VMMTests.cpp revision 41d680dd6eb0287afc200adc5b0d61b07a32b72d
/* $Id$ */
/** @file
* VMM - The Virtual Machine Monitor Core, Tests.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
//#define NO_SUPCALLR0VMM
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_VMM
#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGIP */
#include <VBox/vmm/vmm.h>
#include <VBox/vmm/pdmapi.h>
#include <VBox/vmm/cpum.h>
#include <VBox/dbg.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/trpm.h>
#include <VBox/vmm/selm.h>
#include "VMMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/err.h>
#include <VBox/param.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/time.h>
#include <iprt/stream.h>
#include <iprt/string.h>
#include <iprt/x86.h>
static void vmmR3TestClearStack(PVMCPU pVCpu)
{
/* We leave the first 64 bytes of the stack alone because of strict
ring-0 long jump code uses it. */
memset(pVCpu->vmm.s.pbEMTStackR3 + 64, 0xaa, VMM_STACK_SIZE - 64);
}
#ifdef VBOX_WITH_RAW_MODE
static int vmmR3ReportMsrRange(PVM pVM, uint32_t uMsr, uint64_t cMsrs, PRTSTREAM pReportStrm, uint32_t *pcMsrsFound)
{
/*
* Preps.
*/
RTRCPTR RCPtrEP;
int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMRCTestReadMsrs", &RCPtrEP);
AssertMsgRCReturn(rc, ("Failed to resolved VMMRC.rc::VMMRCEntry(), rc=%Rrc\n", rc), rc);
uint32_t const cMsrsPerCall = 16384;
uint32_t cbResults = cMsrsPerCall * sizeof(VMMTESTMSRENTRY);
PVMMTESTMSRENTRY paResults;
rc = MMHyperAlloc(pVM, cbResults, 0, MM_TAG_VMM, (void **)&paResults);
AssertMsgRCReturn(rc, ("Error allocating %#x bytes off the hyper heap: %Rrc\n", cbResults, rc), rc);
/*
* The loop.
*/
RTRCPTR RCPtrResults = MMHyperR3ToRC(pVM, paResults);
uint32_t cMsrsFound = 0;
uint32_t uLastMsr = uMsr;
uint64_t uNsTsStart = RTTimeNanoTS();
for (;;)
{
if ( pReportStrm
&& uMsr - uLastMsr > _64K
&& (uMsr & (_4M - 1)) == 0)
{
if (uMsr - uLastMsr < 16U*_1M)
RTStrmFlush(pReportStrm);
RTPrintf("... %#010x [%u ns/msr] ...\n", uMsr, (RTTimeNanoTS() - uNsTsStart) / uMsr);
}
/*RT_BZERO(paResults, cbResults);*/
uint32_t const cBatch = RT_MIN(cMsrsPerCall, cMsrs);
rc = VMMR3CallRC(pVM, RCPtrEP, 4, pVM->pVMRC, uMsr, cBatch, RCPtrResults);
if (RT_FAILURE(rc))
{
RTPrintf("VMM: VMMR3CallRC failed rc=%Rrc, uMsr=%#x\n", rc, uMsr);
break;
}
for (uint32_t i = 0; i < cBatch; i++)
if (paResults[i].uMsr != UINT64_MAX)
{
if (paResults[i].uValue == 0)
{
if (pReportStrm)
RTStrmPrintf(pReportStrm,
" MVO(%#010llx, \"MSR\", UINT64_C(%#018llx)),\n", paResults[i].uMsr, paResults[i].uValue);
RTPrintf("%#010llx = 0\n", paResults[i].uMsr);
}
else
{
if (pReportStrm)
RTStrmPrintf(pReportStrm,
" MVO(%#010llx, \"MSR\", UINT64_C(%#018llx)),\n", paResults[i].uMsr, paResults[i].uValue);
RTPrintf("%#010llx = %#010x`%08x\n", paResults[i].uMsr,
(uint32_t)(paResults[i].uValue >> 32), (uint32_t)paResults[i].uValue);
}
cMsrsFound++;
uLastMsr = paResults[i].uMsr;
}
/* Advance. */
if (cMsrs <= cMsrsPerCall)
break;
cMsrs -= cMsrsPerCall;
uMsr += cMsrsPerCall;
}
*pcMsrsFound += cMsrsFound;
MMHyperFree(pVM, paResults);
return rc;
}
/**
* Produces a quick report of MSRs.
*
* @returns VBox status code.
* @param pVM Pointer to the cross context VM structure.
* @param pReportStrm Pointer to the report output stream. Optional.
* @param fWithCpuId Whether CPUID should be included.
*/
static int vmmR3DoMsrQuickReport(PVM pVM, PRTSTREAM pReportStrm, bool fWithCpuId)
{
uint64_t uTsStart = RTTimeNanoTS();
RTPrintf("=== MSR Quick Report Start ===\n");
RTStrmFlush(g_pStdOut);
if (fWithCpuId)
{
DBGFR3InfoStdErr(pVM->pUVM, "cpuid", "verbose");
RTPrintf("\n");
}
if (pReportStrm)
RTStrmPrintf(pReportStrm, "\n\n{\n");
static struct { uint32_t uFirst, cMsrs; } const s_aRanges[] =
{
{ 0x00000000, 0x00042000 },
{ 0x10000000, 0x00001000 },
{ 0x20000000, 0x00001000 },
{ 0x40000000, 0x00012000 },
{ 0x80000000, 0x00012000 },
// Need 0xc0000000..0xc001106f (at least), but trouble on solaris w/ 10h and 0fh family cpus:
// { 0xc0000000, 0x00022000 },
{ 0xc0000000, 0x00010000 },
{ 0xc0010000, 0x00001040 },
{ 0xc0011040, 0x00004040 }, /* should cause trouble... */
};
uint32_t cMsrsFound = 0;
int rc = VINF_SUCCESS;
for (unsigned i = 0; i < RT_ELEMENTS(s_aRanges) && RT_SUCCESS(rc); i++)
{
//if (i >= 3)
//{
//RTStrmFlush(g_pStdOut);
//RTThreadSleep(40);
//}
rc = vmmR3ReportMsrRange(pVM, s_aRanges[i].uFirst, s_aRanges[i].cMsrs, pReportStrm, &cMsrsFound);
}
if (pReportStrm)
RTStrmPrintf(pReportStrm, "}; /* %u (%#x) MSRs; rc=%Rrc */\n", cMsrsFound, cMsrsFound, rc);
RTPrintf("Total %u (%#x) MSRs\n", cMsrsFound, cMsrsFound);
RTPrintf("=== MSR Quick Report End (rc=%Rrc, %'llu ns) ===\n", rc, RTTimeNanoTS() - uTsStart);
return rc;
}
/**
* Performs a testcase.
*
* @returns return value from the test.
* @param pVM Pointer to the VM.
* @param enmTestcase The testcase operation to perform.
* @param uVariation The testcase variation id.
*/
static int vmmR3DoGCTest(PVM pVM, VMMGCOPERATION enmTestcase, unsigned uVariation)
{
PVMCPU pVCpu = &pVM->aCpus[0];
RTRCPTR RCPtrEP;
int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
if (RT_FAILURE(rc))
return rc;
Log(("vmmR3DoGCTest: %d %#x\n", enmTestcase, uVariation));
CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0);
vmmR3TestClearStack(pVCpu);
CPUMPushHyper(pVCpu, uVariation);
CPUMPushHyper(pVCpu, enmTestcase);
CPUMPushHyper(pVCpu, pVM->pVMRC);
CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */
CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */
Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
#if 1
/* flush the raw-mode logs. */
# ifdef LOG_ENABLED
PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
if ( pLogger
&& pLogger->offScratch > 0)
RTLogFlushRC(NULL, pLogger);
# endif
# ifdef VBOX_WITH_RC_RELEASE_LOGGING
PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
# endif
#endif
Log(("vmmR3DoGCTest: rc=%Rrc iLastGZRc=%Rrc\n", rc, pVCpu->vmm.s.iLastGZRc));
if (RT_LIKELY(rc == VINF_SUCCESS))
rc = pVCpu->vmm.s.iLastGZRc;
return rc;
}
/**
* Performs a trap test.
*
* @returns Return value from the trap test.
* @param pVM Pointer to the VM.
* @param u8Trap The trap number to test.
* @param uVariation The testcase variation.
* @param rcExpect The expected result.
* @param u32Eax The expected eax value.
* @param pszFaultEIP The fault address. Pass NULL if this isn't available or doesn't apply.
* @param pszDesc The test description.
*/
static int vmmR3DoTrapTest(PVM pVM, uint8_t u8Trap, unsigned uVariation, int rcExpect, uint32_t u32Eax, const char *pszFaultEIP, const char *pszDesc)
{
PVMCPU pVCpu = &pVM->aCpus[0];
RTPrintf("VMM: testing 0%x / %d - %s\n", u8Trap, uVariation, pszDesc);
RTRCPTR RCPtrEP;
int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
if (RT_FAILURE(rc))
return rc;
CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0);
vmmR3TestClearStack(pVCpu);
CPUMPushHyper(pVCpu, uVariation);
CPUMPushHyper(pVCpu, u8Trap + VMMGC_DO_TESTCASE_TRAP_FIRST);
CPUMPushHyper(pVCpu, pVM->pVMRC);
CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */
CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */
Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
if (RT_LIKELY(rc == VINF_SUCCESS))
rc = pVCpu->vmm.s.iLastGZRc;
bool fDump = false;
if (rc != rcExpect)
{
RTPrintf("VMM: FAILURE - rc=%Rrc expected %Rrc\n", rc, rcExpect);
if (rc != VERR_NOT_IMPLEMENTED)
fDump = true;
}
else if ( rcExpect != VINF_SUCCESS
&& u8Trap != 8 /* double fault doesn't dare set TrapNo. */
&& u8Trap != 3 /* guest only, we're not in guest. */
&& u8Trap != 1 /* guest only, we're not in guest. */
&& u8Trap != TRPMGetTrapNo(pVCpu))
{
RTPrintf("VMM: FAILURE - Trap %#x expected %#x\n", TRPMGetTrapNo(pVCpu), u8Trap);
fDump = true;
}
else if (pszFaultEIP)
{
RTRCPTR RCPtrFault;
int rc2 = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, pszFaultEIP, &RCPtrFault);
if (RT_FAILURE(rc2))
RTPrintf("VMM: FAILURE - Failed to resolve symbol '%s', %Rrc!\n", pszFaultEIP, rc);
else if (RCPtrFault != CPUMGetHyperEIP(pVCpu))
{
RTPrintf("VMM: FAILURE - EIP=%08RX32 expected %RRv (%s)\n", CPUMGetHyperEIP(pVCpu), RCPtrFault, pszFaultEIP);
fDump = true;
}
}
else if (rcExpect != VINF_SUCCESS)
{
if (CPUMGetHyperSS(pVCpu) == SELMGetHyperDS(pVM))
RTPrintf("VMM: FAILURE - ss=%x expected %x\n", CPUMGetHyperSS(pVCpu), SELMGetHyperDS(pVM));
if (CPUMGetHyperES(pVCpu) == SELMGetHyperDS(pVM))
RTPrintf("VMM: FAILURE - es=%x expected %x\n", CPUMGetHyperES(pVCpu), SELMGetHyperDS(pVM));
if (CPUMGetHyperDS(pVCpu) == SELMGetHyperDS(pVM))
RTPrintf("VMM: FAILURE - ds=%x expected %x\n", CPUMGetHyperDS(pVCpu), SELMGetHyperDS(pVM));
if (CPUMGetHyperFS(pVCpu) == SELMGetHyperDS(pVM))
RTPrintf("VMM: FAILURE - fs=%x expected %x\n", CPUMGetHyperFS(pVCpu), SELMGetHyperDS(pVM));
if (CPUMGetHyperGS(pVCpu) == SELMGetHyperDS(pVM))
RTPrintf("VMM: FAILURE - gs=%x expected %x\n", CPUMGetHyperGS(pVCpu), SELMGetHyperDS(pVM));
if (CPUMGetHyperEDI(pVCpu) == 0x01234567)
RTPrintf("VMM: FAILURE - edi=%x expected %x\n", CPUMGetHyperEDI(pVCpu), 0x01234567);
if (CPUMGetHyperESI(pVCpu) == 0x42000042)
RTPrintf("VMM: FAILURE - esi=%x expected %x\n", CPUMGetHyperESI(pVCpu), 0x42000042);
if (CPUMGetHyperEBP(pVCpu) == 0xffeeddcc)
RTPrintf("VMM: FAILURE - ebp=%x expected %x\n", CPUMGetHyperEBP(pVCpu), 0xffeeddcc);
if (CPUMGetHyperEBX(pVCpu) == 0x89abcdef)
RTPrintf("VMM: FAILURE - ebx=%x expected %x\n", CPUMGetHyperEBX(pVCpu), 0x89abcdef);
if (CPUMGetHyperECX(pVCpu) == 0xffffaaaa)
RTPrintf("VMM: FAILURE - ecx=%x expected %x\n", CPUMGetHyperECX(pVCpu), 0xffffaaaa);
if (CPUMGetHyperEDX(pVCpu) == 0x77778888)
RTPrintf("VMM: FAILURE - edx=%x expected %x\n", CPUMGetHyperEDX(pVCpu), 0x77778888);
if (CPUMGetHyperEAX(pVCpu) == u32Eax)
RTPrintf("VMM: FAILURE - eax=%x expected %x\n", CPUMGetHyperEAX(pVCpu), u32Eax);
}
if (fDump)
VMMR3FatalDump(pVM, pVCpu, rc);
return rc;
}
#endif /* VBOX_WITH_RAW_MODE */
/* execute the switch. */
VMMR3DECL(int) VMMDoTest(PVM pVM)
{
int rc = VINF_SUCCESS;
#ifdef VBOX_WITH_RAW_MODE
PVMCPU pVCpu = &pVM->aCpus[0];
PUVM pUVM = pVM->pUVM;
# ifdef NO_SUPCALLR0VMM
RTPrintf("NO_SUPCALLR0VMM\n");
return rc;
# endif
/*
* Setup stack for calling VMMGCEntry().
*/
RTRCPTR RCPtrEP;
rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
if (RT_SUCCESS(rc))
{
RTPrintf("VMM: VMMGCEntry=%RRv\n", RCPtrEP);
/*
* Test various crashes which we must be able to recover from.
*/
vmmR3DoTrapTest(pVM, 0x3, 0, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3");
vmmR3DoTrapTest(pVM, 0x3, 1, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3 WP");
# if 0//defined(DEBUG_bird) /* guess most people would like to skip these since they write to com1. */
vmmR3DoTrapTest(pVM, 0x8, 0, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG]");
SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */
bool f;
rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "DoubleFault", &f);
# if !defined(DEBUG_bird)
if (RT_SUCCESS(rc) && f)
# endif
{
/* see triple fault warnings in SELM and VMMGC.cpp. */
vmmR3DoTrapTest(pVM, 0x8, 1, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG] WP");
SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */
}
# endif
vmmR3DoTrapTest(pVM, 0xd, 0, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP");
///@todo find a better \#GP case, on intel ltr will \#PF (busy update?) and not \#GP.
//vmmR3DoTrapTest(pVM, 0xd, 1, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP WP");
vmmR3DoTrapTest(pVM, 0xe, 0, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL)");
vmmR3DoTrapTest(pVM, 0xe, 1, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL) WP");
vmmR3DoTrapTest(pVM, 0xe, 2, VINF_SUCCESS, 0x00000000, NULL, "#PF w/Tmp Handler");
/* This test is no longer relevant as fs and gs are loaded with NULL
selectors and we will always return to HC if a #GP occurs while
returning to guest code.
vmmR3DoTrapTest(pVM, 0xe, 4, VINF_SUCCESS, 0x00000000, NULL, "#PF w/Tmp Handler and bad fs");
*/
/*
* Set a debug register and perform a context switch.
*/
rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
if (rc != VINF_SUCCESS)
{
RTPrintf("VMM: Nop test failed, rc=%Rrc not VINF_SUCCESS\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
/* a harmless breakpoint */
RTPrintf("VMM: testing hardware bp at 0x10000 (not hit)\n");
DBGFADDRESS Addr;
DBGFR3AddrFromFlat(pUVM, &Addr, 0x10000);
RTUINT iBp0;
rc = DBGFR3BpSetReg(pUVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp0);
AssertReleaseRC(rc);
rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
if (rc != VINF_SUCCESS)
{
RTPrintf("VMM: DR0=0x10000 test failed with rc=%Rrc!\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
/* a bad one at VMMGCEntry */
RTPrintf("VMM: testing hardware bp at VMMGCEntry (hit)\n");
DBGFR3AddrFromFlat(pUVM, &Addr, RCPtrEP);
RTUINT iBp1;
rc = DBGFR3BpSetReg(pUVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp1);
AssertReleaseRC(rc);
rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
if (rc != VINF_EM_DBG_HYPER_BREAKPOINT)
{
RTPrintf("VMM: DR1=VMMGCEntry test failed with rc=%Rrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
/* resume the breakpoint */
RTPrintf("VMM: resuming hyper after breakpoint\n");
CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_RF);
rc = VMMR3ResumeHyper(pVM, pVCpu);
if (rc != VINF_SUCCESS)
{
RTPrintf("VMM: failed to resume on hyper breakpoint, rc=%Rrc = KNOWN BUG\n", rc); /** @todo fix VMMR3ResumeHyper */
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
/* engage the breakpoint again and try single stepping. */
RTPrintf("VMM: testing hardware bp at VMMGCEntry + stepping\n");
rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
if (rc != VINF_EM_DBG_HYPER_BREAKPOINT)
{
RTPrintf("VMM: DR1=VMMGCEntry test failed with rc=%Rrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
RTGCUINTREG OldPc = CPUMGetHyperEIP(pVCpu);
RTPrintf("%RGr=>", OldPc);
unsigned i;
for (i = 0; i < 8; i++)
{
CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF);
rc = VMMR3ResumeHyper(pVM, pVCpu);
if (rc != VINF_EM_DBG_HYPER_STEPPED)
{
RTPrintf("\nVMM: failed to step on hyper breakpoint, rc=%Rrc\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
RTGCUINTREG Pc = CPUMGetHyperEIP(pVCpu);
RTPrintf("%RGr=>", Pc);
if (Pc == OldPc)
{
RTPrintf("\nVMM: step failed, PC: %RGr -> %RGr\n", OldPc, Pc);
return VERR_GENERAL_FAILURE;
}
OldPc = Pc;
}
RTPrintf("ok\n");
/* done, clear it */
if ( RT_FAILURE(DBGFR3BpClear(pUVM, iBp0))
|| RT_FAILURE(DBGFR3BpClear(pUVM, iBp1)))
{
RTPrintf("VMM: Failed to clear breakpoints!\n");
return VERR_GENERAL_FAILURE;
}
rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
if (rc != VINF_SUCCESS)
{
RTPrintf("VMM: NOP failed, rc=%Rrc\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
/*
* Interrupt masking. Failure may indiate NMI watchdog activity.
*/
RTPrintf("VMM: interrupt masking...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250);
for (i = 0; i < 10000; i++)
{
uint64_t StartTick = ASMReadTSC();
rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_INTERRUPT_MASKING, 0);
if (rc != VINF_SUCCESS)
{
RTPrintf("VMM: Interrupt masking failed: rc=%Rrc\n", rc);
return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS;
}
uint64_t Ticks = ASMReadTSC() - StartTick;
if (Ticks < (SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage) / 10000))
RTPrintf("Warning: Ticks=%RU64 (< %RU64)\n", Ticks, SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage) / 10000);
}
/*
* Interrupt forwarding.
*/
CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0);
CPUMPushHyper(pVCpu, 0);
CPUMPushHyper(pVCpu, VMMGC_DO_TESTCASE_HYPER_INTERRUPT);
CPUMPushHyper(pVCpu, pVM->pVMRC);
CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */
CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */
Log(("trampoline=%x\n", pVM->vmm.s.pfnCallTrampolineRC));
/*
* Switch and do da thing.
*/
RTPrintf("VMM: interrupt forwarding...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250);
i = 0;
uint64_t tsBegin = RTTimeNanoTS();
uint64_t TickStart = ASMReadTSC();
Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
do
{
rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
if (RT_LIKELY(rc == VINF_SUCCESS))
rc = pVCpu->vmm.s.iLastGZRc;
if (RT_FAILURE(rc))
{
Log(("VMM: GC returned fatal %Rra in iteration %d\n", rc, i));
VMMR3FatalDump(pVM, pVCpu, rc);
return rc;
}
i++;
if (!(i % 32))
Log(("VMM: iteration %d, esi=%08x edi=%08x ebx=%08x\n",
i, CPUMGetHyperESI(pVCpu), CPUMGetHyperEDI(pVCpu), CPUMGetHyperEBX(pVCpu)));
} while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
uint64_t TickEnd = ASMReadTSC();
uint64_t tsEnd = RTTimeNanoTS();
uint64_t Elapsed = tsEnd - tsBegin;
uint64_t PerIteration = Elapsed / (uint64_t)i;
uint64_t cTicksElapsed = TickEnd - TickStart;
uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i;
RTPrintf("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n",
i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration);
Log(("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n",
i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration));
/*
* These forced actions are not necessary for the test and trigger breakpoints too.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
/*
* Profile switching.
*/
RTPrintf("VMM: profiling switcher...\n");
Log(("VMM: profiling switcher...\n"));
uint64_t TickMin = ~0;
tsBegin = RTTimeNanoTS();
TickStart = ASMReadTSC();
Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
for (i = 0; i < 1000000; i++)
{
CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0);
CPUMPushHyper(pVCpu, 0);
CPUMPushHyper(pVCpu, VMMGC_DO_TESTCASE_NOP);
CPUMPushHyper(pVCpu, pVM->pVMRC);
CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */
CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */
uint64_t TickThisStart = ASMReadTSC();
rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
if (RT_LIKELY(rc == VINF_SUCCESS))
rc = pVCpu->vmm.s.iLastGZRc;
uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart;
if (RT_FAILURE(rc))
{
Log(("VMM: GC returned fatal %Rra in iteration %d\n", rc, i));
VMMR3FatalDump(pVM, pVCpu, rc);
return rc;
}
if (TickThisElapsed < TickMin)
TickMin = TickThisElapsed;
}
TickEnd = ASMReadTSC();
tsEnd = RTTimeNanoTS();
Elapsed = tsEnd - tsBegin;
PerIteration = Elapsed / (uint64_t)i;
cTicksElapsed = TickEnd - TickStart;
cTicksPerIteration = cTicksElapsed / (uint64_t)i;
RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n",
i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin);
Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n",
i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin));
rc = VINF_SUCCESS;
/*
* A quick MSR report.
*/
vmmR3DoMsrQuickReport(pVM, NULL, true);
}
else
AssertMsgFailed(("Failed to resolved VMMGC.gc::VMMGCEntry(), rc=%Rrc\n", rc));
#endif
return rc;
}
#define SYNC_SEL(pHyperCtx, reg) \
if (pHyperCtx->reg.Sel) \
{ \
DBGFSELINFO selInfo; \
int rc2 = SELMR3GetShadowSelectorInfo(pVM, pHyperCtx->reg.Sel, &selInfo); \
AssertRC(rc2); \
\
pHyperCtx->reg.u64Base = selInfo.GCPtrBase; \
pHyperCtx->reg.u32Limit = selInfo.cbLimit; \
pHyperCtx->reg.Attr.n.u1Present = selInfo.u.Raw.Gen.u1Present; \
pHyperCtx->reg.Attr.n.u1DefBig = selInfo.u.Raw.Gen.u1DefBig; \
pHyperCtx->reg.Attr.n.u1Granularity = selInfo.u.Raw.Gen.u1Granularity; \
pHyperCtx->reg.Attr.n.u4Type = selInfo.u.Raw.Gen.u4Type; \
pHyperCtx->reg.Attr.n.u2Dpl = selInfo.u.Raw.Gen.u2Dpl; \
pHyperCtx->reg.Attr.n.u1DescType = selInfo.u.Raw.Gen.u1DescType; \
pHyperCtx->reg.Attr.n.u1Long = selInfo.u.Raw.Gen.u1Long; \
}
/* execute the switch. */
VMMR3DECL(int) VMMDoHmTest(PVM pVM)
{
uint32_t i;
int rc;
PCPUMCTX pHyperCtx, pGuestCtx;
RTGCPHYS CR3Phys = 0x0; /* fake address */
PVMCPU pVCpu = &pVM->aCpus[0];
if (!HMIsEnabled(pVM))
{
RTPrintf("VMM: Hardware accelerated test not available!\n");
return VERR_ACCESS_DENIED;
}
#ifdef VBOX_WITH_RAW_MODE
/*
* These forced actions are not necessary for the test and trigger breakpoints too.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
#endif
/* Enable mapping of the hypervisor into the shadow page table. */
uint32_t cb;
rc = PGMR3MappingsSize(pVM, &cb);
AssertRCReturn(rc, rc);
/* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
AssertRCReturn(rc, rc);
pHyperCtx = CPUMGetHyperCtxPtr(pVCpu);
pHyperCtx->cr0 = X86_CR0_PE | X86_CR0_WP | X86_CR0_PG | X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
pHyperCtx->cr4 = X86_CR4_PGE | X86_CR4_OSFSXR | X86_CR4_OSXMMEEXCPT;
PGMChangeMode(pVCpu, pHyperCtx->cr0, pHyperCtx->cr4, pHyperCtx->msrEFER);
PGMSyncCR3(pVCpu, pHyperCtx->cr0, CR3Phys, pHyperCtx->cr4, true);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TIMER);
VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
VM_FF_CLEAR(pVM, VM_FF_REQUEST);
/*
* Setup stack for calling VMMGCEntry().
*/
RTRCPTR RCPtrEP;
rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
if (RT_SUCCESS(rc))
{
RTPrintf("VMM: VMMGCEntry=%RRv\n", RCPtrEP);
pHyperCtx = CPUMGetHyperCtxPtr(pVCpu);
/* Fill in hidden selector registers for the hypervisor state. */
SYNC_SEL(pHyperCtx, cs);
SYNC_SEL(pHyperCtx, ds);
SYNC_SEL(pHyperCtx, es);
SYNC_SEL(pHyperCtx, fs);
SYNC_SEL(pHyperCtx, gs);
SYNC_SEL(pHyperCtx, ss);
SYNC_SEL(pHyperCtx, tr);
/*
* Profile switching.
*/
RTPrintf("VMM: profiling switcher...\n");
Log(("VMM: profiling switcher...\n"));
uint64_t TickMin = ~0;
uint64_t tsBegin = RTTimeNanoTS();
uint64_t TickStart = ASMReadTSC();
for (i = 0; i < 1000000; i++)
{
CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0);
CPUMPushHyper(pVCpu, 0);
CPUMPushHyper(pVCpu, VMMGC_DO_TESTCASE_HM_NOP);
CPUMPushHyper(pVCpu, pVM->pVMRC);
CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */
CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */
pHyperCtx = CPUMGetHyperCtxPtr(pVCpu);
pGuestCtx = CPUMQueryGuestCtxPtr(pVCpu);
/* Copy the hypervisor context to make sure we have a valid guest context. */
*pGuestCtx = *pHyperCtx;
pGuestCtx->cr3 = CR3Phys;
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TIMER);
VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
uint64_t TickThisStart = ASMReadTSC();
rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, 0);
uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart;
if (RT_FAILURE(rc))
{
Log(("VMM: R0 returned fatal %Rrc in iteration %d\n", rc, i));
VMMR3FatalDump(pVM, pVCpu, rc);
return rc;
}
if (TickThisElapsed < TickMin)
TickMin = TickThisElapsed;
}
uint64_t TickEnd = ASMReadTSC();
uint64_t tsEnd = RTTimeNanoTS();
uint64_t Elapsed = tsEnd - tsBegin;
uint64_t PerIteration = Elapsed / (uint64_t)i;
uint64_t cTicksElapsed = TickEnd - TickStart;
uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i;
RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n",
i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin);
Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n",
i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin));
rc = VINF_SUCCESS;
}
else
AssertMsgFailed(("Failed to resolved VMMGC.gc::VMMGCEntry(), rc=%Rrc\n", rc));
return rc;
}
#ifdef VBOX_WITH_RAW_MODE
/**
* Used by VMMDoBruteForceMsrs to dump the CPUID info of the host CPU as a
* prefix to the MSR report.
*/
static DECLCALLBACK(void) vmmDoPrintfVToStream(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list va)
{
PRTSTREAM pOutStrm = ((PRTSTREAM *)pHlp)[-1];
RTStrmPrintfV(pOutStrm, pszFormat, va);
}
/**
* Used by VMMDoBruteForceMsrs to dump the CPUID info of the host CPU as a
* prefix to the MSR report.
*/
static DECLCALLBACK(void) vmmDoPrintfToStream(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
vmmDoPrintfVToStream(pHlp, pszFormat, va);
va_end(va);
}
#endif
/**
* Uses raw-mode to query all possible MSRs on the real hardware.
*
* This generates a msr-report.txt file (appending, no overwriting) as well as
* writing the values and process to stdout.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
VMMR3DECL(int) VMMDoBruteForceMsrs(PVM pVM)
{
#ifdef VBOX_WITH_RAW_MODE
PRTSTREAM pOutStrm;
int rc = RTStrmOpen("msr-report.txt", "a", &pOutStrm);
if (RT_SUCCESS(rc))
{
/* Header */
struct
{
PRTSTREAM pOutStrm;
DBGFINFOHLP Hlp;
} MyHlp = { pOutStrm, { vmmDoPrintfToStream, vmmDoPrintfVToStream } };
DBGFR3Info(pVM->pUVM, "cpuid", "verbose", &MyHlp.Hlp);
RTStrmPrintf(pOutStrm, "\n");
uint32_t cMsrsFound = 0;
vmmR3ReportMsrRange(pVM, 0, _4G, pOutStrm, &cMsrsFound);
RTStrmPrintf(pOutStrm, "Total %u (%#x) MSRs\n", cMsrsFound, cMsrsFound);
RTPrintf("Total %u (%#x) MSRs\n", cMsrsFound, cMsrsFound);
RTStrmClose(pOutStrm);
}
return rc;
#else
return VERR_NOT_SUPPORTED;
#endif
}
/**
* Uses raw-mode to query all known MSRS on the real hardware.
*
* This generates a known-msr-report.txt file (appending, no overwriting) as
* well as writing the values and process to stdout.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
VMMR3DECL(int) VMMDoKnownMsrs(PVM pVM)
{
#ifdef VBOX_WITH_RAW_MODE
PRTSTREAM pOutStrm;
int rc = RTStrmOpen("known-msr-report.txt", "a", &pOutStrm);
if (RT_SUCCESS(rc))
{
vmmR3DoMsrQuickReport(pVM, pOutStrm, false);
RTStrmClose(pOutStrm);
}
return rc;
#else
return VERR_NOT_SUPPORTED;
#endif
}
/**
* MSR experimentation.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
VMMR3DECL(int) VMMDoMsrExperiments(PVM pVM)
{
#ifdef VBOX_WITH_RAW_MODE
/*
* Preps.
*/
RTRCPTR RCPtrEP;
int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMRCTestTestWriteMsr", &RCPtrEP);
AssertMsgRCReturn(rc, ("Failed to resolved VMMRC.rc::VMMRCEntry(), rc=%Rrc\n", rc), rc);
uint64_t *pauValues;
rc = MMHyperAlloc(pVM, 2 * sizeof(uint64_t), 0, MM_TAG_VMM, (void **)&pauValues);
AssertMsgRCReturn(rc, ("Error allocating %#x bytes off the hyper heap: %Rrc\n", 2 * sizeof(uint64_t), rc), rc);
RTRCPTR RCPtrValues = MMHyperR3ToRC(pVM, pauValues);
/*
* Do the experiments.
*/
uint32_t uMsr = 0x00000277;
uint64_t uValue = UINT64_C(0x0007010600070106);
#if 0
uValue &= ~(RT_BIT_64(17) | RT_BIT_64(16) | RT_BIT_64(15) | RT_BIT_64(14) | RT_BIT_64(13));
uValue |= RT_BIT_64(13);
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n",
uMsr, pauValues[0], uValue, pauValues[1], rc);
#elif 1
const uint64_t uOrgValue = uValue;
uint32_t cChanges = 0;
for (int iBit = 63; iBit >= 58; iBit--)
{
uValue = uOrgValue & ~RT_BIT_64(iBit);
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\nclear bit=%u -> %s\n",
uMsr, pauValues[0], uValue, pauValues[1], rc, iBit,
(pauValues[0] ^ pauValues[1]) & RT_BIT_64(iBit) ? "changed" : "unchanged");
cChanges += RT_BOOL(pauValues[0] ^ pauValues[1]);
uValue = uOrgValue | RT_BIT_64(iBit);
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\nset bit=%u -> %s\n",
uMsr, pauValues[0], uValue, pauValues[1], rc, iBit,
(pauValues[0] ^ pauValues[1]) & RT_BIT_64(iBit) ? "changed" : "unchanged");
cChanges += RT_BOOL(pauValues[0] ^ pauValues[1]);
}
RTPrintf("%u change(s)\n", cChanges);
#else
uint64_t fWriteable = 0;
for (uint32_t i = 0; i <= 63; i++)
{
uValue = RT_BIT_64(i);
# if 0
if (uValue & (0x7))
continue;
# endif
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n",
uMsr, pauValues[0], uValue, pauValues[1], rc);
if (RT_SUCCESS(rc))
fWriteable |= RT_BIT_64(i);
}
uValue = 0;
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n",
uMsr, pauValues[0], uValue, pauValues[1], rc);
uValue = UINT64_MAX;
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n",
uMsr, pauValues[0], uValue, pauValues[1], rc);
uValue = fWriteable;
rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue),
RCPtrValues, RCPtrValues + sizeof(uint64_t));
RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc [fWriteable]\n",
uMsr, pauValues[0], uValue, pauValues[1], rc);
#endif
/*
* Cleanups.
*/
MMHyperFree(pVM, pauValues);
return rc;
#else
return VERR_NOT_SUPPORTED;
#endif
}