PGMMap.cpp revision e3e2f9c4418bfc06191b71bce1533c9e1bc2df9c
/* $Id$ */
/** @file
* PGM - Page Manager, Guest Context Mappings.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/pgm.h>
#include "PGMInternal.h"
#include <VBox/vmm/vm.h>
#include "PGMInline.h"
#include <VBox/log.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/string.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
#ifndef PGM_WITHOUT_MAPPINGS
static void pgmR3MapClearPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iOldPDE);
static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE);
static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault);
static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault);
#else
# define pgmR3MapClearPDEs(pVM, pMap, iNewPDE) do { } while (0)
# define pgmR3MapSetPDEs(pVM, pMap, iNewPDE) do { } while (0)
#endif
/**
* Creates a page table based mapping in GC.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param GCPtr Virtual Address. (Page table aligned!)
* @param cb Size of the range. Must be a 4MB aligned!
* @param fFlags PGMR3MAPPT_FLAGS_UNMAPPABLE or 0.
* @param pfnRelocate Relocation callback function.
* @param pvUser User argument to the callback.
* @param pszDesc Pointer to description string. This must not be freed.
*/
VMMR3DECL(int) PGMR3MapPT(PVM pVM, RTGCPTR GCPtr, uint32_t cb, uint32_t fFlags, PFNPGMRELOCATE pfnRelocate, void *pvUser, const char *pszDesc)
{
LogFlow(("PGMR3MapPT: GCPtr=%#x cb=%d fFlags=%#x pfnRelocate=%p pvUser=%p pszDesc=%s\n", GCPtr, cb, fFlags, pfnRelocate, pvUser, pszDesc));
AssertMsg(pVM->pgm.s.pInterPD, ("Paging isn't initialized, init order problems!\n"));
/*
* Validate input.
*/
Assert(!fFlags || fFlags == PGMR3MAPPT_FLAGS_UNMAPPABLE);
if (cb < _2M || cb > 64 * _1M)
{
AssertMsgFailed(("Serious? cb=%d\n", cb));
return VERR_INVALID_PARAMETER;
}
cb = RT_ALIGN_32(cb, _4M);
RTGCPTR GCPtrLast = GCPtr + cb - 1;
AssertMsgReturn(GCPtrLast >= GCPtr, ("Range wraps! GCPtr=%x GCPtrLast=%x\n", GCPtr, GCPtrLast),
VERR_INVALID_PARAMETER);
AssertMsgReturn(!pVM->pgm.s.fMappingsFixed, ("Mappings are fixed! It's not possible to add new mappings at this time!\n"),
VERR_PGM_MAPPINGS_FIXED);
AssertPtrReturn(pfnRelocate, VERR_INVALID_PARAMETER);
/*
* Find list location.
*/
PPGMMAPPING pPrev = NULL;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (pCur->GCPtrLast >= GCPtr && pCur->GCPtr <= GCPtrLast)
{
AssertMsgFailed(("Address is already in use by %s. req %#x-%#x take %#x-%#x\n",
pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast));
LogRel(("VERR_PGM_MAPPING_CONFLICT: Address is already in use by %s. req %#x-%#x take %#x-%#x\n",
pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast));
return VERR_PGM_MAPPING_CONFLICT;
}
if (pCur->GCPtr > GCPtr)
break;
pPrev = pCur;
pCur = pCur->pNextR3;
}
/*
* Check for conflicts with intermediate mappings.
*/
const unsigned iPageDir = GCPtr >> X86_PD_SHIFT;
const unsigned cPTs = cb >> X86_PD_SHIFT;
if (pVM->pgm.s.fFinalizedMappings)
{
for (unsigned i = 0; i < cPTs; i++)
if (pVM->pgm.s.pInterPD->a[iPageDir + i].n.u1Present)
{
AssertMsgFailed(("Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT)));
LogRel(("VERR_PGM_MAPPING_CONFLICT: Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT)));
return VERR_PGM_MAPPING_CONFLICT;
}
/** @todo AMD64: add check in PAE structures too, so we can remove all the 32-Bit paging stuff there. */
}
/*
* Allocate and initialize the new list node.
*/
PPGMMAPPING pNew;
int rc;
if (fFlags & PGMR3MAPPT_FLAGS_UNMAPPABLE)
rc = MMHyperAlloc( pVM, RT_OFFSETOF(PGMMAPPING, aPTs[cPTs]), 0, MM_TAG_PGM_MAPPINGS, (void **)&pNew);
else
rc = MMR3HyperAllocOnceNoRel(pVM, RT_OFFSETOF(PGMMAPPING, aPTs[cPTs]), 0, MM_TAG_PGM_MAPPINGS, (void **)&pNew);
if (RT_FAILURE(rc))
return rc;
pNew->GCPtr = GCPtr;
pNew->GCPtrLast = GCPtrLast;
pNew->cb = cb;
pNew->pfnRelocate = pfnRelocate;
pNew->pvUser = pvUser;
pNew->pszDesc = pszDesc;
pNew->cPTs = cPTs;
/*
* Allocate page tables and insert them into the page directories.
* (One 32-bit PT and two PAE PTs.)
*/
uint8_t *pbPTs;
if (fFlags & PGMR3MAPPT_FLAGS_UNMAPPABLE)
rc = MMHyperAlloc( pVM, PAGE_SIZE * 3 * cPTs, PAGE_SIZE, MM_TAG_PGM_MAPPINGS, (void **)&pbPTs);
else
rc = MMR3HyperAllocOnceNoRel(pVM, PAGE_SIZE * 3 * cPTs, PAGE_SIZE, MM_TAG_PGM_MAPPINGS, (void **)&pbPTs);
if (RT_FAILURE(rc))
{
MMHyperFree(pVM, pNew);
return VERR_NO_MEMORY;
}
/*
* Init the page tables and insert them into the page directories.
*/
Log4(("PGMR3MapPT: GCPtr=%RGv cPTs=%u pbPTs=%p\n", GCPtr, cPTs, pbPTs));
for (unsigned i = 0; i < cPTs; i++)
{
/*
* 32-bit.
*/
pNew->aPTs[i].pPTR3 = (PX86PT)pbPTs;
pNew->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pNew->aPTs[i].pPTR3);
pNew->aPTs[i].pPTR0 = MMHyperR3ToR0(pVM, pNew->aPTs[i].pPTR3);
pNew->aPTs[i].HCPhysPT = MMR3HyperHCVirt2HCPhys(pVM, pNew->aPTs[i].pPTR3);
pbPTs += PAGE_SIZE;
Log4(("PGMR3MapPT: i=%d: pPTR3=%RHv pPTRC=%RRv pPRTR0=%RHv HCPhysPT=%RHp\n",
i, pNew->aPTs[i].pPTR3, pNew->aPTs[i].pPTRC, pNew->aPTs[i].pPTR0, pNew->aPTs[i].HCPhysPT));
/*
* PAE.
*/
pNew->aPTs[i].HCPhysPaePT0 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs);
pNew->aPTs[i].HCPhysPaePT1 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs + PAGE_SIZE);
pNew->aPTs[i].paPaePTsR3 = (PPGMSHWPTPAE)pbPTs;
pNew->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pbPTs);
pNew->aPTs[i].paPaePTsR0 = MMHyperR3ToR0(pVM, pbPTs);
pbPTs += PAGE_SIZE * 2;
Log4(("PGMR3MapPT: i=%d: paPaePTsR#=%RHv paPaePTsRC=%RRv paPaePTsR#=%RHv HCPhysPaePT0=%RHp HCPhysPaePT1=%RHp\n",
i, pNew->aPTs[i].paPaePTsR3, pNew->aPTs[i].paPaePTsRC, pNew->aPTs[i].paPaePTsR0, pNew->aPTs[i].HCPhysPaePT0, pNew->aPTs[i].HCPhysPaePT1));
}
if (pVM->pgm.s.fFinalizedMappings)
pgmR3MapSetPDEs(pVM, pNew, iPageDir);
/* else PGMR3FinalizeMappings() */
/*
* Insert the new mapping.
*/
pNew->pNextR3 = pCur;
pNew->pNextRC = pCur ? MMHyperR3ToRC(pVM, pCur) : NIL_RTRCPTR;
pNew->pNextR0 = pCur ? MMHyperR3ToR0(pVM, pCur) : NIL_RTR0PTR;
if (pPrev)
{
pPrev->pNextR3 = pNew;
pPrev->pNextRC = MMHyperR3ToRC(pVM, pNew);
pPrev->pNextR0 = MMHyperR3ToR0(pVM, pNew);
}
else
{
pVM->pgm.s.pMappingsR3 = pNew;
pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pNew);
pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pNew);
}
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
}
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_UNUSED_CODE
/**
* Removes a page table based mapping.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param GCPtr Virtual Address. (Page table aligned!)
*
* @remarks Don't call this without passing PGMR3MAPPT_FLAGS_UNMAPPABLE to
* PGMR3MapPT or you'll burn in the heap.
*/
VMMR3DECL(int) PGMR3UnmapPT(PVM pVM, RTGCPTR GCPtr)
{
LogFlow(("PGMR3UnmapPT: GCPtr=%#x\n", GCPtr));
AssertReturn(pVM->pgm.s.fFinalizedMappings, VERR_WRONG_ORDER);
/*
* Find it.
*/
PPGMMAPPING pPrev = NULL;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (pCur->GCPtr == GCPtr)
{
/*
* Unlink it.
*/
if (pPrev)
{
pPrev->pNextR3 = pCur->pNextR3;
pPrev->pNextRC = pCur->pNextRC;
pPrev->pNextR0 = pCur->pNextR0;
}
else
{
pVM->pgm.s.pMappingsR3 = pCur->pNextR3;
pVM->pgm.s.pMappingsRC = pCur->pNextRC;
pVM->pgm.s.pMappingsR0 = pCur->pNextR0;
}
/*
* Free the page table memory, clear page directory entries
* and free the page tables and node memory.
*/
MMHyperFree(pVM, pCur->aPTs[0].pPTR3);
if (pCur->GCPtr != NIL_RTGCPTR)
pgmR3MapClearPDEs(pVM, pCur, pCur->GCPtr >> X86_PD_SHIFT);
MMHyperFree(pVM, pCur);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
}
return VINF_SUCCESS;
}
/* done? */
if (pCur->GCPtr > GCPtr)
break;
/* next */
pPrev = pCur;
pCur = pCur->pNextR3;
}
AssertMsgFailed(("No mapping for %#x found!\n", GCPtr));
return VERR_INVALID_PARAMETER;
}
#endif /* unused */
/**
* Checks whether a range of PDEs in the intermediate
* memory context are unused.
*
* We're talking 32-bit PDEs here.
*
* @returns true/false.
* @param pVM Pointer to the VM.
* @param iPD The first PDE in the range.
* @param cPTs The number of PDEs in the range.
*/
DECLINLINE(bool) pgmR3AreIntermediatePDEsUnused(PVM pVM, unsigned iPD, unsigned cPTs)
{
if (pVM->pgm.s.pInterPD->a[iPD].n.u1Present)
return false;
while (cPTs > 1)
{
iPD++;
if (pVM->pgm.s.pInterPD->a[iPD].n.u1Present)
return false;
cPTs--;
}
return true;
}
/**
* Unlinks the mapping.
*
* The mapping *must* be in the list.
*
* @param pVM Pointer to the VM.
* @param pMapping The mapping to unlink.
*/
static void pgmR3MapUnlink(PVM pVM, PPGMMAPPING pMapping)
{
PPGMMAPPING pAfterThis = pVM->pgm.s.pMappingsR3;
if (pAfterThis == pMapping)
{
/* head */
pVM->pgm.s.pMappingsR3 = pMapping->pNextR3;
pVM->pgm.s.pMappingsRC = pMapping->pNextRC;
pVM->pgm.s.pMappingsR0 = pMapping->pNextR0;
}
else
{
/* in the list */
while (pAfterThis->pNextR3 != pMapping)
{
pAfterThis = pAfterThis->pNextR3;
AssertReleaseReturnVoid(pAfterThis);
}
pAfterThis->pNextR3 = pMapping->pNextR3;
pAfterThis->pNextRC = pMapping->pNextRC;
pAfterThis->pNextR0 = pMapping->pNextR0;
}
}
/**
* Links the mapping.
*
* @param pVM Pointer to the VM.
* @param pMapping The mapping to linked.
*/
static void pgmR3MapLink(PVM pVM, PPGMMAPPING pMapping)
{
/*
* Find the list location (it's sorted by GCPhys) and link it in.
*/
if ( !pVM->pgm.s.pMappingsR3
|| pVM->pgm.s.pMappingsR3->GCPtr > pMapping->GCPtr)
{
/* head */
pMapping->pNextR3 = pVM->pgm.s.pMappingsR3;
pMapping->pNextRC = pVM->pgm.s.pMappingsRC;
pMapping->pNextR0 = pVM->pgm.s.pMappingsR0;
pVM->pgm.s.pMappingsR3 = pMapping;
pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pMapping);
pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pMapping);
}
else
{
/* in the list */
PPGMMAPPING pAfterThis = pVM->pgm.s.pMappingsR3;
PPGMMAPPING pBeforeThis = pAfterThis->pNextR3;
while (pBeforeThis && pBeforeThis->GCPtr <= pMapping->GCPtr)
{
pAfterThis = pBeforeThis;
pBeforeThis = pBeforeThis->pNextR3;
}
pMapping->pNextR3 = pAfterThis->pNextR3;
pMapping->pNextRC = pAfterThis->pNextRC;
pMapping->pNextR0 = pAfterThis->pNextR0;
pAfterThis->pNextR3 = pMapping;
pAfterThis->pNextRC = MMHyperR3ToRC(pVM, pMapping);
pAfterThis->pNextR0 = MMHyperR3ToR0(pVM, pMapping);
}
}
/**
* Finalizes the intermediate context.
*
* This is called at the end of the ring-3 init and will construct the
* intermediate paging structures, relocating all the mappings in the process.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @thread EMT(0)
*/
VMMR3DECL(int) PGMR3FinalizeMappings(PVM pVM)
{
AssertReturn(!pVM->pgm.s.fFinalizedMappings, VERR_WRONG_ORDER);
pVM->pgm.s.fFinalizedMappings = true;
/*
* Loop until all mappings have been finalized.
*/
#if 0
unsigned iPDNext = UINT32_C(0xc0000000) >> X86_PD_SHIFT; /* makes CSAM/PATM freak out booting linux. :-/ */
#elif 0
unsigned iPDNext = MM_HYPER_AREA_ADDRESS >> X86_PD_SHIFT;
#else
unsigned iPDNext = 1 << X86_PD_SHIFT; /* no hint, map them from the top. */
#endif
PPGMMAPPING pCur;
do
{
pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (!pCur->fFinalized)
{
/*
* Find a suitable location.
*/
RTGCPTR const GCPtrOld = pCur->GCPtr;
const unsigned cPTs = pCur->cPTs;
unsigned iPDNew = iPDNext;
if ( iPDNew + cPTs >= X86_PG_ENTRIES /* exclude the last PD */
|| !pgmR3AreIntermediatePDEsUnused(pVM, iPDNew, cPTs)
|| !pCur->pfnRelocate(pVM, GCPtrOld, (RTGCPTR)iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_SUGGEST, pCur->pvUser))
{
/* No luck, just scan down from 4GB-4MB, giving up at 4MB. */
iPDNew = X86_PG_ENTRIES - cPTs - 1;
while ( iPDNew > 0
&& ( !pgmR3AreIntermediatePDEsUnused(pVM, iPDNew, cPTs)
|| !pCur->pfnRelocate(pVM, GCPtrOld, (RTGCPTR)iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_SUGGEST, pCur->pvUser))
)
iPDNew--;
AssertLogRelReturn(iPDNew != 0, VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
}
/*
* Relocate it (something akin to pgmR3MapRelocate).
*/
pgmR3MapSetPDEs(pVM, pCur, iPDNew);
/* unlink the mapping, update the entry and relink it. */
pgmR3MapUnlink(pVM, pCur);
RTGCPTR const GCPtrNew = (RTGCPTR)iPDNew << X86_PD_SHIFT;
pCur->GCPtr = GCPtrNew;
pCur->GCPtrLast = GCPtrNew + pCur->cb - 1;
pCur->fFinalized = true;
pgmR3MapLink(pVM, pCur);
/* Finally work the callback. */
pCur->pfnRelocate(pVM, GCPtrOld, GCPtrNew, PGMRELOCATECALL_RELOCATE, pCur->pvUser);
/*
* The list order might have changed, start from the beginning again.
*/
iPDNext = iPDNew + cPTs;
break;
}
/* next */
pCur = pCur->pNextR3;
}
} while (pCur);
return VINF_SUCCESS;
}
/**
* Gets the size of the current guest mappings if they were to be
* put next to one another.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pcb Where to store the size.
*/
VMMR3DECL(int) PGMR3MappingsSize(PVM pVM, uint32_t *pcb)
{
RTGCPTR cb = 0;
#ifndef PGM_WITHOUT_MAPPINGS
for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
cb += pCur->cb;
#endif
*pcb = cb;
AssertReturn(*pcb == cb, VERR_NUMBER_TOO_BIG);
Log(("PGMR3MappingsSize: return %d (%#x) bytes\n", cb, cb));
return VINF_SUCCESS;
}
/**
* Fixates the guest context mappings in a range reserved from the Guest OS.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param GCPtrBase The address of the reserved range of guest memory.
* @param cb The size of the range starting at GCPtrBase.
*/
VMMR3DECL(int) PGMR3MappingsFix(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb)
{
Log(("PGMR3MappingsFix: GCPtrBase=%RGv cb=%#x (fMappingsFixed=%RTbool MappingEnabled=%RTbool)\n",
GCPtrBase, cb, pVM->pgm.s.fMappingsFixed, pgmMapAreMappingsEnabled(pVM)));
#ifndef PGM_WITHOUT_MAPPINGS
if (pgmMapAreMappingsEnabled(pVM))
{
/*
* Only applies to VCPU 0 as we don't support SMP guests with raw mode.
*/
Assert(pVM->cCpus == 1);
PVMCPU pVCpu = &pVM->aCpus[0];
/*
* Before we do anything we'll do a forced PD sync to try make sure any
* pending relocations because of these mappings have been resolved.
*/
PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
return pgmR3MappingsFixInternal(pVM, GCPtrBase, cb);
}
#endif /* !PGM_WITHOUT_MAPPINGS */
Assert(HMIsEnabled(pVM));
return VINF_SUCCESS;
}
#ifndef PGM_WITHOUT_MAPPINGS
/**
* Internal worker for PGMR3MappingsFix and pgmR3Load.
*
* (This does not perform a SyncCR3 before the fixation like PGMR3MappingsFix.)
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param GCPtrBase The address of the reserved range of guest memory.
* @param cb The size of the range starting at GCPtrBase.
*/
int pgmR3MappingsFixInternal(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb)
{
/*
* Check input arguments and pre-conditions.
*/
AssertMsgReturn(!(GCPtrBase & X86_PAGE_4M_OFFSET_MASK), ("GCPtrBase (%#x) has to be aligned on a 4MB address!\n", GCPtrBase),
VERR_INVALID_PARAMETER);
AssertMsgReturn(cb && !(cb & X86_PAGE_4M_OFFSET_MASK), ("cb (%#x) is 0 or not aligned on a 4MB address!\n", cb),
VERR_INVALID_PARAMETER);
AssertReturn(pgmMapAreMappingsEnabled(pVM), VERR_PGM_MAPPINGS_DISABLED);
AssertReturn(pVM->cCpus == 1, VERR_PGM_MAPPINGS_SMP);
/*
* Check that it's not conflicting with a core code mapping in the intermediate page table.
*/
unsigned iPDNew = GCPtrBase >> X86_PD_SHIFT;
unsigned i = cb >> X86_PD_SHIFT;
while (i-- > 0)
{
if (pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present)
{
/* Check that it's not one or our mappings. */
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (iPDNew + i - (pCur->GCPtr >> X86_PD_SHIFT) < (pCur->cb >> X86_PD_SHIFT))
break;
pCur = pCur->pNextR3;
}
if (!pCur)
{
LogRel(("PGMR3MappingsFix: Conflicts with intermediate PDE %#x (GCPtrBase=%RGv cb=%#zx). The guest should retry.\n",
iPDNew + i, GCPtrBase, cb));
return VERR_PGM_MAPPINGS_FIX_CONFLICT;
}
}
}
/*
* In PAE / PAE mode, make sure we don't cross page directories.
*/
PVMCPU pVCpu = &pVM->aCpus[0];
if ( ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
|| pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX)
&& ( pVCpu->pgm.s.enmShadowMode == PGMMODE_PAE
|| pVCpu->pgm.s.enmShadowMode == PGMMODE_PAE_NX))
{
unsigned iPdptBase = GCPtrBase >> X86_PDPT_SHIFT;
unsigned iPdptLast = (GCPtrBase + cb - 1) >> X86_PDPT_SHIFT;
if (iPdptBase != iPdptLast)
{
LogRel(("PGMR3MappingsFix: Crosses PD boundary; iPdptBase=%#x iPdptLast=%#x (GCPtrBase=%RGv cb=%#zx). The guest should retry.\n",
iPdptBase, iPdptLast, GCPtrBase, cb));
return VERR_PGM_MAPPINGS_FIX_CONFLICT;
}
}
/*
* Loop the mappings and check that they all agree on their new locations.
*/
RTGCPTR GCPtrCur = GCPtrBase;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (!pCur->pfnRelocate(pVM, pCur->GCPtr, GCPtrCur, PGMRELOCATECALL_SUGGEST, pCur->pvUser))
{
AssertMsgFailed(("The suggested fixed address %#x was rejected by '%s'!\n", GCPtrCur, pCur->pszDesc));
return VERR_PGM_MAPPINGS_FIX_REJECTED;
}
/* next */
GCPtrCur += pCur->cb;
pCur = pCur->pNextR3;
}
if (GCPtrCur > GCPtrBase + cb)
{
AssertMsgFailed(("cb (%#x) is less than the required range %#x!\n", cb, GCPtrCur - GCPtrBase));
return VERR_PGM_MAPPINGS_FIX_TOO_SMALL;
}
/*
* Loop the table assigning the mappings to the passed in memory
* and call their relocator callback.
*/
GCPtrCur = GCPtrBase;
pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
RTGCPTR const GCPtrOld = pCur->GCPtr;
/*
* Relocate the page table(s).
*/
if (pCur->GCPtr != NIL_RTGCPTR)
pgmR3MapClearPDEs(pVM, pCur, GCPtrOld >> X86_PD_SHIFT);
pgmR3MapSetPDEs(pVM, pCur, GCPtrCur >> X86_PD_SHIFT);
/*
* Update the entry.
*/
pCur->GCPtr = GCPtrCur;
pCur->GCPtrLast = GCPtrCur + pCur->cb - 1;
/*
* Callback to execute the relocation.
*/
pCur->pfnRelocate(pVM, GCPtrOld, GCPtrCur, PGMRELOCATECALL_RELOCATE, pCur->pvUser);
/*
* Advance.
*/
GCPtrCur += pCur->cb;
pCur = pCur->pNextR3;
}
/*
* Mark the mappings as fixed at this new location and return.
*/
pVM->pgm.s.fMappingsFixed = true;
pVM->pgm.s.fMappingsFixedRestored = false;
pVM->pgm.s.GCPtrMappingFixed = GCPtrBase;
pVM->pgm.s.cbMappingFixed = cb;
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
VMCPU_FF_SET(&pVM->aCpus[idCpu], VMCPU_FF_PGM_SYNC_CR3);
}
return VINF_SUCCESS;
}
#endif /*!PGM_WITHOUT_MAPPINGS*/
/**
* Unfixes the mappings.
*
* Unless PGMR3MappingsDisable is in effect, mapping conflict detection will be
* enabled after this call. If the mappings are fixed, a full CR3 resync will
* take place afterwards.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(int) PGMR3MappingsUnfix(PVM pVM)
{
Log(("PGMR3MappingsUnfix: fMappingsFixed=%RTbool MappingsEnabled=%RTbool\n", pVM->pgm.s.fMappingsFixed, pgmMapAreMappingsEnabled(pVM)));
if ( pgmMapAreMappingsEnabled(pVM)
&& ( pVM->pgm.s.fMappingsFixed
|| pVM->pgm.s.fMappingsFixedRestored)
)
{
bool const fResyncCR3 = pVM->pgm.s.fMappingsFixed;
pVM->pgm.s.fMappingsFixed = false;
pVM->pgm.s.fMappingsFixedRestored = false;
pVM->pgm.s.GCPtrMappingFixed = 0;
pVM->pgm.s.cbMappingFixed = 0;
if (fResyncCR3)
for (VMCPUID i = 0; i < pVM->cCpus; i++)
VMCPU_FF_SET(&pVM->aCpus[i], VMCPU_FF_PGM_SYNC_CR3);
}
return VINF_SUCCESS;
}
/**
* Checks if the mappings needs re-fixing after a restore.
*
* @returns true if they need, false if not.
* @param pVM Pointer to the VM.
*/
VMMR3DECL(bool) PGMR3MappingsNeedReFixing(PVM pVM)
{
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->pgm.s.fMappingsFixedRestored;
}
#ifndef PGM_WITHOUT_MAPPINGS
/**
* Map pages into the intermediate context (switcher code).
*
* These pages are mapped at both the give virtual address and at the physical
* address (for identity mapping).
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param Addr Intermediate context address of the mapping.
* @param HCPhys Start of the range of physical pages. This must be entriely below 4GB!
* @param cbPages Number of bytes to map.
*
* @remark This API shall not be used to anything but mapping the switcher code.
*/
VMMR3DECL(int) PGMR3MapIntermediate(PVM pVM, RTUINTPTR Addr, RTHCPHYS HCPhys, unsigned cbPages)
{
LogFlow(("PGMR3MapIntermediate: Addr=%RTptr HCPhys=%RHp cbPages=%#x\n", Addr, HCPhys, cbPages));
/*
* Adjust input.
*/
cbPages += (uint32_t)HCPhys & PAGE_OFFSET_MASK;
cbPages = RT_ALIGN(cbPages, PAGE_SIZE);
HCPhys &= X86_PTE_PAE_PG_MASK;
Addr &= PAGE_BASE_MASK;
/* We only care about the first 4GB, because on AMD64 we'll be repeating them all over the address space. */
uint32_t uAddress = (uint32_t)Addr;
/*
* Assert input and state.
*/
AssertMsg(pVM->pgm.s.offVM, ("Bad init order\n"));
AssertMsg(pVM->pgm.s.pInterPD, ("Bad init order, paging.\n"));
AssertMsg(cbPages <= (512 << PAGE_SHIFT), ("The mapping is too big %d bytes\n", cbPages));
AssertMsg(HCPhys < _4G && HCPhys + cbPages < _4G, ("Addr=%RTptr HCPhys=%RHp cbPages=%d\n", Addr, HCPhys, cbPages));
AssertReturn(!pVM->pgm.s.fFinalizedMappings, VERR_WRONG_ORDER);
/*
* Check for internal conflicts between the virtual address and the physical address.
* A 1:1 mapping is fine, but partial overlapping is a no-no.
*/
if ( uAddress != HCPhys
&& ( uAddress < HCPhys
? HCPhys - uAddress < cbPages
: uAddress - HCPhys < cbPages
)
)
AssertLogRelMsgFailedReturn(("Addr=%RTptr HCPhys=%RHp cbPages=%d\n", Addr, HCPhys, cbPages),
VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
const unsigned cPages = cbPages >> PAGE_SHIFT;
int rc = pgmR3MapIntermediateCheckOne(pVM, uAddress, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]);
if (RT_FAILURE(rc))
return rc;
rc = pgmR3MapIntermediateCheckOne(pVM, (uintptr_t)HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]);
if (RT_FAILURE(rc))
return rc;
/*
* Everythings fine, do the mapping.
*/
pgmR3MapIntermediateDoOne(pVM, uAddress, HCPhys, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]);
pgmR3MapIntermediateDoOne(pVM, (uintptr_t)HCPhys, HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]);
return VINF_SUCCESS;
}
/**
* Validates that there are no conflicts for this mapping into the intermediate context.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param uAddress Address of the mapping.
* @param cPages Number of pages.
* @param pPTDefault Pointer to the default page table for this mapping.
* @param pPTPaeDefault Pointer to the default page table for this mapping.
*/
static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault)
{
AssertMsg((uAddress >> X86_PD_SHIFT) + cPages <= 1024, ("64-bit fixme uAddress=%RGv cPages=%u\n", uAddress, cPages));
/*
* Check that the ranges are available.
* (This code doesn't have to be fast.)
*/
while (cPages > 0)
{
/*
* 32-Bit.
*/
unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK;
unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK;
PX86PT pPT = pPTDefault;
if (pVM->pgm.s.pInterPD->a[iPDE].u)
{
RTHCPHYS HCPhysPT = pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK;
if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]))
pPT = pVM->pgm.s.apInterPTs[0];
else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]))
pPT = pVM->pgm.s.apInterPTs[1];
else
{
/** @todo this must be handled with a relocation of the conflicting mapping!
* Which of course cannot be done because we're in the middle of the initialization. bad design! */
AssertLogRelMsgFailedReturn(("Conflict between core code and PGMR3Mapping(). uAddress=%RHv\n", uAddress),
VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
}
}
if (pPT->a[iPTE].u)
AssertLogRelMsgFailedReturn(("Conflict iPTE=%#x iPDE=%#x uAddress=%RHv pPT->a[iPTE].u=%RX32\n", iPTE, iPDE, uAddress, pPT->a[iPTE].u),
VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
/*
* PAE.
*/
const unsigned iPDPE= (uAddress >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
Assert(iPDPE < 4);
Assert(pVM->pgm.s.apInterPaePDs[iPDPE]);
PX86PTPAE pPTPae = pPTPaeDefault;
if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u)
{
RTHCPHYS HCPhysPT = pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK;
if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]))
pPTPae = pVM->pgm.s.apInterPaePTs[0];
else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]))
pPTPae = pVM->pgm.s.apInterPaePTs[1];
else
{
/** @todo this must be handled with a relocation of the conflicting mapping!
* Which of course cannot be done because we're in the middle of the initialization. bad design! */
AssertLogRelMsgFailedReturn(("Conflict between core code and PGMR3Mapping(). uAddress=%RHv\n", uAddress),
VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
}
}
if (pPTPae->a[iPTE].u)
AssertLogRelMsgFailedReturn(("Conflict iPTE=%#x iPDE=%#x uAddress=%RHv pPTPae->a[iPTE].u=%#RX64\n", iPTE, iPDE, uAddress, pPTPae->a[iPTE].u),
VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
/* next */
uAddress += PAGE_SIZE;
cPages--;
}
return VINF_SUCCESS;
}
/**
* Sets up the intermediate page tables for a verified mapping.
*
* @param pVM Pointer to the VM.
* @param uAddress Address of the mapping.
* @param HCPhys The physical address of the page range.
* @param cPages Number of pages.
* @param pPTDefault Pointer to the default page table for this mapping.
* @param pPTPaeDefault Pointer to the default page table for this mapping.
*/
static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault)
{
while (cPages > 0)
{
/*
* 32-Bit.
*/
unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK;
unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK;
PX86PT pPT;
if (pVM->pgm.s.pInterPD->a[iPDE].u)
pPT = (PX86PT)MMPagePhys2Page(pVM, pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK);
else
{
pVM->pgm.s.pInterPD->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW
| (uint32_t)MMPage2Phys(pVM, pPTDefault);
pPT = pPTDefault;
}
pPT->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | (uint32_t)HCPhys;
/*
* PAE
*/
const unsigned iPDPE= (uAddress >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
Assert(iPDPE < 4);
Assert(pVM->pgm.s.apInterPaePDs[iPDPE]);
PX86PTPAE pPTPae;
if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u)
pPTPae = (PX86PTPAE)MMPagePhys2Page(pVM, pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK);
else
{
pPTPae = pPTPaeDefault;
pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW
| MMPage2Phys(pVM, pPTPaeDefault);
}
pPTPae->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | HCPhys;
/* next */
cPages--;
HCPhys += PAGE_SIZE;
uAddress += PAGE_SIZE;
}
}
/**
* Clears all PDEs involved with the mapping in the shadow and intermediate page tables.
*
* @param pVM Pointer to the VM.
* @param pMap Pointer to the mapping in question.
* @param iOldPDE The index of the 32-bit PDE corresponding to the base of the mapping.
*/
static void pgmR3MapClearPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iOldPDE)
{
unsigned i = pMap->cPTs;
PVMCPU pVCpu = VMMGetCpu(pVM);
pgmLock(pVM); /* to avoid assertions */
pgmMapClearShadowPDEs(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pMap, iOldPDE, false /*fDeactivateCR3*/);
iOldPDE += i;
while (i-- > 0)
{
iOldPDE--;
/*
* 32-bit.
*/
pVM->pgm.s.pInterPD->a[iOldPDE].u = 0;
/*
* PAE.
*/
const unsigned iPD = iOldPDE / 256; /* iOldPDE * 2 / 512; iOldPDE is in 4 MB pages */
unsigned iPDE = iOldPDE * 2 % 512;
pVM->pgm.s.apInterPaePDs[iPD]->a[iPDE].u = 0;
iPDE++;
AssertFatal(iPDE < 512);
pVM->pgm.s.apInterPaePDs[iPD]->a[iPDE].u = 0;
}
pgmUnlock(pVM);
}
/**
* Sets all PDEs involved with the mapping in the shadow and intermediate page tables.
*
* @param pVM Pointer to the VM.
* @param pMap Pointer to the mapping in question.
* @param iNewPDE The index of the 32-bit PDE corresponding to the base of the mapping.
*/
static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE)
{
PPGM pPGM = &pVM->pgm.s;
#ifdef VBOX_STRICT
PVMCPU pVCpu = VMMGetCpu(pVM);
#endif
pgmLock(pVM); /* to avoid assertions */
Assert(!pgmMapAreMappingsEnabled(pVM) || PGMGetGuestMode(pVCpu) <= PGMMODE_PAE_NX);
pgmMapSetShadowPDEs(pVM, pMap, iNewPDE);
/*
* Init the page tables and insert them into the page directories.
*/
unsigned i = pMap->cPTs;
iNewPDE += i;
while (i-- > 0)
{
iNewPDE--;
/*
* 32-bit.
*/
X86PDE Pde;
/* Default mapping page directory flags are read/write and supervisor; individual page attributes determine the final flags */
Pde.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | (uint32_t)pMap->aPTs[i].HCPhysPT;
pPGM->pInterPD->a[iNewPDE] = Pde;
/*
* PAE.
*/
const unsigned iPD = iNewPDE / 256;
unsigned iPDE = iNewPDE * 2 % 512;
X86PDEPAE PdePae0;
PdePae0.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT0;
pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae0;
iPDE++;
AssertFatal(iPDE < 512);
X86PDEPAE PdePae1;
PdePae1.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT1;
pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae1;
}
pgmUnlock(pVM);
}
/**
* Relocates a mapping to a new address.
*
* @param pVM Pointer to the VM.
* @param pMapping The mapping to relocate.
* @param GCPtrOldMapping The address of the start of the old mapping.
* NIL_RTGCPTR if not currently mapped.
* @param GCPtrNewMapping The address of the start of the new mapping.
*/
static void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping)
{
Log(("PGM: Relocating %s from %RGv to %RGv\n", pMapping->pszDesc, GCPtrOldMapping, GCPtrNewMapping));
AssertMsg(GCPtrOldMapping == pMapping->GCPtr, ("%RGv vs %RGv\n", GCPtrOldMapping, pMapping->GCPtr));
AssertMsg((GCPtrOldMapping >> X86_PD_SHIFT) < X86_PG_ENTRIES, ("%RGv\n", GCPtrOldMapping));
AssertMsg((GCPtrNewMapping >> X86_PD_SHIFT) < X86_PG_ENTRIES, ("%RGv\n", GCPtrOldMapping));
/*
* Relocate the page table(s).
*/
if (GCPtrOldMapping != NIL_RTGCPTR)
pgmR3MapClearPDEs(pVM, pMapping, GCPtrOldMapping >> X86_PD_SHIFT);
pgmR3MapSetPDEs(pVM, pMapping, GCPtrNewMapping >> X86_PD_SHIFT);
/*
* Update and resort the mapping list.
*/
/* Find previous mapping for pMapping, put result into pPrevMap. */
PPGMMAPPING pPrevMap = NULL;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur && pCur != pMapping)
{
/* next */
pPrevMap = pCur;
pCur = pCur->pNextR3;
}
Assert(pCur);
/* Find mapping which >= than pMapping. */
RTGCPTR GCPtrNew = GCPtrNewMapping;
PPGMMAPPING pPrev = NULL;
pCur = pVM->pgm.s.pMappingsR3;
while (pCur && pCur->GCPtr < GCPtrNew)
{
/* next */
pPrev = pCur;
pCur = pCur->pNextR3;
}
if (pCur != pMapping && pPrev != pMapping)
{
/*
* Unlink.
*/
if (pPrevMap)
{
pPrevMap->pNextR3 = pMapping->pNextR3;
pPrevMap->pNextRC = pMapping->pNextRC;
pPrevMap->pNextR0 = pMapping->pNextR0;
}
else
{
pVM->pgm.s.pMappingsR3 = pMapping->pNextR3;
pVM->pgm.s.pMappingsRC = pMapping->pNextRC;
pVM->pgm.s.pMappingsR0 = pMapping->pNextR0;
}
/*
* Link
*/
pMapping->pNextR3 = pCur;
if (pPrev)
{
pMapping->pNextRC = pPrev->pNextRC;
pMapping->pNextR0 = pPrev->pNextR0;
pPrev->pNextR3 = pMapping;
pPrev->pNextRC = MMHyperR3ToRC(pVM, pMapping);
pPrev->pNextR0 = MMHyperR3ToR0(pVM, pMapping);
}
else
{
pMapping->pNextRC = pVM->pgm.s.pMappingsRC;
pMapping->pNextR0 = pVM->pgm.s.pMappingsR0;
pVM->pgm.s.pMappingsR3 = pMapping;
pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pMapping);
pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pMapping);
}
}
/*
* Update the entry.
*/
pMapping->GCPtr = GCPtrNew;
pMapping->GCPtrLast = GCPtrNew + pMapping->cb - 1;
/*
* Callback to execute the relocation.
*/
pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_RELOCATE, pMapping->pvUser);
}
/**
* Checks if a new mapping address wasn't previously used and caused a clash with guest mappings.
*
* @returns VBox status code.
* @param pMapping The mapping which conflicts.
* @param GCPtr New mapping address to try
*/
bool pgmR3MapIsKnownConflictAddress(PPGMMAPPING pMapping, RTGCPTR GCPtr)
{
for (unsigned i = 0; i < RT_ELEMENTS(pMapping->aGCPtrConflicts); i++)
{
if (GCPtr == pMapping->aGCPtrConflicts[i])
return true;
}
return false;
}
/**
* Resolves a conflict between a page table based GC mapping and
* the Guest OS page tables. (32 bits version)
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pMapping The mapping which conflicts.
* @param pPDSrc The page directory of the guest OS.
* @param GCPtrOldMapping The address of the start of the current mapping.
*/
int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping)
{
STAM_REL_COUNTER_INC(&pVM->pgm.s.cRelocations);
STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a);
/* Raw mode only which implies one VCPU. */
Assert(pVM->cCpus == 1);
pMapping->aGCPtrConflicts[pMapping->cConflicts & (PGMMAPPING_CONFLICT_MAX-1)] = GCPtrOldMapping;
pMapping->cConflicts++;
/*
* Scan for free page directory entries.
*
* Note that we do not support mappings at the very end of the
* address space since that will break our GCPtrEnd assumptions.
*/
const unsigned cPTs = pMapping->cPTs;
unsigned iPDNew = RT_ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */
while (iPDNew-- > 0)
{
if (pPDSrc->a[iPDNew].n.u1Present)
continue;
if (pgmR3MapIsKnownConflictAddress(pMapping, iPDNew << X86_PD_SHIFT))
continue;
if (cPTs > 1)
{
bool fOk = true;
for (unsigned i = 1; fOk && i < cPTs; i++)
if (pPDSrc->a[iPDNew + i].n.u1Present)
fOk = false;
if (!fOk)
continue;
}
/*
* Check that it's not conflicting with an intermediate page table mapping.
*/
bool fOk = true;
unsigned i = cPTs;
while (fOk && i-- > 0)
fOk = !pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present;
if (!fOk)
continue;
/** @todo AMD64 should check the PAE directories and skip the 32bit stuff. */
/*
* Ask for the mapping.
*/
RTGCPTR GCPtrNewMapping = (RTGCPTR32)iPDNew << X86_PD_SHIFT;
if (pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_SUGGEST, pMapping->pvUser))
{
pgmR3MapRelocate(pVM, pMapping, GCPtrOldMapping, GCPtrNewMapping);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a);
return VINF_SUCCESS;
}
}
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a);
AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, GCPtrOldMapping, cPTs));
return VERR_PGM_NO_HYPERVISOR_ADDRESS;
}
/**
* Resolves a conflict between a page table based GC mapping and
* the Guest OS page tables. (PAE bits version)
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pMapping The mapping which conflicts.
* @param GCPtrOldMapping The address of the start of the current mapping.
*/
int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping)
{
STAM_REL_COUNTER_INC(&pVM->pgm.s.cRelocations);
STAM_PROFILE_START(&pVM->pgm.s.StatR3ResolveConflict, a);
/* Raw mode only which implies one VCPU. */
Assert(pVM->cCpus == 1);
PVMCPU pVCpu = VMMGetCpu(pVM);
pMapping->aGCPtrConflicts[pMapping->cConflicts & (PGMMAPPING_CONFLICT_MAX-1)] = GCPtrOldMapping;
pMapping->cConflicts++;
for (int iPDPTE = X86_PG_PAE_PDPE_ENTRIES - 1; iPDPTE >= 0; iPDPTE--)
{
unsigned iPDSrc;
PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, (RTGCPTR32)iPDPTE << X86_PDPT_SHIFT, &iPDSrc, NULL);
/*
* Scan for free page directory entries.
*
* Note that we do not support mappings at the very end of the
* address space since that will break our GCPtrEnd assumptions.
* Nor do we support mappings crossing page directories.
*/
const unsigned cPTs = pMapping->cb >> X86_PD_PAE_SHIFT;
unsigned iPDNew = RT_ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */
while (iPDNew-- > 0)
{
/* Ugly assumption that mappings start on a 4 MB boundary. */
if (iPDNew & 1)
continue;
if (pgmR3MapIsKnownConflictAddress(pMapping, ((RTGCPTR32)iPDPTE << X86_PDPT_SHIFT) + (iPDNew << X86_PD_PAE_SHIFT)))
continue;
if (pPDSrc)
{
if (pPDSrc->a[iPDNew].n.u1Present)
continue;
if (cPTs > 1)
{
bool fOk = true;
for (unsigned i = 1; fOk && i < cPTs; i++)
if (pPDSrc->a[iPDNew + i].n.u1Present)
fOk = false;
if (!fOk)
continue;
}
}
/*
* Check that it's not conflicting with an intermediate page table mapping.
*/
bool fOk = true;
unsigned i = cPTs;
while (fOk && i-- > 0)
fOk = !pVM->pgm.s.apInterPaePDs[iPDPTE]->a[iPDNew + i].n.u1Present;
if (!fOk)
continue;
/*
* Ask for the mapping.
*/
RTGCPTR GCPtrNewMapping = ((RTGCPTR32)iPDPTE << X86_PDPT_SHIFT) + ((RTGCPTR32)iPDNew << X86_PD_PAE_SHIFT);
if (pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_SUGGEST, pMapping->pvUser))
{
pgmR3MapRelocate(pVM, pMapping, GCPtrOldMapping, GCPtrNewMapping);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a);
return VINF_SUCCESS;
}
}
}
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a);
AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, GCPtrOldMapping, pMapping->cb >> X86_PD_PAE_SHIFT));
return VERR_PGM_NO_HYPERVISOR_ADDRESS;
}
#endif /* !PGM_WITHOUT_MAPPINGS */
/**
* Read memory from the guest mappings.
*
* This will use the page tables associated with the mappings to
* read the memory. This means that not all kind of memory is readable
* since we don't necessarily know how to convert that physical address
* to a HC virtual one.
*
* @returns VBox status.
* @param pVM Pointer to the VM.
* @param pvDst The destination address (HC of course).
* @param GCPtrSrc The source address (GC virtual address).
* @param cb Number of bytes to read.
*
* @remarks The is indirectly for DBGF only.
* @todo Consider renaming it to indicate it's special usage, or just
* reimplement it in MMR3HyperReadGCVirt.
*/
VMMR3DECL(int) PGMR3MapRead(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
/*
* Simplicity over speed... Chop the request up into chunks
* which don't cross pages.
*/
if (cb + (GCPtrSrc & PAGE_OFFSET_MASK) > PAGE_SIZE)
{
for (;;)
{
size_t cbRead = RT_MIN(cb, PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK));
int rc = PGMR3MapRead(pVM, pvDst, GCPtrSrc, cbRead);
if (RT_FAILURE(rc))
return rc;
cb -= cbRead;
if (!cb)
break;
pvDst = (char *)pvDst + cbRead;
GCPtrSrc += cbRead;
}
return VINF_SUCCESS;
}
/*
* Find the mapping.
*/
PPGMMAPPING pCur = pVM->pgm.s.CTX_SUFF(pMappings);
while (pCur)
{
RTGCPTR off = GCPtrSrc - pCur->GCPtr;
if (off < pCur->cb)
{
if (off + cb > pCur->cb)
{
AssertMsgFailed(("Invalid page range %RGv LB%#x. mapping '%s' %RGv to %RGv\n",
GCPtrSrc, cb, pCur->pszDesc, pCur->GCPtr, pCur->GCPtrLast));
return VERR_INVALID_PARAMETER;
}
unsigned iPT = off >> X86_PD_SHIFT;
unsigned iPTE = (off >> PAGE_SHIFT) & X86_PT_MASK;
while (cb > 0 && iPTE < RT_ELEMENTS(CTXALLSUFF(pCur->aPTs[iPT].pPT)->a))
{
PCPGMSHWPTEPAE pPte = &pCur->aPTs[iPT].CTXALLSUFF(paPaePTs)[iPTE / 512].a[iPTE % 512];
if (!PGMSHWPTEPAE_IS_P(*pPte))
return VERR_PAGE_NOT_PRESENT;
RTHCPHYS HCPhys = PGMSHWPTEPAE_GET_HCPHYS(*pPte);
/*
* Get the virtual page from the physical one.
*/
void *pvPage;
int rc = MMR3HCPhys2HCVirt(pVM, HCPhys, &pvPage);
if (RT_FAILURE(rc))
return rc;
memcpy(pvDst, (char *)pvPage + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
return VINF_SUCCESS;
}
}
/* next */
pCur = CTXALLSUFF(pCur->pNext);
}
return VERR_INVALID_POINTER;
}
/**
* Info callback for 'pgmhandlers'.
*
* @param pHlp The output helpers.
* @param pszArgs The arguments. phys or virt.
*/
DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
if (!pgmMapAreMappingsEnabled(pVM))
pHlp->pfnPrintf(pHlp, "\nThe mappings are DISABLED.\n");
else if (pVM->pgm.s.fMappingsFixed)
pHlp->pfnPrintf(pHlp, "\nThe mappings are FIXED: %RGv-%RGv\n",
pVM->pgm.s.GCPtrMappingFixed, pVM->pgm.s.GCPtrMappingFixed + pVM->pgm.s.cbMappingFixed - 1);
else if (pVM->pgm.s.fMappingsFixedRestored)
pHlp->pfnPrintf(pHlp, "\nThe mappings are FLOATING-RESTORED-FIXED: %RGv-%RGv\n",
pVM->pgm.s.GCPtrMappingFixed, pVM->pgm.s.GCPtrMappingFixed + pVM->pgm.s.cbMappingFixed - 1);
else
pHlp->pfnPrintf(pHlp, "\nThe mappings are FLOATING.\n");
PPGMMAPPING pCur;
for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
{
pHlp->pfnPrintf(pHlp, "%RGv - %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
if (pCur->cConflicts > 0)
{
pHlp->pfnPrintf(pHlp, " %u conflict%s: ", pCur->cConflicts, pCur->cConflicts == 1 ? "" : "s");
uint32_t cLeft = RT_MIN(pCur->cConflicts, RT_ELEMENTS(pCur->aGCPtrConflicts));
uint32_t i = pCur->cConflicts;
while (cLeft-- > 0)
{
i = (i - 1) & (PGMMAPPING_CONFLICT_MAX - 1);
pHlp->pfnPrintf(pHlp, cLeft ? "%RGv, " : "%RGv\n", pCur->aGCPtrConflicts[i]);
}
}
}
}