PGMSavedState.cpp revision 683371bbf37760161d1b8454ce978acf89bbb04f
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, The Saved State Part.
*/
/*
* Copyright (C) 2006-2009 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/stam.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/pdmdrv.h>
#include <VBox/vmm/pdmdev.h>
#include "PGMInternal.h"
#include <VBox/vmm/vm.h>
#include "PGMInline.h"
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/vmm/ftm.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/crc.h>
#include <iprt/mem.h>
#include <iprt/sha.h>
#include <iprt/string.h>
#include <iprt/thread.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** Saved state data unit version. */
#define PGM_SAVED_STATE_VERSION 14
/** Saved state data unit version before the PAE PDPE registers. */
#define PGM_SAVED_STATE_VERSION_PRE_PAE 13
/** Saved state data unit version after this includes ballooned page flags in
* the state (see #5515). */
#define PGM_SAVED_STATE_VERSION_BALLOON_BROKEN 12
/** Saved state before the balloon change. */
#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
/** Saved state data unit version used during 3.1 development, misses the RAM
* config. */
#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
/** Saved state data unit version for 3.0 (pre teleportation). */
#define PGM_SAVED_STATE_VERSION_3_0_0 9
/** Saved state data unit version for 2.2.2 and later. */
#define PGM_SAVED_STATE_VERSION_2_2_2 8
/** Saved state data unit version for 2.2.0. */
#define PGM_SAVED_STATE_VERSION_RR_DESC 7
/** Saved state data unit version. */
#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
/** @name Sparse state record types
* @{ */
/** Zero page. No data. */
#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
/** Raw page. */
#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
/** Raw MMIO2 page. */
#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
/** Zero MMIO2 page. */
#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
/** Raw shadowed ROM page. The protection (8-bit) precedes the raw bits. */
#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
/** ROM protection (8-bit). */
#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
/** Ballooned page. No data. */
#define PGM_STATE_REC_RAM_BALLOONED UINT8_C(0x08)
/** The last record type. */
#define PGM_STATE_REC_LAST PGM_STATE_REC_RAM_BALLOONED
/** End marker. */
#define PGM_STATE_REC_END UINT8_C(0xff)
/** Flag indicating that the data is preceded by the page address.
* For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
* range ID and a 32-bit page index.
*/
#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
/** @} */
/** The CRC-32 for a zero page. */
#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
/** The CRC-32 for a zero half page. */
#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** For loading old saved states. (pre-smp) */
typedef struct
{
/** If set no conflict checks are required. (boolean) */
bool fMappingsFixed;
/** Size of fixed mapping */
uint32_t cbMappingFixed;
/** Base address (GC) of fixed mapping */
RTGCPTR GCPtrMappingFixed;
/** A20 gate mask.
* Our current approach to A20 emulation is to let REM do it and don't bother
* anywhere else. The interesting guests will be operating with it enabled anyway.
* But should the need arise, we'll subject physical addresses to this mask. */
RTGCPHYS GCPhysA20Mask;
/** A20 gate state - boolean! */
bool fA20Enabled;
/** The guest paging mode. */
PGMMODE enmGuestMode;
} PGMOLD;
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** PGM fields to save/load. */
static const SSMFIELD s_aPGMFields[] =
{
SSMFIELD_ENTRY( PGM, fMappingsFixed),
SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
SSMFIELD_ENTRY( PGM, cbMappingFixed),
SSMFIELD_ENTRY( PGM, cBalloonedPages),
SSMFIELD_ENTRY_TERM()
};
static const SSMFIELD s_aPGMFieldsPreBalloon[] =
{
SSMFIELD_ENTRY( PGM, fMappingsFixed),
SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
SSMFIELD_ENTRY( PGM, cbMappingFixed),
SSMFIELD_ENTRY_TERM()
};
static const SSMFIELD s_aPGMCpuFields[] =
{
SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[0]),
SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[1]),
SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[2]),
SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[3]),
SSMFIELD_ENTRY_TERM()
};
static const SSMFIELD s_aPGMCpuFieldsPrePae[] =
{
SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
SSMFIELD_ENTRY_TERM()
};
static const SSMFIELD s_aPGMFields_Old[] =
{
SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
SSMFIELD_ENTRY_TERM()
};
/**
* Find the ROM tracking structure for the given page.
*
* @returns Pointer to the ROM page structure. NULL if the caller didn't check
* that it's a ROM page.
* @param pVM The VM handle.
* @param GCPhys The address of the ROM page.
*/
static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
{
for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
pRomRange;
pRomRange = pRomRange->CTX_SUFF(pNext))
{
RTGCPHYS off = GCPhys - pRomRange->GCPhys;
if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
return &pRomRange->aPages[off >> PAGE_SHIFT];
}
return NULL;
}
/**
* Prepares the ROM pages for a live save.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
static int pgmR3PrepRomPages(PVM pVM)
{
/*
* Initialize the live save tracking in the ROM page descriptors.
*/
pgmLock(pVM);
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
PPGMRAMRANGE pRamHint = NULL;;
uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
pRom->aPages[iPage].LiveSave.fWrittenTo = false;
pRom->aPages[iPage].LiveSave.fDirty = true;
pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
{
if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
else
{
RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
PPGMPAGE pPage;
int rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
if (RT_SUCCESS(rc))
pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
else
pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
}
}
}
pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
}
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Assigns IDs to the ROM ranges and saves them.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM Saved state handle.
*/
static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
{
pgmLock(pVM);
uint8_t id = 1;
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
{
pRom->idSavedState = id;
SSMR3PutU8(pSSM, id);
SSMR3PutStrZ(pSSM, ""); /* device name */
SSMR3PutU32(pSSM, 0); /* device instance */
SSMR3PutU8(pSSM, 0); /* region */
SSMR3PutStrZ(pSSM, pRom->pszDesc);
SSMR3PutGCPhys(pSSM, pRom->GCPhys);
int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
if (RT_FAILURE(rc))
break;
}
pgmUnlock(pVM);
return SSMR3PutU8(pSSM, UINT8_MAX);
}
/**
* Loads the ROM range ID assignments.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The saved state handle.
*/
static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
{
PGM_LOCK_ASSERT_OWNER(pVM);
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
pRom->idSavedState = UINT8_MAX;
for (;;)
{
/*
* Read the data.
*/
uint8_t id;
int rc = SSMR3GetU8(pSSM, &id);
if (RT_FAILURE(rc))
return rc;
if (id == UINT8_MAX)
{
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
("The \"%s\" ROM was not found in the saved state. Probably due to some misconfiguration\n",
pRom->pszDesc));
return VINF_SUCCESS; /* the end */
}
AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
AssertLogRelRCReturn(rc, rc);
uint32_t uInstance;
SSMR3GetU32(pSSM, &uInstance);
uint8_t iRegion;
SSMR3GetU8(pSSM, &iRegion);
char szDesc[64];
rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
AssertLogRelRCReturn(rc, rc);
RTGCPHYS GCPhys;
SSMR3GetGCPhys(pSSM, &GCPhys);
RTGCPHYS cb;
rc = SSMR3GetGCPhys(pSSM, &cb);
if (RT_FAILURE(rc))
return rc;
AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
/*
* Locate a matching ROM range.
*/
AssertLogRelMsgReturn( uInstance == 0
&& iRegion == 0
&& szDevName[0] == '\0',
("GCPhys=%RGp %s\n", GCPhys, szDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
PPGMROMRANGE pRom;
for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
if ( pRom->idSavedState == UINT8_MAX
&& !strcmp(pRom->pszDesc, szDesc))
{
pRom->idSavedState = id;
break;
}
}
if (!pRom)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
} /* forever */
}
/**
* Scan ROM pages.
*
* @param pVM The VM handle.
*/
static void pgmR3ScanRomPages(PVM pVM)
{
/*
* The shadow ROMs.
*/
pgmLock(pVM);
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
{
uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
if (pRomPage->LiveSave.fWrittenTo)
{
pRomPage->LiveSave.fWrittenTo = false;
if (!pRomPage->LiveSave.fDirty)
{
pRomPage->LiveSave.fDirty = true;
pVM->pgm.s.LiveSave.Rom.cReadyPages--;
pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
}
pRomPage->LiveSave.fDirtiedRecently = true;
}
else
pRomPage->LiveSave.fDirtiedRecently = false;
}
}
}
pgmUnlock(pVM);
}
/**
* Takes care of the virgin ROM pages in the first pass.
*
* This is an attempt at simplifying the handling of ROM pages a little bit.
* This ASSUMES that no new ROM ranges will be added and that they won't be
* relinked in any way.
*
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param fLiveSave Whether we're in a live save or not.
*/
static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
{
if (FTMIsDeltaLoadSaveActive(pVM))
return VINF_SUCCESS; /* nothing to do as nothing has changed here */
pgmLock(pVM);
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
/* Get the virgin page descriptor. */
PPGMPAGE pPage;
if (PGMROMPROT_IS_ROM(enmProt))
pPage = pgmPhysGetPage(pVM, GCPhys);
else
pPage = &pRom->aPages[iPage].Virgin;
/* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
int rc = VINF_SUCCESS;
char abPage[PAGE_SIZE];
if ( !PGM_PAGE_IS_ZERO(pPage)
&& !PGM_PAGE_IS_BALLOONED(pPage))
{
void const *pvPage;
rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
if (RT_SUCCESS(rc))
memcpy(abPage, pvPage, PAGE_SIZE);
}
else
ASMMemZeroPage(abPage);
pgmUnlock(pVM);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
/* Save it. */
if (iPage > 0)
SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
else
{
SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutU8(pSSM, pRom->idSavedState);
SSMR3PutU32(pSSM, iPage);
}
SSMR3PutU8(pSSM, (uint8_t)enmProt);
rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
if (RT_FAILURE(rc))
return rc;
/* Update state. */
pgmLock(pVM);
pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
if (fLiveSave)
{
pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
pVM->pgm.s.LiveSave.Rom.cReadyPages++;
pVM->pgm.s.LiveSave.cSavedPages++;
}
}
}
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Saves dirty pages in the shadowed ROM ranges.
*
* Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param fLiveSave Whether it's a live save or not.
* @param fFinalPass Whether this is the final pass or not.
*/
static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
{
if (FTMIsDeltaLoadSaveActive(pVM))
return VINF_SUCCESS; /* nothing to do as we deal with those pages separately */
/*
* The Shadowed ROMs.
*
* ASSUMES that the ROM ranges are fixed.
* ASSUMES that all the ROM ranges are mapped.
*/
pgmLock(pVM);
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
{
uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
uint32_t iPrevPage = cPages;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
if ( !fLiveSave
|| ( pRomPage->LiveSave.fDirty
&& ( ( !pRomPage->LiveSave.fDirtiedRecently
&& !pRomPage->LiveSave.fWrittenTo)
|| fFinalPass
)
)
)
{
uint8_t abPage[PAGE_SIZE];
PGMROMPROT enmProt = pRomPage->enmProt;
RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(pVM, GCPhys);
bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage); Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* Shouldn't be ballooned. */
int rc = VINF_SUCCESS;
if (!fZero)
{
void const *pvPage;
rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
if (RT_SUCCESS(rc))
memcpy(abPage, pvPage, PAGE_SIZE);
}
if (fLiveSave && RT_SUCCESS(rc))
{
pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
pRomPage->LiveSave.fDirty = false;
pVM->pgm.s.LiveSave.Rom.cReadyPages++;
pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
pVM->pgm.s.LiveSave.cSavedPages++;
}
pgmUnlock(pVM);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
if (iPage - 1U == iPrevPage && iPage > 0)
SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
else
{
SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutU8(pSSM, pRom->idSavedState);
SSMR3PutU32(pSSM, iPage);
}
rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
if (!fZero)
rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
if (RT_FAILURE(rc))
return rc;
pgmLock(pVM);
iPrevPage = iPage;
}
/*
* In the final pass, make sure the protection is in sync.
*/
else if ( fFinalPass
&& pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
{
PGMROMPROT enmProt = pRomPage->enmProt;
pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
pgmUnlock(pVM);
if (iPage - 1U == iPrevPage && iPage > 0)
SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
else
{
SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutU8(pSSM, pRom->idSavedState);
SSMR3PutU32(pSSM, iPage);
}
int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
if (RT_FAILURE(rc))
return rc;
pgmLock(pVM);
iPrevPage = iPage;
}
}
}
}
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Cleans up ROM pages after a live save.
*
* @param pVM The VM handle.
*/
static void pgmR3DoneRomPages(PVM pVM)
{
NOREF(pVM);
}
/**
* Prepares the MMIO2 pages for a live save.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
static int pgmR3PrepMmio2Pages(PVM pVM)
{
/*
* Initialize the live save tracking in the MMIO2 ranges.
* ASSUME nothing changes here.
*/
pgmLock(pVM);
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
{
uint32_t const cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
pgmUnlock(pVM);
PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
if (!paLSPages)
return VERR_NO_MEMORY;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
/* Initialize it as a dirty zero page. */
paLSPages[iPage].fDirty = true;
paLSPages[iPage].cUnchangedScans = 0;
paLSPages[iPage].fZero = true;
paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
}
pgmLock(pVM);
pMmio2->paLSPages = paLSPages;
pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
}
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Assigns IDs to the MMIO2 ranges and saves them.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM Saved state handle.
*/
static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
{
pgmLock(pVM);
uint8_t id = 1;
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3, id++)
{
pMmio2->idSavedState = id;
SSMR3PutU8(pSSM, id);
SSMR3PutStrZ(pSSM, pMmio2->pDevInsR3->pReg->szName);
SSMR3PutU32(pSSM, pMmio2->pDevInsR3->iInstance);
SSMR3PutU8(pSSM, pMmio2->iRegion);
SSMR3PutStrZ(pSSM, pMmio2->RamRange.pszDesc);
int rc = SSMR3PutGCPhys(pSSM, pMmio2->RamRange.cb);
if (RT_FAILURE(rc))
break;
}
pgmUnlock(pVM);
return SSMR3PutU8(pSSM, UINT8_MAX);
}
/**
* Loads the MMIO2 range ID assignments.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The saved state handle.
*/
static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
{
PGM_LOCK_ASSERT_OWNER(pVM);
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
pMmio2->idSavedState = UINT8_MAX;
for (;;)
{
/*
* Read the data.
*/
uint8_t id;
int rc = SSMR3GetU8(pSSM, &id);
if (RT_FAILURE(rc))
return rc;
if (id == UINT8_MAX)
{
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
AssertLogRelMsg(pMmio2->idSavedState != UINT8_MAX, ("%s\n", pMmio2->RamRange.pszDesc));
return VINF_SUCCESS; /* the end */
}
AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
AssertLogRelRCReturn(rc, rc);
uint32_t uInstance;
SSMR3GetU32(pSSM, &uInstance);
uint8_t iRegion;
SSMR3GetU8(pSSM, &iRegion);
char szDesc[64];
rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
AssertLogRelRCReturn(rc, rc);
RTGCPHYS cb;
rc = SSMR3GetGCPhys(pSSM, &cb);
AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
/*
* Locate a matching MMIO2 range.
*/
PPGMMMIO2RANGE pMmio2;
for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
{
if ( pMmio2->idSavedState == UINT8_MAX
&& pMmio2->iRegion == iRegion
&& pMmio2->pDevInsR3->iInstance == uInstance
&& !strcmp(pMmio2->pDevInsR3->pReg->szName, szDevName))
{
pMmio2->idSavedState = id;
break;
}
}
if (!pMmio2)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
szDesc, szDevName, uInstance, iRegion);
/*
* Validate the configuration, the size of the MMIO2 region should be
* the same.
*/
if (cb != pMmio2->RamRange.cb)
{
LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb));
if (cb > pMmio2->RamRange.cb) /* bad idea? */
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb);
}
} /* forever */
}
/**
* Scans one MMIO2 page.
*
* @returns True if changed, false if unchanged.
*
* @param pVM The VM handle
* @param pbPage The page bits.
* @param pLSPage The live save tracking structure for the page.
*
*/
DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
{
/*
* Special handling of zero pages.
*/
bool const fZero = pLSPage->fZero;
if (fZero)
{
if (ASMMemIsZeroPage(pbPage))
{
/* Not modified. */
if (pLSPage->fDirty)
pLSPage->cUnchangedScans++;
return false;
}
pLSPage->fZero = false;
pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
}
else
{
/*
* CRC the first half, if it doesn't match the page is dirty and
* we won't check the 2nd half (we'll do that next time).
*/
uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
if (u32CrcH1 == pLSPage->u32CrcH1)
{
uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
if (u32CrcH2 == pLSPage->u32CrcH2)
{
/* Probably not modified. */
if (pLSPage->fDirty)
pLSPage->cUnchangedScans++;
return false;
}
pLSPage->u32CrcH2 = u32CrcH2;
}
else
{
pLSPage->u32CrcH1 = u32CrcH1;
if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
&& ASMMemIsZeroPage(pbPage))
{
pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
pLSPage->fZero = true;
}
}
}
/* dirty page path */
pLSPage->cUnchangedScans = 0;
if (!pLSPage->fDirty)
{
pLSPage->fDirty = true;
pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
if (fZero)
pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
}
return true;
}
/**
* Scan for MMIO2 page modifications.
*
* @param pVM The VM handle.
* @param uPass The pass number.
*/
static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
{
/*
* Since this is a bit expensive we lower the scan rate after a little while.
*/
if ( ( (uPass & 3) != 0
&& uPass > 10)
|| uPass == SSM_PASS_FINAL)
return;
pgmLock(pVM); /* paranoia */
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
{
PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
pgmUnlock(pVM);
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
uint8_t const *pbPage = (uint8_t const *)pMmio2->pvR3 + iPage * PAGE_SIZE;
pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
}
pgmLock(pVM);
}
pgmUnlock(pVM);
}
/**
* Save quiescent MMIO2 pages.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param fLiveSave Whether it's a live save or not.
* @param uPass The pass number.
*/
static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
{
/** @todo implement live saving of MMIO2 pages. (Need some way of telling the
* device that we wish to know about changes.) */
int rc = VINF_SUCCESS;
if (uPass == SSM_PASS_FINAL)
{
/*
* The mop up round.
*/
pgmLock(pVM);
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
pMmio2 && RT_SUCCESS(rc);
pMmio2 = pMmio2->pNextR3)
{
PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
uint32_t iPageLast = cPages;
for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
{
uint8_t u8Type;
if (!fLiveSave)
u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
else
{
/* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
if ( !paLSPages[iPage].fDirty
&& !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
{
if (paLSPages[iPage].fZero)
continue;
uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
continue;
}
u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
pVM->pgm.s.LiveSave.cSavedPages++;
}
if (iPage != 0 && iPage == iPageLast + 1)
rc = SSMR3PutU8(pSSM, u8Type);
else
{
SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutU8(pSSM, pMmio2->idSavedState);
rc = SSMR3PutU32(pSSM, iPage);
}
if (u8Type == PGM_STATE_REC_MMIO2_RAW)
rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
if (RT_FAILURE(rc))
break;
iPageLast = iPage;
}
}
pgmUnlock(pVM);
}
/*
* Reduce the rate after a little while since the current MMIO2 approach is
* a bit expensive.
* We position it two passes after the scan pass to avoid saving busy pages.
*/
else if ( uPass <= 10
|| (uPass & 3) == 2)
{
pgmLock(pVM);
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
pMmio2 && RT_SUCCESS(rc);
pMmio2 = pMmio2->pNextR3)
{
PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
uint32_t iPageLast = cPages;
pgmUnlock(pVM);
for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
{
/* Skip clean pages and pages which hasn't quiesced. */
if (!paLSPages[iPage].fDirty)
continue;
if (paLSPages[iPage].cUnchangedScans < 3)
continue;
if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
continue;
/* Save it. */
bool const fZero = paLSPages[iPage].fZero;
uint8_t abPage[PAGE_SIZE];
if (!fZero)
{
memcpy(abPage, pbPage, PAGE_SIZE);
RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
}
uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
if (iPage != 0 && iPage == iPageLast + 1)
rc = SSMR3PutU8(pSSM, u8Type);
else
{
SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutU8(pSSM, pMmio2->idSavedState);
rc = SSMR3PutU32(pSSM, iPage);
}
if (u8Type == PGM_STATE_REC_MMIO2_RAW)
rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
if (RT_FAILURE(rc))
break;
/* Housekeeping. */
paLSPages[iPage].fDirty = false;
pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
pVM->pgm.s.LiveSave.cSavedPages++;
iPageLast = iPage;
}
pgmLock(pVM);
}
pgmUnlock(pVM);
}
return rc;
}
/**
* Cleans up MMIO2 pages after a live save.
*
* @param pVM The VM handle.
*/
static void pgmR3DoneMmio2Pages(PVM pVM)
{
/*
* Free the tracking structures for the MMIO2 pages.
* We do the freeing outside the lock in case the VM is running.
*/
pgmLock(pVM);
for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
{
void *pvMmio2ToFree = pMmio2->paLSPages;
if (pvMmio2ToFree)
{
pMmio2->paLSPages = NULL;
pgmUnlock(pVM);
MMR3HeapFree(pvMmio2ToFree);
pgmLock(pVM);
}
}
pgmUnlock(pVM);
}
/**
* Prepares the RAM pages for a live save.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
static int pgmR3PrepRamPages(PVM pVM)
{
/*
* Try allocating tracking structures for the ram ranges.
*
* To avoid lock contention, we leave the lock every time we're allocating
* a new array. This means we'll have to ditch the allocation and start
* all over again if the RAM range list changes in-between.
*
* Note! pgmR3SaveDone will always be called and it is therefore responsible
* for cleaning up.
*/
PPGMRAMRANGE pCur;
pgmLock(pVM);
do
{
for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
{
if ( !pCur->paLSPages
&& !PGM_RAM_RANGE_IS_AD_HOC(pCur))
{
uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
pgmUnlock(pVM);
PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
if (!paLSPages)
return VERR_NO_MEMORY;
pgmLock(pVM);
if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
{
pgmUnlock(pVM);
MMR3HeapFree(paLSPages);
pgmLock(pVM);
break; /* try again */
}
pCur->paLSPages = paLSPages;
/*
* Initialize the array.
*/
uint32_t iPage = cPages;
while (iPage-- > 0)
{
/** @todo yield critsect! (after moving this away from EMT0) */
PCPGMPAGE pPage = &pCur->aPages[iPage];
paLSPages[iPage].cDirtied = 0;
paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
paLSPages[iPage].fWriteMonitored = 0;
paLSPages[iPage].fWriteMonitoredJustNow = 0;
paLSPages[iPage].u2Reserved = 0;
switch (PGM_PAGE_GET_TYPE(pPage))
{
case PGMPAGETYPE_RAM:
if ( PGM_PAGE_IS_ZERO(pPage)
|| PGM_PAGE_IS_BALLOONED(pPage))
{
paLSPages[iPage].fZero = 1;
paLSPages[iPage].fShared = 0;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
#endif
}
else if (PGM_PAGE_IS_SHARED(pPage))
{
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 1;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX;
#endif
}
else
{
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 0;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX;
#endif
}
paLSPages[iPage].fIgnore = 0;
pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
break;
case PGMPAGETYPE_ROM_SHADOW:
case PGMPAGETYPE_ROM:
{
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 0;
paLSPages[iPage].fDirty = 0;
paLSPages[iPage].fIgnore = 1;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX;
#endif
pVM->pgm.s.LiveSave.cIgnoredPages++;
break;
}
default:
AssertMsgFailed(("%R[pgmpage]", pPage));
case PGMPAGETYPE_MMIO2:
case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 0;
paLSPages[iPage].fDirty = 0;
paLSPages[iPage].fIgnore = 1;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX;
#endif
pVM->pgm.s.LiveSave.cIgnoredPages++;
break;
case PGMPAGETYPE_MMIO:
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 0;
paLSPages[iPage].fDirty = 0;
paLSPages[iPage].fIgnore = 1;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX;
#endif
pVM->pgm.s.LiveSave.cIgnoredPages++;
break;
}
}
}
}
} while (pCur);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Saves the RAM configuration.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The saved state handle.
*/
static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
{
uint32_t cbRamHole = 0;
int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
AssertRCReturn(rc, rc);
uint64_t cbRam = 0;
rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
AssertRCReturn(rc, rc);
SSMR3PutU32(pSSM, cbRamHole);
return SSMR3PutU64(pSSM, cbRam);
}
/**
* Loads and verifies the RAM configuration.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The saved state handle.
*/
static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
{
uint32_t cbRamHoleCfg = 0;
int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
AssertRCReturn(rc, rc);
uint64_t cbRamCfg = 0;
rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
AssertRCReturn(rc, rc);
uint32_t cbRamHoleSaved;
SSMR3GetU32(pSSM, &cbRamHoleSaved);
uint64_t cbRamSaved;
rc = SSMR3GetU64(pSSM, &cbRamSaved);
AssertRCReturn(rc, rc);
if ( cbRamHoleCfg != cbRamHoleSaved
|| cbRamCfg != cbRamSaved)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
return VINF_SUCCESS;
}
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
/**
* Calculates the CRC-32 for a RAM page and updates the live save page tracking
* info with it.
*
* @param pVM The VM handle.
* @param pCur The current RAM range.
* @param paLSPages The current array of live save page tracking
* structures.
* @param iPage The page index.
*/
static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
{
RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
PGMPAGEMAPLOCK PgMpLck;
void const *pvPage;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
if (RT_SUCCESS(rc))
{
paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
else
paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
}
/**
* Verifies the CRC-32 for a page given it's raw bits.
*
* @param pvPage The page bits.
* @param pCur The current RAM range.
* @param paLSPages The current array of live save page tracking
* structures.
* @param iPage The page index.
*/
static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
{
if (paLSPages[iPage].u32Crc != UINT32_MAX)
{
uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
&& !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
|| u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
}
}
/**
* Verifies the CRC-32 for a RAM page.
*
* @param pVM The VM handle.
* @param pCur The current RAM range.
* @param paLSPages The current array of live save page tracking
* structures.
* @param iPage The page index.
*/
static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
{
if (paLSPages[iPage].u32Crc != UINT32_MAX)
{
RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
PGMPAGEMAPLOCK PgMpLck;
void const *pvPage;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
if (RT_SUCCESS(rc))
{
pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
}
}
#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
/**
* Scan for RAM page modifications and reprotect them.
*
* @param pVM The VM handle.
* @param fFinalPass Whether this is the final pass or not.
*/
static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
{
/*
* The RAM.
*/
RTGCPHYS GCPhysCur = 0;
PPGMRAMRANGE pCur;
pgmLock(pVM);
do
{
uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
{
if ( pCur->GCPhysLast > GCPhysCur
&& !PGM_RAM_RANGE_IS_AD_HOC(pCur))
{
PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
uint32_t cPages = pCur->cb >> PAGE_SHIFT;
uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
GCPhysCur = 0;
for (; iPage < cPages; iPage++)
{
/* Do yield first. */
if ( !fFinalPass
#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
&& (iPage & 0x7ff) == 0x100
#endif
&& PDMR3CritSectYield(&pVM->pgm.s.CritSectX)
&& pVM->pgm.s.idRamRangesGen != idRamRangesGen)
{
GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
break; /* restart */
}
/* Skip already ignored pages. */
if (paLSPages[iPage].fIgnore)
continue;
if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
{
/*
* A RAM page.
*/
switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
{
case PGM_PAGE_STATE_ALLOCATED:
/** @todo Optimize this: Don't always re-enable write
* monitoring if the page is known to be very busy. */
if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
{
AssertMsg(paLSPages[iPage].fWriteMonitored,
("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
Assert(pVM->pgm.s.cWrittenToPages > 0);
pVM->pgm.s.cWrittenToPages--;
}
else
{
AssertMsg(!paLSPages[iPage].fWriteMonitored,
("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
}
if (!paLSPages[iPage].fDirty)
{
pVM->pgm.s.LiveSave.Ram.cReadyPages--;
if (paLSPages[iPage].fZero)
pVM->pgm.s.LiveSave.Ram.cZeroPages--;
pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
}
pgmPhysPageWriteMonitor(pVM, &pCur->aPages[iPage],
pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
paLSPages[iPage].fWriteMonitored = 1;
paLSPages[iPage].fWriteMonitoredJustNow = 1;
paLSPages[iPage].fDirty = 1;
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 0;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
#endif
break;
case PGM_PAGE_STATE_WRITE_MONITORED:
Assert(paLSPages[iPage].fWriteMonitored);
if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
{
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
if (paLSPages[iPage].fWriteMonitoredJustNow)
pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
else
pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
#endif
paLSPages[iPage].fWriteMonitoredJustNow = 0;
}
else
{
paLSPages[iPage].fWriteMonitoredJustNow = 1;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
#endif
if (!paLSPages[iPage].fDirty)
{
pVM->pgm.s.LiveSave.Ram.cReadyPages--;
pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
}
}
break;
case PGM_PAGE_STATE_ZERO:
case PGM_PAGE_STATE_BALLOONED:
if (!paLSPages[iPage].fZero)
{
if (!paLSPages[iPage].fDirty)
{
paLSPages[iPage].fDirty = 1;
pVM->pgm.s.LiveSave.Ram.cReadyPages--;
pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
}
paLSPages[iPage].fZero = 1;
paLSPages[iPage].fShared = 0;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
#endif
}
break;
case PGM_PAGE_STATE_SHARED:
if (!paLSPages[iPage].fShared)
{
if (!paLSPages[iPage].fDirty)
{
paLSPages[iPage].fDirty = 1;
pVM->pgm.s.LiveSave.Ram.cReadyPages--;
if (paLSPages[iPage].fZero)
pVM->pgm.s.LiveSave.Ram.cZeroPages--;
pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
}
paLSPages[iPage].fZero = 0;
paLSPages[iPage].fShared = 1;
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
#endif
}
break;
}
}
else
{
/*
* All other types => Ignore the page.
*/
Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
paLSPages[iPage].fIgnore = 1;
if (paLSPages[iPage].fWriteMonitored)
{
/** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
* pages! */
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
{
AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
PGM_PAGE_SET_STATE(pVM, &pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
Assert(pVM->pgm.s.cMonitoredPages > 0);
pVM->pgm.s.cMonitoredPages--;
}
if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
{
PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
Assert(pVM->pgm.s.cWrittenToPages > 0);
pVM->pgm.s.cWrittenToPages--;
}
pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
}
/** @todo the counting doesn't quite work out here. fix later? */
if (paLSPages[iPage].fDirty)
pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
else
{
pVM->pgm.s.LiveSave.Ram.cReadyPages--;
if (paLSPages[iPage].fZero)
pVM->pgm.s.LiveSave.Ram.cZeroPages--;
}
pVM->pgm.s.LiveSave.cIgnoredPages++;
}
} /* for each page in range */
if (GCPhysCur != 0)
break; /* Yield + ramrange change */
GCPhysCur = pCur->GCPhysLast;
}
} /* for each range */
} while (pCur);
pgmUnlock(pVM);
}
/**
* Save quiescent RAM pages.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param fLiveSave Whether it's a live save or not.
* @param uPass The pass number.
*/
static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
{
NOREF(fLiveSave);
/*
* The RAM.
*/
RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
RTGCPHYS GCPhysCur = 0;
PPGMRAMRANGE pCur;
bool fFTMDeltaSaveActive = FTMIsDeltaLoadSaveActive(pVM);
pgmLock(pVM);
do
{
uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
{
if ( pCur->GCPhysLast > GCPhysCur
&& !PGM_RAM_RANGE_IS_AD_HOC(pCur))
{
PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
uint32_t cPages = pCur->cb >> PAGE_SHIFT;
uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
GCPhysCur = 0;
for (; iPage < cPages; iPage++)
{
/* Do yield first. */
if ( uPass != SSM_PASS_FINAL
&& (iPage & 0x7ff) == 0x100
&& PDMR3CritSectYield(&pVM->pgm.s.CritSectX)
&& pVM->pgm.s.idRamRangesGen != idRamRangesGen)
{
GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
break; /* restart */
}
PPGMPAGE pCurPage = &pCur->aPages[iPage];
/*
* Only save pages that haven't changed since last scan and are dirty.
*/
if ( uPass != SSM_PASS_FINAL
&& paLSPages)
{
if (!paLSPages[iPage].fDirty)
continue;
if (paLSPages[iPage].fWriteMonitoredJustNow)
continue;
if (paLSPages[iPage].fIgnore)
continue;
if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM) /* in case of recent remappings */
continue;
if ( PGM_PAGE_GET_STATE(pCurPage)
!= ( paLSPages[iPage].fZero
? PGM_PAGE_STATE_ZERO
: paLSPages[iPage].fShared
? PGM_PAGE_STATE_SHARED
: PGM_PAGE_STATE_WRITE_MONITORED))
continue;
if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
continue;
}
else
{
if ( paLSPages
&& !paLSPages[iPage].fDirty
&& !paLSPages[iPage].fIgnore)
{
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
#endif
continue;
}
if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
continue;
}
/*
* Do the saving outside the PGM critsect since SSM may block on I/O.
*/
int rc;
RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
bool fZero = PGM_PAGE_IS_ZERO(pCurPage);
bool fBallooned = PGM_PAGE_IS_BALLOONED(pCurPage);
bool fSkipped = false;
if (!fZero && !fBallooned)
{
/*
* Copy the page and then save it outside the lock (since any
* SSM call may block).
*/
uint8_t abPage[PAGE_SIZE];
PGMPAGEMAPLOCK PgMpLck;
void const *pvPage;
rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pCurPage, GCPhys, &pvPage, &PgMpLck);
if (RT_SUCCESS(rc))
{
memcpy(abPage, pvPage, PAGE_SIZE);
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
if (paLSPages)
pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
#endif
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
pgmUnlock(pVM);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
/* Try save some memory when restoring. */
if (!ASMMemIsZeroPage(pvPage))
{
if (fFTMDeltaSaveActive)
{
if ( PGM_PAGE_IS_WRITTEN_TO(pCurPage)
|| PGM_PAGE_IS_FT_DIRTY(pCurPage))
{
if (GCPhys == GCPhysLast + PAGE_SIZE)
SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
else
{
SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutGCPhys(pSSM, GCPhys);
}
rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pCurPage);
PGM_PAGE_CLEAR_FT_DIRTY(pCurPage);
}
/* else nothing changed, so skip it. */
else
fSkipped = true;
}
else
{
if (GCPhys == GCPhysLast + PAGE_SIZE)
SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
else
{
SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
SSMR3PutGCPhys(pSSM, GCPhys);
}
rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
}
}
else
{
if (GCPhys == GCPhysLast + PAGE_SIZE)
rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
else
{
SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
rc = SSMR3PutGCPhys(pSSM, GCPhys);
}
}
}
else
{
/*
* Dirty zero or ballooned page.
*/
#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
if (paLSPages)
pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
#endif
pgmUnlock(pVM);
uint8_t u8RecType = fBallooned ? PGM_STATE_REC_RAM_BALLOONED : PGM_STATE_REC_RAM_ZERO;
if (GCPhys == GCPhysLast + PAGE_SIZE)
rc = SSMR3PutU8(pSSM, u8RecType);
else
{
SSMR3PutU8(pSSM, u8RecType | PGM_STATE_REC_FLAG_ADDR);
rc = SSMR3PutGCPhys(pSSM, GCPhys);
}
}
if (RT_FAILURE(rc))
return rc;
pgmLock(pVM);
if (!fSkipped)
GCPhysLast = GCPhys;
if (paLSPages)
{
paLSPages[iPage].fDirty = 0;
pVM->pgm.s.LiveSave.Ram.cReadyPages++;
if (fZero)
pVM->pgm.s.LiveSave.Ram.cZeroPages++;
pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
pVM->pgm.s.LiveSave.cSavedPages++;
}
if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
{
GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
break; /* restart */
}
} /* for each page in range */
if (GCPhysCur != 0)
break; /* Yield + ramrange change */
GCPhysCur = pCur->GCPhysLast;
}
} /* for each range */
} while (pCur);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Cleans up RAM pages after a live save.
*
* @param pVM The VM handle.
*/
static void pgmR3DoneRamPages(PVM pVM)
{
/*
* Free the tracking arrays and disable write monitoring.
*
* Play nice with the PGM lock in case we're called while the VM is still
* running. This means we have to delay the freeing since we wish to use
* paLSPages as an indicator of which RAM ranges which we need to scan for
* write monitored pages.
*/
void *pvToFree = NULL;
PPGMRAMRANGE pCur;
uint32_t cMonitoredPages = 0;
pgmLock(pVM);
do
{
for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
{
if (pCur->paLSPages)
{
if (pvToFree)
{
uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
pgmUnlock(pVM);
MMR3HeapFree(pvToFree);
pvToFree = NULL;
pgmLock(pVM);
if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
break; /* start over again. */
}
pvToFree = pCur->paLSPages;
pCur->paLSPages = NULL;
uint32_t iPage = pCur->cb >> PAGE_SHIFT;
while (iPage--)
{
PPGMPAGE pPage = &pCur->aPages[iPage];
PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
{
PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
cMonitoredPages++;
}
}
}
}
} while (pCur);
Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
pVM->pgm.s.cMonitoredPages = 0;
else
pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
pgmUnlock(pVM);
MMR3HeapFree(pvToFree);
pvToFree = NULL;
}
/**
* Execute a live save pass.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The SSM handle.
*/
static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
{
int rc;
/*
* Save the MMIO2 and ROM range IDs in pass 0.
*/
if (uPass == 0)
{
rc = pgmR3SaveRamConfig(pVM, pSSM);
if (RT_FAILURE(rc))
return rc;
rc = pgmR3SaveRomRanges(pVM, pSSM);
if (RT_FAILURE(rc))
return rc;
rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
if (RT_FAILURE(rc))
return rc;
}
/*
* Reset the page-per-second estimate to avoid inflation by the initial
* load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
*/
else if (uPass == 7)
{
pVM->pgm.s.LiveSave.cSavedPages = 0;
pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
}
/*
* Do the scanning.
*/
pgmR3ScanRomPages(pVM);
pgmR3ScanMmio2Pages(pVM, uPass);
pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
/*
* Save the pages.
*/
if (uPass == 0)
rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
else
rc = VINF_SUCCESS;
if (RT_SUCCESS(rc))
rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
if (RT_SUCCESS(rc))
rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
if (RT_SUCCESS(rc))
rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
return rc;
}
/**
* Votes on whether the live save phase is done or not.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
{
/*
* Update and calculate parameters used in the decision making.
*/
const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
/* update history. */
pgmLock(pVM);
uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
pgmUnlock(pVM);
uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
+ pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
+ pVM->pgm.s.LiveSave.Ram.cDirtyPages
+ cWrittenToPages;
uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
/* calc shortterm average (4 passes). */
AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
uint32_t const cDirtyPagesShort = cTotal / 4;
pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
/* calc longterm average. */
cTotal = 0;
if (uPass < cHistoryEntries)
for (i = 0; i < cHistoryEntries && i <= uPass; i++)
cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
else
for (i = 0; i < cHistoryEntries; i++)
cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
/* estimate the speed */
uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
/ ((long double)cNsElapsed / 1000000000.0) );
pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
/*
* Try make a decision.
*/
if ( cDirtyPagesShort <= cDirtyPagesLong
&& ( cDirtyNow <= cDirtyPagesShort
|| cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
)
)
{
if (uPass > 10)
{
uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
if (cMsMaxDowntime < 32)
cMsMaxDowntime = 32;
if ( ( cMsLeftLong <= cMsMaxDowntime
&& cMsLeftShort < cMsMaxDowntime)
|| cMsLeftShort < cMsMaxDowntime / 2
)
{
Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
return VINF_SUCCESS;
}
}
else
{
if ( ( cDirtyPagesShort <= 128
&& cDirtyPagesLong <= 1024)
|| cDirtyPagesLong <= 256
)
{
Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
return VINF_SUCCESS;
}
}
}
/*
* Come up with a completion percentage. Currently this is a simple
* dirty page (long term) vs. total pages ratio + some pass trickery.
*/
unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
/ (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
if (uPctDirty <= 100)
SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
else
AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
}
/**
* Prepare for a live save operation.
*
* This will attempt to allocate and initialize the tracking structures. It
* will also prepare for write monitoring of pages and initialize PGM::LiveSave.
* pgmR3SaveDone will do the cleanups.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The SSM handle.
*/
static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
{
/*
* Indicate that we will be using the write monitoring.
*/
pgmLock(pVM);
/** @todo find a way of mediating this when more users are added. */
if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
{
pgmUnlock(pVM);
AssertLogRelFailedReturn(VERR_PGM_WRITE_MONITOR_ENGAGED);
}
pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
pgmUnlock(pVM);
/*
* Initialize the statistics.
*/
pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
pVM->pgm.s.LiveSave.cIgnoredPages = 0;
pVM->pgm.s.LiveSave.fActive = true;
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
pVM->pgm.s.LiveSave.cSavedPages = 0;
pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
/*
* Per page type.
*/
int rc = pgmR3PrepRomPages(pVM);
if (RT_SUCCESS(rc))
rc = pgmR3PrepMmio2Pages(pVM);
if (RT_SUCCESS(rc))
rc = pgmR3PrepRamPages(pVM);
NOREF(pSSM);
return rc;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
{
int rc = VINF_SUCCESS;
PPGM pPGM = &pVM->pgm.s;
/*
* Lock PGM and set the no-more-writes indicator.
*/
pgmLock(pVM);
pVM->pgm.s.fNoMorePhysWrites = true;
/*
* Save basic data (required / unaffected by relocation).
*/
bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
pVM->pgm.s.fMappingsFixed = fMappingsFixed;
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
rc = SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
/*
* Save the (remainder of the) memory.
*/
if (RT_SUCCESS(rc))
{
if (pVM->pgm.s.LiveSave.fActive)
{
pgmR3ScanRomPages(pVM);
pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
if (RT_SUCCESS(rc))
rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
if (RT_SUCCESS(rc))
rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
}
else
{
rc = pgmR3SaveRamConfig(pVM, pSSM);
if (RT_SUCCESS(rc))
rc = pgmR3SaveRomRanges(pVM, pSSM);
if (RT_SUCCESS(rc))
rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
if (RT_SUCCESS(rc))
rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
if (RT_SUCCESS(rc))
rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
if (RT_SUCCESS(rc))
rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
if (RT_SUCCESS(rc))
rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
}
SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
}
pgmUnlock(pVM);
return rc;
}
/**
* Cleans up after an save state operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
{
/*
* Do per page type cleanups first.
*/
if (pVM->pgm.s.LiveSave.fActive)
{
pgmR3DoneRomPages(pVM);
pgmR3DoneMmio2Pages(pVM);
pgmR3DoneRamPages(pVM);
}
/*
* Clear the live save indicator and disengage write monitoring.
*/
pgmLock(pVM);
pVM->pgm.s.LiveSave.fActive = false;
/** @todo this is blindly assuming that we're the only user of write
* monitoring. Fix this when more users are added. */
pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
pgmUnlock(pVM);
NOREF(pSSM);
return VINF_SUCCESS;
}
/**
* Prepare state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
{
/*
* Call the reset function to make sure all the memory is cleared.
*/
PGMR3Reset(pVM);
pVM->pgm.s.LiveSave.fActive = false;
NOREF(pSSM);
return VINF_SUCCESS;
}
/**
* Load an ignored page.
*
* @returns VBox status code.
* @param pSSM The saved state handle.
*/
static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
{
uint8_t abPage[PAGE_SIZE];
return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
}
/**
* Loads a page without any bits in the saved state, i.e. making sure it's
* really zero.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param uType The page type or PGMPAGETYPE_INVALID (old saved
* state).
* @param pPage The guest page tracking structure.
* @param GCPhys The page address.
* @param pRam The ram range (logging).
*/
static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
{
if ( PGM_PAGE_GET_TYPE(pPage) != uType
&& uType != PGMPAGETYPE_INVALID)
return VERR_SSM_UNEXPECTED_DATA;
/* I think this should be sufficient. */
if ( !PGM_PAGE_IS_ZERO(pPage)
&& !PGM_PAGE_IS_BALLOONED(pPage))
return VERR_SSM_UNEXPECTED_DATA;
NOREF(pVM);
NOREF(GCPhys);
NOREF(pRam);
return VINF_SUCCESS;
}
/**
* Loads a page from the saved state.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param uType The page type or PGMPAGETYEP_INVALID (old saved
* state).
* @param pPage The guest page tracking structure.
* @param GCPhys The page address.
* @param pRam The ram range (logging).
*/
static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
{
/*
* Match up the type, dealing with MMIO2 aliases (dropped).
*/
AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
|| uType == PGMPAGETYPE_INVALID
/* kudge for the expanded PXE bios (r67885) - #5687: */
|| ( uType == PGMPAGETYPE_RAM
&& GCPhys >= 0xed000
&& GCPhys <= 0xeffff
&& PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM)
,
("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
VERR_SSM_UNEXPECTED_DATA);
/*
* Load the page.
*/
PGMPAGEMAPLOCK PgMpLck;
void *pvPage;
int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage, &PgMpLck);
if (RT_SUCCESS(rc))
{
rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
return rc;
}
/**
* Loads a page (counter part to pgmR3SavePage).
*
* @returns VBox status code, fully bitched errors.
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param uType The page type.
* @param pPage The page.
* @param GCPhys The page address.
* @param pRam The RAM range (for error messages).
*/
static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
{
uint8_t uState;
int rc = SSMR3GetU8(pSSM, &uState);
AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
if (uState == 0 /* zero */)
rc = pgmR3LoadPageZeroOld(pVM, uType, pPage, GCPhys, pRam);
else if (uState == 1)
rc = pgmR3LoadPageBitsOld(pVM, pSSM, uType, pPage, GCPhys, pRam);
else
rc = VERR_PGM_INVALID_SAVED_PAGE_STATE;
AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
rc);
return VINF_SUCCESS;
}
/**
* Loads a shadowed ROM page.
*
* @returns VBox status code, errors are fully bitched.
* @param pVM The VM handle.
* @param pSSM The saved state handle.
* @param pPage The page.
* @param GCPhys The page address.
* @param pRam The RAM range (for error messages).
*/
static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
{
/*
* Load and set the protection first, then load the two pages, the first
* one is the active the other is the passive.
*/
PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
uint8_t uProt;
int rc = SSMR3GetU8(pSSM, &uProt);
AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
PGMROMPROT enmProt = (PGMROMPROT)uProt;
AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
&& enmProt < PGMROMPROT_END,
("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
VERR_SSM_UNEXPECTED_DATA);
if (pRomPage->enmProt != enmProt)
{
rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
AssertLogRelRCReturn(rc, rc);
AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
}
PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
/** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
* used down the line (will the 2nd page will be written to the first
* one because of a false TLB hit since the TLB is using GCPhys and
* doesn't check the HCPhys of the desired page). */
rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
if (RT_SUCCESS(rc))
{
*pPageActive = *pPage;
rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
}
return rc;
}
/**
* Ram range flags and bits for older versions of the saved state.
*
* @returns VBox status code.
*
* @param pVM The VM handle
* @param pSSM The SSM handle.
* @param uVersion The saved state version.
*/
static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
{
PPGM pPGM = &pVM->pgm.s;
/*
* Ram range flags and bits.
*/
uint32_t i = 0;
for (PPGMRAMRANGE pRam = pPGM->pRamRangesXR3; ; pRam = pRam->pNextR3, i++)
{
/* Check the sequence number / separator. */
uint32_t u32Sep;
int rc = SSMR3GetU32(pSSM, &u32Sep);
if (RT_FAILURE(rc))
return rc;
if (u32Sep == ~0U)
break;
if (u32Sep != i)
{
AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
/* Get the range details. */
RTGCPHYS GCPhys;
SSMR3GetGCPhys(pSSM, &GCPhys);
RTGCPHYS GCPhysLast;
SSMR3GetGCPhys(pSSM, &GCPhysLast);
RTGCPHYS cb;
SSMR3GetGCPhys(pSSM, &cb);
uint8_t fHaveBits;
rc = SSMR3GetU8(pSSM, &fHaveBits);
if (RT_FAILURE(rc))
return rc;
if (fHaveBits & ~1)
{
AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
size_t cchDesc = 0;
char szDesc[256];
szDesc[0] = '\0';
if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
{
rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
if (RT_FAILURE(rc))
return rc;
/* Since we've modified the description strings in r45878, only compare
them if the saved state is more recent. */
if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
cchDesc = strlen(szDesc);
}
/*
* Match it up with the current range.
*
* Note there is a hack for dealing with the high BIOS mapping
* in the old saved state format, this means we might not have
* a 1:1 match on success.
*/
if ( ( GCPhys != pRam->GCPhys
|| GCPhysLast != pRam->GCPhysLast
|| cb != pRam->cb
|| ( cchDesc
&& strcmp(szDesc, pRam->pszDesc)) )
/* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
&& ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
|| GCPhys != UINT32_C(0xfff80000)
|| GCPhysLast != UINT32_C(0xffffffff)
|| pRam->GCPhysLast != GCPhysLast
|| pRam->GCPhys < GCPhys
|| !fHaveBits)
)
{
LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
"State : %RGp-%RGp %RGp bytes %s %s\n",
pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
/*
* If we're loading a state for debugging purpose, don't make a fuss if
* the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
*/
if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
|| GCPhys < 8 * _1M)
return SSMR3SetCfgError(pSSM, RT_SRC_POS,
N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
AssertMsgFailed(("debug skipping not implemented, sorry\n"));
continue;
}
uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
{
/*
* Load the pages one by one.
*/
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
PPGMPAGE pPage = &pRam->aPages[iPage];
uint8_t uType;
rc = SSMR3GetU8(pSSM, &uType);
AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
if (uType == PGMPAGETYPE_ROM_SHADOW)
rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
else
rc = pgmR3LoadPageOld(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
}
}
else
{
/*
* Old format.
*/
/* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
The rest is generally irrelevant and wrong since the stuff have to match registrations. */
uint32_t fFlags = 0;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
uint16_t u16Flags;
rc = SSMR3GetU16(pSSM, &u16Flags);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
fFlags |= u16Flags;
}
/* Load the bits */
if ( !fHaveBits
&& GCPhysLast < UINT32_C(0xe0000000))
{
/*
* Dynamic chunks.
*/
const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
{
uint8_t fPresent;
rc = SSMR3GetU8(pSSM, &fPresent);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
{
RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
PPGMPAGE pPage = &pRam->aPages[iPage];
if (fPresent)
{
if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
rc = pgmR3LoadPageToDevNullOld(pSSM);
else
rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
}
else
rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
}
}
}
else if (pRam->pvR3)
{
/*
* MMIO2.
*/
AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
AssertLogRelMsgReturn(pRam->pvR3,
("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
}
else if (GCPhysLast < UINT32_C(0xfff80000))
{
/*
* PCI MMIO, no pages saved.
*/
}
else
{
/*
* Load the 0xfff80000..0xffffffff BIOS range.
* It starts with X reserved pages that we have to skip over since
* the RAMRANGE create by the new code won't include those.
*/
AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
&& (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
/* Skip wasted reserved pages before the ROM. */
while (GCPhys < pRam->GCPhys)
{
rc = pgmR3LoadPageToDevNullOld(pSSM);
GCPhys += PAGE_SIZE;
}
/* Load the bios pages. */
cPages = pRam->cb >> PAGE_SHIFT;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
PPGMPAGE pPage = &pRam->aPages[iPage];
AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
}
}
}
}
return VINF_SUCCESS;
}
/**
* Worker for pgmR3Load and pgmR3LoadLocked.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param uVersion The PGM saved state unit version.
* @param uPass The pass number.
*
* @todo This needs splitting up if more record types or code twists are
* added...
*/
static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
NOREF(uPass);
/*
* Process page records until we hit the terminator.
*/
RTGCPHYS GCPhys = NIL_RTGCPHYS;
PPGMRAMRANGE pRamHint = NULL;
uint8_t id = UINT8_MAX;
uint32_t iPage = UINT32_MAX - 10;
PPGMROMRANGE pRom = NULL;
PPGMMMIO2RANGE pMmio2 = NULL;
/*
* We batch up pages that should be freed instead of calling GMM for
* each and every one of them. Note that we'll lose the pages in most
* failure paths - this should probably be addressed one day.
*/
uint32_t cPendingPages = 0;
PGMMFREEPAGESREQ pReq;
int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
AssertLogRelRCReturn(rc, rc);
for (;;)
{
/*
* Get the record type and flags.
*/
uint8_t u8;
rc = SSMR3GetU8(pSSM, &u8);
if (RT_FAILURE(rc))
return rc;
if (u8 == PGM_STATE_REC_END)
{
/*
* Finish off any pages pending freeing.
*/
if (cPendingPages)
{
Log(("pgmR3LoadMemory: GMMR3FreePagesPerform pVM=%p cPendingPages=%u\n", pVM, cPendingPages));
rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
AssertLogRelRCReturn(rc, rc);
}
GMMR3FreePagesCleanup(pReq);
return VINF_SUCCESS;
}
AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
{
/*
* RAM page.
*/
case PGM_STATE_REC_RAM_ZERO:
case PGM_STATE_REC_RAM_RAW:
case PGM_STATE_REC_RAM_BALLOONED:
{
/*
* Get the address and resolve it into a page descriptor.
*/
if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
GCPhys += PAGE_SIZE;
else
{
rc = SSMR3GetGCPhys(pSSM, &GCPhys);
if (RT_FAILURE(rc))
return rc;
}
AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
PPGMPAGE pPage;
rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
/*
* Take action according to the record type.
*/
switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
{
case PGM_STATE_REC_RAM_ZERO:
{
if (PGM_PAGE_IS_ZERO(pPage))
break;
/* Ballooned pages must be unmarked (live snapshot and
teleportation scenarios). */
if (PGM_PAGE_IS_BALLOONED(pPage))
{
Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
if (uVersion == PGM_SAVED_STATE_VERSION_BALLOON_BROKEN)
break;
PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
break;
}
AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_UNEXPECTED_PAGE_STATE);
/* If this is a ROM page, we must clear it and not try
free it... */
if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM
|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM_SHADOW)
{
PGMPAGEMAPLOCK PgMpLck;
void *pvDstPage;
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
ASMMemZeroPage(pvDstPage);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
/* Free it only if it's not part of a previously
allocated large page (no need to clear the page). */
else if ( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
&& PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED)
{
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
AssertRCReturn(rc, rc);
}
/** @todo handle large pages (see #5545) */
break;
}
case PGM_STATE_REC_RAM_BALLOONED:
{
Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
if (PGM_PAGE_IS_BALLOONED(pPage))
break;
/* We don't map ballooned pages in our shadow page tables, let's
just free it if allocated and mark as ballooned. See #5515. */
if (PGM_PAGE_IS_ALLOCATED(pPage))
{
/** @todo handle large pages + ballooning when it works. (see #5515, #5545). */
AssertLogRelMsgReturn( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
&& PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED,
("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_LOAD_UNEXPECTED_PAGE_TYPE);
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
AssertRCReturn(rc, rc);
}
Assert(PGM_PAGE_IS_ZERO(pPage));
PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
break;
}
case PGM_STATE_REC_RAM_RAW:
{
PGMPAGEMAPLOCK PgMpLck;
void *pvDstPage;
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
if (RT_FAILURE(rc))
return rc;
break;
}
default:
AssertMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
}
id = UINT8_MAX;
break;
}
/*
* MMIO2 page.
*/
case PGM_STATE_REC_MMIO2_RAW:
case PGM_STATE_REC_MMIO2_ZERO:
{
/*
* Get the ID + page number and resolved that into a MMIO2 page.
*/
if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
iPage++;
else
{
SSMR3GetU8(pSSM, &id);
rc = SSMR3GetU32(pSSM, &iPage);
if (RT_FAILURE(rc))
return rc;
}
if ( !pMmio2
|| pMmio2->idSavedState != id)
{
for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
if (pMmio2->idSavedState == id)
break;
AssertLogRelMsgReturn(pMmio2, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_MMIO2_RANGE_NOT_FOUND);
}
AssertLogRelMsgReturn(iPage < (pMmio2->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pMmio2->RamRange.cb, pMmio2->RamRange.pszDesc), VERR_PGM_SAVED_MMIO2_PAGE_NOT_FOUND);
void *pvDstPage = (uint8_t *)pMmio2->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
/*
* Load the page bits.
*/
if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
ASMMemZeroPage(pvDstPage);
else
{
rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
if (RT_FAILURE(rc))
return rc;
}
GCPhys = NIL_RTGCPHYS;
break;
}
/*
* ROM pages.
*/
case PGM_STATE_REC_ROM_VIRGIN:
case PGM_STATE_REC_ROM_SHW_RAW:
case PGM_STATE_REC_ROM_SHW_ZERO:
case PGM_STATE_REC_ROM_PROT:
{
/*
* Get the ID + page number and resolved that into a ROM page descriptor.
*/
if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
iPage++;
else
{
SSMR3GetU8(pSSM, &id);
rc = SSMR3GetU32(pSSM, &iPage);
if (RT_FAILURE(rc))
return rc;
}
if ( !pRom
|| pRom->idSavedState != id)
{
for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
if (pRom->idSavedState == id)
break;
AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_ROM_RANGE_NOT_FOUND);
}
AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
/*
* Get and set the protection.
*/
uint8_t u8Prot;
rc = SSMR3GetU8(pSSM, &u8Prot);
if (RT_FAILURE(rc))
return rc;
PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_PGM_SAVED_ROM_PAGE_PROT);
if (enmProt != pRomPage->enmProt)
{
if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
return SSMR3SetCfgError(pSSM, RT_SRC_POS,
N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
GCPhys, enmProt, pRom->pszDesc);
rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
}
if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
break; /* done */
/*
* Get the right page descriptor.
*/
PPGMPAGE pRealPage;
switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
{
case PGM_STATE_REC_ROM_VIRGIN:
if (!PGMROMPROT_IS_ROM(enmProt))
pRealPage = &pRomPage->Virgin;
else
pRealPage = NULL;
break;
case PGM_STATE_REC_ROM_SHW_RAW:
case PGM_STATE_REC_ROM_SHW_ZERO:
if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
return SSMR3SetCfgError(pSSM, RT_SRC_POS,
N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
GCPhys, enmProt, pRom->pszDesc);
if (PGMROMPROT_IS_ROM(enmProt))
pRealPage = &pRomPage->Shadow;
else
pRealPage = NULL;
break;
default: AssertLogRelFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE); /* shut up gcc */
}
if (!pRealPage)
{
rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pRealPage, &pRamHint);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
}
/*
* Make it writable and map it (if necessary).
*/
void *pvDstPage = NULL;
switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
{
case PGM_STATE_REC_ROM_SHW_ZERO:
if ( PGM_PAGE_IS_ZERO(pRealPage)
|| PGM_PAGE_IS_BALLOONED(pRealPage))
break;
/** @todo implement zero page replacing. */
/* fall thru */
case PGM_STATE_REC_ROM_VIRGIN:
case PGM_STATE_REC_ROM_SHW_RAW:
{
rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
break;
}
}
/*
* Load the bits.
*/
switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
{
case PGM_STATE_REC_ROM_SHW_ZERO:
if (pvDstPage)
ASMMemZeroPage(pvDstPage);
break;
case PGM_STATE_REC_ROM_VIRGIN:
case PGM_STATE_REC_ROM_SHW_RAW:
rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
if (RT_FAILURE(rc))
return rc;
break;
}
GCPhys = NIL_RTGCPHYS;
break;
}
/*
* Unknown type.
*/
default:
AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
}
} /* forever */
}
/**
* Worker for pgmR3Load.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param pSSM The SSM handle.
* @param uVersion The saved state version.
*/
static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
{
PPGM pPGM = &pVM->pgm.s;
int rc;
uint32_t u32Sep;
/*
* Load basic data (required / unaffected by relocation).
*/
if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
{
if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
else
rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
AssertLogRelRCReturn(rc, rc);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFieldsPrePae[0]);
else
rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
AssertLogRelRCReturn(rc, rc);
}
}
else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
{
AssertRelease(pVM->cCpus == 1);
PGMOLD pgmOld;
rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
AssertLogRelRCReturn(rc, rc);
pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
}
else
{
AssertRelease(pVM->cCpus == 1);
SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
uint32_t cbRamSizeIgnored;
rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
if (RT_FAILURE(rc))
return rc;
SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
uint32_t u32 = 0;
SSMR3GetUInt(pSSM, &u32);
pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
RTUINT uGuestMode;
SSMR3GetUInt(pSSM, &uGuestMode);
pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
/* check separator. */
SSMR3GetU32(pSSM, &u32Sep);
if (RT_FAILURE(rc))
return rc;
if (u32Sep != (uint32_t)~0)
{
AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
}
/*
* The guest mappings - skipped now, see re-fixation in the caller.
*/
if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
{
for (uint32_t i = 0; ; i++)
{
rc = SSMR3GetU32(pSSM, &u32Sep); /* sequence number */
if (RT_FAILURE(rc))
return rc;
if (u32Sep == ~0U)
break;
AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
char szDesc[256];
rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
if (RT_FAILURE(rc))
return rc;
RTGCPTR GCPtrIgnore;
SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
if (RT_FAILURE(rc))
return rc;
}
}
/*
* Load the RAM contents.
*/
if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
{
if (!pVM->pgm.s.LiveSave.fActive)
{
if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
{
rc = pgmR3LoadRamConfig(pVM, pSSM);
if (RT_FAILURE(rc))
return rc;
}
rc = pgmR3LoadRomRanges(pVM, pSSM);
if (RT_FAILURE(rc))
return rc;
rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
if (RT_FAILURE(rc))
return rc;
}
rc = pgmR3LoadMemory(pVM, pSSM, uVersion, SSM_PASS_FINAL);
}
else
rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
/* Refresh balloon accounting. */
if (pVM->pgm.s.cBalloonedPages)
{
Log(("pgmR3LoadFinalLocked: pVM=%p cBalloonedPages=%#x\n", pVM, pVM->pgm.s.cBalloonedPages));
rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
AssertRCReturn(rc, rc);
}
return rc;
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param uVersion Data layout version.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
int rc;
/*
* Validate version.
*/
if ( ( uPass != SSM_PASS_FINAL
&& uVersion != PGM_SAVED_STATE_VERSION
&& uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
&& uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
&& uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
&& uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
|| ( uVersion != PGM_SAVED_STATE_VERSION
&& uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
&& uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
&& uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
&& uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
&& uVersion != PGM_SAVED_STATE_VERSION_3_0_0
&& uVersion != PGM_SAVED_STATE_VERSION_2_2_2
&& uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
&& uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
)
{
AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Do the loading while owning the lock because a bunch of the functions
* we're using requires this.
*/
if (uPass != SSM_PASS_FINAL)
{
pgmLock(pVM);
if (uPass != 0)
rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
else
{
pVM->pgm.s.LiveSave.fActive = true;
if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
rc = pgmR3LoadRamConfig(pVM, pSSM);
else
rc = VINF_SUCCESS;
if (RT_SUCCESS(rc))
rc = pgmR3LoadRomRanges(pVM, pSSM);
if (RT_SUCCESS(rc))
rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
if (RT_SUCCESS(rc))
rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
}
pgmUnlock(pVM);
}
else
{
pgmLock(pVM);
rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
pVM->pgm.s.LiveSave.fActive = false;
pgmUnlock(pVM);
if (RT_SUCCESS(rc))
{
/*
* We require a full resync now.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
/** @todo For guest PAE, we might get the wrong
* aGCPhysGstPaePDs values now. We should used the
* saved ones... Postponing this since it nothing new
* and PAE/PDPTR needs some general readjusting, see
* @bugref{#5880}. */
}
pgmR3HandlerPhysicalUpdateAll(pVM);
/*
* Change the paging mode and restore PGMCPU::GCPhysCR3.
* (The latter requires the CPUM state to be restored already.)
*/
if (CPUMR3IsStateRestorePending(pVM))
return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
N_("PGM was unexpectedly restored before CPUM"));
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
AssertLogRelRCReturn(rc, rc);
/* Update pVM->pgm.s.GCPhysCR3. */
Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS || FTMIsDeltaLoadSaveActive(pVM));
RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
|| pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
|| pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
|| pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
else
GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
/* Update the PSE, NX flags and validity masks. */
pVCpu->pgm.s.fGst32BitPageSizeExtension = CPUMIsGuestPageSizeExtEnabled(pVCpu);
PGMNotifyNxeChanged(pVCpu, CPUMIsGuestNXEnabled(pVCpu));
}
/*
* Try re-fixate the guest mappings.
*/
pVM->pgm.s.fMappingsFixedRestored = false;
if ( pVM->pgm.s.fMappingsFixed
&& pgmMapAreMappingsEnabled(pVM))
{
RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
pVM->pgm.s.fMappingsFixed = false;
uint32_t cbRequired;
int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
if ( RT_SUCCESS(rc2)
&& cbRequired > cbFixed)
rc2 = VERR_OUT_OF_RANGE;
if (RT_SUCCESS(rc2))
rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
if (RT_FAILURE(rc2))
{
LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
pVM->pgm.s.fMappingsFixed = false;
pVM->pgm.s.fMappingsFixedRestored = true;
pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
pVM->pgm.s.cbMappingFixed = cbFixed;
}
}
else
{
/* We used to set fixed + disabled while we only use disabled now,
so wipe the state to avoid any confusion. */
pVM->pgm.s.fMappingsFixed = false;
pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
pVM->pgm.s.cbMappingFixed = 0;
}
/*
* If we have floating mappings, do a CR3 sync now to make sure the HMA
* doesn't conflict with guest code / data and thereby cause trouble
* when restoring other components like PATM.
*/
if (pgmMapAreMappingsFloating(pVM))
{
PVMCPU pVCpu = &pVM->aCpus[0];
rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
if (RT_FAILURE(rc))
return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
/* Make sure to re-sync before executing code. */
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
}
}
}
return rc;
}
/**
* Registers the saved state callbacks with SSM.
*
* @returns VBox status code.
* @param pVM Pointer to VM structure.
* @param cbRam The RAM size.
*/
int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
{
return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
NULL, pgmR3SaveExec, pgmR3SaveDone,
pgmR3LoadPrep, pgmR3Load, NULL);
}