32;
iRegs = iReg1 + iReg2 * 32;
if iRegs in self.dCheckFns:
self.dCheckFns[iRegs] += 1;
else:
self.dCheckFns[iRegs] = 1;
return 'Common_Check_%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2]);
def needGRegMemSetup(self, cAddrBits, cbEffOp, iReg1, offDisp = None):
"""
Records the need for a given register checker function, returning its label.
"""
sName = '%ubit_U%u_%s' % (cAddrBits, cbEffOp * 8, self.oTarget.asGRegs[iReg1]);
if offDisp is not None:
sName += '_%#010x' % (offDisp & UINT32_MAX, );
if sName in self.dCheckFns:
self.dMemSetupFns[sName] += 1;
else:
self.dMemSetupFns[sName] = 1;
return 'Common_MemSetup_' + sName;
def need64BitConstant(self, uVal):
"""
Records the need for a 64-bit constant, returning its label.
These constants are pooled to attempt reduce the size of the whole thing.
"""
assert uVal >= 0 and uVal <= UINT64_MAX;
if uVal in self.d64BitConsts:
self.d64BitConsts[uVal] += 1;
else:
self.d64BitConsts[uVal] = 1;
return 'g_u64Const_0x%016x' % (uVal, );
def pushConst(self, uResult):
"""
Emits a push constant value, taking care of high values on 64-bit hosts.
"""
if self.oTarget.is64Bit() and uResult >= 0x80000000:
self.write(' push qword [%s wrt rip]\n' % (self.need64BitConstant(uResult),));
else:
self.write(' push dword 0x%x\n' % (uResult,));
return True;
#
# Internal machinery.
#
def _calcTestFunctionName(self, oInstrTest, iInstrTest):
"""
Calc a test function name for the given instruction test.
"""
sName = 'TestInstr%03u_%s' % (iInstrTest, oInstrTest.sName);
return sName.replace(',', '_').replace(' ', '_').replace('%', '_');
def _generateFileHeader(self, ):
"""
Writes the file header.
Raises exception on trouble.
"""
self.write('; $Id$\n'
';; @file %s\n'
'; Autogenerate by %s %s. DO NOT EDIT\n'
';\n'
'\n'
';\n'
'; Headers\n'
';\n'
'%%include "env-%s.mac"\n'
% ( os.path.basename(self.sFile),
os.path.basename(__file__), __version__[11:-1],
self.oTarget.sName,
) );
# Target environment specific init stuff.
#
# Global variables.
#
self.write('\n\n'
';\n'
'; Globals\n'
';\n');
self.write('VBINSTST_BEGINDATA\n'
'VBINSTST_GLOBALNAME_EX g_pvLow16Mem4K, data hidden\n'
' dq 0\n'
'VBINSTST_GLOBALNAME_EX g_pvLow32Mem4K, data hidden\n'
' dq 0\n'
'VBINSTST_GLOBALNAME_EX g_pvMem4K, data hidden\n'
' dq 0\n'
'VBINSTST_GLOBALNAME_EX g_uVBInsTstSubTestIndicator, data hidden\n'
' dd 0\n'
'VBINSTST_BEGINCODE\n'
);
self.write('%ifdef RT_ARCH_AMD64\n');
for i in range(len(g_asGRegs64)):
self.write('g_u64KnownValue_%s: dq 0x%x\n' % (g_asGRegs64[i], self.au64Regs[i]));
self.write('%endif\n\n')
#
# Common functions.
#
# Loading common values.
self.write('\n\n'
'VBINSTST_BEGINPROC Common_LoadKnownValues\n'
'%ifdef RT_ARCH_AMD64\n');
for i in range(len(g_asGRegs64NoSp)):
if g_asGRegs64NoSp[i]:
self.write(' mov %s, 0x%x\n' % (g_asGRegs64NoSp[i], self.au64Regs[i],));
self.write('%else\n');
for i in range(8):
if g_asGRegs32NoSp[i]:
self.write(' mov %s, 0x%x\n' % (g_asGRegs32NoSp[i], self.au32Regs[i],));
self.write('%endif\n'
' ret\n'
'VBINSTST_ENDPROC Common_LoadKnownValues\n'
'\n');
self.write('VBINSTST_BEGINPROC Common_CheckKnownValues\n'
'%ifdef RT_ARCH_AMD64\n');
for i in range(len(g_asGRegs64NoSp)):
if g_asGRegs64NoSp[i]:
self.write(' cmp %s, [g_u64KnownValue_%s wrt rip]\n'
' je .ok_%u\n'
' push %u ; register number\n'
' push %s ; actual\n'
' push qword [g_u64KnownValue_%s wrt rip] ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
'.ok_%u:\n'
% ( g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i, i, g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i,));
self.write('%else\n');
for i in range(8):
if g_asGRegs32NoSp[i]:
self.write(' cmp %s, 0x%x\n'
' je .ok_%u\n'
' push %u ; register number\n'
' push %s ; actual\n'
' push dword 0x%x ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
'.ok_%u:\n'
% ( g_asGRegs32NoSp[i], self.au32Regs[i], i, i, g_asGRegs32NoSp[i], self.au32Regs[i], i,));
self.write('%endif\n'
' ret\n'
'VBINSTST_ENDPROC Common_CheckKnownValues\n'
'\n');
return True;
def _generateMemSetupFunctions(self):
"""
Generates the memory setup functions.
"""
cDefAddrBits = self.oTarget.getDefAddrBits();
for sName in self.dMemSetupFns:
# Unpack it.
asParams = sName.split('_');
cAddrBits = int(asParams[0][:-3]);
cEffOpBits = int(asParams[1][1:]);
sBaseReg = asParams[2];
if cAddrBits == 64: asAddrGRegs = g_asGRegs64;
elif cAddrBits == 32: asAddrGRegs = g_asGRegs32;
else: asAddrGRegs = g_asGRegs16;
iBaseReg = asAddrGRegs.index(sBaseReg);
i = 3;
offDisp = None;
if i < len(asParams) and len(asParams[i]) == 10:
u32Disp = long(asParams[i], 16);
i += 1;
sIndexReg = None;
iIndexReg = None;
if i < len(asParams):
sIndexReg = asParams[i];
iBaseReg = asAddrGRegs.index(sBaseReg);
i += 1;
iScale = 1;
if i < len(asParams):
iScale = int(asParams[i]); assert iScale in [2, 4, 8];
i += 1;
# Prologue.
iTmpReg1 = 0 if iBaseReg != 0 else 1;
self.write('\n\n'
'VBINSTST_BEGINPROC Common_MemSetup_%s\n'
' MY_PUSH_FLAGS\n'
' push %s\n'
% (sName, self.oTarget.asGRegs[iTmpReg1], ));
# Figure out what to use.
if cEffOpBits == 64:
sTmpReg1 = g_asGRegs64[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u64Data)';
elif cEffOpBits == 32:
sTmpReg1 = g_asGRegs32[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u32Data)';
elif cEffOpBits == 16:
sTmpReg1 = g_asGRegs16[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u16Data)';
else:
assert cEffOpBits == 8;
sTmpReg1 = g_asGRegs8[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u8Data)';
# Load the value and mem address, sorting the value there.
self.write(' mov %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,));
if cAddrBits >= cDefAddrBits:
self.write(' mov [%s xWrtRIP], %s\n' % (sDataVar, sTmpReg1,));
self.write(' lea %s, [%s xWrtRIP]\n' % (sBaseReg, sDataVar,));
else:
if cAddrBits == 16:
self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sBaseReg,));
else:
self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sBaseReg,));
self.write(' add %s, %s\n' % (sBaseReg, (randU16() << cEffOpBits) & 0xfff, ));
self.write(' mov [%s], %s\n' % (sBaseReg, sTmpReg1, ));
# Adjust for disposition and scaling.
if offDisp is not None:
self.write(' sub %s, %d\n' % ( sBaseReg, convU32ToSigned(u32Disp), ));
if iIndexReg is not None:
uIdxRegVal = randUxx(cAddrBits);
self.write(' mov %s, %u\n' % ( sIndexReg, uIdxRegVal,));
if cAddrBits == 64:
self.write(' sub %s, %#06x\n' % ( sBaseReg, uIdxRegVal * iScale, ));
elif cAddrBits == 16:
self.write(' sub %s, %#06x\n' % ( sBaseReg, (uIdxRegVal * iScale) & UINT32_MAX, ));
else:
assert cAddrBits == 16;
self.write(' sub %s, %#06x\n' % ( sBaseReg, (uIdxRegVal * iScale) & UINT16_MAX, ));
# Set upper bits that's supposed to be unused.
if cDefAddrBits > cAddrBits or cAddrBits == 16:
if cDefAddrBits == 64:
assert cAddrBits == 32;
self.write(' mov %s, %#018x\n'
' or %s, %s\n'
% ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000,
g_asGRegs64[iBaseReg], g_asGRegs64[iTmpReg1],));
if iIndexReg is not None:
self.write(' mov %s, %#018x\n'
' or %s, %s\n'
% ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000,
g_asGRegs64[iIndexReg], g_asGRegs64[iTmpReg1],));
else:
assert cDefAddrBits == 32; assert cAddrBits == 16;
self.write(' or %s, %#010x\n'
% ( g_asGRegs32[iBaseReg], randU32() & 0xffff0000, ));
if iIndexReg is not None:
self.write(' or %s, %#010x\n'
% ( g_asGRegs32[iIndexReg], randU32() & 0xffff0000, ));
# Epilogue.
self.write(' pop %s\n'
' MY_POP_FLAGS\n'
' ret\n'
'VBINSTST_ENDPROC Common_MemSetup_%s\n'
% ( self.oTarget.asGRegs[iTmpReg1], sName,));
def _generateFileFooter(self):
"""
Generates file footer.
"""
# Register checking functions.
for iRegs in self.dCheckFns:
iReg1 = iRegs & 0x1f;
sReg1 = self.oTarget.asGRegs[iReg1];
iReg2 = (iRegs >> 5) & 0x1f;
sReg2 = self.oTarget.asGRegs[iReg2];
sPushSize = 'dword';
self.write('\n\n'
'; Checks two register values, expected values pushed on the stack.\n'
'; To save space, the callee cleans up the stack.'
'; Ref count: %u\n'
'VBINSTST_BEGINPROC Common_Check_%s_%s\n'
' MY_PUSH_FLAGS\n'
% ( self.dCheckFns[iRegs], sReg1, sReg2, ) );
self.write(' cmp %s, [xSP + MY_PUSH_FLAGS_SIZE + xCB]\n'
' je .equal1\n'
' push %s %u ; register number\n'
' push %s ; actual\n'
' mov %s, [xSP + sCB*2 + MY_PUSH_FLAGS_SIZE + xCB]\n'
' push %s ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
' pop %s\n'
' pop %s\n'
' pop %s\n'
'.equal1:\n'
% ( sReg1, sPushSize, iReg1, sReg1, sReg1, sReg1, sReg1, sReg1, sReg1, ) );
if iReg1 != iReg2: # If input and result regs are the same, only check the result.
self.write(' cmp %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n'
' je .equal2\n'
' push %s %u ; register number\n'
' push %s ; actual\n'
' mov %s, [xSP + sCB*3 + MY_PUSH_FLAGS_SIZE + xCB]\n'
' push %s ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
' pop %s\n'
' pop %s\n'
' pop %s\n'
'.equal2:\n'
% ( sReg2, sPushSize, iReg2, sReg2, sReg2, sReg2, sReg2, sReg2, sReg2, ) );
if self.oTarget.is64Bit():
self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg1, sReg1,));
if iReg1 != iReg2:
self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg2, sReg2,));
else:
self.write(' mov %s, 0x%x\n' % (sReg1, self.au32Regs[iReg1],));
if iReg1 != iReg2:
self.write(' mov %s, 0x%x\n' % (sReg2, self.au32Regs[iReg2],));
self.write(' MY_POP_FLAGS\n'
' call VBINSTST_NAME(Common_CheckKnownValues)\n'
' ret sCB*2\n'
'VBINSTST_ENDPROC Common_Check_%s_%s\n'
% (sReg1, sReg2,));
# memory setup functions
self._generateMemSetupFunctions();
# 64-bit constants.
if len(self.d64BitConsts) > 0:
self.write('\n\n'
';\n'
'; 64-bit constants\n'
';\n');
for uVal in self.d64BitConsts:
self.write('g_u64Const_0x%016x: dq 0x%016x ; Ref count: %d\n' % (uVal, uVal, self.d64BitConsts[uVal], ) );
return True;
def _generateTests(self):
"""
Generate the test cases.
"""
for self.iFile in range(self.cFiles):
if self.cFiles == 1:
self.sFile = '%s.asm' % (self.oOptions.sOutputBase,)
else:
self.sFile = '%s-%u.asm' % (self.oOptions.sOutputBase, self.iFile)
self.oFile = sys.stdout;
if self.oOptions.sOutputBase != '-':
self.oFile = io.open(self.sFile, 'w', encoding = 'utf-8');
self._generateFileHeader();
# Calc the range.
iInstrTestStart = self.iFile * self.oOptions.cInstrPerFile;
iInstrTestEnd = iInstrTestStart + self.oOptions.cInstrPerFile;
if iInstrTestEnd > len(g_aoInstructionTests):
iInstrTestEnd = len(g_aoInstructionTests);
# Generate the instruction tests.
for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
oInstrTest = g_aoInstructionTests[iInstrTest];
self.write('\n'
'\n'
';\n'
'; %s\n'
';\n'
% (oInstrTest.sName,));
oInstrTest.generateTest(self, self._calcTestFunctionName(oInstrTest, iInstrTest));
# Generate the main function.
self.write('\n\n'
'VBINSTST_BEGINPROC TestInstrMain\n'
' MY_PUSH_ALL\n'
' sub xSP, 40h\n'
'\n');
for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
oInstrTest = g_aoInstructionTests[iInstrTest];
if oInstrTest.isApplicable(self):
self.write('%%ifdef ASM_CALL64_GCC\n'
' lea rdi, [.szInstr%03u wrt rip]\n'
'%%elifdef ASM_CALL64_MSC\n'
' lea rcx, [.szInstr%03u wrt rip]\n'
'%%else\n'
' mov xAX, .szInstr%03u\n'
' mov [xSP], xAX\n'
'%%endif\n'
' VBINSTST_CALL_FN_SUB_TEST\n'
' call VBINSTST_NAME(%s)\n'
% ( iInstrTest, iInstrTest, iInstrTest, self._calcTestFunctionName(oInstrTest, iInstrTest)));
self.write('\n'
' add xSP, 40h\n'
' MY_POP_ALL\n'
' ret\n\n');
for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
self.write('.szInstr%03u: db \'%s\', 0\n' % (iInstrTest, g_aoInstructionTests[iInstrTest].sName,));
self.write('VBINSTST_ENDPROC TestInstrMain\n\n');
self._generateFileFooter();
if self.oOptions.sOutputBase != '-':
self.oFile.close();
self.oFile = None;
self.sFile = '';
return RTEXITCODE_SUCCESS;
def _runMakefileMode(self):
"""
Generate a list of output files on standard output.
"""
if self.cFiles == 1:
print('%s.asm' % (self.oOptions.sOutputBase,));
else:
print(' '.join('%s-%s.asm' % (self.oOptions.sOutputBase, i) for i in range(self.cFiles)));
return RTEXITCODE_SUCCESS;
def run(self):
"""
Generates the tests or whatever is required.
"""
if self.oOptions.fMakefileMode:
return self._runMakefileMode();
return self._generateTests();
@staticmethod
def main():
"""
Main function a la C/C++. Returns exit code.
"""
#
# Parse the command line.
#
oParser = OptionParser(version = __version__[11:-1].strip());
oParser.add_option('--makefile-mode', dest = 'fMakefileMode', action = 'store_true', default = False,
help = 'Special mode for use to output a list of output files for the benefit of '
'the make program (kmk).');
oParser.add_option('--split', dest = 'cInstrPerFile', metavar = '<instr-per-file>', type = 'int', default = 9999999,
help = 'Number of instruction to test per output file.');
oParser.add_option('--output-base', dest = 'sOutputBase', metavar = '<file>', default = None,
help = 'The output file base name, no suffix please. Required.');
oParser.add_option('--target', dest = 'sTargetEnv', metavar = '<target>',
default = 'iprt-r3-32',
choices = g_dTargetEnvs.keys(),
help = 'The target environment. Choices: %s'
% (', '.join(sorted(g_dTargetEnvs.keys())),));
oParser.add_option('--test-size', dest = 'sTestSize', default = InstructionTestGen.ksTestSize_Medium,
choices = InstructionTestGen.kasTestSizes,
help = 'Selects the test size.');
(oOptions, asArgs) = oParser.parse_args();
if len(asArgs) > 0:
oParser.print_help();
return RTEXITCODE_SYNTAX
if oOptions.sOutputBase is None:
print('syntax error: Missing required option --output-base.', file = sys.stderr);
return RTEXITCODE_SYNTAX
#
# Instantiate the program class and run it.
#
oProgram = InstructionTestGen(oOptions);
return oProgram.run();
if __name__ == '__main__':
sys.exit(InstructionTestGen.main());