PGMInternal.h revision 2afbe132eb7931e0125141eabe3a48e08f1ffab5
/* $Id$ */
/** @file
* PGM - Internal header file.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
#ifndef ___PGMInternal_h
#define ___PGMInternal_h
#include <VBox/cdefs.h>
#include <VBox/types.h>
#include <VBox/err.h>
#include <VBox/dbg.h>
#include <VBox/vmm/stam.h>
#include <VBox/param.h>
#include <VBox/vmm/vmm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/pdmcritsect.h>
#include <VBox/vmm/pdmapi.h>
#include <VBox/dis.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/log.h>
#include <VBox/vmm/gmm.h>
#include <VBox/vmm/hwaccm.h>
#include <VBox/vmm/hwacc_vmx.h>
#include "internal/pgm.h"
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/avl.h>
#include <iprt/critsect.h>
#include <iprt/sha.h>
/** @defgroup grp_pgm_int Internals
* @ingroup grp_pgm
* @internal
* @{
*/
/** @name PGM Compile Time Config
* @{
*/
/**
* Indicates that there are no guest mappings to care about.
* Currently on raw-mode related code uses mappings, i.e. RC and R3 code.
*/
#if defined(IN_RING0) || !defined(VBOX_WITH_RAW_MODE)
# define PGM_WITHOUT_MAPPINGS
#endif
/**
* Check and skip global PDEs for non-global flushes
*/
#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
/**
* Optimization for PAE page tables that are modified often
*/
//#if 0 /* disabled again while debugging */
#ifndef IN_RC
# define PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
#endif
//#endif
/**
* Large page support enabled only on 64 bits hosts; applies to nested paging only.
*/
#if (HC_ARCH_BITS == 64) && !defined(IN_RC)
# define PGM_WITH_LARGE_PAGES
#endif
/**
* Enables optimizations for MMIO handlers that exploits X86_TRAP_PF_RSVD and
* VMX_EXIT_EPT_MISCONFIG.
*/
#if 1 /* testing */
# define PGM_WITH_MMIO_OPTIMIZATIONS
#endif
/**
* Sync N pages instead of a whole page table
*/
#define PGM_SYNC_N_PAGES
/**
* Number of pages to sync during a page fault
*
* When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
* causes a lot of unnecessary extents and also is slower than taking more \#PFs.
*
* Note that \#PFs are much more expensive in the VT-x/AMD-V case due to
* world switch overhead, so let's sync more.
*/
# ifdef IN_RING0
/* Chose 32 based on the compile test in #4219; 64 shows worse stats.
* 32 again shows better results than 16; slightly more overhead in the \#PF handler,
* but ~5% fewer faults.
*/
# define PGM_SYNC_NR_PAGES 32
#else
# define PGM_SYNC_NR_PAGES 8
#endif
/**
* Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
*/
#define PGM_MAX_PHYSCACHE_ENTRIES 64
#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
/** @def PGMPOOL_CFG_MAX_GROW
* The maximum number of pages to add to the pool in one go.
*/
#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
* Enables some extra assertions for virtual handlers (mainly phys2virt related).
*/
#ifdef VBOX_STRICT
# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
#endif
/** @def VBOX_WITH_NEW_LAZY_PAGE_ALLOC
* Enables the experimental lazy page allocation code. */
/*#define VBOX_WITH_NEW_LAZY_PAGE_ALLOC */
/** @def VBOX_WITH_REAL_WRITE_MONITORED_PAGES
* Enables real write monitoring of pages, i.e. mapping them read-only and
* only making them writable when getting a write access #PF. */
#define VBOX_WITH_REAL_WRITE_MONITORED_PAGES
/** @} */
/** @name PDPT and PML4 flags.
* These are placed in the three bits available for system programs in
* the PDPT and PML4 entries.
* @{ */
/** The entry is a permanent one and it's must always be present.
* Never free such an entry. */
#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
/** Mapping (hypervisor allocated pagetable). */
#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
/** @} */
/** @name Page directory flags.
* These are placed in the three bits available for system programs in
* the page directory entries.
* @{ */
/** Mapping (hypervisor allocated pagetable). */
#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
/** Made read-only to facilitate dirty bit tracking. */
#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
/** @} */
/** @name Page flags.
* These are placed in the three bits available for system programs in
* the page entries.
* @{ */
/** Made read-only to facilitate dirty bit tracking. */
#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
#ifndef PGM_PTFLAGS_CSAM_VALIDATED
/** Scanned and approved by CSAM (tm).
* NOTE: Must be identical to the one defined in CSAMInternal.h!!
* @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/vmm/pgm.h. */
#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
#endif
/** @} */
/** @name Defines used to indicate the shadow and guest paging in the templates.
* @{ */
#define PGM_TYPE_REAL 1
#define PGM_TYPE_PROT 2
#define PGM_TYPE_32BIT 3
#define PGM_TYPE_PAE 4
#define PGM_TYPE_AMD64 5
#define PGM_TYPE_NESTED 6
#define PGM_TYPE_EPT 7
#define PGM_TYPE_MAX PGM_TYPE_EPT
/** @} */
/** Macro for checking if the guest is using paging.
* @param uGstType PGM_TYPE_*
* @param uShwType PGM_TYPE_*
* @remark ASSUMES certain order of the PGM_TYPE_* values.
*/
#define PGM_WITH_PAGING(uGstType, uShwType) \
( (uGstType) >= PGM_TYPE_32BIT \
&& (uShwType) != PGM_TYPE_NESTED \
&& (uShwType) != PGM_TYPE_EPT)
/** Macro for checking if the guest supports the NX bit.
* @param uGstType PGM_TYPE_*
* @param uShwType PGM_TYPE_*
* @remark ASSUMES certain order of the PGM_TYPE_* values.
*/
#define PGM_WITH_NX(uGstType, uShwType) \
( (uGstType) >= PGM_TYPE_PAE \
&& (uShwType) != PGM_TYPE_NESTED \
&& (uShwType) != PGM_TYPE_EPT)
/** @def PGM_HCPHYS_2_PTR
* Maps a HC physical page pool address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The current CPU.
* @param HCPhys The HC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast
* this.
*
* @remark Use with care as we don't have so much dynamic mapping space in
* ring-0 on 32-bit darwin and in RC.
* @remark There is no need to assert on the result.
*/
#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
# define PGM_HCPHYS_2_PTR(pVM, pVCpu, HCPhys, ppv) \
pgmRZDynMapHCPageInlined(pVCpu, HCPhys, (void **)(ppv) RTLOG_COMMA_SRC_POS)
#else
# define PGM_HCPHYS_2_PTR(pVM, pVCpu, HCPhys, ppv) \
MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
#endif
/** @def PGM_GCPHYS_2_PTR_V2
* Maps a GC physical page address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The current CPU.
* @param GCPhys The GC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark Use with care as we don't have so much dynamic mapping space in
* ring-0 on 32-bit darwin and in RC.
* @remark There is no need to assert on the result.
*/
#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
# define PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhys, ppv) \
pgmRZDynMapGCPageV2Inlined(pVM, pVCpu, GCPhys, (void **)(ppv) RTLOG_COMMA_SRC_POS)
#else
# define PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhys, ppv) \
pgmPhysGCPhys2R3Ptr(pVM, GCPhys, (PRTR3PTR)(ppv)) /** @todo this isn't asserting! */
#endif
/** @def PGM_GCPHYS_2_PTR
* Maps a GC physical page address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param GCPhys The GC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark Use with care as we don't have so much dynamic mapping space in
* ring-0 on 32-bit darwin and in RC.
* @remark There is no need to assert on the result.
*/
#define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGM_GCPHYS_2_PTR_V2(pVM, VMMGetCpu(pVM), GCPhys, ppv)
/** @def PGM_GCPHYS_2_PTR_BY_VMCPU
* Maps a GC physical page address to a virtual address.
*
* @returns VBox status code.
* @param pVCpu The current CPU.
* @param GCPhys The GC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark Use with care as we don't have so much dynamic mapping space in
* ring-0 on 32-bit darwin and in RC.
* @remark There is no need to assert on the result.
*/
#define PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GCPhys, ppv) PGM_GCPHYS_2_PTR_V2((pVCpu)->CTX_SUFF(pVM), pVCpu, GCPhys, ppv)
/** @def PGM_GCPHYS_2_PTR_EX
* Maps a unaligned GC physical page address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param GCPhys The GC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark Use with care as we don't have so much dynamic mapping space in
* ring-0 on 32-bit darwin and in RC.
* @remark There is no need to assert on the result.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
pgmRZDynMapGCPageOffInlined(VMMGetCpu(pVM), GCPhys, (void **)(ppv) RTLOG_COMMA_SRC_POS)
#else
# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
pgmPhysGCPhys2R3Ptr(pVM, GCPhys, (PRTR3PTR)(ppv)) /** @todo this isn't asserting! */
#endif
/** @def PGM_DYNMAP_UNUSED_HINT
* Hints to the dynamic mapping code in RC and R0/darwin that the specified page
* is no longer used.
*
* For best effect only apply this to the page that was mapped most recently.
*
* @param pVCpu The current CPU.
* @param pvPage The pool page.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# ifdef LOG_ENABLED
# define PGM_DYNMAP_UNUSED_HINT(pVCpu, pvPage) pgmRZDynMapUnusedHint(pVCpu, pvPage, RT_SRC_POS)
# else
# define PGM_DYNMAP_UNUSED_HINT(pVCpu, pvPage) pgmRZDynMapUnusedHint(pVCpu, pvPage)
# endif
#else
# define PGM_DYNMAP_UNUSED_HINT(pVCpu, pvPage) do {} while (0)
#endif
/** @def PGM_DYNMAP_UNUSED_HINT_VM
* Hints to the dynamic mapping code in RC and R0/darwin that the specified page
* is no longer used.
*
* For best effect only apply this to the page that was mapped most recently.
*
* @param pVM The VM handle.
* @param pvPage The pool page.
*/
#define PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvPage) PGM_DYNMAP_UNUSED_HINT(VMMGetCpu(pVM), pvPage)
/** @def PGM_INVL_PG
* Invalidates a page.
*
* @param pVCpu The VMCPU handle.
* @param GCVirt The virtual address of the page to invalidate.
*/
#ifdef IN_RC
# define PGM_INVL_PG(pVCpu, GCVirt) ASMInvalidatePage((void *)(uintptr_t)(GCVirt))
#elif defined(IN_RING0)
# define PGM_INVL_PG(pVCpu, GCVirt) HWACCMInvalidatePage(pVCpu, (RTGCPTR)(GCVirt))
#else
# define PGM_INVL_PG(pVCpu, GCVirt) HWACCMInvalidatePage(pVCpu, (RTGCPTR)(GCVirt))
#endif
/** @def PGM_INVL_PG_ALL_VCPU
* Invalidates a page on all VCPUs
*
* @param pVM The VM handle.
* @param GCVirt The virtual address of the page to invalidate.
*/
#ifdef IN_RC
# define PGM_INVL_PG_ALL_VCPU(pVM, GCVirt) ASMInvalidatePage((void *)(uintptr_t)(GCVirt))
#elif defined(IN_RING0)
# define PGM_INVL_PG_ALL_VCPU(pVM, GCVirt) HWACCMInvalidatePageOnAllVCpus(pVM, (RTGCPTR)(GCVirt))
#else
# define PGM_INVL_PG_ALL_VCPU(pVM, GCVirt) HWACCMInvalidatePageOnAllVCpus(pVM, (RTGCPTR)(GCVirt))
#endif
/** @def PGM_INVL_BIG_PG
* Invalidates a 4MB page directory entry.
*
* @param pVCpu The VMCPU handle.
* @param GCVirt The virtual address within the page directory to invalidate.
*/
#ifdef IN_RC
# define PGM_INVL_BIG_PG(pVCpu, GCVirt) ASMReloadCR3()
#elif defined(IN_RING0)
# define PGM_INVL_BIG_PG(pVCpu, GCVirt) HWACCMFlushTLB(pVCpu)
#else
# define PGM_INVL_BIG_PG(pVCpu, GCVirt) HWACCMFlushTLB(pVCpu)
#endif
/** @def PGM_INVL_VCPU_TLBS()
* Invalidates the TLBs of the specified VCPU
*
* @param pVCpu The VMCPU handle.
*/
#ifdef IN_RC
# define PGM_INVL_VCPU_TLBS(pVCpu) ASMReloadCR3()
#elif defined(IN_RING0)
# define PGM_INVL_VCPU_TLBS(pVCpu) HWACCMFlushTLB(pVCpu)
#else
# define PGM_INVL_VCPU_TLBS(pVCpu) HWACCMFlushTLB(pVCpu)
#endif
/** @def PGM_INVL_ALL_VCPU_TLBS()
* Invalidates the TLBs of all VCPUs
*
* @param pVM The VM handle.
*/
#ifdef IN_RC
# define PGM_INVL_ALL_VCPU_TLBS(pVM) ASMReloadCR3()
#elif defined(IN_RING0)
# define PGM_INVL_ALL_VCPU_TLBS(pVM) HWACCMFlushTLBOnAllVCpus(pVM)
#else
# define PGM_INVL_ALL_VCPU_TLBS(pVM) HWACCMFlushTLBOnAllVCpus(pVM)
#endif
/** @name Safer Shadow PAE PT/PTE
* For helping avoid misinterpreting invalid PAE/AMD64 page table entries as
* present.
*
* @{
*/
#if 1
/**
* For making sure that u1Present and X86_PTE_P checks doesn't mistake
* invalid entries for present.
* @sa X86PTEPAE.
*/
typedef union PGMSHWPTEPAE
{
/** Unsigned integer view */
X86PGPAEUINT uCareful;
/* Not other views. */
} PGMSHWPTEPAE;
# define PGMSHWPTEPAE_IS_P(Pte) ( ((Pte).uCareful & (X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == X86_PTE_P )
# define PGMSHWPTEPAE_IS_RW(Pte) ( !!((Pte).uCareful & X86_PTE_RW))
# define PGMSHWPTEPAE_IS_US(Pte) ( !!((Pte).uCareful & X86_PTE_US))
# define PGMSHWPTEPAE_IS_A(Pte) ( !!((Pte).uCareful & X86_PTE_A))
# define PGMSHWPTEPAE_IS_D(Pte) ( !!((Pte).uCareful & X86_PTE_D))
# define PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte) ( !!((Pte).uCareful & PGM_PTFLAGS_TRACK_DIRTY) )
# define PGMSHWPTEPAE_IS_P_RW(Pte) ( ((Pte).uCareful & (X86_PTE_P | X86_PTE_RW | X86_PTE_PAE_MBZ_MASK_NX)) == (X86_PTE_P | X86_PTE_RW) )
# define PGMSHWPTEPAE_GET_LOG(Pte) ( (Pte).uCareful )
# define PGMSHWPTEPAE_GET_HCPHYS(Pte) ( (Pte).uCareful & X86_PTE_PAE_PG_MASK )
# define PGMSHWPTEPAE_GET_U(Pte) ( (Pte).uCareful ) /**< Use with care. */
# define PGMSHWPTEPAE_SET(Pte, uVal) do { (Pte).uCareful = (uVal); } while (0)
# define PGMSHWPTEPAE_SET2(Pte, Pte2) do { (Pte).uCareful = (Pte2).uCareful; } while (0)
# define PGMSHWPTEPAE_ATOMIC_SET(Pte, uVal) do { ASMAtomicWriteU64(&(Pte).uCareful, (uVal)); } while (0)
# define PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).uCareful, (Pte2).uCareful); } while (0)
# define PGMSHWPTEPAE_SET_RO(Pte) do { (Pte).uCareful &= ~(X86PGPAEUINT)X86_PTE_RW; } while (0)
# define PGMSHWPTEPAE_SET_RW(Pte) do { (Pte).uCareful |= X86_PTE_RW; } while (0)
/**
* For making sure that u1Present and X86_PTE_P checks doesn't mistake
* invalid entries for present.
* @sa X86PTPAE.
*/
typedef struct PGMSHWPTPAE
{
PGMSHWPTEPAE a[X86_PG_PAE_ENTRIES];
} PGMSHWPTPAE;
#else
typedef X86PTEPAE PGMSHWPTEPAE;
typedef X86PTPAE PGMSHWPTPAE;
# define PGMSHWPTEPAE_IS_P(Pte) ( (Pte).n.u1Present )
# define PGMSHWPTEPAE_IS_RW(Pte) ( (Pte).n.u1Write )
# define PGMSHWPTEPAE_IS_US(Pte) ( (Pte).n.u1User )
# define PGMSHWPTEPAE_IS_A(Pte) ( (Pte).n.u1Accessed )
# define PGMSHWPTEPAE_IS_D(Pte) ( (Pte).n.u1Dirty )
# define PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte) ( !!((Pte).u & PGM_PTFLAGS_TRACK_DIRTY) )
# define PGMSHWPTEPAE_IS_P_RW(Pte) ( ((Pte).u & (X86_PTE_P | X86_PTE_RW)) == (X86_PTE_P | X86_PTE_RW) )
# define PGMSHWPTEPAE_GET_LOG(Pte) ( (Pte).u )
# define PGMSHWPTEPAE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PAE_PG_MASK )
# define PGMSHWPTEPAE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */
# define PGMSHWPTEPAE_SET(Pte, uVal) do { (Pte).u = (uVal); } while (0)
# define PGMSHWPTEPAE_SET2(Pte, Pte2) do { (Pte).u = (Pte2).u; } while (0)
# define PGMSHWPTEPAE_ATOMIC_SET(Pte, uVal) do { ASMAtomicWriteU64(&(Pte).u, (uVal)); } while (0)
# define PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).u, (Pte2).u); } while (0)
# define PGMSHWPTEPAE_SET_RO(Pte) do { (Pte).u &= ~(X86PGPAEUINT)X86_PTE_RW; } while (0)
# define PGMSHWPTEPAE_SET_RW(Pte) do { (Pte).u |= X86_PTE_RW; } while (0)
#endif
/** Pointer to a shadow PAE PTE. */
typedef PGMSHWPTEPAE *PPGMSHWPTEPAE;
/** Pointer to a const shadow PAE PTE. */
typedef PGMSHWPTEPAE const *PCPGMSHWPTEPAE;
/** Pointer to a shadow PAE page table. */
typedef PGMSHWPTPAE *PPGMSHWPTPAE;
/** Pointer to a const shadow PAE page table. */
typedef PGMSHWPTPAE const *PCPGMSHWPTPAE;
/** @} */
/** Size of the GCPtrConflict array in PGMMAPPING.
* @remarks Must be a power of two. */
#define PGMMAPPING_CONFLICT_MAX 8
/**
* Structure for tracking GC Mappings.
*
* This structure is used by linked list in both GC and HC.
*/
typedef struct PGMMAPPING
{
/** Pointer to next entry. */
R3PTRTYPE(struct PGMMAPPING *) pNextR3;
/** Pointer to next entry. */
R0PTRTYPE(struct PGMMAPPING *) pNextR0;
/** Pointer to next entry. */
RCPTRTYPE(struct PGMMAPPING *) pNextRC;
/** Indicate whether this entry is finalized. */
bool fFinalized;
/** Start Virtual address. */
RTGCPTR GCPtr;
/** Last Virtual address (inclusive). */
RTGCPTR GCPtrLast;
/** Range size (bytes). */
RTGCPTR cb;
/** Pointer to relocation callback function. */
R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
/** User argument to the callback. */
R3PTRTYPE(void *) pvUser;
/** Mapping description / name. For easing debugging. */
R3PTRTYPE(const char *) pszDesc;
/** Last 8 addresses that caused conflicts. */
RTGCPTR aGCPtrConflicts[PGMMAPPING_CONFLICT_MAX];
/** Number of conflicts for this hypervisor mapping. */
uint32_t cConflicts;
/** Number of page tables. */
uint32_t cPTs;
/** Array of page table mapping data. Each entry
* describes one page table. The array can be longer
* than the declared length.
*/
struct
{
/** The HC physical address of the page table. */
RTHCPHYS HCPhysPT;
/** The HC physical address of the first PAE page table. */
RTHCPHYS HCPhysPaePT0;
/** The HC physical address of the second PAE page table. */
RTHCPHYS HCPhysPaePT1;
/** The HC virtual address of the 32-bit page table. */
R3PTRTYPE(PX86PT) pPTR3;
/** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
R3PTRTYPE(PPGMSHWPTPAE) paPaePTsR3;
/** The RC virtual address of the 32-bit page table. */
RCPTRTYPE(PX86PT) pPTRC;
/** The RC virtual address of the two PAE page table. */
RCPTRTYPE(PPGMSHWPTPAE) paPaePTsRC;
/** The R0 virtual address of the 32-bit page table. */
R0PTRTYPE(PX86PT) pPTR0;
/** The R0 virtual address of the two PAE page table. */
R0PTRTYPE(PPGMSHWPTPAE) paPaePTsR0;
} aPTs[1];
} PGMMAPPING;
/** Pointer to structure for tracking GC Mappings. */
typedef struct PGMMAPPING *PPGMMAPPING;
/**
* Physical page access handler structure.
*
* This is used to keep track of physical address ranges
* which are being monitored in some kind of way.
*/
typedef struct PGMPHYSHANDLER
{
AVLROGCPHYSNODECORE Core;
/** Access type. */
PGMPHYSHANDLERTYPE enmType;
/** Number of pages to update. */
uint32_t cPages;
/** Set if we have pages that have been aliased. */
uint32_t cAliasedPages;
/** Set if we have pages that have temporarily been disabled. */
uint32_t cTmpOffPages;
/** Pointer to R3 callback function. */
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
/** User argument for R3 handlers. */
R3PTRTYPE(void *) pvUserR3;
/** Pointer to R0 callback function. */
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
/** User argument for R0 handlers. */
R0PTRTYPE(void *) pvUserR0;
/** Pointer to RC callback function. */
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
/** User argument for RC handlers. */
RCPTRTYPE(void *) pvUserRC;
/** Description / Name. For easing debugging. */
R3PTRTYPE(const char *) pszDesc;
#ifdef VBOX_WITH_STATISTICS
/** Profiling of this handler. */
STAMPROFILE Stat;
#endif
} PGMPHYSHANDLER;
/** Pointer to a physical page access handler structure. */
typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
/**
* Cache node for the physical addresses covered by a virtual handler.
*/
typedef struct PGMPHYS2VIRTHANDLER
{
/** Core node for the tree based on physical ranges. */
AVLROGCPHYSNODECORE Core;
/** Offset from this struct to the PGMVIRTHANDLER structure. */
int32_t offVirtHandler;
/** Offset of the next alias relative to this one.
* Bit 0 is used for indicating whether we're in the tree.
* Bit 1 is used for indicating that we're the head node.
*/
int32_t offNextAlias;
} PGMPHYS2VIRTHANDLER;
/** Pointer to a phys to virtual handler structure. */
typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
* node is in the tree. */
#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
* node is in the head of an alias chain.
* The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
/**
* Virtual page access handler structure.
*
* This is used to keep track of virtual address ranges
* which are being monitored in some kind of way.
*/
typedef struct PGMVIRTHANDLER
{
/** Core node for the tree based on virtual ranges. */
AVLROGCPTRNODECORE Core;
/** Size of the range (in bytes). */
RTGCPTR cb;
/** Number of cache pages. */
uint32_t cPages;
/** Access type. */
PGMVIRTHANDLERTYPE enmType;
/** Pointer to the RC callback function. */
RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
#if HC_ARCH_BITS == 64
RTRCPTR padding;
#endif
/** Pointer to the R3 callback function for invalidation. */
R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
/** Pointer to the R3 callback function. */
R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
/** Description / Name. For easing debugging. */
R3PTRTYPE(const char *) pszDesc;
#ifdef VBOX_WITH_STATISTICS
/** Profiling of this handler. */
STAMPROFILE Stat;
#endif
/** Array of cached physical addresses for the monitored ranged. */
PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
} PGMVIRTHANDLER;
/** Pointer to a virtual page access handler structure. */
typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
/** @name Page type predicates.
* @{ */
#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
/** @} */
/**
* A Physical Guest Page tracking structure.
*
* The format of this structure is complicated because we have to fit a lot
* of information into as few bits as possible. The format is also subject
* to change (there is one coming up soon). Which means that for we'll be
* using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
* accesses to the structure.
*/
typedef union PGMPAGE
{
/** Structured view. */
struct
{
/** 1:0 - The physical handler state (PGM_PAGE_HNDL_PHYS_STATE_*). */
uint64_t u2HandlerPhysStateY : 2;
/** 3:2 - Paging structure needed to map the page
* (PGM_PAGE_PDE_TYPE_*). */
uint64_t u2PDETypeY : 2;
/** 4 - Indicator of dirty page for fault tolerance tracking. */
uint64_t fFTDirtyY : 1;
/** 5 - Flag indicating that a write monitored page was written to
* when set. */
uint64_t fWrittenToY : 1;
/** 7:6 - Unused. */
uint64_t u2Unused0 : 2;
/** 9:8 - The physical handler state (PGM_PAGE_HNDL_VIRT_STATE_*). */
uint64_t u2HandlerVirtStateY : 2;
/** 11:10 - Unused. */
uint64_t u2Unused1 : 2;
/** 12:48 - The host physical frame number (shift left to get the
* address). */
uint64_t HCPhysFN : 36;
/** 50:48 - The page state. */
uint64_t uStateY : 3;
/** 51:53 - The page type (PGMPAGETYPE). */
uint64_t uTypeY : 3;
/** 63:54 - PTE index for usage tracking (page pool). */
uint64_t u10PteIdx : 10;
/** The GMM page ID. */
uint32_t idPage;
/** Usage tracking (page pool). */
uint16_t u16TrackingY;
/** The number of read locks on this page. */
uint8_t cReadLocksY;
/** The number of write locks on this page. */
uint8_t cWriteLocksY;
} s;
/** 64-bit integer view. */
uint64_t au64[2];
/** 16-bit view. */
uint32_t au32[4];
/** 16-bit view. */
uint16_t au16[8];
/** 8-bit view. */
uint8_t au8[16];
} PGMPAGE;
AssertCompileSize(PGMPAGE, 16);
/** Pointer to a physical guest page. */
typedef PGMPAGE *PPGMPAGE;
/** Pointer to a const physical guest page. */
typedef const PGMPAGE *PCPGMPAGE;
/** Pointer to a physical guest page pointer. */
typedef PPGMPAGE *PPPGMPAGE;
/**
* Clears the page structure.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_CLEAR(a_pPage) \
do { \
(a_pPage)->au64[0] = 0; \
(a_pPage)->au64[1] = 0; \
} while (0)
/**
* Initializes the page structure.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_INIT(a_pPage, a_HCPhys, a_idPage, a_uType, a_uState) \
do { \
RTHCPHYS SetHCPhysTmp = (a_HCPhys); \
AssertFatal(!(SetHCPhysTmp & ~UINT64_C(0x0000fffffffff000))); \
(a_pPage)->au64[0] = SetHCPhysTmp; \
(a_pPage)->au64[1] = 0; \
(a_pPage)->s.idPage = (a_idPage); \
(a_pPage)->s.uStateY = (a_uState); \
(a_pPage)->s.uTypeY = (a_uType); \
} while (0)
/**
* Initializes the page structure of a ZERO page.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_pVM The VM handle (for getting the zero page address).
* @param a_uType The page type (PGMPAGETYPE).
*/
#define PGM_PAGE_INIT_ZERO(a_pPage, a_pVM, a_uType) \
PGM_PAGE_INIT((a_pPage), (a_pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (a_uType), PGM_PAGE_STATE_ZERO)
/** @name The Page state, PGMPAGE::uStateY.
* @{ */
/** The zero page.
* This is a per-VM page that's never ever mapped writable. */
#define PGM_PAGE_STATE_ZERO 0
/** A allocated page.
* This is a per-VM page allocated from the page pool (or wherever
* we get MMIO2 pages from if the type is MMIO2).
*/
#define PGM_PAGE_STATE_ALLOCATED 1
/** A allocated page that's being monitored for writes.
* The shadow page table mappings are read-only. When a write occurs, the
* fWrittenTo member is set, the page remapped as read-write and the state
* moved back to allocated. */
#define PGM_PAGE_STATE_WRITE_MONITORED 2
/** The page is shared, aka. copy-on-write.
* This is a page that's shared with other VMs. */
#define PGM_PAGE_STATE_SHARED 3
/** The page is ballooned, so no longer available for this VM. */
#define PGM_PAGE_STATE_BALLOONED 4
/** @} */
/** Asserts lock ownership in some of the PGM_PAGE_XXX macros. */
#if defined(VBOX_STRICT) && 0 /** @todo triggers in pgmRZDynMapGCPageV2Inlined */
# define PGM_PAGE_ASSERT_LOCK(a_pVM) PGM_LOCK_ASSERT_OWNER(a_pVM)
#else
# define PGM_PAGE_ASSERT_LOCK(a_pVM) do { } while (0)
#endif
/**
* Gets the page state.
* @returns page state (PGM_PAGE_STATE_*).
* @param a_pPage Pointer to the physical guest page tracking structure.
*
* @remarks See PGM_PAGE_GET_HCPHYS_NA for remarks about GCC and strict
* builds.
*/
#define PGM_PAGE_GET_STATE_NA(a_pPage) ( (a_pPage)->s.uStateY )
#if defined(__GNUC__) && defined(VBOX_STRICT)
# define PGM_PAGE_GET_STATE(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_STATE_NA(a_pPage); })
#else
# define PGM_PAGE_GET_STATE PGM_PAGE_GET_STATE_NA
#endif
/**
* Sets the page state.
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_uState The new page state.
*/
#define PGM_PAGE_SET_STATE(a_pVM, a_pPage, a_uState) \
do { (a_pPage)->s.uStateY = (a_uState); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0)
/**
* Gets the host physical address of the guest page.
* @returns host physical address (RTHCPHYS).
* @param a_pPage Pointer to the physical guest page tracking structure.
*
* @remarks In strict builds on gcc platforms, this macro will make some ugly
* assumption about a valid pVM variable/parameter being in the
* current context. It will use this pVM variable to assert that the
* PGM lock is held. Use the PGM_PAGE_GET_HCPHYS_NA in contexts where
* pVM is not around.
*/
#if 0
# define PGM_PAGE_GET_HCPHYS_NA(a_pPage) ( (a_pPage)->s.HCPhysFN << 12 )
# define PGM_PAGE_GET_HCPHYS PGM_PAGE_GET_HCPHYS_NA
#else
# define PGM_PAGE_GET_HCPHYS_NA(a_pPage) ( (a_pPage)->au64[0] & UINT64_C(0x0000fffffffff000) )
# if defined(__GNUC__) && defined(VBOX_STRICT)
# define PGM_PAGE_GET_HCPHYS(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_HCPHYS_NA(a_pPage); })
# else
# define PGM_PAGE_GET_HCPHYS PGM_PAGE_GET_HCPHYS_NA
# endif
#endif
/**
* Sets the host physical address of the guest page.
*
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_HCPhys The new host physical address.
*/
#define PGM_PAGE_SET_HCPHYS(a_pVM, a_pPage, a_HCPhys) \
do { \
RTHCPHYS const SetHCPhysTmp = (a_HCPhys); \
AssertFatal(!(SetHCPhysTmp & ~UINT64_C(0x0000fffffffff000))); \
(a_pPage)->s.HCPhysFN = SetHCPhysTmp >> 12; \
PGM_PAGE_ASSERT_LOCK(a_pVM); \
} while (0)
/**
* Get the Page ID.
* @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_PAGEID(a_pPage) ( (uint32_t)(a_pPage)->s.idPage )
/**
* Sets the Page ID.
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_idPage The new page ID.
*/
#define PGM_PAGE_SET_PAGEID(a_pVM, a_pPage, a_idPage) \
do { \
(a_pPage)->s.idPage = (a_idPage); \
PGM_PAGE_ASSERT_LOCK(a_pVM); \
} while (0)
/**
* Get the Chunk ID.
* @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_CHUNKID(a_pPage) ( PGM_PAGE_GET_PAGEID(a_pPage) >> GMM_CHUNKID_SHIFT )
/**
* Get the index of the page within the allocation chunk.
* @returns The page index.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_PAGE_IN_CHUNK(a_pPage) ( PGM_PAGE_GET_PAGEID(a_pPage) & GMM_PAGEID_IDX_MASK )
/**
* Gets the page type.
* @returns The page type.
* @param a_pPage Pointer to the physical guest page tracking structure.
*
* @remarks See PGM_PAGE_GET_HCPHYS_NA for remarks about GCC and strict
* builds.
*/
#define PGM_PAGE_GET_TYPE_NA(a_pPage) ( (a_pPage)->s.uTypeY )
#if defined(__GNUC__) && defined(VBOX_STRICT)
# define PGM_PAGE_GET_TYPE(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_TYPE_NA(a_pPage); })
#else
# define PGM_PAGE_GET_TYPE PGM_PAGE_GET_TYPE_NA
#endif
/**
* Sets the page type.
*
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_enmType The new page type (PGMPAGETYPE).
*/
#define PGM_PAGE_SET_TYPE(a_pVM, a_pPage, a_enmType) \
do { (a_pPage)->s.uTypeY = (a_enmType); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0)
/**
* Gets the page table index
* @returns The page table index.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_PTE_INDEX(a_pPage) ( (a_pPage)->s.u10PteIdx )
/**
* Sets the page table index.
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_iPte New page table index.
*/
#define PGM_PAGE_SET_PTE_INDEX(a_pVM, a_pPage, a_iPte) \
do { (a_pPage)->s.u10PteIdx = (a_iPte); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0)
/**
* Checks if the page is marked for MMIO.
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_MMIO(a_pPage) ( (a_pPage)->s.uTypeY == PGMPAGETYPE_MMIO )
/**
* Checks if the page is backed by the ZERO page.
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_ZERO(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_ZERO )
/**
* Checks if the page is backed by a SHARED page.
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_SHARED(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_SHARED )
/**
* Checks if the page is ballooned.
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_BALLOONED(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_BALLOONED )
/**
* Checks if the page is allocated.
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_ALLOCATED(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_ALLOCATED )
/**
* Marks the page as written to (for GMM change monitoring).
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_SET_WRITTEN_TO(a_pVM, a_pPage) \
do { (a_pPage)->au8[1] |= UINT8_C(0x80); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /// FIXME FIXME
/**
* Clears the written-to indicator.
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_CLEAR_WRITTEN_TO(a_pVM, a_pPage) \
do { (a_pPage)->s.fWrittenToY = 0; PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0)
/**
* Checks if the page was marked as written-to.
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_WRITTEN_TO(a_pPage) ( (a_pPage)->s.fWrittenToY )
/**
* Marks the page as dirty for FTM
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_SET_FT_DIRTY(a_pPage) do { (a_pPage)->s.fFTDirtyY = 1; } while (0)
/**
* Clears the FTM dirty indicator
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_CLEAR_FT_DIRTY(a_pPage) do { (a_pPage)->s.fFTDirtyY = 0; } while (0)
/**
* Checks if the page was marked as dirty for FTM
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_FT_DIRTY(a_pPage) ( (a_pPage)->s.fFTDirtyY )
/** @name PT usage values (PGMPAGE::u2PDEType).
*
* @{ */
/** Either as a PT or PDE. */
#define PGM_PAGE_PDE_TYPE_DONTCARE 0
/** Must use a page table to map the range. */
#define PGM_PAGE_PDE_TYPE_PT 1
/** Can use a page directory entry to map the continuous range. */
#define PGM_PAGE_PDE_TYPE_PDE 2
/** Can use a page directory entry to map the continuous range - temporarily disabled (by page monitoring). */
#define PGM_PAGE_PDE_TYPE_PDE_DISABLED 3
/** @} */
/**
* Set the PDE type of the page
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_uType PGM_PAGE_PDE_TYPE_*.
*/
#define PGM_PAGE_SET_PDE_TYPE(a_pVM, a_pPage, a_uType) \
do { (a_pPage)->s.u2PDETypeY = (a_uType); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0)
/**
* Checks if the page was marked being part of a large page
* @returns true/false.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_PDE_TYPE(a_pPage) ( (a_pPage)->s.u2PDETypeY )
/** Enabled optimized access handler tests.
* These optimizations makes ASSUMPTIONS about the state values and the s1
* layout. When enabled, the compiler should normally generate more compact
* code.
*/
#define PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS 1
/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateY).
*
* @remarks The values are assigned in order of priority, so we can calculate
* the correct state for a page with different handlers installed.
* @{ */
/** No handler installed. */
#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
/** Monitoring is temporarily disabled. */
#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
/** Write access is monitored. */
#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
/** All access is monitored. */
#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
/** @} */
/**
* Gets the physical access handler state of a page.
* @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) ( (a_pPage)->s.u2HandlerPhysStateY )
/**
* Sets the physical access handler state of a page.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_uState The new state value.
*/
#define PGM_PAGE_SET_HNDL_PHYS_STATE(a_pPage, a_uState) \
do { (a_pPage)->s.u2HandlerPhysStateY = (a_uState); } while (0)
/**
* Checks if the page has any physical access handlers, including temporarily disabled ones.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(a_pPage) \
( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE )
/**
* Checks if the page has any active physical access handlers.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(a_pPage) \
( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateY).
*
* @remarks The values are assigned in order of priority, so we can calculate
* the correct state for a page with different handlers installed.
* @{ */
/** No handler installed. */
#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
/* 1 is reserved so the lineup is identical with the physical ones. */
/** Write access is monitored. */
#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
/** All access is monitored. */
#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
/** @} */
/**
* Gets the virtual access handler state of a page.
* @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) ( (a_pPage)->s.u2HandlerVirtStateY )
/**
* Sets the virtual access handler state of a page.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_uState The new state value.
*/
#define PGM_PAGE_SET_HNDL_VIRT_STATE(a_pPage, a_uState) \
do { (a_pPage)->s.u2HandlerVirtStateY = (a_uState); } while (0)
/**
* Checks if the page has any virtual access handlers.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(a_pPage) \
( PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) != PGM_PAGE_HNDL_VIRT_STATE_NONE )
/**
* Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
* virtual handlers.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(a_pPage) \
PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(a_pPage)
/**
* Checks if the page has any access handlers, including temporarily disabled ones.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#ifdef PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS
# define PGM_PAGE_HAS_ANY_HANDLERS(a_pPage) \
( ((a_pPage)->au32[0] & UINT16_C(0x0303)) != 0 )
#else
# define PGM_PAGE_HAS_ANY_HANDLERS(a_pPage) \
( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE \
|| PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) != PGM_PAGE_HNDL_VIRT_STATE_NONE )
#endif
/**
* Checks if the page has any active access handlers.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#ifdef PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS
# define PGM_PAGE_HAS_ACTIVE_HANDLERS(a_pPage) \
( ((a_pPage)->au32[0] & UINT16_C(0x0202)) != 0 )
#else
# define PGM_PAGE_HAS_ACTIVE_HANDLERS(a_pPage) \
( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
|| PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
#endif
/**
* Checks if the page has any active access handlers catching all accesses.
* @returns true/false
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#ifdef PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS
# define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(a_pPage) \
( ( ((a_pPage)->au8[0] | (a_pPage)->au8[1]) & UINT8_C(0x3) ) \
== PGM_PAGE_HNDL_PHYS_STATE_ALL )
#else
# define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(a_pPage) \
( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL \
|| PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL )
#endif
/** @def PGM_PAGE_GET_TRACKING
* Gets the packed shadow page pool tracking data associated with a guest page.
* @returns uint16_t containing the data.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_TRACKING_NA(a_pPage) ( (a_pPage)->s.u16TrackingY )
#if defined(__GNUC__) && defined(VBOX_STRICT)
# define PGM_PAGE_GET_TRACKING(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_TRACKING_NA(a_pPage); })
#else
# define PGM_PAGE_GET_TRACKING PGM_PAGE_GET_TRACKING_NA
#endif
/** @def PGM_PAGE_SET_TRACKING
* Sets the packed shadow page pool tracking data associated with a guest page.
* @param a_pVM The VM handle, only used for lock ownership assertions.
* @param a_pPage Pointer to the physical guest page tracking structure.
* @param a_u16TrackingData The tracking data to store.
*/
#define PGM_PAGE_SET_TRACKING(a_pVM, a_pPage, a_u16TrackingData) \
do { (a_pPage)->s.u16TrackingY = (a_u16TrackingData); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0)
/** @def PGM_PAGE_GET_TD_CREFS
* Gets the @a cRefs tracking data member.
* @returns cRefs.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_TD_CREFS(a_pPage) \
((PGM_PAGE_GET_TRACKING(a_pPage) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK)
#define PGM_PAGE_GET_TD_CREFS_NA(a_pPage) \
((PGM_PAGE_GET_TRACKING_NA(a_pPage) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK)
/** @def PGM_PAGE_GET_TD_IDX
* Gets the @a idx tracking data member.
* @returns idx.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_TD_IDX(a_pPage) \
((PGM_PAGE_GET_TRACKING(a_pPage) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK)
#define PGM_PAGE_GET_TD_IDX_NA(a_pPage) \
((PGM_PAGE_GET_TRACKING_NA(a_pPage) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK)
/** Max number of locks on a page. */
#define PGM_PAGE_MAX_LOCKS UINT8_C(254)
/** Get the read lock count.
* @returns count.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_READ_LOCKS(a_pPage) ( (a_pPage)->s.cReadLocksY )
/** Get the write lock count.
* @returns count.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_WRITE_LOCKS(a_pPage) ( (a_pPage)->s.cWriteLocksY )
/** Decrement the read lock counter.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_DEC_READ_LOCKS(a_pPage) do { --(a_pPage)->s.cReadLocksY; } while (0)
/** Decrement the write lock counter.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_DEC_WRITE_LOCKS(a_pPage) do { --(a_pPage)->s.cWriteLocksY; } while (0)
/** Increment the read lock counter.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_INC_READ_LOCKS(a_pPage) do { ++(a_pPage)->s.cReadLocksY; } while (0)
/** Increment the write lock counter.
* @param a_pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_INC_WRITE_LOCKS(a_pPage) do { ++(a_pPage)->s.cWriteLocksY; } while (0)
#if 0
/** Enables sanity checking of write monitoring using CRC-32. */
# define PGMLIVESAVERAMPAGE_WITH_CRC32
#endif
/**
* Per page live save tracking data.
*/
typedef struct PGMLIVESAVERAMPAGE
{
/** Number of times it has been dirtied. */
uint32_t cDirtied : 24;
/** Whether it is currently dirty. */
uint32_t fDirty : 1;
/** Ignore the page.
* This is used for pages that has been MMIO, MMIO2 or ROM pages once. We will
* deal with these after pausing the VM and DevPCI have said it bit about
* remappings. */
uint32_t fIgnore : 1;
/** Was a ZERO page last time around. */
uint32_t fZero : 1;
/** Was a SHARED page last time around. */
uint32_t fShared : 1;
/** Whether the page is/was write monitored in a previous pass. */
uint32_t fWriteMonitored : 1;
/** Whether the page is/was write monitored earlier in this pass. */
uint32_t fWriteMonitoredJustNow : 1;
/** Bits reserved for future use. */
uint32_t u2Reserved : 2;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
/** CRC-32 for the page. This is for internal consistency checks. */
uint32_t u32Crc;
#endif
} PGMLIVESAVERAMPAGE;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
AssertCompileSize(PGMLIVESAVERAMPAGE, 8);
#else
AssertCompileSize(PGMLIVESAVERAMPAGE, 4);
#endif
/** Pointer to the per page live save tracking data. */
typedef PGMLIVESAVERAMPAGE *PPGMLIVESAVERAMPAGE;
/** The max value of PGMLIVESAVERAMPAGE::cDirtied. */
#define PGMLIVSAVEPAGE_MAX_DIRTIED 0x00fffff0
/**
* RAM range for GC Phys to HC Phys conversion.
*
* Can be used for HC Virt to GC Phys and HC Virt to HC Phys
* conversions too, but we'll let MM handle that for now.
*
* This structure is used by linked lists in both GC and HC.
*/
typedef struct PGMRAMRANGE
{
/** Start of the range. Page aligned. */
RTGCPHYS GCPhys;
/** Size of the range. (Page aligned of course). */
RTGCPHYS cb;
/** Pointer to the next RAM range - for R3. */
R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
/** Pointer to the next RAM range - for R0. */
R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
/** Pointer to the next RAM range - for RC. */
RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
/** PGM_RAM_RANGE_FLAGS_* flags. */
uint32_t fFlags;
/** Last address in the range (inclusive). Page aligned (-1). */
RTGCPHYS GCPhysLast;
/** Start of the HC mapping of the range. This is only used for MMIO2. */
R3PTRTYPE(void *) pvR3;
/** Live save per page tracking data. */
R3PTRTYPE(PPGMLIVESAVERAMPAGE) paLSPages;
/** The range description. */
R3PTRTYPE(const char *) pszDesc;
/** Pointer to self - R0 pointer. */
R0PTRTYPE(struct PGMRAMRANGE *) pSelfR0;
/** Pointer to self - RC pointer. */
RCPTRTYPE(struct PGMRAMRANGE *) pSelfRC;
/** Alignment padding. */
RTRCPTR Alignment0;
/** Pointer to the left search three node - ring-3 context. */
R3PTRTYPE(struct PGMRAMRANGE *) pLeftR3;
/** Pointer to the right search three node - ring-3 context. */
R3PTRTYPE(struct PGMRAMRANGE *) pRightR3;
/** Pointer to the left search three node - ring-0 context. */
R0PTRTYPE(struct PGMRAMRANGE *) pLeftR0;
/** Pointer to the right search three node - ring-0 context. */
R0PTRTYPE(struct PGMRAMRANGE *) pRightR0;
/** Pointer to the left search three node - raw-mode context. */
RCPTRTYPE(struct PGMRAMRANGE *) pLeftRC;
/** Pointer to the right search three node - raw-mode context. */
RCPTRTYPE(struct PGMRAMRANGE *) pRightRC;
/** Padding to make aPage aligned on sizeof(PGMPAGE). */
#if HC_ARCH_BITS == 32
uint32_t au32Alignment2[HC_ARCH_BITS == 32 ? 2 : 0];
#endif
/** Array of physical guest page tracking structures. */
PGMPAGE aPages[1];
} PGMRAMRANGE;
/** Pointer to RAM range for GC Phys to HC Phys conversion. */
typedef PGMRAMRANGE *PPGMRAMRANGE;
/** @name PGMRAMRANGE::fFlags
* @{ */
/** The RAM range is floating around as an independent guest mapping. */
#define PGM_RAM_RANGE_FLAGS_FLOATING RT_BIT(20)
/** Ad hoc RAM range for an ROM mapping. */
#define PGM_RAM_RANGE_FLAGS_AD_HOC_ROM RT_BIT(21)
/** Ad hoc RAM range for an MMIO mapping. */
#define PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO RT_BIT(22)
/** Ad hoc RAM range for an MMIO2 mapping. */
#define PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2 RT_BIT(23)
/** @} */
/** Tests if a RAM range is an ad hoc one or not.
* @returns true/false.
* @param pRam The RAM range.
*/
#define PGM_RAM_RANGE_IS_AD_HOC(pRam) \
(!!( (pRam)->fFlags & (PGM_RAM_RANGE_FLAGS_AD_HOC_ROM | PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO | PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2) ) )
/** The number of entries in the RAM range TLBs (there is one for each
* context). Must be a power of two. */
#define PGM_RAMRANGE_TLB_ENTRIES 8
/**
* Calculates the RAM range TLB index for the physical address.
*
* @returns RAM range TLB index.
* @param GCPhys The guest physical address.
*/
#define PGM_RAMRANGE_TLB_IDX(a_GCPhys) ( ((a_GCPhys) >> 20) & (PGM_RAMRANGE_TLB_ENTRIES - 1) )
/**
* Per page tracking structure for ROM image.
*
* A ROM image may have a shadow page, in which case we may have two pages
* backing it. This structure contains the PGMPAGE for both while
* PGMRAMRANGE have a copy of the active one. It is important that these
* aren't out of sync in any regard other than page pool tracking data.
*/
typedef struct PGMROMPAGE
{
/** The page structure for the virgin ROM page. */
PGMPAGE Virgin;
/** The page structure for the shadow RAM page. */
PGMPAGE Shadow;
/** The current protection setting. */
PGMROMPROT enmProt;
/** Live save status information. Makes use of unused alignment space. */
struct
{
/** The previous protection value. */
uint8_t u8Prot;
/** Written to flag set by the handler. */
bool fWrittenTo;
/** Whether the shadow page is dirty or not. */
bool fDirty;
/** Whether it was dirtied in the recently. */
bool fDirtiedRecently;
} LiveSave;
} PGMROMPAGE;
AssertCompileSizeAlignment(PGMROMPAGE, 8);
/** Pointer to a ROM page tracking structure. */
typedef PGMROMPAGE *PPGMROMPAGE;
/**
* A registered ROM image.
*
* This is needed to keep track of ROM image since they generally intrude
* into a PGMRAMRANGE. It also keeps track of additional info like the
* two page sets (read-only virgin and read-write shadow), the current
* state of each page.
*
* Because access handlers cannot easily be executed in a different
* context, the ROM ranges needs to be accessible and in all contexts.
*/
typedef struct PGMROMRANGE
{
/** Pointer to the next range - R3. */
R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
/** Pointer to the next range - R0. */
R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
/** Pointer to the next range - RC. */
RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
/** Pointer alignment */
RTRCPTR RCPtrAlignment;
/** Address of the range. */
RTGCPHYS GCPhys;
/** Address of the last byte in the range. */
RTGCPHYS GCPhysLast;
/** Size of the range. */
RTGCPHYS cb;
/** The flags (PGMPHYS_ROM_FLAGS_*). */
uint32_t fFlags;
/** The saved state range ID. */
uint8_t idSavedState;
/** Alignment padding. */
uint8_t au8Alignment[3];
/** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 5 : 1];
/** The size bits pvOriginal points to. */
uint32_t cbOriginal;
/** Pointer to the original bits when PGMPHYS_ROM_FLAGS_PERMANENT_BINARY was specified.
* This is used for strictness checks. */
R3PTRTYPE(const void *) pvOriginal;
/** The ROM description. */
R3PTRTYPE(const char *) pszDesc;
/** The per page tracking structures. */
PGMROMPAGE aPages[1];
} PGMROMRANGE;
/** Pointer to a ROM range. */
typedef PGMROMRANGE *PPGMROMRANGE;
/**
* Live save per page data for an MMIO2 page.
*
* Not using PGMLIVESAVERAMPAGE here because we cannot use normal write monitoring
* of MMIO2 pages. The current approach is using some optimistic SHA-1 +
* CRC-32 for detecting changes as well as special handling of zero pages. This
* is a TEMPORARY measure which isn't perfect, but hopefully it is good enough
* for speeding things up. (We're using SHA-1 and not SHA-256 or SHA-512
* because of speed (2.5x and 6x slower).)
*
* @todo Implement dirty MMIO2 page reporting that can be enabled during live
* save but normally is disabled. Since we can write monitor guest
* accesses on our own, we only need this for host accesses. Shouldn't be
* too difficult for DevVGA, VMMDev might be doable, the planned
* networking fun will be fun since it involves ring-0.
*/
typedef struct PGMLIVESAVEMMIO2PAGE
{
/** Set if the page is considered dirty. */
bool fDirty;
/** The number of scans this page has remained unchanged for.
* Only updated for dirty pages. */
uint8_t cUnchangedScans;
/** Whether this page was zero at the last scan. */
bool fZero;
/** Alignment padding. */
bool fReserved;
/** CRC-32 for the first half of the page.
* This is used together with u32CrcH2 to quickly detect changes in the page
* during the non-final passes. */
uint32_t u32CrcH1;
/** CRC-32 for the second half of the page. */
uint32_t u32CrcH2;
/** SHA-1 for the saved page.
* This is used in the final pass to skip pages without changes. */
uint8_t abSha1Saved[RTSHA1_HASH_SIZE];
} PGMLIVESAVEMMIO2PAGE;
/** Pointer to a live save status data for an MMIO2 page. */
typedef PGMLIVESAVEMMIO2PAGE *PPGMLIVESAVEMMIO2PAGE;
/**
* A registered MMIO2 (= Device RAM) range.
*
* There are a few reason why we need to keep track of these
* registrations. One of them is the deregistration & cleanup stuff,
* while another is that the PGMRAMRANGE associated with such a region may
* have to be removed from the ram range list.
*
* Overlapping with a RAM range has to be 100% or none at all. The pages
* in the existing RAM range must not be ROM nor MMIO. A guru meditation
* will be raised if a partial overlap or an overlap of ROM pages is
* encountered. On an overlap we will free all the existing RAM pages and
* put in the ram range pages instead.
*/
typedef struct PGMMMIO2RANGE
{
/** The owner of the range. (a device) */
PPDMDEVINSR3 pDevInsR3;
/** Pointer to the ring-3 mapping of the allocation. */
RTR3PTR pvR3;
/** Pointer to the next range - R3. */
R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
/** Whether it's mapped or not. */
bool fMapped;
/** Whether it's overlapping or not. */
bool fOverlapping;
/** The PCI region number.
* @remarks This ASSUMES that nobody will ever really need to have multiple
* PCI devices with matching MMIO region numbers on a single device. */
uint8_t iRegion;
/** The saved state range ID. */
uint8_t idSavedState;
/** Alignment padding for putting the ram range on a PGMPAGE alignment boundary. */
uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 12 : 12];
/** Live save per page tracking data. */
R3PTRTYPE(PPGMLIVESAVEMMIO2PAGE) paLSPages;
/** The associated RAM range. */
PGMRAMRANGE RamRange;
} PGMMMIO2RANGE;
/** Pointer to a MMIO2 range. */
typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
/**
* PGMPhysRead/Write cache entry
*/
typedef struct PGMPHYSCACHEENTRY
{
/** R3 pointer to physical page. */
R3PTRTYPE(uint8_t *) pbR3;
/** GC Physical address for cache entry */
RTGCPHYS GCPhys;
#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
RTGCPHYS u32Padding0; /**< alignment padding. */
#endif
} PGMPHYSCACHEENTRY;
/**
* PGMPhysRead/Write cache to reduce REM memory access overhead
*/
typedef struct PGMPHYSCACHE
{
/** Bitmap of valid cache entries */
uint64_t aEntries;
/** Cache entries */
PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
} PGMPHYSCACHE;
/** Pointer to an allocation chunk ring-3 mapping. */
typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
/** Pointer to an allocation chunk ring-3 mapping pointer. */
typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
/**
* Ring-3 tracking structore for an allocation chunk ring-3 mapping.
*
* The primary tree (Core) uses the chunk id as key.
*/
typedef struct PGMCHUNKR3MAP
{
/** The key is the chunk id. */
AVLU32NODECORE Core;
/** The time (ChunkR3Map.iNow) this chunk was last used. Used for unmap
* selection. */
uint32_t iLastUsed;
/** The current reference count. */
uint32_t volatile cRefs;
/** The current permanent reference count. */
uint32_t volatile cPermRefs;
/** The mapping address. */
void *pv;
} PGMCHUNKR3MAP;
/**
* Allocation chunk ring-3 mapping TLB entry.
*/
typedef struct PGMCHUNKR3MAPTLBE
{
/** The chunk id. */
uint32_t volatile idChunk;
#if HC_ARCH_BITS == 64
uint32_t u32Padding; /**< alignment padding. */
#endif
/** The chunk map. */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
#else
R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
#endif
} PGMCHUNKR3MAPTLBE;
/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
/** The number of TLB entries in PGMCHUNKR3MAPTLB.
* @remark Must be a power of two value. */
#define PGM_CHUNKR3MAPTLB_ENTRIES 64
/**
* Allocation chunk ring-3 mapping TLB.
*
* @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
* At first glance this might look kinda odd since AVL trees are
* supposed to give the most optimal lookup times of all trees
* due to their balancing. However, take a tree with 1023 nodes
* in it, that's 10 levels, meaning that most searches has to go
* down 9 levels before they find what they want. This isn't fast
* compared to a TLB hit. There is the factor of cache misses,
* and of course the problem with trees and branch prediction.
* This is why we use TLBs in front of most of the trees.
*
* @todo Generalize this TLB + AVL stuff, shouldn't be all that
* difficult when we switch to the new inlined AVL trees (from kStuff).
*/
typedef struct PGMCHUNKR3MAPTLB
{
/** The TLB entries. */
PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
} PGMCHUNKR3MAPTLB;
/**
* Calculates the index of a guest page in the Ring-3 Chunk TLB.
* @returns Chunk TLB index.
* @param idChunk The Chunk ID.
*/
#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
/**
* Ring-3 guest page mapping TLB entry.
* @remarks used in ring-0 as well at the moment.
*/
typedef struct PGMPAGER3MAPTLBE
{
/** Address of the page. */
RTGCPHYS volatile GCPhys;
/** The guest page. */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
R3PTRTYPE(PPGMPAGE) volatile pPage;
#else
R3R0PTRTYPE(PPGMPAGE) volatile pPage;
#endif
/** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
#else
R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
#endif
/** The address */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
R3PTRTYPE(void *) volatile pv;
#else
R3R0PTRTYPE(void *) volatile pv;
#endif
#if HC_ARCH_BITS == 32
uint32_t u32Padding; /**< alignment padding. */
#endif
} PGMPAGER3MAPTLBE;
/** Pointer to an entry in the HC physical TLB. */
typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
/** The number of entries in the ring-3 guest page mapping TLB.
* @remarks The value must be a power of two. */
#define PGM_PAGER3MAPTLB_ENTRIES 256
/**
* Ring-3 guest page mapping TLB.
* @remarks used in ring-0 as well at the moment.
*/
typedef struct PGMPAGER3MAPTLB
{
/** The TLB entries. */
PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
} PGMPAGER3MAPTLB;
/** Pointer to the ring-3 guest page mapping TLB. */
typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
/**
* Calculates the index of the TLB entry for the specified guest page.
* @returns Physical TLB index.
* @param GCPhys The guest physical address.
*/
#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
/**
* Raw-mode context dynamic mapping cache entry.
*
* Because of raw-mode context being reloctable and all relocations are applied
* in ring-3, this has to be defined here and be RC specific.
*
* @sa PGMRZDYNMAPENTRY, PGMR0DYNMAPENTRY.
*/
typedef struct PGMRCDYNMAPENTRY
{
/** The physical address of the currently mapped page.
* This is duplicate for three reasons: cache locality, cache policy of the PT
* mappings and sanity checks. */
RTHCPHYS HCPhys;
/** Pointer to the page. */
RTRCPTR pvPage;
/** The number of references. */
int32_t volatile cRefs;
/** PTE pointer union. */
struct PGMRCDYNMAPENTRY_PPTE
{
/** PTE pointer, 32-bit legacy version. */
RCPTRTYPE(PX86PTE) pLegacy;
/** PTE pointer, PAE version. */
RCPTRTYPE(PX86PTEPAE) pPae;
} uPte;
} PGMRCDYNMAPENTRY;
/** Pointer to a dynamic mapping cache entry for the raw-mode context. */
typedef PGMRCDYNMAPENTRY *PPGMRCDYNMAPENTRY;
/**
* Dynamic mapping cache for the raw-mode context.
*
* This is initialized during VMMRC init based upon the pbDynPageMapBaseGC and
* paDynPageMap* PGM members. However, it has to be defined in PGMInternal.h
* so that we can perform relocations from PGMR3Relocate. This has the
* consequence that we must have separate ring-0 and raw-mode context versions
* of this struct even if they share the basic elements.
*
* @sa PPGMRZDYNMAP, PGMR0DYNMAP.
*/
typedef struct PGMRCDYNMAP
{
/** The usual magic number / eye catcher (PGMRZDYNMAP_MAGIC). */
uint32_t u32Magic;
/** Array for tracking and managing the pages. */
RCPTRTYPE(PPGMRCDYNMAPENTRY) paPages;
/** The cache size given as a number of pages. */
uint32_t cPages;
/** The current load.
* This does not include guard pages. */
uint32_t cLoad;
/** The max load ever.
* This is maintained to get trigger adding of more mapping space. */
uint32_t cMaxLoad;
/** The number of guard pages. */
uint32_t cGuardPages;
/** The number of users (protected by hInitLock). */
uint32_t cUsers;
} PGMRCDYNMAP;
/** Pointer to the dynamic cache for the raw-mode context. */
typedef PGMRCDYNMAP *PPGMRCDYNMAP;
/**
* Mapping cache usage set entry.
*
* @remarks 16-bit ints was chosen as the set is not expected to be used beyond
* the dynamic ring-0 and (to some extent) raw-mode context mapping
* cache. If it's extended to include ring-3, well, then something
* will have be changed here...
*/
typedef struct PGMMAPSETENTRY
{
/** Pointer to the page. */
#ifndef IN_RC
RTR0PTR pvPage;
#else
RTRCPTR pvPage;
# if HC_ARCH_BITS == 64
uint32_t u32Alignment2;
# endif
#endif
/** The mapping cache index. */
uint16_t iPage;
/** The number of references.
* The max is UINT16_MAX - 1. */
uint16_t cRefs;
/** The number inlined references.
* The max is UINT16_MAX - 1. */
uint16_t cInlinedRefs;
/** Unreferences. */
uint16_t cUnrefs;
#if HC_ARCH_BITS == 32
uint32_t u32Alignment1;
#endif
/** The physical address for this entry. */
RTHCPHYS HCPhys;
} PGMMAPSETENTRY;
AssertCompileMemberOffset(PGMMAPSETENTRY, iPage, RT_MAX(sizeof(RTR0PTR), sizeof(RTRCPTR)));
AssertCompileMemberAlignment(PGMMAPSETENTRY, HCPhys, sizeof(RTHCPHYS));
/** Pointer to a mapping cache usage set entry. */
typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
/**
* Mapping cache usage set.
*
* This is used in ring-0 and the raw-mode context to track dynamic mappings
* done during exits / traps. The set is
*/
typedef struct PGMMAPSET
{
/** The number of occupied entries.
* This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
* dynamic mappings. */
uint32_t cEntries;
/** The start of the current subset.
* This is UINT32_MAX if no subset is currently open. */
uint32_t iSubset;
/** The index of the current CPU, only valid if the set is open. */
int32_t iCpu;
uint32_t alignment;
/** The entries. */
PGMMAPSETENTRY aEntries[64];
/** HCPhys -> iEntry fast lookup table.
* Use PGMMAPSET_HASH for hashing.
* The entries may or may not be valid, check against cEntries. */
uint8_t aiHashTable[128];
} PGMMAPSET;
AssertCompileSizeAlignment(PGMMAPSET, 8);
/** Pointer to the mapping cache set. */
typedef PGMMAPSET *PPGMMAPSET;
/** PGMMAPSET::cEntries value for a closed set. */
#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
/** Hash function for aiHashTable. */
#define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 127)
/** @name Context neutral page mapper TLB.
*
* Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
* code is writting in a kind of context neutral way. Time will show whether
* this actually makes sense or not...
*
* @todo this needs to be reconsidered and dropped/redone since the ring-0
* context ends up using a global mapping cache on some platforms
* (darwin).
*
* @{ */
/** @typedef PPGMPAGEMAPTLB
* The page mapper TLB pointer type for the current context. */
/** @typedef PPGMPAGEMAPTLB
* The page mapper TLB entry pointer type for the current context. */
/** @typedef PPGMPAGEMAPTLB
* The page mapper TLB entry pointer pointer type for the current context. */
/** @def PGM_PAGEMAPTLB_ENTRIES
* The number of TLB entries in the page mapper TLB for the current context. */
/** @def PGM_PAGEMAPTLB_IDX
* Calculate the TLB index for a guest physical address.
* @returns The TLB index.
* @param GCPhys The guest physical address. */
/** @typedef PPGMPAGEMAP
* Pointer to a page mapper unit for current context. */
/** @typedef PPPGMPAGEMAP
* Pointer to a page mapper unit pointer for current context. */
#ifdef IN_RC
// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
typedef void * PPGMPAGEMAP;
typedef void ** PPPGMPAGEMAP;
//#elif IN_RING0
// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
#else
typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
#endif
/** @} */
/** @name PGM Pool Indexes.
* Aka. the unique shadow page identifier.
* @{ */
/** NIL page pool IDX. */
#define NIL_PGMPOOL_IDX 0
/** The first normal index. */
#define PGMPOOL_IDX_FIRST_SPECIAL 1
/** Page directory (32-bit root). */
#define PGMPOOL_IDX_PD 1
/** Page Directory Pointer Table (PAE root). */
#define PGMPOOL_IDX_PDPT 2
/** AMD64 CR3 level index.*/
#define PGMPOOL_IDX_AMD64_CR3 3
/** Nested paging root.*/
#define PGMPOOL_IDX_NESTED_ROOT 4
/** The first normal index. */
#define PGMPOOL_IDX_FIRST 5
/** The last valid index. (inclusive, 14 bits) */
#define PGMPOOL_IDX_LAST 0x3fff
/** @} */
/** The NIL index for the parent chain. */
#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
#define NIL_PGMPOOL_PRESENT_INDEX ((uint16_t)0xffff)
/**
* Node in the chain linking a shadowed page to it's parent (user).
*/
#pragma pack(1)
typedef struct PGMPOOLUSER
{
/** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
uint16_t iNext;
/** The user page index. */
uint16_t iUser;
/** Index into the user table. */
uint32_t iUserTable;
} PGMPOOLUSER, *PPGMPOOLUSER;
typedef const PGMPOOLUSER *PCPGMPOOLUSER;
#pragma pack()
/** The NIL index for the phys ext chain. */
#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
/** The NIL pte index for a phys ext chain slot. */
#define NIL_PGMPOOL_PHYSEXT_IDX_PTE ((uint16_t)0xffff)
/**
* Node in the chain of physical cross reference extents.
* @todo Calling this an 'extent' is not quite right, find a better name.
* @todo find out the optimal size of the aidx array
*/
#pragma pack(1)
typedef struct PGMPOOLPHYSEXT
{
/** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
uint16_t iNext;
/** Alignment. */
uint16_t u16Align;
/** The user page index. */
uint16_t aidx[3];
/** The page table index or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown. */
uint16_t apte[3];
} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
#pragma pack()
/**
* The kind of page that's being shadowed.
*/
typedef enum PGMPOOLKIND
{
/** The virtual invalid 0 entry. */
PGMPOOLKIND_INVALID = 0,
/** The entry is free (=unused). */
PGMPOOLKIND_FREE,
/** Shw: 32-bit page table; Gst: no paging */
PGMPOOLKIND_32BIT_PT_FOR_PHYS,
/** Shw: 32-bit page table; Gst: 32-bit page table. */
PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
/** Shw: 32-bit page table; Gst: 4MB page. */
PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
/** Shw: PAE page table; Gst: no paging */
PGMPOOLKIND_PAE_PT_FOR_PHYS,
/** Shw: PAE page table; Gst: 32-bit page table. */
PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
/** Shw: PAE page table; Gst: Half of a 4MB page. */
PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
/** Shw: PAE page table; Gst: PAE page table. */
PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
/** Shw: PAE page table; Gst: 2MB page. */
PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
/** Shw: 32-bit page directory. Gst: 32-bit page directory. */
PGMPOOLKIND_32BIT_PD,
/** Shw: 32-bit page directory. Gst: no paging. */
PGMPOOLKIND_32BIT_PD_PHYS,
/** Shw: PAE page directory 0; Gst: 32-bit page directory. */
PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD,
/** Shw: PAE page directory 1; Gst: 32-bit page directory. */
PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD,
/** Shw: PAE page directory 2; Gst: 32-bit page directory. */
PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD,
/** Shw: PAE page directory 3; Gst: 32-bit page directory. */
PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
/** Shw: PAE page directory; Gst: PAE page directory. */
PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
/** Shw: PAE page directory; Gst: no paging. Note: +NP. */
PGMPOOLKIND_PAE_PD_PHYS,
/** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
/** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
PGMPOOLKIND_PAE_PDPT,
/** Shw: PAE page directory pointer table (legacy, 4 entries); Gst: no paging. */
PGMPOOLKIND_PAE_PDPT_PHYS,
/** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
/** Shw: 64-bit page directory pointer table; Gst: no paging */
PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
/** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
/** Shw: 64-bit page directory table; Gst: no paging */
PGMPOOLKIND_64BIT_PD_FOR_PHYS, /* 22 */
/** Shw: 64-bit PML4; Gst: 64-bit PML4. */
PGMPOOLKIND_64BIT_PML4,
/** Shw: EPT page directory pointer table; Gst: no paging */
PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
/** Shw: EPT page directory table; Gst: no paging */
PGMPOOLKIND_EPT_PD_FOR_PHYS,
/** Shw: EPT page table; Gst: no paging */
PGMPOOLKIND_EPT_PT_FOR_PHYS,
/** Shw: Root Nested paging table. */
PGMPOOLKIND_ROOT_NESTED,
/** The last valid entry. */
PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
} PGMPOOLKIND;
/**
* The access attributes of the page; only applies to big pages.
*/
typedef enum
{
PGMPOOLACCESS_DONTCARE = 0,
PGMPOOLACCESS_USER_RW,
PGMPOOLACCESS_USER_R,
PGMPOOLACCESS_USER_RW_NX,
PGMPOOLACCESS_USER_R_NX,
PGMPOOLACCESS_SUPERVISOR_RW,
PGMPOOLACCESS_SUPERVISOR_R,
PGMPOOLACCESS_SUPERVISOR_RW_NX,
PGMPOOLACCESS_SUPERVISOR_R_NX
} PGMPOOLACCESS;
/**
* The tracking data for a page in the pool.
*/
typedef struct PGMPOOLPAGE
{
/** AVL node code with the (R3) physical address of this page. */
AVLOHCPHYSNODECORE Core;
/** Pointer to the R3 mapping of the page. */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
R3PTRTYPE(void *) pvPageR3;
#else
R3R0PTRTYPE(void *) pvPageR3;
#endif
/** The guest physical address. */
#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
uint32_t Alignment0;
#endif
RTGCPHYS GCPhys;
/** Access handler statistics to determine whether the guest is (re)initializing a page table. */
RTGCPTR pvLastAccessHandlerRip;
RTGCPTR pvLastAccessHandlerFault;
uint64_t cLastAccessHandlerCount;
/** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
uint8_t enmKind;
/** The subkind of page we're shadowing. (This is really a PGMPOOLACCESS enum.) */
uint8_t enmAccess;
/** The index of this page. */
uint16_t idx;
/** The next entry in the list this page currently resides in.
* It's either in the free list or in the GCPhys hash. */
uint16_t iNext;
/** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
uint16_t iUserHead;
/** The number of present entries. */
uint16_t cPresent;
/** The first entry in the table which is present. */
uint16_t iFirstPresent;
/** The number of modifications to the monitored page. */
uint16_t cModifications;
/** The next modified page. NIL_PGMPOOL_IDX if tail. */
uint16_t iModifiedNext;
/** The previous modified page. NIL_PGMPOOL_IDX if head. */
uint16_t iModifiedPrev;
/** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
uint16_t iMonitoredNext;
/** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
uint16_t iMonitoredPrev;
/** The next page in the age list. */
uint16_t iAgeNext;
/** The previous page in the age list. */
uint16_t iAgePrev;
/** Used to indicate that the page is zeroed. */
bool fZeroed;
/** Used to indicate that a PT has non-global entries. */
bool fSeenNonGlobal;
/** Used to indicate that we're monitoring writes to the guest page. */
bool fMonitored;
/** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
* (All pages are in the age list.) */
bool fCached;
/** This is used by the R3 access handlers when invoked by an async thread.
* It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
bool volatile fReusedFlushPending;
/** Used to mark the page as dirty (write monitoring is temporarily
* off). */
bool fDirty;
/** Used to indicate that this page can't be flushed. Important for cr3 root pages or shadow pae pd pages). */
uint32_t cLocked;
uint32_t idxDirty;
RTGCPTR pvDirtyFault;
} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
/** Pointer to a const pool page. */
typedef PGMPOOLPAGE const *PCPGMPOOLPAGE;
/** The hash table size. */
# define PGMPOOL_HASH_SIZE 0x40
/** The hash function. */
# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
/**
* The shadow page pool instance data.
*
* It's all one big allocation made at init time, except for the
* pages that is. The user nodes follows immediately after the
* page structures.
*/
typedef struct PGMPOOL
{
/** The VM handle - R3 Ptr. */
PVMR3 pVMR3;
/** The VM handle - R0 Ptr. */
PVMR0 pVMR0;
/** The VM handle - RC Ptr. */
PVMRC pVMRC;
/** The max pool size. This includes the special IDs. */
uint16_t cMaxPages;
/** The current pool size. */
uint16_t cCurPages;
/** The head of the free page list. */
uint16_t iFreeHead;
/* Padding. */
uint16_t u16Padding;
/** Head of the chain of free user nodes. */
uint16_t iUserFreeHead;
/** The number of user nodes we've allocated. */
uint16_t cMaxUsers;
/** The number of present page table entries in the entire pool. */
uint32_t cPresent;
/** Pointer to the array of user nodes - RC pointer. */
RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
/** Pointer to the array of user nodes - R3 pointer. */
R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
/** Pointer to the array of user nodes - R0 pointer. */
R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
/** Head of the chain of free phys ext nodes. */
uint16_t iPhysExtFreeHead;
/** The number of user nodes we've allocated. */
uint16_t cMaxPhysExts;
/** Pointer to the array of physical xref extent - RC pointer. */
RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
/** Pointer to the array of physical xref extent nodes - R3 pointer. */
R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
/** Pointer to the array of physical xref extent nodes - R0 pointer. */
R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
/** Hash table for GCPhys addresses. */
uint16_t aiHash[PGMPOOL_HASH_SIZE];
/** The head of the age list. */
uint16_t iAgeHead;
/** The tail of the age list. */
uint16_t iAgeTail;
/** Set if the cache is enabled. */
bool fCacheEnabled;
/** Alignment padding. */
bool afPadding1[3];
/** Head of the list of modified pages. */
uint16_t iModifiedHead;
/** The current number of modified pages. */
uint16_t cModifiedPages;
/** Access handler, RC. */
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
/** Access handler, R0. */
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
/** Access handler, R3. */
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
/** The access handler description (R3 ptr). */
R3PTRTYPE(const char *) pszAccessHandler;
# if HC_ARCH_BITS == 32
/** Alignment padding. */
uint32_t u32Padding2;
# endif
/* Next available slot. */
uint32_t idxFreeDirtyPage;
/* Number of active dirty pages. */
uint32_t cDirtyPages;
/* Array of current dirty pgm pool page indices. */
struct
{
uint16_t uIdx;
uint16_t Alignment[3];
uint64_t aPage[512];
} aDirtyPages[16];
/** The number of pages currently in use. */
uint16_t cUsedPages;
#ifdef VBOX_WITH_STATISTICS
/** The high water mark for cUsedPages. */
uint16_t cUsedPagesHigh;
uint32_t Alignment1; /**< Align the next member on a 64-bit boundary. */
/** Profiling pgmPoolAlloc(). */
STAMPROFILEADV StatAlloc;
/** Profiling pgmR3PoolClearDoIt(). */
STAMPROFILE StatClearAll;
/** Profiling pgmR3PoolReset(). */
STAMPROFILE StatR3Reset;
/** Profiling pgmPoolFlushPage(). */
STAMPROFILE StatFlushPage;
/** Profiling pgmPoolFree(). */
STAMPROFILE StatFree;
/** Counting explicit flushes by PGMPoolFlushPage(). */
STAMCOUNTER StatForceFlushPage;
/** Counting explicit flushes of dirty pages by PGMPoolFlushPage(). */
STAMCOUNTER StatForceFlushDirtyPage;
/** Counting flushes for reused pages. */
STAMCOUNTER StatForceFlushReused;
/** Profiling time spent zeroing pages. */
STAMPROFILE StatZeroPage;
/** Profiling of pgmPoolTrackDeref. */
STAMPROFILE StatTrackDeref;
/** Profiling pgmTrackFlushGCPhysPT. */
STAMPROFILE StatTrackFlushGCPhysPT;
/** Profiling pgmTrackFlushGCPhysPTs. */
STAMPROFILE StatTrackFlushGCPhysPTs;
/** Profiling pgmTrackFlushGCPhysPTsSlow. */
STAMPROFILE StatTrackFlushGCPhysPTsSlow;
/** Number of times we've been out of user records. */
STAMCOUNTER StatTrackFreeUpOneUser;
/** Nr of flushed entries. */
STAMCOUNTER StatTrackFlushEntry;
/** Nr of updated entries. */
STAMCOUNTER StatTrackFlushEntryKeep;
/** Profiling deref activity related tracking GC physical pages. */
STAMPROFILE StatTrackDerefGCPhys;
/** Number of linear searches for a HCPhys in the ram ranges. */
STAMCOUNTER StatTrackLinearRamSearches;
/** The number of failing pgmPoolTrackPhysExtAlloc calls. */
STAMCOUNTER StamTrackPhysExtAllocFailures;
/** Profiling the RC/R0 access handler. */
STAMPROFILE StatMonitorRZ;
/** Times we've failed interpreting the instruction. */
STAMCOUNTER StatMonitorRZEmulateInstr;
/** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
STAMPROFILE StatMonitorRZFlushPage;
/* Times we've detected a page table reinit. */
STAMCOUNTER StatMonitorRZFlushReinit;
/** Counting flushes for pages that are modified too often. */
STAMCOUNTER StatMonitorRZFlushModOverflow;
/** Times we've detected fork(). */
STAMCOUNTER StatMonitorRZFork;
/** Profiling the RC/R0 access we've handled (except REP STOSD). */
STAMPROFILE StatMonitorRZHandled;
/** Times we've failed interpreting a patch code instruction. */
STAMCOUNTER StatMonitorRZIntrFailPatch1;
/** Times we've failed interpreting a patch code instruction during flushing. */
STAMCOUNTER StatMonitorRZIntrFailPatch2;
/** The number of times we've seen rep prefixes we can't handle. */
STAMCOUNTER StatMonitorRZRepPrefix;
/** Profiling the REP STOSD cases we've handled. */
STAMPROFILE StatMonitorRZRepStosd;
/** Nr of handled PT faults. */
STAMCOUNTER StatMonitorRZFaultPT;
/** Nr of handled PD faults. */
STAMCOUNTER StatMonitorRZFaultPD;
/** Nr of handled PDPT faults. */
STAMCOUNTER StatMonitorRZFaultPDPT;
/** Nr of handled PML4 faults. */
STAMCOUNTER StatMonitorRZFaultPML4;
/** Profiling the R3 access handler. */
STAMPROFILE StatMonitorR3;
/** Times we've failed interpreting the instruction. */
STAMCOUNTER StatMonitorR3EmulateInstr;
/** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
STAMPROFILE StatMonitorR3FlushPage;
/* Times we've detected a page table reinit. */
STAMCOUNTER StatMonitorR3FlushReinit;
/** Counting flushes for pages that are modified too often. */
STAMCOUNTER StatMonitorR3FlushModOverflow;
/** Times we've detected fork(). */
STAMCOUNTER StatMonitorR3Fork;
/** Profiling the R3 access we've handled (except REP STOSD). */
STAMPROFILE StatMonitorR3Handled;
/** The number of times we've seen rep prefixes we can't handle. */
STAMCOUNTER StatMonitorR3RepPrefix;
/** Profiling the REP STOSD cases we've handled. */
STAMPROFILE StatMonitorR3RepStosd;
/** Nr of handled PT faults. */
STAMCOUNTER StatMonitorR3FaultPT;
/** Nr of handled PD faults. */
STAMCOUNTER StatMonitorR3FaultPD;
/** Nr of handled PDPT faults. */
STAMCOUNTER StatMonitorR3FaultPDPT;
/** Nr of handled PML4 faults. */
STAMCOUNTER StatMonitorR3FaultPML4;
/** The number of times we're called in an async thread an need to flush. */
STAMCOUNTER StatMonitorR3Async;
/** Times we've called pgmPoolResetDirtyPages (and there were dirty page). */
STAMCOUNTER StatResetDirtyPages;
/** Times we've called pgmPoolAddDirtyPage. */
STAMCOUNTER StatDirtyPage;
/** Times we've had to flush duplicates for dirty page management. */
STAMCOUNTER StatDirtyPageDupFlush;
/** Times we've had to flush because of overflow. */
STAMCOUNTER StatDirtyPageOverFlowFlush;
/** The high water mark for cModifiedPages. */
uint16_t cModifiedPagesHigh;
uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundary. */
/** The number of cache hits. */
STAMCOUNTER StatCacheHits;
/** The number of cache misses. */
STAMCOUNTER StatCacheMisses;
/** The number of times we've got a conflict of 'kind' in the cache. */
STAMCOUNTER StatCacheKindMismatches;
/** Number of times we've been out of pages. */
STAMCOUNTER StatCacheFreeUpOne;
/** The number of cacheable allocations. */
STAMCOUNTER StatCacheCacheable;
/** The number of uncacheable allocations. */
STAMCOUNTER StatCacheUncacheable;
#else
uint32_t Alignment3; /**< Align the next member on a 64-bit boundary. */
#endif
/** The AVL tree for looking up a page by its HC physical address. */
AVLOHCPHYSTREE HCPhysTree;
uint32_t Alignment4; /**< Align the next member on a 64-bit boundary. */
/** Array of pages. (cMaxPages in length)
* The Id is the index into thist array.
*/
PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
AssertCompileMemberAlignment(PGMPOOL, iModifiedHead, 8);
AssertCompileMemberAlignment(PGMPOOL, aDirtyPages, 8);
AssertCompileMemberAlignment(PGMPOOL, cUsedPages, 8);
#ifdef VBOX_WITH_STATISTICS
AssertCompileMemberAlignment(PGMPOOL, StatAlloc, 8);
#endif
AssertCompileMemberAlignment(PGMPOOL, aPages, 8);
/** @def PGMPOOL_PAGE_2_PTR
* Maps a pool page pool into the current context.
*
* @returns VBox status code.
* @param a_pVM The VM handle.
* @param a_pPage The pool page.
*
* @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
* small page window employeed by that function. Be careful.
* @remark There is no need to assert on the result.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# define PGMPOOL_PAGE_2_PTR(a_pVM, a_pPage) pgmPoolMapPageInlined((a_pVM), (a_pPage) RTLOG_COMMA_SRC_POS)
#elif defined(VBOX_STRICT)
# define PGMPOOL_PAGE_2_PTR(a_pVM, a_pPage) pgmPoolMapPageStrict(a_pPage)
DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE a_pPage)
{
Assert(a_pPage && a_pPage->pvPageR3);
return a_pPage->pvPageR3;
}
#else
# define PGMPOOL_PAGE_2_PTR(pVM, a_pPage) ((a_pPage)->pvPageR3)
#endif
/** @def PGMPOOL_PAGE_2_PTR_V2
* Maps a pool page pool into the current context, taking both VM and VMCPU.
*
* @returns VBox status code.
* @param a_pVM The VM handle.
* @param a_pVCpu The current CPU.
* @param a_pPage The pool page.
*
* @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
* small page window employeed by that function. Be careful.
* @remark There is no need to assert on the result.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# define PGMPOOL_PAGE_2_PTR_V2(a_pVM, a_pVCpu, a_pPage) pgmPoolMapPageV2Inlined((a_pVM), (a_pVCpu), (a_pPage) RTLOG_COMMA_SRC_POS)
#else
# define PGMPOOL_PAGE_2_PTR_V2(a_pVM, a_pVCpu, a_pPage) PGMPOOL_PAGE_2_PTR((a_pVM), (a_pPage))
#endif
/** @name Per guest page tracking data.
* This is currently as a 16-bit word in the PGMPAGE structure, the idea though
* is to use more bits for it and split it up later on. But for now we'll play
* safe and change as little as possible.
*
* The 16-bit word has two parts:
*
* The first 14-bit forms the @a idx field. It is either the index of a page in
* the shadow page pool, or and index into the extent list.
*
* The 2 topmost bits makes up the @a cRefs field, which counts the number of
* shadow page pool references to the page. If cRefs equals
* PGMPOOL_CREFS_PHYSEXT, then the @a idx field is an indext into the extent
* (misnomer) table and not the shadow page pool.
*
* See PGM_PAGE_GET_TRACKING and PGM_PAGE_SET_TRACKING for how to get and set
* the 16-bit word.
*
* @{ */
/** The shift count for getting to the cRefs part. */
#define PGMPOOL_TD_CREFS_SHIFT 14
/** The mask applied after shifting the tracking data down by
* PGMPOOL_TD_CREFS_SHIFT. */
#define PGMPOOL_TD_CREFS_MASK 0x3
/** The cRefs value used to indicate that the idx is the head of a
* physical cross reference list. */
#define PGMPOOL_TD_CREFS_PHYSEXT PGMPOOL_TD_CREFS_MASK
/** The shift used to get idx. */
#define PGMPOOL_TD_IDX_SHIFT 0
/** The mask applied to the idx after shifting down by PGMPOOL_TD_IDX_SHIFT. */
#define PGMPOOL_TD_IDX_MASK 0x3fff
/** The idx value when we're out of of PGMPOOLPHYSEXT entries or/and there are
* simply too many mappings of this page. */
#define PGMPOOL_TD_IDX_OVERFLOWED PGMPOOL_TD_IDX_MASK
/** @def PGMPOOL_TD_MAKE
* Makes a 16-bit tracking data word.
*
* @returns tracking data.
* @param cRefs The @a cRefs field. Must be within bounds!
* @param idx The @a idx field. Must also be within bounds! */
#define PGMPOOL_TD_MAKE(cRefs, idx) ( ((cRefs) << PGMPOOL_TD_CREFS_SHIFT) | (idx) )
/** @def PGMPOOL_TD_GET_CREFS
* Get the @a cRefs field from a tracking data word.
*
* @returns The @a cRefs field
* @param u16 The tracking data word.
* @remarks This will only return 1 or PGMPOOL_TD_CREFS_PHYSEXT for a
* non-zero @a u16. */
#define PGMPOOL_TD_GET_CREFS(u16) ( ((u16) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK )
/** @def PGMPOOL_TD_GET_IDX
* Get the @a idx field from a tracking data word.
*
* @returns The @a idx field
* @param u16 The tracking data word. */
#define PGMPOOL_TD_GET_IDX(u16) ( ((u16) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK )
/** @} */
/**
* Trees are using self relative offsets as pointers.
* So, all its data, including the root pointer, must be in the heap for HC and GC
* to have the same layout.
*/
typedef struct PGMTREES
{
/** Physical access handlers (AVL range+offsetptr tree). */
AVLROGCPHYSTREE PhysHandlers;
/** Virtual access handlers (AVL range + GC ptr tree). */
AVLROGCPTRTREE VirtHandlers;
/** Virtual access handlers (Phys range AVL range + offsetptr tree). */
AVLROGCPHYSTREE PhysToVirtHandlers;
/** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
AVLROGCPTRTREE HyperVirtHandlers;
} PGMTREES;
/** Pointer to PGM trees. */
typedef PGMTREES *PPGMTREES;
/**
* Page fault guest state for the AMD64 paging mode.
*/
typedef struct PGMPTWALKCORE
{
/** The guest virtual address that is being resolved by the walk
* (input). */
RTGCPTR GCPtr;
/** The guest physical address that is the result of the walk.
* @remarks only valid if fSucceeded is set. */
RTGCPHYS GCPhys;
/** Set if the walk succeeded, i.d. GCPhys is valid. */
bool fSucceeded;
/** The level problem arrised at.
* PTE is level 1, PDE is level 2, PDPE is level 3, PML4 is level 4, CR3 is
* level 8. This is 0 on success. */
uint8_t uLevel;
/** Set if the page isn't present. */
bool fNotPresent;
/** Encountered a bad physical address. */
bool fBadPhysAddr;
/** Set if there was reserved bit violations. */
bool fRsvdError;
/** Set if it involves a big page (2/4 MB). */
bool fBigPage;
/** Set if it involves a gigantic page (1 GB). */
bool fGigantPage;
/** The effect X86_PTE_US flag for the address. */
bool fEffectiveUS;
/** The effect X86_PTE_RW flag for the address. */
bool fEffectiveRW;
/** The effect X86_PTE_NX flag for the address. */
bool fEffectiveNX;
} PGMPTWALKCORE;
/**
* Guest page table walk for the AMD64 mode.
*/
typedef struct PGMPTWALKGSTAMD64
{
/** The common core. */
PGMPTWALKCORE Core;
PX86PML4 pPml4;
PX86PML4E pPml4e;
X86PML4E Pml4e;
PX86PDPT pPdpt;
PX86PDPE pPdpe;
X86PDPE Pdpe;
PX86PDPAE pPd;
PX86PDEPAE pPde;
X86PDEPAE Pde;
PX86PTPAE pPt;
PX86PTEPAE pPte;
X86PTEPAE Pte;
} PGMPTWALKGSTAMD64;
/** Pointer to a AMD64 guest page table walk. */
typedef PGMPTWALKGSTAMD64 *PPGMPTWALKGSTAMD64;
/** Pointer to a const AMD64 guest page table walk. */
typedef PGMPTWALKGSTAMD64 const *PCPGMPTWALKGSTAMD64;
/**
* Guest page table walk for the PAE mode.
*/
typedef struct PGMPTWALKGSTPAE
{
/** The common core. */
PGMPTWALKCORE Core;
PX86PDPT pPdpt;
PX86PDPE pPdpe;
X86PDPE Pdpe;
PX86PDPAE pPd;
PX86PDEPAE pPde;
X86PDEPAE Pde;
PX86PTPAE pPt;
PX86PTEPAE pPte;
X86PTEPAE Pte;
} PGMPTWALKGSTPAE;
/** Pointer to a PAE guest page table walk. */
typedef PGMPTWALKGSTPAE *PPGMPTWALKGSTPAE;
/** Pointer to a const AMD64 guest page table walk. */
typedef PGMPTWALKGSTPAE const *PCPGMPTWALKGSTPAE;
/**
* Guest page table walk for the 32-bit mode.
*/
typedef struct PGMPTWALKGST32BIT
{
/** The common core. */
PGMPTWALKCORE Core;
PX86PD pPd;
PX86PDE pPde;
X86PDE Pde;
PX86PT pPt;
PX86PTE pPte;
X86PTE Pte;
} PGMPTWALKGST32BIT;
/** Pointer to a 32-bit guest page table walk. */
typedef PGMPTWALKGST32BIT *PPGMPTWALKGST32BIT;
/** Pointer to a const 32-bit guest page table walk. */
typedef PGMPTWALKGST32BIT const *PCPGMPTWALKGST32BIT;
/** @name Paging mode macros
* @{
*/
#ifdef IN_RC
# define PGM_CTX(a,b) a##RC##b
# define PGM_CTX_STR(a,b) a "GC" b
# define PGM_CTX_DECL(type) VMMRCDECL(type)
#else
# ifdef IN_RING3
# define PGM_CTX(a,b) a##R3##b
# define PGM_CTX_STR(a,b) a "R3" b
# define PGM_CTX_DECL(type) DECLCALLBACK(type)
# else
# define PGM_CTX(a,b) a##R0##b
# define PGM_CTX_STR(a,b) a "R0" b
# define PGM_CTX_DECL(type) VMMDECL(type)
# endif
#endif
#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
#define PGM_GST_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Gst##name))
#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
#define PGM_SHW_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Shw##name))
/* Shw_Gst */
#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
#define PGM_BTH_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Bth##name))
/** @} */
/**
* Data for each paging mode.
*/
typedef struct PGMMODEDATA
{
/** The guest mode type. */
uint32_t uGstType;
/** The shadow mode type. */
uint32_t uShwType;
/** @name Function pointers for Shadow paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVMCPU pVCpu, RTGCPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVMCPU pVCpu));
DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags));
DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags));
DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags));
/** @} */
/** @name Function pointers for Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVMCPU pVCpu, RTGCPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVMCPU pVCpu));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde));
DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde));
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde));
/** @} */
/** @name Function pointers for Both Shadow and Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVMCPU pVCpu, RTGCPTR offDelta));
/* no pfnR3BthTrap0eHandler */
DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
#ifdef VBOX_STRICT
DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
#endif
DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3));
DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVMCPU pVCpu));
DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken));
DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
#ifdef VBOX_STRICT
DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
#endif
DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3));
DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVMCPU pVCpu));
DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken));
DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
#ifdef VBOX_STRICT
DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
#endif
DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3));
DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVMCPU pVCpu));
/** @} */
} PGMMODEDATA, *PPGMMODEDATA;
#ifdef VBOX_WITH_STATISTICS
/**
* PGM statistics.
*
* These lives on the heap when compiled in as they would otherwise waste
* unnecessary space in release builds.
*/
typedef struct PGMSTATS
{
/* R3 only: */
STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
/* R3+RZ */
STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
STAMCOUNTER StatPageMapTlbFlushes; /**< ALL: Ring-3/0 page mapper TLB flushes. */
STAMCOUNTER StatPageMapTlbFlushEntry; /**< ALL: Ring-3/0 page mapper TLB flushes. */
STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
STAMCOUNTER StatRZRamRangeTlbHits; /**< RC/R0: RAM range TLB hits. */
STAMCOUNTER StatRZRamRangeTlbMisses; /**< RC/R0: RAM range TLB misses. */
STAMCOUNTER StatR3RamRangeTlbHits; /**< R3: RAM range TLB hits. */
STAMCOUNTER StatR3RamRangeTlbMisses; /**< R3: RAM range TLB misses. */
STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
STAMCOUNTER StatR3PhysHandlerLookupHits; /**< R3: Number of cache hits when looking up physical handlers. */
STAMCOUNTER StatR3PhysHandlerLookupMisses; /**< R3: Number of cache misses when looking up physical handlers. */
STAMCOUNTER StatRZPhysHandlerLookupHits; /**< RC/R0: Number of cache hits when lookup up physical handlers. */
STAMCOUNTER StatRZPhysHandlerLookupMisses; /**< RC/R0: Number of cache misses when looking up physical handlers */
STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
/* RC only: */
STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
STAMCOUNTER StatRZPhysRead;
STAMCOUNTER StatRZPhysReadBytes;
STAMCOUNTER StatRZPhysWrite;
STAMCOUNTER StatRZPhysWriteBytes;
STAMCOUNTER StatR3PhysRead;
STAMCOUNTER StatR3PhysReadBytes;
STAMCOUNTER StatR3PhysWrite;
STAMCOUNTER StatR3PhysWriteBytes;
STAMCOUNTER StatRCPhysRead;
STAMCOUNTER StatRCPhysReadBytes;
STAMCOUNTER StatRCPhysWrite;
STAMCOUNTER StatRCPhysWriteBytes;
STAMCOUNTER StatRZPhysSimpleRead;
STAMCOUNTER StatRZPhysSimpleReadBytes;
STAMCOUNTER StatRZPhysSimpleWrite;
STAMCOUNTER StatRZPhysSimpleWriteBytes;
STAMCOUNTER StatR3PhysSimpleRead;
STAMCOUNTER StatR3PhysSimpleReadBytes;
STAMCOUNTER StatR3PhysSimpleWrite;
STAMCOUNTER StatR3PhysSimpleWriteBytes;
STAMCOUNTER StatRCPhysSimpleRead;
STAMCOUNTER StatRCPhysSimpleReadBytes;
STAMCOUNTER StatRCPhysSimpleWrite;
STAMCOUNTER StatRCPhysSimpleWriteBytes;
STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
STAMCOUNTER StatTrackNoExtentsLeft; /**< The number of times the extent list was exhausted. */
STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
/** Time spent by the host OS for large page allocation. */
STAMPROFILE StatAllocLargePage;
/** Time spent clearing the newly allocated large pages. */
STAMPROFILE StatClearLargePage;
/** The number of times allocating a large pages takes more than the allowed period. */
STAMCOUNTER StatLargePageOverflow;
/** pgmPhysIsValidLargePage profiling - R3 */
STAMPROFILE StatR3IsValidLargePage;
/** pgmPhysIsValidLargePage profiling - RZ*/
STAMPROFILE StatRZIsValidLargePage;
STAMPROFILE StatChunkAging;
STAMPROFILE StatChunkFindCandidate;
STAMPROFILE StatChunkUnmap;
STAMPROFILE StatChunkMap;
} PGMSTATS;
#endif /* VBOX_WITH_STATISTICS */
/**
* Converts a PGM pointer into a VM pointer.
* @returns Pointer to the VM structure the PGM is part of.
* @param pPGM Pointer to PGM instance data.
*/
#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
/**
* PGM Data (part of VM)
*/
typedef struct PGM
{
/** Offset to the VM structure. */
int32_t offVM;
/** Offset of the PGMCPU structure relative to VMCPU. */
int32_t offVCpuPGM;
/** @cfgm{RamPreAlloc, boolean, false}
* Indicates whether the base RAM should all be allocated before starting
* the VM (default), or if it should be allocated when first written to.
*/
bool fRamPreAlloc;
/** Indicates whether write monitoring is currently in use.
* This is used to prevent conflicts between live saving and page sharing
* detection. */
bool fPhysWriteMonitoringEngaged;
/** Set if the CPU has less than 52-bit physical address width.
* This is used */
bool fLessThan52PhysicalAddressBits;
/** Set when nested paging is active.
* This is meant to save calls to HWACCMIsNestedPagingActive and let the
* compilers optimize the code better. Whether we use nested paging or
* not is something we find out during VMM initialization and we won't
* change this later on. */
bool fNestedPaging;
/** The host paging mode. (This is what SUPLib reports.) */
SUPPAGINGMODE enmHostMode;
/** We're not in a state which permits writes to guest memory.
* (Only used in strict builds.) */
bool fNoMorePhysWrites;
/** Set if PCI passthrough is enabled. */
bool fPciPassthrough;
/** Alignment padding that makes the next member start on a 8 byte boundary. */
bool afAlignment1[2];
/** Indicates that PGMR3FinalizeMappings has been called and that further
* PGMR3MapIntermediate calls will be rejected. */
bool fFinalizedMappings;
/** If set no conflict checks are required. */
bool fMappingsFixed;
/** If set if restored as fixed but we were unable to re-fixate at the old
* location because of room or address incompatibilities. */
bool fMappingsFixedRestored;
/** If set, then no mappings are put into the shadow page table.
* Use pgmMapAreMappingsEnabled() instead of direct access. */
bool fMappingsDisabled;
/** Size of fixed mapping.
* This is valid if either fMappingsFixed or fMappingsFixedRestored is set. */
uint32_t cbMappingFixed;
/** Generation ID for the RAM ranges. This member is incremented everytime
* a RAM range is linked or unlinked. */
uint32_t volatile idRamRangesGen;
/** Base address (GC) of fixed mapping.
* This is valid if either fMappingsFixed or fMappingsFixedRestored is set. */
RTGCPTR GCPtrMappingFixed;
/** The address of the previous RAM range mapping. */
RTGCPTR GCPtrPrevRamRangeMapping;
/** 4 MB page mask; 32 or 36 bits depending on PSE-36 (identical for all VCPUs) */
RTGCPHYS GCPhys4MBPSEMask;
/** Mask containing the invalid bits of a guest physical address.
* @remarks this does not stop at bit 52. */
RTGCPHYS GCPhysInvAddrMask;
/** RAM range TLB for R3. */
R3PTRTYPE(PPGMRAMRANGE) apRamRangesTlbR3[PGM_RAMRANGE_TLB_ENTRIES];
/** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
* This is sorted by physical address and contains no overlapping ranges. */
R3PTRTYPE(PPGMRAMRANGE) pRamRangesXR3;
/** Root of the RAM range search tree for ring-3. */
R3PTRTYPE(PPGMRAMRANGE) pRamRangeTreeR3;
/** PGM offset based trees - R3 Ptr. */
R3PTRTYPE(PPGMTREES) pTreesR3;
/** Caching the last physical handler we looked up in R3. */
R3PTRTYPE(PPGMPHYSHANDLER) pLastPhysHandlerR3;
/** Shadow Page Pool - R3 Ptr. */
R3PTRTYPE(PPGMPOOL) pPoolR3;
/** Linked list of GC mappings - for HC.
* The list is sorted ascending on address. */
R3PTRTYPE(PPGMMAPPING) pMappingsR3;
/** Pointer to the list of ROM ranges - for R3.
* This is sorted by physical address and contains no overlapping ranges. */
R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
/** Pointer to the list of MMIO2 ranges - for R3.
* Registration order. */
R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
/** Pointer to SHW+GST mode data (function pointers).
* The index into this table is made up from */
R3PTRTYPE(PPGMMODEDATA) paModeData;
RTR3PTR R3PtrAlignment0;
/** RAM range TLB for R0. */
R0PTRTYPE(PPGMRAMRANGE) apRamRangesTlbR0[PGM_RAMRANGE_TLB_ENTRIES];
/** R0 pointer corresponding to PGM::pRamRangesXR3. */
R0PTRTYPE(PPGMRAMRANGE) pRamRangesXR0;
/** Root of the RAM range search tree for ring-0. */
R0PTRTYPE(PPGMRAMRANGE) pRamRangeTreeR0;
/** PGM offset based trees - R0 Ptr. */
R0PTRTYPE(PPGMTREES) pTreesR0;
/** Caching the last physical handler we looked up in R0. */
R0PTRTYPE(PPGMPHYSHANDLER) pLastPhysHandlerR0;
/** Shadow Page Pool - R0 Ptr. */
R0PTRTYPE(PPGMPOOL) pPoolR0;
/** Linked list of GC mappings - for R0.
* The list is sorted ascending on address. */
R0PTRTYPE(PPGMMAPPING) pMappingsR0;
/** R0 pointer corresponding to PGM::pRomRangesR3. */
R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
RTR0PTR R0PtrAlignment0;
/** RAM range TLB for RC. */
RCPTRTYPE(PPGMRAMRANGE) apRamRangesTlbRC[PGM_RAMRANGE_TLB_ENTRIES];
/** RC pointer corresponding to PGM::pRamRangesXR3. */
RCPTRTYPE(PPGMRAMRANGE) pRamRangesXRC;
/** Root of the RAM range search tree for raw-mode context. */
RCPTRTYPE(PPGMRAMRANGE) pRamRangeTreeRC;
/** PGM offset based trees - RC Ptr. */
RCPTRTYPE(PPGMTREES) pTreesRC;
/** Caching the last physical handler we looked up in RC. */
RCPTRTYPE(PPGMPHYSHANDLER) pLastPhysHandlerRC;
/** Shadow Page Pool - RC Ptr. */
RCPTRTYPE(PPGMPOOL) pPoolRC;
/** Linked list of GC mappings - for RC.
* The list is sorted ascending on address. */
RCPTRTYPE(PPGMMAPPING) pMappingsRC;
/** RC pointer corresponding to PGM::pRomRangesR3. */
RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
RTRCPTR RCPtrAlignment0;
/** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
/** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
RCPTRTYPE(PPGMSHWPTEPAE) paDynPageMapPaePTEsGC;
/** Pointer to the 5 page CR3 content mapping.
* The first page is always the CR3 (in some form) while the 4 other pages
* are used of the PDs in PAE mode. */
RTGCPTR GCPtrCR3Mapping;
/** @name Intermediate Context
* @{ */
/** Pointer to the intermediate page directory - Normal. */
R3PTRTYPE(PX86PD) pInterPD;
/** Pointer to the intermediate page tables - Normal.
* There are two page tables, one for the identity mapping and one for
* the host context mapping (of the core code). */
R3PTRTYPE(PX86PT) apInterPTs[2];
/** Pointer to the intermediate page tables - PAE. */
R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
/** Pointer to the intermediate page directory - PAE. */
R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
/** Pointer to the intermediate page directory - PAE. */
R3PTRTYPE(PX86PDPT) pInterPaePDPT;
/** Pointer to the intermediate page-map level 4 - AMD64. */
R3PTRTYPE(PX86PML4) pInterPaePML4;
/** Pointer to the intermediate page directory - AMD64. */
R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
/** The Physical Address (HC) of the intermediate Page Directory - Normal. */
RTHCPHYS HCPhysInterPD;
/** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
RTHCPHYS HCPhysInterPaePDPT;
/** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
RTHCPHYS HCPhysInterPaePML4;
/** @} */
/** Base address of the dynamic page mapping area.
* The array is MM_HYPER_DYNAMIC_SIZE bytes big.
*
* @todo The plan of keeping PGMRCDYNMAP private to PGMRZDynMap.cpp didn't
* work out. Some cleaning up of the initialization that would
* remove this memory is yet to be done...
*/
RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
/** The address of the raw-mode context mapping cache. */
RCPTRTYPE(PPGMRCDYNMAP) pRCDynMap;
/** The address of the ring-0 mapping cache if we're making use of it. */
RTR0PTR pvR0DynMapUsed;
/** Hack: Number of deprecated page mapping locks taken by the current lock
* owner via pgmPhysGCPhys2CCPtrInternalDepr. */
uint32_t cDeprecatedPageLocks;
#if HC_ARCH_BITS == 64
/** Alignment padding. */
uint32_t u32Alignment2;
#endif
/** PGM critical section.
* This protects the physical & virtual access handlers, ram ranges,
* and the page flag updating (some of it anyway).
*/
PDMCRITSECT CritSectX;
/**
* Data associated with managing the ring-3 mappings of the allocation chunks.
*/
struct
{
/** The chunk tree, ordered by chunk id. */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
R3PTRTYPE(PAVLU32NODECORE) pTree;
#else
R3R0PTRTYPE(PAVLU32NODECORE) pTree;
#endif
#if HC_ARCH_BITS == 32
uint32_t u32Alignment0;
#endif
/** The chunk mapping TLB. */
PGMCHUNKR3MAPTLB Tlb;
/** The number of mapped chunks. */
uint32_t c;
/** The maximum number of mapped chunks.
* @cfgm PGM/MaxRing3Chunks */
uint32_t cMax;
/** The current time. This is incremented whenever a chunk is inserted. */
uint32_t iNow;
/** Alignment padding. */
uint32_t u32Alignment1;
} ChunkR3Map;
/**
* The page mapping TLB for ring-3 and (for the time being) ring-0.
*/
PGMPAGER3MAPTLB PhysTlbHC;
/** @name The zero page.
* @{ */
/** The host physical address of the zero page. */
RTHCPHYS HCPhysZeroPg;
/** The ring-3 mapping of the zero page. */
RTR3PTR pvZeroPgR3;
/** The ring-0 mapping of the zero page. */
RTR0PTR pvZeroPgR0;
/** The GC mapping of the zero page. */
RTRCPTR pvZeroPgRC;
RTRCPTR RCPtrAlignment3;
/** @}*/
/** @name The Invalid MMIO page.
* This page is filled with 0xfeedface.
* @{ */
/** The host physical address of the invalid MMIO page. */
RTHCPHYS HCPhysMmioPg;
/** The host pysical address of the invalid MMIO page plus all invalid
* physical address bits set. This is used to trigger X86_TRAP_PF_RSVD.
* @remarks Check fLessThan52PhysicalAddressBits before use. */
RTHCPHYS HCPhysInvMmioPg;
/** The ring-3 mapping of the invalid MMIO page. */
RTR3PTR pvMmioPgR3;
#if HC_ARCH_BITS == 32
RTR3PTR R3PtrAlignment4;
#endif
/** @} */
/** The number of handy pages. */
uint32_t cHandyPages;
/** The number of large handy pages. */
uint32_t cLargeHandyPages;
/**
* Array of handy pages.
*
* This array is used in a two way communication between pgmPhysAllocPage
* and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
* an intermediary.
*
* The size of this array is important, see pgmPhysEnsureHandyPage for details.
* (The current size of 32 pages, means 128 KB of handy memory.)
*/
GMMPAGEDESC aHandyPages[PGM_HANDY_PAGES];
/**
* Array of large handy pages. (currently size 1)
*
* This array is used in a two way communication between pgmPhysAllocLargePage
* and GMMR0AllocateLargePage, with PGMR3PhysAllocateLargePage serving as
* an intermediary.
*/
GMMPAGEDESC aLargeHandyPage[1];
/**
* Live save data.
*/
struct
{
/** Per type statistics. */
struct
{
/** The number of ready pages. */
uint32_t cReadyPages;
/** The number of dirty pages. */
uint32_t cDirtyPages;
/** The number of ready zero pages. */
uint32_t cZeroPages;
/** The number of write monitored pages. */
uint32_t cMonitoredPages;
} Rom,
Mmio2,
Ram;
/** The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM). */
uint32_t cIgnoredPages;
/** Indicates that a live save operation is active. */
bool fActive;
/** Padding. */
bool afReserved[2];
/** The next history index. */
uint8_t iDirtyPagesHistory;
/** History of the total amount of dirty pages. */
uint32_t acDirtyPagesHistory[64];
/** Short term dirty page average. */
uint32_t cDirtyPagesShort;
/** Long term dirty page average. */
uint32_t cDirtyPagesLong;
/** The number of saved pages. This is used to get some kind of estimate of the
* link speed so we can decide when we're done. It is reset after the first
* 7 passes so the speed estimate doesn't get inflated by the initial set of
* zero pages. */
uint64_t cSavedPages;
/** The nanosecond timestamp when cSavedPages was 0. */
uint64_t uSaveStartNS;
/** Pages per second (for statistics). */
uint32_t cPagesPerSecond;
uint32_t cAlignment;
} LiveSave;
/** @name Error injection.
* @{ */
/** Inject handy page allocation errors pretending we're completely out of
* memory. */
bool volatile fErrInjHandyPages;
/** Padding. */
bool afReserved[3];
/** @} */
/** @name Release Statistics
* @{ */
uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero + Pure MMIO.) */
uint32_t cPrivatePages; /**< The number of private pages. */
uint32_t cSharedPages; /**< The number of shared pages. */
uint32_t cReusedSharedPages; /**< The number of reused shared pages. */
uint32_t cZeroPages; /**< The number of zero backed pages. */
uint32_t cPureMmioPages; /**< The number of pure MMIO pages. */
uint32_t cMonitoredPages; /**< The number of write monitored pages. */
uint32_t cWrittenToPages; /**< The number of previously write monitored pages. */
uint32_t cWriteLockedPages; /**< The number of write locked pages. */
uint32_t cReadLockedPages; /**< The number of read locked pages. */
uint32_t cBalloonedPages; /**< The number of ballooned pages. */
uint32_t cMappedChunks; /**< Number of times we mapped a chunk. */
uint32_t cUnmappedChunks; /**< Number of times we unmapped a chunk. */
uint32_t cLargePages; /**< The number of large pages. */
uint32_t cLargePagesDisabled;/**< The number of disabled large pages. */
/* uint32_t aAlignment4[1]; */
/** The number of times we were forced to change the hypervisor region location. */
STAMCOUNTER cRelocations;
STAMCOUNTER StatLargePageReused; /**< The number of large pages we've reused.*/
STAMCOUNTER StatLargePageRefused; /**< The number of times we couldn't use a large page.*/
STAMCOUNTER StatLargePageRecheck; /**< The number of times we rechecked a disabled large page.*/
/** @} */
#ifdef VBOX_WITH_STATISTICS
/** @name Statistics on the heap.
* @{ */
R3PTRTYPE(PGMSTATS *) pStatsR3;
R0PTRTYPE(PGMSTATS *) pStatsR0;
RCPTRTYPE(PGMSTATS *) pStatsRC;
RTRCPTR RCPtrAlignment;
/** @} */
#endif
} PGM;
#ifndef IN_TSTVMSTRUCTGC /* HACK */
AssertCompileMemberAlignment(PGM, paDynPageMap32BitPTEsGC, 8);
AssertCompileMemberAlignment(PGM, GCPtrMappingFixed, sizeof(RTGCPTR));
AssertCompileMemberAlignment(PGM, HCPhysInterPD, 8);
AssertCompileMemberAlignment(PGM, CritSectX, 8);
AssertCompileMemberAlignment(PGM, ChunkR3Map, 8);
AssertCompileMemberAlignment(PGM, PhysTlbHC, 8);
AssertCompileMemberAlignment(PGM, HCPhysZeroPg, 8);
AssertCompileMemberAlignment(PGM, aHandyPages, 8);
AssertCompileMemberAlignment(PGM, cRelocations, 8);
#endif /* !IN_TSTVMSTRUCTGC */
/** Pointer to the PGM instance data. */
typedef PGM *PPGM;
typedef struct PGMCPUSTATS
{
/* Common */
STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
/* R0 only: */
STAMPROFILE StatR0NpMiscfg; /**< R0: PGMR0Trap0eHandlerNPMisconfig() profiling. */
STAMCOUNTER StatR0NpMiscfgSyncPage; /**< R0: SyncPage calls from PGMR0Trap0eHandlerNPMisconfig(). */
/* RZ only: */
STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
STAMPROFILE StatRZTrap0eTime2Ballooned; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is read access to a ballooned page. */
STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
STAMPROFILE StatRZTrap0eTime2InvalidPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address. */
STAMPROFILE StatRZTrap0eTime2MakeWritable; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a page that needed to be made writable. */
STAMPROFILE StatRZTrap0eTime2Mapping; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is the guest mappings. */
STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
STAMPROFILE StatRZTrap0eTime2WPEmulation; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CR0.WP emulation. */
STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
STAMCOUNTER StatRZTrap0eHandlersPhysAll; /**< RC/R0: Number of traps due to physical all-access handlers. */
STAMCOUNTER StatRZTrap0eHandlersPhysAllOpt; /**< RC/R0: Number of the physical all-access handler traps using the optimization. */
STAMCOUNTER StatRZTrap0eHandlersPhysWrite; /**< RC/R0: Number of traps due to write-physical access handlers. */
STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: \#PF err kind */
STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest \#PFs. */
STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest \#PF to HMA or other mapping. */
STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the \#PFs. */
STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
STAMCOUNTER StatRZDynMapMigrateInvlPg; /**< RZ: invlpg in PGMR0DynMapMigrateAutoSet. */
STAMPROFILE StatRZDynMapGCPageInl; /**< RZ: Calls to pgmRZDynMapGCPageInlined. */
STAMCOUNTER StatRZDynMapGCPageInlHits; /**< RZ: Hash table lookup hits. */
STAMCOUNTER StatRZDynMapGCPageInlMisses; /**< RZ: Misses that falls back to the code common. */
STAMCOUNTER StatRZDynMapGCPageInlRamHits; /**< RZ: 1st ram range hits. */
STAMCOUNTER StatRZDynMapGCPageInlRamMisses; /**< RZ: 1st ram range misses, takes slow path. */
STAMPROFILE StatRZDynMapHCPageInl; /**< RZ: Calls to pgmRZDynMapHCPageInlined. */
STAMCOUNTER StatRZDynMapHCPageInlHits; /**< RZ: Hash table lookup hits. */
STAMCOUNTER StatRZDynMapHCPageInlMisses; /**< RZ: Misses that falls back to the code common. */
STAMPROFILE StatRZDynMapHCPage; /**< RZ: Calls to pgmRZDynMapHCPageCommon. */
STAMCOUNTER StatRZDynMapSetOptimize; /**< RZ: Calls to pgmRZDynMapOptimizeAutoSet. */
STAMCOUNTER StatRZDynMapSetSearchFlushes; /**< RZ: Set search restoring to subset flushes. */
STAMCOUNTER StatRZDynMapSetSearchHits; /**< RZ: Set search hits. */
STAMCOUNTER StatRZDynMapSetSearchMisses; /**< RZ: Set search misses. */
STAMCOUNTER StatRZDynMapPage; /**< RZ: Calls to pgmR0DynMapPage. */
STAMCOUNTER StatRZDynMapPageHits0; /**< RZ: Hits at iPage+0. */
STAMCOUNTER StatRZDynMapPageHits1; /**< RZ: Hits at iPage+1. */
STAMCOUNTER StatRZDynMapPageHits2; /**< RZ: Hits at iPage+2. */
STAMCOUNTER StatRZDynMapPageInvlPg; /**< RZ: invlpg. */
STAMCOUNTER StatRZDynMapPageSlow; /**< RZ: Calls to pgmR0DynMapPageSlow. */
STAMCOUNTER StatRZDynMapPageSlowLoopHits; /**< RZ: Hits in the pgmR0DynMapPageSlow search loop. */
STAMCOUNTER StatRZDynMapPageSlowLoopMisses; /**< RZ: Misses in the pgmR0DynMapPageSlow search loop. */
//STAMCOUNTER StatRZDynMapPageSlowLostHits; /**< RZ: Lost hits. */
STAMCOUNTER StatRZDynMapSubsets; /**< RZ: Times PGMDynMapPushAutoSubset was called. */
STAMCOUNTER StatRZDynMapPopFlushes; /**< RZ: Times PGMDynMapPopAutoSubset flushes the subset. */
STAMCOUNTER aStatRZDynMapSetFilledPct[11]; /**< RZ: Set fill distribution, percent. */
/* HC - R3 and (maybe) R0: */
/* RZ & R3: */
STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
STAMCOUNTER StatRZDirtyPageStale; /**< RC/R0: The number of traps generated for dirty bit tracking. (stale tlb entries) */
STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in \#PF or VerifyAccessSyncPage. */
STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in \#PF or VerifyAccessSyncPage. */
STAMCOUNTER StatRZPageOutOfSyncUserWrite; /**< RC/R0: The number of times user page is out of sync was detected in \#PF. */
STAMCOUNTER StatRZPageOutOfSyncSupervisorWrite; /**< RC/R0: The number of times supervisor page is out of sync was detected in in \#PF. */
STAMCOUNTER StatRZPageOutOfSyncBallloon; /**< RC/R0: The number of times a ballooned page was accessed (read). */
STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in \#PF or VerifyAccessSyncPage. */
STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in \#PF or VerifyAccessSyncPage. */
STAMCOUNTER StatR3PageOutOfSyncUserWrite; /**< R3: The number of times user page is out of sync was detected in \#PF. */
STAMCOUNTER StatR3PageOutOfSyncSupervisorWrite; /**< R3: The number of times supervisor page is out of sync was detected in in \#PF. */
STAMCOUNTER StatR3PageOutOfSyncBallloon; /**< R3: The number of times a ballooned page was accessed (read). */
STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
/** @} */
} PGMCPUSTATS;
/**
* Converts a PGMCPU pointer into a VM pointer.
* @returns Pointer to the VM structure the PGM is part of.
* @param pPGM Pointer to PGMCPU instance data.
*/
#define PGMCPU2VM(pPGM) ( (PVM)((char*)(pPGM) - (pPGM)->offVM) )
/**
* Converts a PGMCPU pointer into a PGM pointer.
* @returns Pointer to the VM structure the PGM is part of.
* @param pPGM Pointer to PGMCPU instance data.
*/
#define PGMCPU2PGM(pPGMCpu) ( (PPGM)((char *)(pPGMCpu) - (pPGMCpu)->offPGM) )
/**
* PGMCPU Data (part of VMCPU).
*/
typedef struct PGMCPU
{
/** Offset to the VM structure. */
int32_t offVM;
/** Offset to the VMCPU structure. */
int32_t offVCpu;
/** Offset of the PGM structure relative to VMCPU. */
int32_t offPGM;
uint32_t uPadding0; /**< structure size alignment. */
#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE) || defined(VBOX_WITH_RAW_MODE)
/** Automatically tracked physical memory mapping set.
* Ring-0 and strict raw-mode builds. */
PGMMAPSET AutoSet;
#endif
/** A20 gate mask.
* Our current approach to A20 emulation is to let REM do it and don't bother
* anywhere else. The interesting Guests will be operating with it enabled anyway.
* But whould need arrise, we'll subject physical addresses to this mask. */
RTGCPHYS GCPhysA20Mask;
/** A20 gate state - boolean! */
bool fA20Enabled;
/** Mirror of the EFER.NXE bit. Managed by PGMNotifyNxeChanged. */
bool fNoExecuteEnabled;
/** Unused bits. */
bool afUnused[2];
/** What needs syncing (PGM_SYNC_*).
* This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
* PGMFlushTLB, and PGMR3Load. */
RTUINT fSyncFlags;
/** The shadow paging mode. */
PGMMODE enmShadowMode;
/** The guest paging mode. */
PGMMODE enmGuestMode;
/** The current physical address representing in the guest CR3 register. */
RTGCPHYS GCPhysCR3;
/** @name 32-bit Guest Paging.
* @{ */
/** The guest's page directory, R3 pointer. */
R3PTRTYPE(PX86PD) pGst32BitPdR3;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
/** The guest's page directory, R0 pointer. */
R0PTRTYPE(PX86PD) pGst32BitPdR0;
#endif
/** The guest's page directory, static RC mapping. */
RCPTRTYPE(PX86PD) pGst32BitPdRC;
/** Mask containing the MBZ bits of a big page PDE. */
uint32_t fGst32BitMbzBigPdeMask;
/** Set if the page size extension (PSE) is enabled. */
bool fGst32BitPageSizeExtension;
/** Alignment padding. */
bool afAlignment2[3];
/** @} */
/** @name PAE Guest Paging.
* @{ */
/** The guest's page directory pointer table, static RC mapping. */
RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
/** The guest's page directory pointer table, R3 pointer. */
R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
/** The guest's page directory pointer table, R0 pointer. */
R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
#endif
/** The guest's page directories, R3 pointers.
* These are individual pointers and don't have to be adjacent.
* These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
/** The guest's page directories, R0 pointers.
* Same restrictions as apGstPaePDsR3. */
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
#endif
/** The guest's page directories, static GC mapping.
* Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
* These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
/** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC.
* @todo Remove this and use aGstPaePdpeRegs instead? */
RTGCPHYS aGCPhysGstPaePDs[4];
/** The values of the 4 PDPE CPU registers (PAE). */
X86PDPE aGstPaePdpeRegs[4];
/** The physical addresses of the monitored guest page directories (PAE). */
RTGCPHYS aGCPhysGstPaePDsMonitored[4];
/** Mask containing the MBZ PTE bits. */
uint64_t fGstPaeMbzPteMask;
/** Mask containing the MBZ PDE bits. */
uint64_t fGstPaeMbzPdeMask;
/** Mask containing the MBZ big page PDE bits. */
uint64_t fGstPaeMbzBigPdeMask;
/** Mask containing the MBZ PDPE bits. */
uint64_t fGstPaeMbzPdpeMask;
/** @} */
/** @name AMD64 Guest Paging.
* @{ */
/** The guest's page directory pointer table, R3 pointer. */
R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
/** The guest's page directory pointer table, R0 pointer. */
R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
#else
RTR0PTR alignment6b; /**< alignment equalizer. */
#endif
/** Mask containing the MBZ PTE bits. */
uint64_t fGstAmd64MbzPteMask;
/** Mask containing the MBZ PDE bits. */
uint64_t fGstAmd64MbzPdeMask;
/** Mask containing the MBZ big page PDE bits. */
uint64_t fGstAmd64MbzBigPdeMask;
/** Mask containing the MBZ PDPE bits. */
uint64_t fGstAmd64MbzPdpeMask;
/** Mask containing the MBZ big page PDPE bits. */
uint64_t fGstAmd64MbzBigPdpeMask;
/** Mask containing the MBZ PML4E bits. */
uint64_t fGstAmd64MbzPml4eMask;
/** Mask containing the PDPE bits that we shadow. */
uint64_t fGstAmd64ShadowedPdpeMask;
/** Mask containing the PML4E bits that we shadow. */
uint64_t fGstAmd64ShadowedPml4eMask;
/** @} */
/** @name PAE and AMD64 Guest Paging.
* @{ */
/** Mask containing the PTE bits that we shadow. */
uint64_t fGst64ShadowedPteMask;
/** Mask containing the PDE bits that we shadow. */
uint64_t fGst64ShadowedPdeMask;
/** Mask containing the big page PDE bits that we shadow in the PDE. */
uint64_t fGst64ShadowedBigPdeMask;
/** Mask containing the big page PDE bits that we shadow in the PTE. */
uint64_t fGst64ShadowedBigPde4PteMask;
/** @} */
/** Pointer to the page of the current active CR3 - R3 Ptr. */
R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
/** Pointer to the page of the current active CR3 - R0 Ptr. */
R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
/** Pointer to the page of the current active CR3 - RC Ptr. */
RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
/* The shadow page pool index of the user table as specified during allocation; useful for freeing root pages */
uint32_t iShwUser;
/* The index into the user table (shadowed) as specified during allocation; useful for freeing root pages. */
uint32_t iShwUserTable;
# if HC_ARCH_BITS == 64
RTRCPTR alignment6; /**< structure size alignment. */
# endif
/** @} */
/** @name Function pointers for Shadow paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVMCPU pVCpu, RTGCPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVMCPU pVCpu));
DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags));
DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags));
DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags));
/** @} */
/** @name Function pointers for Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVMCPU pVCpu, RTGCPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVMCPU pVCpu));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde));
DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde));
#if HC_ARCH_BITS == 64
RTRCPTR alignment3; /**< structure size alignment. */
#endif
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde));
/** @} */
/** @name Function pointers for Both Shadow and Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVMCPU pVCpu, RTGCPTR offDelta));
/* no pfnR3BthTrap0eHandler */
DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3));
DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVMCPU pVCpu));
DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken));
DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3));
DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVMCPU pVCpu));
DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken));
DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3));
DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVMCPU pVCpu));
#if 0
RTRCPTR alignment2; /**< structure size alignment. */
#endif
/** @} */
/** For saving stack space, the disassembler state is allocated here instead of
* on the stack.
* @note The DISCPUSTATE structure is not R3/R0/RZ clean! */
union
{
/** The disassembler scratch space. */
DISCPUSTATE DisState;
/** Padding. */
uint8_t abDisStatePadding[DISCPUSTATE_PADDING_SIZE];
};
/** Count the number of pgm pool access handler calls. */
uint64_t cPoolAccessHandler;
/** @name Release Statistics
* @{ */
/** The number of times the guest has switched mode since last reset or statistics reset. */
STAMCOUNTER cGuestModeChanges;
/** @} */
#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
/** @name Statistics
* @{ */
/** RC: Pointer to the statistics. */
RCPTRTYPE(PGMCPUSTATS *) pStatsRC;
/** RC: Which statistic this \#PF should be attributed to. */
RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
/** R0: Pointer to the statistics. */
R0PTRTYPE(PGMCPUSTATS *) pStatsR0;
/** R0: Which statistic this \#PF should be attributed to. */
R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
/** R3: Pointer to the statistics. */
R3PTRTYPE(PGMCPUSTATS *) pStatsR3;
/** Alignment padding. */
RTR3PTR pPaddingR3;
/** @} */
#endif /* VBOX_WITH_STATISTICS */
} PGMCPU;
/** Pointer to the per-cpu PGM data. */
typedef PGMCPU *PPGMCPU;
/** @name PGM::fSyncFlags Flags
* @{
*/
/** Updates the virtual access handler state bit in PGMPAGE. */
#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
/** Always sync CR3. */
#define PGM_SYNC_ALWAYS RT_BIT(1)
/** Check monitoring on next CR3 (re)load and invalidate page.
* @todo This is obsolete now. Remove after 2.2.0 is branched off. */
#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
/** Check guest mapping in SyncCR3. */
#define PGM_SYNC_MAP_CR3 RT_BIT(3)
/** Clear the page pool (a light weight flush). */
#define PGM_SYNC_CLEAR_PGM_POOL_BIT 8
#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(PGM_SYNC_CLEAR_PGM_POOL_BIT)
/** @} */
RT_C_DECLS_BEGIN
int pgmLock(PVM pVM);
void pgmUnlock(PVM pVM);
/**
* Asserts that the caller owns the PDM lock.
* This is the internal variant of PGMIsLockOwner.
* @param a_pVM The VM handle.
*/
#define PGM_LOCK_ASSERT_OWNER(a_pVM) Assert(PDMCritSectIsOwner(&(a_pVM)->pgm.s.CritSectX))
/**
* Asserts that the caller owns the PDM lock.
* This is the internal variant of PGMIsLockOwner.
* @param a_pVM The VM handle.
* @param a_pVCpu The current CPU handle.
*/
#define PGM_LOCK_ASSERT_OWNER_EX(a_pVM, a_pVCpu) Assert(PDMCritSectIsOwnerEx(&(a_pVM)->pgm.s.CritSectX, pVCpu))
int pgmR3MappingsFixInternal(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb);
int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
int pgmMapResolveConflicts(PVM pVM);
DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys);
void pgmHandlerPhysicalResetAliasedPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhysPage, bool fDoAccounting);
int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
void pgmHandlerVirtualDumpPhysPages(PVM pVM);
#else
# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
#endif
DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
int pgmR3InitSavedState(PVM pVM, uint64_t cbRam);
int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys);
int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage);
int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys);
int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage);
int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv);
int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv);
int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv);
int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv);
int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr);
int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr);
int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv);
int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock);
int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock);
void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock);
VMMDECL(int) pgmPhysHandlerRedirectToHC(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
void pgmPhysInvalidRamRangeTlbs(PVM pVM);
void pgmPhysInvalidatePageMapTLB(PVM pVM);
void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys);
PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys);
PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys);
PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys);
int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage);
int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam);
#ifdef IN_RING3
void pgmR3PhysRelinkRamRanges(PVM pVM);
int pgmR3PhysRamPreAllocate(PVM pVM);
int pgmR3PhysRamReset(PVM pVM);
int pgmR3PhysRomReset(PVM pVM);
int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
int pgmR3PhysRamTerm(PVM pVM);
void pgmR3PhysRomTerm(PVM pVM);
int pgmR3PoolInit(PVM pVM);
void pgmR3PoolRelocate(PVM pVM);
void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu);
void pgmR3PoolReset(PVM pVM);
void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb);
DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl);
void pgmR3PoolWriteProtectPages(PVM pVM);
#endif /* IN_RING3 */
#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
int pgmRZDynMapHCPageCommon(PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL);
int pgmRZDynMapGCPageCommon(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL);
# ifdef LOG_ENABLED
void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint, RT_SRC_POS_DECL);
# else
void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint);
# endif
#endif
int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser,
uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage);
DECLINLINE(int) pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable,
PPPGMPOOLPAGE ppPage)
{
return pgmPoolAllocEx(pVM, GCPhys, enmKind, PGMPOOLACCESS_DONTCARE, iUser, iUserTable, false, ppPage);
}
void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush = true /* DO NOT USE false UNLESS YOU KNOWN WHAT YOU'RE DOING!! */);
void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys);
PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys);
PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys);
int pgmPoolSyncCR3(PVMCPU pVCpu);
bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys);
void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT);
int pgmPoolTrackUpdateGCPhys(PVM pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs);
void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte);
uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte);
void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage, uint16_t iPte);
void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, unsigned cbWrite);
int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage);
void pgmPoolResetDirtyPages(PVM pVM);
void pgmPoolResetDirtyPage(PVM pVM, RTGCPTR GCPtrPage);
int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu);
int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu);
void pgmMapSetShadowPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE);
void pgmMapClearShadowPDEs(PVM pVM, PPGMPOOLPAGE pShwPageCR3, PPGMMAPPING pMap, unsigned iOldPDE, bool fDeactivateCR3);
int pgmMapActivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3);
int pgmMapDeactivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3);
int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, X86PGPAEUINT uGstPdpe, PX86PDPAE *ppPD);
int pgmShwSyncNestedPageLocked(PVMCPU pVCpu, RTGCPHYS GCPhysFault, uint32_t cPages, PGMMODE enmShwPagingMode);
int pgmGstLazyMap32BitPD(PVMCPU pVCpu, PX86PD *ppPd);
int pgmGstLazyMapPaePDPT(PVMCPU pVCpu, PX86PDPT *ppPdpt);
int pgmGstLazyMapPaePD(PVMCPU pVCpu, uint32_t iPdpt, PX86PDPAE *ppPd);
int pgmGstLazyMapPml4(PVMCPU pVCpu, PX86PML4 *ppPml4);
# if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
DECLCALLBACK(int) pgmR3CmdCheckDuplicatePages(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
DECLCALLBACK(int) pgmR3CmdShowSharedModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
# endif
RT_C_DECLS_END
/** @} */
#endif