SELM.cpp revision 46ae097c942b4a2d5038d9593e312856238da75f
/* $Id$ */
/** @file
* SELM - The Selector Manager.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_selm SELM - The Selector Manager
*
* SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
* of a few hyper selector for the raw-mode context. In the hardware assisted
* virtualization mode its only task is to decode entries in the guest GDT or
* LDT once in a while.
*
* @see grp_selm
*
*
* @section seg_selm_shadowing Shadowing
*
* SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
* work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
* The idea is to do it in a more on-demand fashion when we get time. There
* also a whole bunch of issues with the current synchronization of all three
* tables, see notes and todos in the code.
*
* When the guest makes changes to the GDT we will try update the shadow copy
* without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
*
* When the guest make LDT changes we'll trigger a full resync of the LDT
* (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
*
* The TSS shadowing is limited to the fields we need to care about, namely SS0
* and ESP0. The Patch Manager makes use of these. We monitor updates to the
* guest TSS and will try keep our SS0 and ESP0 copies up to date this way
* rather than go the SELMR3SyncTSS() route.
*
* When in raw-mode SELM also injects a few extra GDT selectors which are used
* by the raw-mode (hyper) context. These start their life at the high end of
* the table and will be relocated when the guest tries to make use of them...
* Well, that was that idea at least, only the code isn't quite there yet which
* is why we have trouble with guests which actually have a full sized GDT.
*
* So, the summary of the current GDT, LDT and TSS shadowing is that there is a
* lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_SELM
#include <VBox/vmm/selm.h>
#include <VBox/vmm/cpum.h>
#include <VBox/vmm/stam.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/trpm.h>
#include <VBox/vmm/dbgf.h>
#include "SELMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/err.h>
#include <VBox/param.h>
#include <iprt/assert.h>
#include <VBox/log.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include <iprt/string.h>
#include "SELMInline.h"
/** SELM saved state version. */
#define SELM_SAVED_STATE_VERSION 5
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef LOG_ENABLED
/** Segment register names. */
static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
#endif
/**
* Initializes the SELM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) SELMR3Init(PVM pVM)
{
int rc;
LogFlow(("SELMR3Init\n"));
/*
* Assert alignment and sizes.
* (The TSS block requires contiguous back.)
*/
AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
#if 0 /* doesn't work */
AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
#endif
AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
/*
* Init the structure.
*/
pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
if (HMIsRawModeCtxNeeded(pVM))
{
/*
* Allocate GDT table.
*/
rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
AssertRCReturn(rc, rc);
/*
* Allocate LDT area.
*/
rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
AssertRCReturn(rc, rc);
}
/*
* Init Guest's and Shadow GDT, LDT, TSS changes control variables.
*/
pVM->selm.s.cbEffGuestGdtLimit = 0;
pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
pVM->selm.s.GCSelTss = RTSEL_MAX;
pVM->selm.s.fSyncTSSRing0Stack = false;
/* The I/O bitmap starts right after the virtual interrupt redirection
bitmap. Outside the TSS on purpose; the CPU will not check it for
I/O operations. */
pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
/* bit set to 1 means no redirection */
memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
/*
* Register the saved state data unit.
*/
rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
NULL, NULL, NULL,
NULL, selmR3Save, NULL,
NULL, selmR3Load, selmR3LoadDone);
if (RT_FAILURE(rc))
return rc;
/*
* Statistics.
*/
if (!HMIsEnabled(pVM))
{
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleES", STAMUNIT_OCCURENCES, "Stale ES was detected in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleCS", STAMUNIT_OCCURENCES, "Stale CS was detected in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleSS", STAMUNIT_OCCURENCES, "Stale SS was detected in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleDS", STAMUNIT_OCCURENCES, "Stale DS was detected in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleFS", STAMUNIT_OCCURENCES, "Stale FS was detected in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleGS", STAMUNIT_OCCURENCES, "Stale GS was detected in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleES", STAMUNIT_OCCURENCES, "Already stale ES in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleCS", STAMUNIT_OCCURENCES, "Already stale CS in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleSS", STAMUNIT_OCCURENCES, "Already stale SS in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleDS", STAMUNIT_OCCURENCES, "Already stale DS in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleFS", STAMUNIT_OCCURENCES, "Already stale FS in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleGS", STAMUNIT_OCCURENCES, "Already stale GS in UpdateFromCPUM.");
STAM_REL_REG(pVM, &pVM->selm.s.StatStaleToUnstaleSReg, STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/StaleToUnstale", STAMUNIT_OCCURENCES, "Transitions from stale to unstale UpdateFromCPUM.");
STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedES", STAMUNIT_OCCURENCES, "Updated hidden ES values in UpdateFromCPUM.");
STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedCS", STAMUNIT_OCCURENCES, "Updated hidden CS values in UpdateFromCPUM.");
STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedSS", STAMUNIT_OCCURENCES, "Updated hidden SS values in UpdateFromCPUM.");
STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedDS", STAMUNIT_OCCURENCES, "Updated hidden DS values in UpdateFromCPUM.");
STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedFS", STAMUNIT_OCCURENCES, "Updated hidden FS values in UpdateFromCPUM.");
STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedGS", STAMUNIT_OCCURENCES, "Updated hidden GS values in UpdateFromCPUM.");
}
STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelGst, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from guest tables.");
STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelShw, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedShadow", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from shadow tables.");
STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelReadErrors, STAMTYPE_COUNTER, "/SELM/LoadHidSel/GstReadErrors", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Guest table read errors.");
STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelGstNoGood, STAMTYPE_COUNTER, "/SELM/LoadHidSel/NoGoodGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: No good guest table entry.");
#ifdef VBOX_WITH_RAW_MODE
/*
* Default action when entering raw mode for the first time
*/
if (!HMIsEnabled(pVM))
{
PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
}
#endif
/*
* Register info handlers.
*/
if (HMIsRawModeCtxNeeded(pVM))
{
DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
//DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
}
DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
//DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
return rc;
}
/**
* Finalizes HMA page attributes.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
{
#ifdef VBOX_WITH_RAW_MODE
/** @cfgm{/DoubleFault,bool,false}
* Enables catching of double faults in the raw-mode context VMM code. This can
* be used when the triple faults or hangs occur and one suspect an unhandled
* double fault. This is not enabled by default because it means making the
* hyper selectors writeable for all supervisor code, including the guest's.
* The double fault is a task switch and thus requires write access to the GDT
* of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
* 8 TSS for the back link.
*/
bool f;
# if defined(DEBUG_bird)
int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
# else
int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
# endif
AssertLogRelRCReturn(rc, rc);
if (f && HMIsRawModeCtxNeeded(pVM))
{
PX86DESC paGdt = pVM->selm.s.paGdtR3;
rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
AssertRC(rc);
rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
AssertRC(rc);
rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
AssertRC(rc);
rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
AssertRC(rc);
}
#endif /* VBOX_WITH_RAW_MODE */
return VINF_SUCCESS;
}
/**
* Setup the hypervisor GDT selectors in our shadow table
*
* @param pVM Pointer to the VM.
*/
static void selmR3SetupHyperGDTSelectors(PVM pVM)
{
PX86DESC paGdt = pVM->selm.s.paGdtR3;
/*
* Set up global code and data descriptors for use in the guest context.
* Both are wide open (base 0, limit 4GB)
*/
PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
pDesc->Gen.u16LimitLow = 0xffff;
pDesc->Gen.u4LimitHigh = 0xf;
pDesc->Gen.u16BaseLow = 0;
pDesc->Gen.u8BaseHigh1 = 0;
pDesc->Gen.u8BaseHigh2 = 0;
pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
pDesc->Gen.u1DescType = 1; /* not system, but code/data */
pDesc->Gen.u2Dpl = 0; /* supervisor */
pDesc->Gen.u1Present = 1;
pDesc->Gen.u1Available = 0;
pDesc->Gen.u1Long = 0;
pDesc->Gen.u1DefBig = 1; /* def 32 bit */
pDesc->Gen.u1Granularity = 1; /* 4KB limit */
/* data */
pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
pDesc->Gen.u16LimitLow = 0xffff;
pDesc->Gen.u4LimitHigh = 0xf;
pDesc->Gen.u16BaseLow = 0;
pDesc->Gen.u8BaseHigh1 = 0;
pDesc->Gen.u8BaseHigh2 = 0;
pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
pDesc->Gen.u1DescType = 1; /* not system, but code/data */
pDesc->Gen.u2Dpl = 0; /* supervisor */
pDesc->Gen.u1Present = 1;
pDesc->Gen.u1Available = 0;
pDesc->Gen.u1Long = 0;
pDesc->Gen.u1DefBig = 1; /* big */
pDesc->Gen.u1Granularity = 1; /* 4KB limit */
/* 64-bit mode code (& data?) */
pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
pDesc->Gen.u16LimitLow = 0xffff;
pDesc->Gen.u4LimitHigh = 0xf;
pDesc->Gen.u16BaseLow = 0;
pDesc->Gen.u8BaseHigh1 = 0;
pDesc->Gen.u8BaseHigh2 = 0;
pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
pDesc->Gen.u1DescType = 1; /* not system, but code/data */
pDesc->Gen.u2Dpl = 0; /* supervisor */
pDesc->Gen.u1Present = 1;
pDesc->Gen.u1Available = 0;
pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
pDesc->Gen.u1Granularity = 1; /* 4KB limit */
/*
* TSS descriptor
*/
pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
pDesc->Gen.u4LimitHigh = 0;
pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
pDesc->Gen.u1DescType = 0; /* system */
pDesc->Gen.u2Dpl = 0; /* supervisor */
pDesc->Gen.u1Present = 1;
pDesc->Gen.u1Available = 0;
pDesc->Gen.u1Long = 0;
pDesc->Gen.u1DefBig = 0;
pDesc->Gen.u1Granularity = 0; /* byte limit */
/*
* TSS descriptor for trap 08
*/
pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
pDesc->Gen.u4LimitHigh = 0;
RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
pDesc->Gen.u1DescType = 0; /* system */
pDesc->Gen.u2Dpl = 0; /* supervisor */
pDesc->Gen.u1Present = 1;
pDesc->Gen.u1Available = 0;
pDesc->Gen.u1Long = 0;
pDesc->Gen.u1DefBig = 0;
pDesc->Gen.u1Granularity = 0; /* byte limit */
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* @param pVM The VM.
*/
VMMR3DECL(void) SELMR3Relocate(PVM pVM)
{
PX86DESC paGdt = pVM->selm.s.paGdtR3;
LogFlow(("SELMR3Relocate\n"));
if (HMIsRawModeCtxNeeded(pVM))
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
/*
* Update GDTR and selector.
*/
CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
/** @todo selector relocations should be a separate operation? */
CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
}
selmR3SetupHyperGDTSelectors(pVM);
/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
/** @todo PGM knows the proper CR3 values these days, not CPUM. */
/*
* Update the TSSes.
*/
/* Only applies to raw mode which supports only 1 VCPU */
PVMCPU pVCpu = &pVM->aCpus[0];
/* Current TSS */
pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
/* trap 08 */
pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.TssTrap08.fs = 0;
pVM->selm.s.TssTrap08.gs = 0;
pVM->selm.s.TssTrap08.selLdt = 0;
pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
/* TRPM will be updating the eip */
}
if (!HMIsEnabled(pVM))
{
/*
* Update shadow GDT/LDT/TSS write access handlers.
*/
int rc; NOREF(rc);
#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
AssertRC(rc);
}
pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
AssertRC(rc);
#endif
#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
AssertRC(rc);
}
pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
AssertRC(rc);
#endif
/*
* Update the GC LDT region handler and address.
*/
#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
AssertRC(rc);
}
#endif
pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
AssertRC(rc);
#endif
}
}
/**
* Terminates the SELM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) SELMR3Term(PVM pVM)
{
NOREF(pVM);
return VINF_SUCCESS;
}
/**
* The VM is being reset.
*
* For the SELM component this means that any GDT/LDT/TSS monitors
* needs to be removed.
*
* @param pVM Pointer to the VM.
*/
VMMR3DECL(void) SELMR3Reset(PVM pVM)
{
LogFlow(("SELMR3Reset:\n"));
VM_ASSERT_EMT(pVM);
/*
* Uninstall guest GDT/LDT/TSS write access handlers.
*/
int rc = VINF_SUCCESS;
if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
{
#ifdef SELM_TRACK_GUEST_GDT_CHANGES
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
AssertRC(rc);
#endif
pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
pVM->selm.s.GuestGdtr.cbGdt = 0;
}
pVM->selm.s.fGDTRangeRegistered = false;
if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
{
#ifdef SELM_TRACK_GUEST_LDT_CHANGES
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
AssertRC(rc);
#endif
pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
}
if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
{
#ifdef SELM_TRACK_GUEST_TSS_CHANGES
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
AssertRC(rc);
#endif
pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
pVM->selm.s.GCSelTss = RTSEL_MAX;
}
/*
* Re-initialize other members.
*/
pVM->selm.s.cbLdtLimit = 0;
pVM->selm.s.offLdtHyper = 0;
pVM->selm.s.cbMonitoredGuestTss = 0;
pVM->selm.s.fSyncTSSRing0Stack = false;
#ifdef VBOX_WITH_RAW_MODE
if (!HMIsEnabled(pVM))
{
/*
* Default action when entering raw mode for the first time
*/
PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
}
#endif
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("selmR3Save:\n"));
/*
* Save the basic bits - fortunately all the other things can be resynced on load.
*/
PSELM pSelm = &pVM->selm.s;
SSMR3PutBool(pSSM, HMIsEnabled(pVM));
SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
* @param uVersion Data layout version.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
LogFlow(("selmR3Load:\n"));
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
/*
* Validate version.
*/
if (uVersion != SELM_SAVED_STATE_VERSION)
{
AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Do a reset.
*/
SELMR3Reset(pVM);
/* Get the monitoring flag. */
bool fIgnored;
SSMR3GetBool(pSSM, &fIgnored);
/* Get the TSS state flag. */
SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
/*
* Get the selectors.
*/
RTSEL SelCS;
SSMR3GetSel(pSSM, &SelCS);
RTSEL SelDS;
SSMR3GetSel(pSSM, &SelDS);
RTSEL SelCS64;
SSMR3GetSel(pSSM, &SelCS64);
RTSEL SelDS64;
SSMR3GetSel(pSSM, &SelDS64);
RTSEL SelTSS;
SSMR3GetSel(pSSM, &SelTSS);
RTSEL SelTSSTrap08;
SSMR3GetSel(pSSM, &SelTSSTrap08);
/* Copy the selectors; they will be checked during relocation. */
PSELM pSelm = &pVM->selm.s;
pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
return VINF_SUCCESS;
}
/**
* Sync the GDT, LDT and TSS after loading the state.
*
* Just to play save, we set the FFs to force syncing before
* executing GC code.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
{
#ifdef VBOX_WITH_RAW_MODE
if (!HMIsEnabled(pVM))
{
PVMCPU pVCpu = VMMGetCpu(pVM);
LogFlow(("selmR3LoadDone:\n"));
/*
* Don't do anything if it's a load failure.
*/
int rc = SSMR3HandleGetStatus(pSSM);
if (RT_FAILURE(rc))
return VINF_SUCCESS;
/*
* Do the syncing if we're in protected mode and using raw-mode.
*/
if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
{
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
SELMR3UpdateFromCPUM(pVM, pVCpu);
}
/*
* Flag everything for resync on next raw mode entry.
*/
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
}
#endif /*VBOX_WITH_RAW_MODE*/
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_RAW_MODE
/**
* Updates (syncs) the shadow GDT.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The current virtual CPU.
*/
static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
{
Assert(!HMIsEnabled(pVM));
/*
* Always assume the best...
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
/* If the GDT was changed, then make sure the LDT is checked too */
/** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
/* Same goes for the TSS selector */
VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
/*
* Get the GDTR and check if there is anything to do (there usually is).
*/
VBOXGDTR GDTR;
CPUMGetGuestGDTR(pVCpu, &GDTR);
if (GDTR.cbGdt < sizeof(X86DESC))
{
Log(("No GDT entries...\n"));
return VINF_SUCCESS;
}
/*
* Read the Guest GDT.
* ASSUMES that the entire GDT is in memory.
*/
RTUINT cbEffLimit = GDTR.cbGdt;
PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
if (RT_FAILURE(rc))
{
/*
* Read it page by page.
*
* Keep track of the last valid page and delay memsets and
* adjust cbEffLimit to reflect the effective size. The latter
* is something we do in the belief that the guest will probably
* never actually commit the last page, thus allowing us to keep
* our selectors in the high end of the GDT.
*/
RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
uint8_t *pu8DstInvalid = pu8Dst;
while (cbLeft)
{
RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
cb = RT_MIN(cb, cbLeft);
rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
if (RT_SUCCESS(rc))
{
if (pu8DstInvalid != pu8Dst)
RT_BZERO(pu8DstInvalid, pu8Dst - pu8DstInvalid);
GCPtrSrc += cb;
pu8Dst += cb;
pu8DstInvalid = pu8Dst;
}
else if ( rc == VERR_PAGE_NOT_PRESENT
|| rc == VERR_PAGE_TABLE_NOT_PRESENT)
{
GCPtrSrc += cb;
pu8Dst += cb;
}
else
{
AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
return VERR_SELM_GDT_READ_ERROR;
}
cbLeft -= cb;
}
/* any invalid pages at the end? */
if (pu8DstInvalid != pu8Dst)
{
cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
/* If any GDTEs was invalidated, zero them. */
if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
RT_BZERO(pu8DstInvalid + cbEffLimit + 1, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
}
/* keep track of the effective limit. */
if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
{
Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
}
}
/*
* Check if the Guest GDT intrudes on our GDT entries.
*/
/** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
{
PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
int iGDT = 0;
Log(("Internal SELM GDT conflict: use non-present entries\n"));
STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
while ((uintptr_t)pGDTECur > (uintptr_t)pGDTEStart)
{
/* We can reuse non-present entries */
if (!pGDTECur->Gen.u1Present)
{
aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
iGDT++;
if (iGDT >= SELM_HYPER_SEL_MAX)
break;
}
pGDTECur--;
}
if (iGDT != SELM_HYPER_SEL_MAX)
{
AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
return VERR_SELM_GDT_TOO_FULL;
}
}
else
{
aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
}
# ifdef VBOX_WITH_SAFE_STR
/* Use the guest's TR selector to plug the str virtualization hole. */
if (CPUMGetGuestTR(pVCpu, NULL) != 0)
{
Log(("SELM: Use guest TSS selector %x\n", CPUMGetGuestTR(pVCpu, NULL)));
aHyperSel[SELM_HYPER_SEL_TSS] = CPUMGetGuestTR(pVCpu, NULL);
}
# endif
/*
* Work thru the copied GDT entries adjusting them for correct virtualization.
*/
PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
while (pGDTE < pGDTEEnd)
{
if (pGDTE->Gen.u1Present)
selmGuestToShadowDesc(pVM, pGDTE);
/* Next GDT entry. */
pGDTE++;
}
/*
* Check if our hypervisor selectors were changed.
*/
if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
|| aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
|| aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
|| aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
|| aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
{
/* Reinitialize our hypervisor GDTs */
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
/*
* Do the relocation callbacks to let everyone update their hyper selector dependencies.
* (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
*/
VMR3Relocate(pVM, 0);
}
# ifdef VBOX_WITH_SAFE_STR
else if ( cbEffLimit >= SELM_HYPER_DEFAULT_BASE
|| CPUMGetGuestTR(pVCpu, NULL) != 0) /* Our shadow TR entry was overwritten when we synced the guest's GDT. */
# else
else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
# endif
/* We overwrote all entries above, so we have to save them again. */
selmR3SetupHyperGDTSelectors(pVM);
/*
* Adjust the cached GDT limit.
* Any GDT entries which have been removed must be cleared.
*/
if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
{
if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
RT_BZERO(pGDTE, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
}
/*
* Check if Guest's GDTR is changed.
*/
if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
|| GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
{
Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
# ifdef SELM_TRACK_GUEST_GDT_CHANGES
/*
* [Re]Register write virtual handler for guest's GDT.
*/
if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
AssertRC(rc);
}
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
"Guest GDT write access handler");
# ifdef VBOX_WITH_RAW_RING1
/** @todo !HACK ALERT!
* Some guest OSes (QNX) share code and the GDT on the same page;
* PGMR3HandlerVirtualRegister doesn't support more than one handler,
* so we kick out the PATM handler as this one is more important.
* Fix this properly in PGMR3HandlerVirtualRegister?
*/
if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
{
LogRel(("selmR3UpdateShadowGdt: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority GDT page monitor\n", GDTR.pGdt));
rc = PGMHandlerVirtualDeregister(pVM, GDTR.pGdt & PAGE_BASE_GC_MASK);
AssertRC(rc);
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
"Guest GDT write access handler");
}
# endif
if (RT_FAILURE(rc))
return rc;
# endif /* SELM_TRACK_GUEST_GDT_CHANGES */
/* Update saved Guest GDTR. */
pVM->selm.s.GuestGdtr = GDTR;
pVM->selm.s.fGDTRangeRegistered = true;
}
return VINF_SUCCESS;
}
/**
* Updates (syncs) the shadow LDT.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The current virtual CPU.
*/
static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
{
int rc = VINF_SUCCESS;
Assert(!HMIsEnabled(pVM));
/*
* Always assume the best...
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
/*
* LDT handling is done similarly to the GDT handling with a shadow
* array. However, since the LDT is expected to be swappable (at least
* some ancient OSes makes it swappable) it must be floating and
* synced on a per-page basis.
*
* Eventually we will change this to be fully on demand. Meaning that
* we will only sync pages containing LDT selectors actually used and
* let the #PF handler lazily sync pages as they are used.
* (This applies to GDT too, when we start making OS/2 fast.)
*/
/*
* First, determine the current LDT selector.
*/
RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
{
/* ldtr = 0 - update hyper LDTR and deregister any active handler. */
CPUMSetHyperLDTR(pVCpu, 0);
if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
AssertRC(rc);
pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
}
pVM->selm.s.cbLdtLimit = 0;
return VINF_SUCCESS;
}
/*
* Get the LDT selector.
*/
/** @todo this is wrong, use CPUMGetGuestLdtrEx */
PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
RTGCPTR GCPtrLdt = X86DESC_BASE(pDesc);
uint32_t cbLdt = X86DESC_LIMIT_G(pDesc);
/*
* Validate it.
*/
if ( !cbLdt
|| SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
|| pDesc->Gen.u1DescType
|| pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
{
AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
/* cbLdt > 0:
* This is quite impossible, so we do as most people do when faced with
* the impossible, we simply ignore it.
*/
CPUMSetHyperLDTR(pVCpu, 0);
if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
AssertRC(rc);
pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
}
return VINF_SUCCESS;
}
/** @todo check what intel does about odd limits. */
AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
/*
* Use the cached guest ldt address if the descriptor has already been modified (see below)
* (this is necessary due to redundant LDT updates; see todo above at GDT sync)
*/
if (MMHyperIsInsideArea(pVM, GCPtrLdt))
GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
/** @todo Handle only present LDT segments. */
// if (pDesc->Gen.u1Present)
{
/*
* Check if Guest's LDT address/limit is changed.
*/
if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
|| cbLdt != pVM->selm.s.cbLdtLimit)
{
Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
# ifdef SELM_TRACK_GUEST_LDT_CHANGES
/*
* [Re]Register write virtual handler for guest's GDT.
* In the event of LDT overlapping something, don't install it just assume it's being updated.
*/
if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
AssertRC(rc);
}
# ifdef LOG_ENABLED
if (pDesc->Gen.u1Present)
Log(("LDT selector marked not present!!\n"));
# endif
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
{
/** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
}
else if (RT_SUCCESS(rc))
pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
else
{
CPUMSetHyperLDTR(pVCpu, 0);
return rc;
}
# else
pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
# endif
pVM->selm.s.cbLdtLimit = cbLdt;
}
}
/*
* Calc Shadow LDT base.
*/
unsigned off;
pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
/*
* Enable the LDT selector in the shadow GDT.
*/
pDesc->Gen.u1Present = 1;
pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
pDesc->Gen.u1Available = 0;
pDesc->Gen.u1Long = 0;
if (cbLdt > 0xffff)
{
cbLdt = 0xffff;
pDesc->Gen.u4LimitHigh = 0;
pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
}
/*
* Set Hyper LDTR and notify TRPM.
*/
CPUMSetHyperLDTR(pVCpu, SelLdt);
/*
* Loop synchronising the LDT page by page.
*/
/** @todo investigate how intel handle various operations on half present cross page entries. */
off = GCPtrLdt & (sizeof(X86DESC) - 1);
AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
/* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
unsigned cbLeft = cbLdt + 1;
PX86DESC pLDTE = pShadowLDT;
while (cbLeft)
{
/*
* Read a chunk.
*/
unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
if (cbChunk > cbLeft)
cbChunk = cbLeft;
rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
if (RT_SUCCESS(rc))
{
/*
* Mark page
*/
rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
AssertRC(rc);
/*
* Loop thru the available LDT entries.
* Figure out where to start and end and the potential cross pageness of
* things adds a little complexity. pLDTE is updated there and not in the
* 'next' part of the loop. The pLDTEEnd is inclusive.
*/
PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
if (pLDTE + 1 < pShadowLDT)
pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
while (pLDTE <= pLDTEEnd)
{
if (pLDTE->Gen.u1Present)
selmGuestToShadowDesc(pVM, pLDTE);
/* Next LDT entry. */
pLDTE++;
}
}
else
{
RT_BZERO(pShadowLDT, cbChunk);
AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
AssertRC(rc);
}
/*
* Advance to the next page.
*/
cbLeft -= cbChunk;
GCPtrShadowLDT += cbChunk;
pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
GCPtrLdt += cbChunk;
}
return VINF_SUCCESS;
}
/**
* Checks and updates segment selector registers.
*
* @returns VBox strict status code.
* @retval VINF_EM_RESCHEDULE_REM if a stale register was found.
*
* @param pVM The VM handle.
* @param pVCpu The current virtual CPU.
*/
static VBOXSTRICTRC selmR3UpdateSegmentRegisters(PVM pVM, PVMCPU pVCpu)
{
Assert(CPUMIsGuestInProtectedMode(pVCpu));
Assert(!HMIsEnabled(pVM));
/*
* No stale selectors in V8086 mode.
*/
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
if (pCtx->eflags.Bits.u1VM)
return VINF_SUCCESS;
/*
* Check for stale selectors and load hidden register bits where they
* are missing.
*/
uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
VBOXSTRICTRC rcStrict = VINF_SUCCESS;
PCPUMSELREG paSReg = CPUMCTX_FIRST_SREG(pCtx);
for (uint32_t iSReg = 0; iSReg < X86_SREG_COUNT; iSReg++)
{
RTSEL const Sel = paSReg[iSReg].Sel;
if (Sel & X86_SEL_MASK_OFF_RPL)
{
/* Get the shadow descriptor entry corresponding to this. */
static X86DESC const s_NotPresentDesc = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
PCX86DESC pDesc;
if (!(Sel & X86_SEL_LDT))
{
if ((Sel | (sizeof(*pDesc) - 1)) <= pCtx->gdtr.cbGdt)
pDesc = &pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
else
pDesc = &s_NotPresentDesc;
}
else
{
if ((Sel | (sizeof(*pDesc) - 1)) <= pVM->selm.s.cbLdtLimit)
pDesc = &((PCX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper))[Sel >> X86_SEL_SHIFT];
else
pDesc = &s_NotPresentDesc;
}
/* Check the segment register. */
if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &paSReg[iSReg]))
{
if (!(paSReg[iSReg].fFlags & CPUMSELREG_FLAGS_STALE))
{
/* Did it go stale? */
if (selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
{
Log2(("SELM: Detected stale %s=%#x (was valid)\n", g_aszSRegNms[iSReg], Sel));
STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
paSReg[iSReg].fFlags |= CPUMSELREG_FLAGS_STALE;
rcStrict = VINF_EM_RESCHEDULE_REM;
}
}
else
{
/* Did it stop being stale? I.e. did the guest change it things
back to the way they were? */
if (!selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
{
STAM_REL_COUNTER_INC(&pVM->selm.s.StatStaleToUnstaleSReg);
paSReg[iSReg].fFlags &= CPUMSELREG_FLAGS_STALE;
}
else
{
Log2(("SELM: Already stale %s=%#x\n", g_aszSRegNms[iSReg], Sel));
STAM_REL_COUNTER_INC(&pVM->selm.s.aStatAlreadyStaleSReg[iSReg]);
rcStrict = VINF_EM_RESCHEDULE_REM;
}
}
}
/* Load the hidden registers if it's a valid descriptor for the
current segment register. */
else if (selmIsShwDescGoodForSReg(&paSReg[iSReg], pDesc, iSReg, uCpl))
{
selmLoadHiddenSRegFromShadowDesc(&paSReg[iSReg], pDesc);
STAM_COUNTER_INC(&pVM->selm.s.aStatUpdatedSReg[iSReg]);
}
/* It's stale. */
else
{
Log2(("SELM: Detected stale %s=%#x (wasn't valid)\n", g_aszSRegNms[iSReg], Sel));
STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
paSReg[iSReg].fFlags = CPUMSELREG_FLAGS_STALE;
rcStrict = VINF_EM_RESCHEDULE_REM;
}
}
/* else: 0 selector, ignore. */
}
return rcStrict;
}
/**
* Updates the Guest GDT & LDT virtualization based on current CPU state.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR3DECL(VBOXSTRICTRC) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
{
STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
/*
* GDT sync
*/
int rc;
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
{
rc = selmR3UpdateShadowGdt(pVM, pVCpu);
if (RT_FAILURE(rc))
return rc; /* We're toast, so forget the profiling. */
AssertRCSuccess(rc);
}
/*
* TSS sync
*/
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
{
rc = SELMR3SyncTSS(pVM, pVCpu);
if (RT_FAILURE(rc))
return rc;
AssertRCSuccess(rc);
}
/*
* LDT sync
*/
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
{
rc = selmR3UpdateShadowLdt(pVM, pVCpu);
if (RT_FAILURE(rc))
return rc;
AssertRCSuccess(rc);
}
/*
* Check selector registers.
*/
VBOXSTRICTRC rcStrict = selmR3UpdateSegmentRegisters(pVM, pVCpu);
STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
return rcStrict;
}
#endif /*VBOX_WITH_RAW_MODE*/
#ifdef SELM_TRACK_GUEST_GDT_CHANGES
/**
* \#PF Handler callback for virtual access handler ranges.
*
* Important to realize that a physical page in a range can have aliases, and
* for ALL and WRITE handlers these will also trigger.
*
* @returns VINF_SUCCESS if the handler have carried out the operation.
* @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
* @param pVM Pointer to the VM.
* @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
* @param pvPtr The HC mapping of that address.
* @param pvBuf What the guest is reading/writing.
* @param cbBuf How much it's reading/writing.
* @param enmAccessType The access type.
* @param pvUser User argument.
*/
static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
PGMACCESSTYPE enmAccessType, void *pvUser)
{
Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
return VINF_PGM_HANDLER_DO_DEFAULT;
}
#endif
#ifdef SELM_TRACK_GUEST_LDT_CHANGES
/**
* \#PF Handler callback for virtual access handler ranges.
*
* Important to realize that a physical page in a range can have aliases, and
* for ALL and WRITE handlers these will also trigger.
*
* @returns VINF_SUCCESS if the handler have carried out the operation.
* @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
* @param pVM Pointer to the VM.
* @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
* @param pvPtr The HC mapping of that address.
* @param pvBuf What the guest is reading/writing.
* @param cbBuf How much it's reading/writing.
* @param enmAccessType The access type.
* @param pvUser User argument.
*/
static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
PGMACCESSTYPE enmAccessType, void *pvUser)
{
Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
return VINF_PGM_HANDLER_DO_DEFAULT;
}
#endif
#ifdef SELM_TRACK_GUEST_TSS_CHANGES
/**
* \#PF Handler callback for virtual access handler ranges.
*
* Important to realize that a physical page in a range can have aliases, and
* for ALL and WRITE handlers these will also trigger.
*
* @returns VINF_SUCCESS if the handler have carried out the operation.
* @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
* @param pVM Pointer to the VM.
* @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
* @param pvPtr The HC mapping of that address.
* @param pvBuf What the guest is reading/writing.
* @param cbBuf How much it's reading/writing.
* @param enmAccessType The access type.
* @param pvUser User argument.
*/
static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
PGMACCESSTYPE enmAccessType, void *pvUser)
{
Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(pvUser);NOREF(pvPtr);
/** @todo This can be optimized by checking for the ESP0 offset and tracking TR
* reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
* should probably also deregister the virtual handler if TR.base/size
* changes while we're in REM. */
VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
return VINF_PGM_HANDLER_DO_DEFAULT;
}
#endif
#ifdef VBOX_WITH_RAW_MODE
/**
* Synchronize the shadowed fields in the TSS.
*
* At present we're shadowing the ring-0 stack selector & pointer, and the
* interrupt redirection bitmap (if present). We take the lazy approach wrt to
* REM and this function is called both if REM made any changes to the TSS or
* loaded TR.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
{
int rc;
AssertReturnStmt(!HMIsEnabled(pVM), VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS), VINF_SUCCESS);
STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
/*
* Get TR and extract and store the basic info.
*
* Note! The TSS limit is not checked by the LTR code, so we
* have to be a bit careful with it. We make sure cbTss
* won't be zero if TR is valid and if it's NULL we'll
* make sure cbTss is 0.
*/
/** @todo use the hidden bits, not shadow GDT. */
CPUMSELREGHID trHid;
RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
RTGCPTR GCPtrTss = trHid.u64Base;
uint32_t cbTss = trHid.u32Limit;
Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
|| (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
|| (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
if (SelTss & X86_SEL_MASK_OFF_RPL)
{
Assert(!(SelTss & X86_SEL_LDT));
Assert(trHid.Attr.n.u1DescType == 0);
Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
|| trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
if (!++cbTss)
cbTss = UINT32_MAX;
}
else
{
Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
|| (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
cbTss = 0; /* the reset case. */
}
pVM->selm.s.cbGuestTss = cbTss;
pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|| trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
/*
* Figure out the size of what need to monitor.
*/
/* We're not interested in any 16-bit TSSes. */
uint32_t cbMonitoredTss = cbTss;
if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
&& trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
cbMonitoredTss = 0;
pVM->selm.s.offGuestIoBitmap = 0;
bool fNoRing1Stack = true;
if (cbMonitoredTss)
{
/*
* 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
* If VME is enabled we also want to keep an eye on the interrupt
* redirection bitmap.
*/
VBOXTSS Tss;
uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
if ( !(cr4 & X86_CR4_VME)
|| ( RT_SUCCESS(rc)
&& Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
&& Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
)
/* No interrupt redirection bitmap, just ESP0 and SS0. */
cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
else if (RT_SUCCESS(rc))
{
/*
* Everything up to and including the interrupt redirection bitmap. Unfortunately
* this can be quite a large chunk. We use to skip it earlier and just hope it
* was kind of static...
*
* Update the virtual interrupt redirection bitmap while we're here.
* (It is located in the 32 bytes before TR:offIoBitmap.)
*/
cbMonitoredTss = Tss.offIoBitmap;
pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
AssertRC(rc);
/** @todo memset the bitmap on failure? */
Log2(("Redirection bitmap:\n"));
Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
}
else
{
cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
pVM->selm.s.offGuestIoBitmap = 0;
/** @todo memset the bitmap? */
}
/*
* Update the ring 0 stack selector and base address.
*/
if (RT_SUCCESS(rc))
{
# ifdef LOG_ENABLED
if (LogIsEnabled())
{
uint32_t ssr0, espr0;
SELMGetRing1Stack(pVM, &ssr0, &espr0);
if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
{
RTGCPHYS GCPhys = NIL_RTGCPHYS;
rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
AssertMsg(ssr0 != Tss.ss0,
("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
}
Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
}
# endif /* LOG_ENABLED */
AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
/* Update our TSS structure for the guest's ring 1 stack */
selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
# ifdef VBOX_WITH_RAW_RING1
/* Update our TSS structure for the guest's ring 2 stack */
if (EMIsRawRing1Enabled(pVM))
{
if ( (pVM->selm.s.Tss.ss2 != ((Tss.ss1 & ~2) | 1))
|| pVM->selm.s.Tss.esp2 != Tss.esp1)
Log(("SELMR3SyncTSS: Updating TSS ring 1 stack to %04X:%08X from %04X:%08X\n", Tss.ss1, Tss.esp1, (pVM->selm.s.Tss.ss2 & ~2) | 1, pVM->selm.s.Tss.esp2));
selmSetRing2Stack(pVM, (Tss.ss1 & ~1) | 2, Tss.esp1);
}
# endif
}
}
/*
* Flush the ring-1 stack and the direct syscall dispatching if we
* cannot obtain SS0:ESP0.
*/
if (fNoRing1Stack)
{
selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
/** @todo handle these dependencies better! */
TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
}
/*
* Check for monitor changes and apply them.
*/
if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
|| cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
{
Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
/* Release the old range first. */
if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
{
rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
AssertRC(rc);
}
/* Register the write handler if TS != 0. */
if (cbMonitoredTss != 0)
{
# ifdef SELM_TRACK_GUEST_TSS_CHANGES
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
0, selmR3GuestTSSWriteHandler,
"selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
if (RT_FAILURE(rc))
{
# ifdef VBOX_WITH_RAW_RING1
/** @todo !HACK ALERT!
* Some guest OSes (QNX) share code and the TSS on the same page;
* PGMR3HandlerVirtualRegister doesn't support more than one
* handler, so we kick out the PATM handler as this one is more
* important. Fix this properly in PGMR3HandlerVirtualRegister?
*/
if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
{
LogRel(("SELMR3SyncTSS: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority TSS page monitor\n", GCPtrTss));
rc = PGMHandlerVirtualDeregister(pVM, GCPtrTss & PAGE_BASE_GC_MASK);
AssertRC(rc);
rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
0, selmR3GuestTSSWriteHandler,
"selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
if (RT_FAILURE(rc))
{
STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
return rc;
}
}
# else
STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
return rc;
# endif
}
# endif /* SELM_TRACK_GUEST_TSS_CHANGES */
/* Update saved Guest TSS info. */
pVM->selm.s.GCPtrGuestTss = GCPtrTss;
pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
pVM->selm.s.GCSelTss = SelTss;
}
else
{
pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
pVM->selm.s.cbMonitoredGuestTss = 0;
pVM->selm.s.GCSelTss = 0;
}
}
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
return VINF_SUCCESS;
}
/**
* Compares the Guest GDT and LDT with the shadow tables.
* This is a VBOX_STRICT only function.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
{
#ifdef VBOX_STRICT
PVMCPU pVCpu = VMMGetCpu(pVM);
AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
/*
* Get GDTR and check for conflict.
*/
VBOXGDTR GDTR;
CPUMGetGuestGDTR(pVCpu, &GDTR);
if (GDTR.cbGdt == 0)
return VINF_SUCCESS;
if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
/*
* Loop thru the GDT checking each entry.
*/
RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
PX86DESC pGDTE = pVM->selm.s.paGdtR3;
PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
while (pGDTE < pGDTEEnd)
{
X86DESC GDTEGuest;
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
if (RT_SUCCESS(rc))
{
if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
{
if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
|| pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
|| pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
|| pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
|| pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
|| pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
|| pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
{
unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
}
}
}
/* Advance to the next descriptor. */
GCPtrGDTEGuest += sizeof(X86DESC);
pGDTE++;
}
/*
* LDT?
*/
RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
if ((SelLdt & X86_SEL_MASK_OFF_RPL) == 0)
return VINF_SUCCESS;
Assert(!(SelLdt & X86_SEL_LDT));
if (SelLdt > GDTR.cbGdt)
{
Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
return VERR_SELM_LDT_OUT_OF_BOUNDS;
}
X86DESC LDTDesc;
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
if (RT_FAILURE(rc))
{
Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
return rc;
}
RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(&LDTDesc);
uint32_t cbLdt = X86DESC_LIMIT_G(&LDTDesc);
/*
* Validate it.
*/
if (!cbLdt)
return VINF_SUCCESS;
/** @todo check what intel does about odd limits. */
AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
if ( LDTDesc.Gen.u1DescType
|| LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
|| SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
{
Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
return VERR_SELM_INVALID_LDT;
}
/*
* Loop thru the LDT checking each entry.
*/
unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
while (pLDTE < pLDTEEnd)
{
X86DESC LDTEGuest;
rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
if (RT_SUCCESS(rc))
{
if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
|| pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
|| pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
|| pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
|| pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
|| pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
|| pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
{
unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
}
}
/* Advance to the next descriptor. */
GCPtrLDTEGuest += sizeof(X86DESC);
pLDTE++;
}
#else /* !VBOX_STRICT */
NOREF(pVM);
#endif /* !VBOX_STRICT */
return VINF_SUCCESS;
}
/**
* Validates the RawR0 TSS values against the one in the Guest TSS.
*
* @returns true if it matches.
* @returns false and assertions on mismatch..
* @param pVM Pointer to the VM.
*/
VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
{
#if defined(VBOX_STRICT) && defined(SELM_TRACK_GUEST_TSS_CHANGES)
PVMCPU pVCpu = VMMGetCpu(pVM);
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
return true;
/*
* Get TR and extract the basic info.
*/
CPUMSELREGHID trHid;
RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
RTGCPTR GCPtrTss = trHid.u64Base;
uint32_t cbTss = trHid.u32Limit;
Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
|| (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
|| (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
if (SelTss & X86_SEL_MASK_OFF_RPL)
{
AssertReturn(!(SelTss & X86_SEL_LDT), false);
AssertReturn(trHid.Attr.n.u1DescType == 0, false);
AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
|| trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
false);
if (!++cbTss)
cbTss = UINT32_MAX;
}
else
{
AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
|| (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
false);
cbTss = 0; /* the reset case. */
}
AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|| trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
false);
AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
|| (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
false);
AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
|| (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
false);
/*
* Figure out the size of what need to monitor.
*/
/* We're not interested in any 16-bit TSSes. */
uint32_t cbMonitoredTss = cbTss;
if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
&& trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
cbMonitoredTss = 0;
if (cbMonitoredTss)
{
VBOXTSS Tss;
uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
AssertReturn( rc == VINF_SUCCESS
/* Happens early in XP boot during page table switching. */
|| ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
&& !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
false);
if ( !(cr4 & X86_CR4_VME)
|| ( RT_SUCCESS(rc)
&& Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
&& Tss.offIoBitmap > cbTss)
)
cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
else if (RT_SUCCESS(rc))
{
cbMonitoredTss = Tss.offIoBitmap;
AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
false);
/* check the bitmap */
uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
AssertRCReturn(rc, false);
AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
("offIoBitmap=%#x cbTss=%#x\n"
" Guest: %.32Rhxs\n"
"Shadow: %.32Rhxs\n",
Tss.offIoBitmap, cbTss,
&Tss.IntRedirBitmap[0],
&pVM->selm.s.Tss.IntRedirBitmap[0]),
false);
}
else
cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
/*
* Check SS0 and ESP0.
*/
if ( !pVM->selm.s.fSyncTSSRing0Stack
&& RT_SUCCESS(rc))
{
if ( Tss.esp0 != pVM->selm.s.Tss.esp1
|| Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
{
RTGCPHYS GCPhys;
rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
(pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
return false;
}
}
AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
}
else
{
AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
}
return true;
#else /* !VBOX_STRICT */
NOREF(pVM);
return true;
#endif /* !VBOX_STRICT */
}
# ifdef VBOX_WITH_SAFE_STR
/**
* Validates the RawR0 TR shadow GDT entry.
*
* @returns true if it matches.
* @returns false and assertions on mismatch..
* @param pVM Pointer to the VM.
*/
VMMR3DECL(bool) SELMR3CheckShadowTR(PVM pVM)
{
# ifdef VBOX_STRICT
PX86DESC paGdt = pVM->selm.s.paGdtR3;
/*
* TSS descriptor
*/
PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
if ( pDesc->Gen.u16BaseLow != RT_LOWORD(RCPtrTSS)
|| pDesc->Gen.u8BaseHigh1 != RT_BYTE3(RCPtrTSS)
|| pDesc->Gen.u8BaseHigh2 != RT_BYTE4(RCPtrTSS)
|| pDesc->Gen.u16LimitLow != sizeof(VBOXTSS) - 1
|| pDesc->Gen.u4LimitHigh != 0
|| (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL && pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|| pDesc->Gen.u1DescType != 0 /* system */
|| pDesc->Gen.u2Dpl != 0 /* supervisor */
|| pDesc->Gen.u1Present != 1
|| pDesc->Gen.u1Available != 0
|| pDesc->Gen.u1Long != 0
|| pDesc->Gen.u1DefBig != 0
|| pDesc->Gen.u1Granularity != 0 /* byte limit */
)
{
AssertFailed();
return false;
}
# endif
return true;
}
# endif /* VBOX_WITH_SAFE_STR */
#endif /* VBOX_WITH_RAW_MODE */
/**
* Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
*
* See SELMR3GetSelectorInfo for details.
*
* @returns VBox status code, see SELMR3GetSelectorInfo for details.
*
* @param pVCpu Pointer to the VMCPU.
* @param Sel The selector to get info about.
* @param pSelInfo Where to store the information.
*/
static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
{
/*
* Read it from the guest descriptor table.
*/
/** @todo this is bogus wrt the LDT/GDT limit on long selectors. */
X86DESC64 Desc;
RTGCPTR GCPtrDesc;
if (!(Sel & X86_SEL_LDT))
{
/* GDT */
VBOXGDTR Gdtr;
CPUMGetGuestGDTR(pVCpu, &Gdtr);
if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
return VERR_INVALID_SELECTOR;
GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
}
else
{
/* LDT */
uint64_t GCPtrBase;
uint32_t cbLimit;
CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
return VERR_INVALID_SELECTOR;
/* calc the descriptor location. */
GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
}
/* read the descriptor. */
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
if (RT_FAILURE(rc))
{
rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
if (RT_FAILURE(rc))
return rc;
Desc.au64[1] = 0;
}
/*
* Extract the base and limit
* (We ignore the present bit here, which is probably a bit silly...)
*/
pSelInfo->Sel = Sel;
pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
pSelInfo->u.Raw64 = Desc;
if (Desc.Gen.u1DescType)
{
/*
* 64-bit code selectors are wide open, it's not possible to detect
* 64-bit data or stack selectors without also dragging in assumptions
* about current CS (i.e. that's we're executing in 64-bit mode). So,
* the selinfo user needs to deal with this in the context the info is
* used unfortunately.
*/
if ( Desc.Gen.u1Long
&& !Desc.Gen.u1DefBig
&& (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
{
/* Note! We ignore the segment limit hacks that was added by AMD. */
pSelInfo->GCPtrBase = 0;
pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
}
else
{
pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
pSelInfo->GCPtrBase = X86DESC_BASE(&Desc);
}
pSelInfo->SelGate = 0;
}
else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
|| Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
|| Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
{
/* Note. LDT descriptors are weird in long mode, we ignore the footnote
in the AMD manual here as a simplification. */
pSelInfo->GCPtrBase = X86DESC64_BASE(&Desc);
pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
pSelInfo->SelGate = 0;
}
else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
|| Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
|| Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
{
pSelInfo->cbLimit = X86DESC64_BASE(&Desc);
pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
| ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
| ((uint64_t)Desc.Gate.u32OffsetTop << 32);
pSelInfo->SelGate = Desc.Gate.u16Sel;
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
}
else
{
pSelInfo->cbLimit = 0;
pSelInfo->GCPtrBase = 0;
pSelInfo->SelGate = 0;
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
}
if (!Desc.Gen.u1Present)
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
return VINF_SUCCESS;
}
/**
* Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
* interprets a legacy descriptor table entry and fills in the selector info
* structure from it.
*
* @param pSelInfo Where to store the selector info. Only the fFlags and
* Sel members have been initialized.
* @param pDesc The legacy descriptor to parse.
*/
DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
{
pSelInfo->u.Raw64.au64[1] = 0;
pSelInfo->u.Raw = *pDesc;
if ( pDesc->Gen.u1DescType
|| !(pDesc->Gen.u4Type & 4))
{
pSelInfo->cbLimit = X86DESC_LIMIT_G(pDesc);
pSelInfo->GCPtrBase = X86DESC_BASE(pDesc);
pSelInfo->SelGate = 0;
}
else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
{
pSelInfo->cbLimit = 0;
if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
pSelInfo->GCPtrBase = 0;
else
pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
| (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
pSelInfo->SelGate = pDesc->Gate.u16Sel;
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
}
else
{
pSelInfo->cbLimit = 0;
pSelInfo->GCPtrBase = 0;
pSelInfo->SelGate = 0;
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
}
if (!pDesc->Gen.u1Present)
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
}
/**
* Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
*
* See SELMR3GetSelectorInfo for details.
*
* @returns VBox status code, see SELMR3GetSelectorInfo for details.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param Sel The selector to get info about.
* @param pSelInfo Where to store the information.
*/
static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
{
/*
* Read the descriptor entry
*/
pSelInfo->fFlags = 0;
X86DESC Desc;
if ( !(Sel & X86_SEL_LDT)
&& ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_RPL_LDT)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_RPL_LDT)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_RPL_LDT)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_RPL_LDT)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_RPL_LDT))
)
{
/*
* Hypervisor descriptor.
*/
pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
if (CPUMIsGuestInProtectedMode(pVCpu))
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
else
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
}
else if (CPUMIsGuestInProtectedMode(pVCpu))
{
/*
* Read it from the guest descriptor table.
*/
pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
RTGCPTR GCPtrDesc;
if (!(Sel & X86_SEL_LDT))
{
/* GDT */
VBOXGDTR Gdtr;
CPUMGetGuestGDTR(pVCpu, &Gdtr);
if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
return VERR_INVALID_SELECTOR;
GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
}
else
{
/* LDT */
uint64_t GCPtrBase;
uint32_t cbLimit;
CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
return VERR_INVALID_SELECTOR;
/* calc the descriptor location. */
GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
}
/* read the descriptor. */
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
if (RT_FAILURE(rc))
return rc;
}
else
{
/*
* We're in real mode.
*/
pSelInfo->Sel = Sel;
pSelInfo->GCPtrBase = Sel << 4;
pSelInfo->cbLimit = 0xffff;
pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
pSelInfo->u.Raw64.au64[0] = 0;
pSelInfo->u.Raw64.au64[1] = 0;
pSelInfo->SelGate = 0;
return VINF_SUCCESS;
}
/*
* Extract the base and limit or sel:offset for gates.
*/
pSelInfo->Sel = Sel;
selmR3SelInfoFromDesc32(pSelInfo, &Desc);
return VINF_SUCCESS;
}
/**
* Gets information about a selector.
*
* Intended for the debugger mostly and will prefer the guest descriptor tables
* over the shadow ones.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
* descriptor table.
* @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
* is not returned if the selector itself isn't present, you have to
* check that for yourself (see DBGFSELINFO::fFlags).
* @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
* pagetable or page backing the selector table wasn't present.
* @returns Other VBox status code on other errors.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param Sel The selector to get info about.
* @param pSelInfo Where to store the information.
*/
VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
{
AssertPtr(pSelInfo);
if (CPUMIsGuestInLongMode(pVCpu))
return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
}
/**
* Gets information about a selector from the shadow tables.
*
* This is intended to be faster than the SELMR3GetSelectorInfo() method, but
* requires that the caller ensures that the shadow tables are up to date.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
* descriptor table.
* @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
* is not returned if the selector itself isn't present, you have to
* check that for yourself (see DBGFSELINFO::fFlags).
* @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
* pagetable or page backing the selector table wasn't present.
* @returns Other VBox status code on other errors.
*
* @param pVM Pointer to the VM.
* @param Sel The selector to get info about.
* @param pSelInfo Where to store the information.
*
* @remarks Don't use this when in hardware assisted virtualization mode.
*/
VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
{
Assert(pSelInfo);
/*
* Read the descriptor entry
*/
X86DESC Desc;
if (!(Sel & X86_SEL_LDT))
{
/*
* Global descriptor.
*/
Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK_OFF_RPL)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK_OFF_RPL)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK_OFF_RPL)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK_OFF_RPL)
|| pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK_OFF_RPL)
? DBGFSELINFO_FLAGS_HYPER
: 0;
/** @todo check that the GDT offset is valid. */
}
else
{
/*
* Local Descriptor.
*/
PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
Desc = paLDT[Sel >> X86_SEL_SHIFT];
/** @todo check if the LDT page is actually available. */
/** @todo check that the LDT offset is valid. */
pSelInfo->fFlags = 0;
}
if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
else
pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
/*
* Extract the base and limit or sel:offset for gates.
*/
pSelInfo->Sel = Sel;
selmR3SelInfoFromDesc32(pSelInfo, &Desc);
return VINF_SUCCESS;
}
/**
* Formats a descriptor.
*
* @param Desc Descriptor to format.
* @param Sel Selector number.
* @param pszOutput Output buffer.
* @param cchOutput Size of output buffer.
*/
static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
{
/*
* Make variable description string.
*/
static struct
{
unsigned cch;
const char *psz;
} const aTypes[32] =
{
#define STRENTRY(str) { sizeof(str) - 1, str }
/* system */
STRENTRY("Reserved0 "), /* 0x00 */
STRENTRY("TSS16Avail "), /* 0x01 */
STRENTRY("LDT "), /* 0x02 */
STRENTRY("TSS16Busy "), /* 0x03 */
STRENTRY("Call16 "), /* 0x04 */
STRENTRY("Task "), /* 0x05 */
STRENTRY("Int16 "), /* 0x06 */
STRENTRY("Trap16 "), /* 0x07 */
STRENTRY("Reserved8 "), /* 0x08 */
STRENTRY("TSS32Avail "), /* 0x09 */
STRENTRY("ReservedA "), /* 0x0a */
STRENTRY("TSS32Busy "), /* 0x0b */
STRENTRY("Call32 "), /* 0x0c */
STRENTRY("ReservedD "), /* 0x0d */
STRENTRY("Int32 "), /* 0x0e */
STRENTRY("Trap32 "), /* 0x0f */
/* non system */
STRENTRY("DataRO "), /* 0x10 */
STRENTRY("DataRO Accessed "), /* 0x11 */
STRENTRY("DataRW "), /* 0x12 */
STRENTRY("DataRW Accessed "), /* 0x13 */
STRENTRY("DataDownRO "), /* 0x14 */
STRENTRY("DataDownRO Accessed "), /* 0x15 */
STRENTRY("DataDownRW "), /* 0x16 */
STRENTRY("DataDownRW Accessed "), /* 0x17 */
STRENTRY("CodeEO "), /* 0x18 */
STRENTRY("CodeEO Accessed "), /* 0x19 */
STRENTRY("CodeER "), /* 0x1a */
STRENTRY("CodeER Accessed "), /* 0x1b */
STRENTRY("CodeConfEO "), /* 0x1c */
STRENTRY("CodeConfEO Accessed "), /* 0x1d */
STRENTRY("CodeConfER "), /* 0x1e */
STRENTRY("CodeConfER Accessed ") /* 0x1f */
#undef SYSENTRY
};
#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
char szMsg[128];
char *psz = &szMsg[0];
unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
memcpy(psz, aTypes[i].psz, aTypes[i].cch);
psz += aTypes[i].cch;
if (Desc.Gen.u1Present)
ADD_STR(psz, "Present ");
else
ADD_STR(psz, "Not-Present ");
if (Desc.Gen.u1Granularity)
ADD_STR(psz, "Page ");
if (Desc.Gen.u1DefBig)
ADD_STR(psz, "32-bit ");
else
ADD_STR(psz, "16-bit ");
#undef ADD_STR
*psz = '\0';
/*
* Limit and Base and format the output.
*/
uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
uint32_t u32Base = X86DESC_BASE(&Desc);
RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
}
/**
* Dumps a descriptor.
*
* @param Desc Descriptor to dump.
* @param Sel Selector number.
* @param pszMsg Message to prepend the log entry with.
*/
VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
{
char szOutput[128];
selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
Log(("%s: %s\n", pszMsg, szOutput));
NOREF(szOutput[0]);
}
/**
* Display the shadow gdt.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
{
if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
{
char szOutput[128];
selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
const char *psz = "";
if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
psz = " HyperCS";
else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
psz = " HyperDS";
else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
psz = " HyperCS64";
else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
psz = " HyperTSS";
else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
psz = " HyperTSSTrap08";
pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
}
}
}
/**
* Display the guest gdt.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/** @todo SMP support! */
PVMCPU pVCpu = &pVM->aCpus[0];
VBOXGDTR GDTR;
CPUMGetGuestGDTR(pVCpu, &GDTR);
RTGCPTR GCPtrGDT = GDTR.pGdt;
unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
{
X86DESC GDTE;
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
if (RT_SUCCESS(rc))
{
if (GDTE.Gen.u1Present)
{
char szOutput[128];
selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
}
}
else if (rc == VERR_PAGE_NOT_PRESENT)
{
if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
}
else
pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
}
NOREF(pszArgs);
}
/**
* Display the shadow ldt.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
{
if (paLDT[iLDT].Gen.u1Present)
{
char szOutput[128];
selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
}
}
NOREF(pszArgs);
}
/**
* Display the guest ldt.
*
* @param pVM Pointer to the VM.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/** @todo SMP support! */
PVMCPU pVCpu = &pVM->aCpus[0];
uint64_t GCPtrLdt;
uint32_t cbLdt;
RTSEL SelLdt = CPUMGetGuestLdtrEx(pVCpu, &GCPtrLdt, &cbLdt);
if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
{
pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
return;
}
pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RX64 limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
{
X86DESC LdtE;
int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
if (RT_SUCCESS(rc))
{
if (LdtE.Gen.u1Present)
{
char szOutput[128];
selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
}
}
else if (rc == VERR_PAGE_NOT_PRESENT)
{
if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
}
else
pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
}
NOREF(pszArgs);
}
/**
* Dumps the hypervisor GDT
*
* @param pVM Pointer to the VM.
*/
VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
{
DBGFR3Info(pVM->pUVM, "gdt", NULL, NULL);
}
/**
* Dumps the hypervisor LDT
*
* @param pVM Pointer to the VM.
*/
VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
{
DBGFR3Info(pVM->pUVM, "ldt", NULL, NULL);
}
/**
* Dumps the guest GDT
*
* @param pVM Pointer to the VM.
*/
VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
{
DBGFR3Info(pVM->pUVM, "gdtguest", NULL, NULL);
}
/**
* Dumps the guest LDT
*
* @param pVM Pointer to the VM.
*/
VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
{
DBGFR3Info(pVM->pUVM, "ldtguest", NULL, NULL);
}