HM.cpp revision 56fd905bdc111f69ed81917abc2bb0aa0c6edb80
/* $Id$ */
/** @file
* HM - Intel/AMD VM Hardware Support Manager.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_HM
#include <VBox/vmm/cpum.h>
#include <VBox/vmm/stam.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/pdmapi.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/trpm.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/iom.h>
#include <VBox/vmm/patm.h>
#include <VBox/vmm/csam.h>
#include <VBox/vmm/selm.h>
#ifdef VBOX_WITH_REM
# include <VBox/vmm/rem.h>
#endif
#include <VBox/vmm/hm_vmx.h>
#include <VBox/vmm/hm_svm.h>
#include "HMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>
#include <VBox/err.h>
#include <VBox/param.h>
#include <iprt/assert.h>
#include <VBox/log.h>
#include <iprt/asm.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/string.h>
#include <iprt/env.h>
#include <iprt/thread.h>
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef VBOX_WITH_STATISTICS
# define EXIT_REASON(def, val, str) #def " - " #val " - " str
# define EXIT_REASON_NIL() NULL
/** Exit reason descriptions for VT-x, used to describe statistics. */
static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
{
EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
EXIT_REASON(VMX_EXIT_CPUID , 10, "Guest attempted to execute CPUID."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_HLT , 12, "Guest attempted to execute HLT."),
EXIT_REASON(VMX_EXIT_INVD , 13, "Guest attempted to execute INVD."),
EXIT_REASON(VMX_EXIT_INVLPG , 14, "Guest attempted to execute INVLPG."),
EXIT_REASON(VMX_EXIT_RDPMC , 15, "Guest attempted to execute RDPMC."),
EXIT_REASON(VMX_EXIT_RDTSC , 16, "Guest attempted to execute RDTSC."),
EXIT_REASON(VMX_EXIT_RSM , 17, "Guest attempted to execute RSM in SMM."),
EXIT_REASON(VMX_EXIT_VMCALL , 18, "Guest attempted to execute VMCALL."),
EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "Guest attempted to execute VMCLEAR."),
EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "Guest attempted to execute VMLAUNCH."),
EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "Guest attempted to execute VMPTRLD."),
EXIT_REASON(VMX_EXIT_VMPTRST , 22, "Guest attempted to execute VMPTRST."),
EXIT_REASON(VMX_EXIT_VMREAD , 23, "Guest attempted to execute VMREAD."),
EXIT_REASON(VMX_EXIT_VMRESUME , 24, "Guest attempted to execute VMRESUME."),
EXIT_REASON(VMX_EXIT_VMWRITE , 25, "Guest attempted to execute VMWRITE."),
EXIT_REASON(VMX_EXIT_VMXOFF , 26, "Guest attempted to execute VMXOFF."),
EXIT_REASON(VMX_EXIT_VMXON , 27, "Guest attempted to execute VMXON."),
EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
EXIT_REASON(VMX_EXIT_RDMSR , 31, "Guest attempted to execute RDMSR."),
EXIT_REASON(VMX_EXIT_WRMSR , 32, "Guest attempted to execute WRMSR."),
EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_MWAIT , 36, "Guest executed MWAIT."),
EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_MONITOR , 39, "Guest attempted to execute MONITOR."),
EXIT_REASON(VMX_EXIT_PAUSE , 40, "Guest attempted to execute PAUSE."),
EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD, 43, "TPR below threshold. Guest attempted to execute MOV to CR8."),
EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access. Guest attempted to access memory at a physical address on the APIC-access page."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "Access to GDTR or IDTR. Guest attempted to execute LGDT, LIDT, SGDT, or SIDT."),
EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "Access to LDTR or TR. Guest attempted to execute LLDT, LTR, SLDT, or STR."),
EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of the EPT paging structures."),
EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured EPT paging-structure entry."),
EXIT_REASON(VMX_EXIT_INVEPT , 50, "Guest attempted to execute INVEPT."),
EXIT_REASON(VMX_EXIT_RDTSCP , 51, "Guest attempted to execute RDTSCP."),
EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
EXIT_REASON(VMX_EXIT_INVVPID , 53, "Guest attempted to execute INVVPID."),
EXIT_REASON(VMX_EXIT_WBINVD , 54, "Guest attempted to execute WBINVD."),
EXIT_REASON(VMX_EXIT_XSETBV , 55, "Guest attempted to execute XSETBV."),
EXIT_REASON_NIL(),
EXIT_REASON(VMX_EXIT_RDRAND , 57, "Guest attempted to execute RDRAND."),
EXIT_REASON(VMX_EXIT_INVPCID , 58, "Guest attempted to execute INVPCID."),
EXIT_REASON(VMX_EXIT_VMFUNC , 59, "Guest attempted to execute VMFUNC.")
};
/** Exit reason descriptions for AMD-V, used to describe statistics. */
static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
{
EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
EXIT_REASON(SVM_EXIT_EXCEPTION_0 , 64, "Exception Vector 0 (#DE)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1 , 65, "Exception Vector 1 (#DB)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_2 , 66, "Exception Vector 2 (#NMI)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_3 , 67, "Exception Vector 3 (#BP)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_4 , 68, "Exception Vector 4 (#OF)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_5 , 69, "Exception Vector 5 (#BR)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_6 , 70, "Exception Vector 6 (#UD)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_7 , 71, "Exception Vector 7 (#NM)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_8 , 72, "Exception Vector 8 (#DF)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_9 , 73, "Exception Vector 9 (#CO_SEG_OVERRUN)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_A , 74, "Exception Vector 10 (#TS)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_B , 75, "Exception Vector 11 (#NP)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_C , 76, "Exception Vector 12 (#SS)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_D , 77, "Exception Vector 13 (#GP)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_E , 78, "Exception Vector 14 (#PF)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_F , 79, "Exception Vector 15 (0x0f)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_10 , 80, "Exception Vector 16 (#MF)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_11 , 81, "Exception Vector 17 (#AC)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_12 , 82, "Exception Vector 18 (#MC)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_13 , 83, "Exception Vector 19 (#XF)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_14 , 84, "Exception Vector 20 (0x14)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_15 , 85, "Exception Vector 22 (0x15)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_16 , 86, "Exception Vector 22 (0x16)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_17 , 87, "Exception Vector 23 (0x17)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_18 , 88, "Exception Vector 24 (0x18)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_19 , 89, "Exception Vector 25 (0x19)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1A , 90, "Exception Vector 26 (0x1A)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1B , 91, "Exception Vector 27 (0x1B)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1C , 92, "Exception Vector 28 (0x1C)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1D , 93, "Exception Vector 29 (0x1D)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1E , 94, "Exception Vector 30 (0x1E)."),
EXIT_REASON(SVM_EXIT_EXCEPTION_1F , 95, "Exception Vector 31 (0x1F)."),
EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
EXIT_REASON(SVM_EXIT_VINTR ,100, "Virtual interrupt-window exit."),
EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE ,101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
EXIT_REASON(SVM_EXIT_IDTR_READ ,102, "Read IDTR"),
EXIT_REASON(SVM_EXIT_GDTR_READ ,103, "Read GDTR"),
EXIT_REASON(SVM_EXIT_LDTR_READ ,104, "Read LDTR."),
EXIT_REASON(SVM_EXIT_TR_READ ,105, "Read TR."),
EXIT_REASON(SVM_EXIT_TR_READ ,106, "Write IDTR."),
EXIT_REASON(SVM_EXIT_TR_READ ,107, "Write GDTR."),
EXIT_REASON(SVM_EXIT_TR_READ ,108, "Write LDTR."),
EXIT_REASON(SVM_EXIT_TR_READ ,109, "Write TR."),
EXIT_REASON(SVM_EXIT_RDTSC ,110, "RDTSC instruction."),
EXIT_REASON(SVM_EXIT_RDPMC ,111, "RDPMC instruction."),
EXIT_REASON(SVM_EXIT_PUSHF ,112, "PUSHF instruction."),
EXIT_REASON(SVM_EXIT_POPF ,113, "POPF instruction."),
EXIT_REASON(SVM_EXIT_CPUID ,114, "CPUID instruction."),
EXIT_REASON(SVM_EXIT_RSM ,115, "RSM instruction."),
EXIT_REASON(SVM_EXIT_IRET ,116, "IRET instruction."),
EXIT_REASON(SVM_EXIT_SWINT ,117, "Software interrupt (INTn instructions)."),
EXIT_REASON(SVM_EXIT_INVD ,118, "INVD instruction."),
EXIT_REASON(SVM_EXIT_PAUSE ,119, "PAUSE instruction."),
EXIT_REASON(SVM_EXIT_HLT ,120, "HLT instruction."),
EXIT_REASON(SVM_EXIT_INVLPG ,121, "INVLPG instruction."),
EXIT_REASON(SVM_EXIT_INVLPGA ,122, "INVLPGA instruction."),
EXIT_REASON(SVM_EXIT_IOIO ,123, "IN/OUT accessing protected port."),
EXIT_REASON(SVM_EXIT_MSR ,124, "RDMSR or WRMSR access to protected MSR."),
EXIT_REASON(SVM_EXIT_TASK_SWITCH ,125, "Task switch."),
EXIT_REASON(SVM_EXIT_FERR_FREEZE ,126, "Legacy FPU handling enabled; processor is frozen in an x87/mmx instruction waiting for an interrupt"),
EXIT_REASON(SVM_EXIT_SHUTDOWN ,127, "Shutdown."),
EXIT_REASON(SVM_EXIT_VMRUN ,128, "VMRUN instruction."),
EXIT_REASON(SVM_EXIT_VMMCALL ,129, "VMCALL instruction."),
EXIT_REASON(SVM_EXIT_VMLOAD ,130, "VMLOAD instruction."),
EXIT_REASON(SVM_EXIT_VMSAVE ,131, "VMSAVE instruction."),
EXIT_REASON(SVM_EXIT_STGI ,132, "STGI instruction."),
EXIT_REASON(SVM_EXIT_CLGI ,133, "CLGI instruction."),
EXIT_REASON(SVM_EXIT_SKINIT ,134, "SKINIT instruction."),
EXIT_REASON(SVM_EXIT_RDTSCP ,135, "RDTSCP instruction."),
EXIT_REASON(SVM_EXIT_ICEBP ,136, "ICEBP instruction."),
EXIT_REASON(SVM_EXIT_WBINVD ,137, "WBINVD instruction."),
EXIT_REASON(SVM_EXIT_MONITOR ,138, "MONITOR instruction."),
EXIT_REASON(SVM_EXIT_MWAIT ,139, "MWAIT instruction."),
EXIT_REASON(SVM_EXIT_MWAIT_ARMED ,140, "MWAIT instruction when armed."),
EXIT_REASON(SVM_EXIT_NPF ,1024, "Nested paging fault."),
EXIT_REASON_NIL()
};
# undef EXIT_REASON
# undef EXIT_REASON_NIL
#endif /* VBOX_WITH_STATISTICS */
#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, featflag) \
do { \
if ((allowed1) & (featflag)) \
LogRel(("HM: " #featflag "\n")); \
else \
LogRel(("HM: " #featflag " *must* be cleared\n")); \
if ((disallowed0) & (featflag)) \
LogRel(("HM: " #featflag " *must* be set\n")); \
} while (0)
#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, featflag) \
do { \
if ((allowed1) & (featflag)) \
LogRel(("HM: " #featflag "\n")); \
else \
LogRel(("HM: " #featflag " not supported\n")); \
} while (0)
#define HMVMX_REPORT_CAPABILITY(msrcaps, cap) \
do { \
if ((msrcaps) & (cap)) \
LogRel(("HM: " #cap "\n")); \
} while (0)
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
static int hmR3InitCPU(PVM pVM);
static int hmR3InitFinalizeR0(PVM pVM);
static int hmR3InitFinalizeR0Intel(PVM pVM);
static int hmR3InitFinalizeR0Amd(PVM pVM);
static int hmR3TermCPU(PVM pVM);
/**
* Initializes the HM.
*
* This reads the config and check whether VT-x or AMD-V hardware is available
* if configured to use it. This is one of the very first components to be
* initialized after CFGM, so that we can fall back to raw-mode early in the
* initialization process.
*
* Note that a lot of the set up work is done in ring-0 and thus postponed till
* the ring-3 and ring-0 callback to HMR3InitCompleted.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*
* @remarks Be careful with what we call here, since most of the VMM components
* are uninitialized.
*/
VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
{
LogFlow(("HMR3Init\n"));
/*
* Assert alignment and sizes.
*/
AssertCompileMemberAlignment(VM, hm.s, 32);
AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
/*
* Register the saved state data unit.
*/
int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SSM_VERSION, sizeof(HM),
NULL, NULL, NULL,
NULL, hmR3Save, NULL,
NULL, hmR3Load, NULL);
if (RT_FAILURE(rc))
return rc;
/*
* Misc initialisation.
*/
//pVM->hm.s.vmx.fSupported = false;
//pVM->hm.s.svm.fSupported = false;
//pVM->hm.s.vmx.fEnabled = false;
//pVM->hm.s.svm.fEnabled = false;
//pVM->hm.s.fNestedPaging = false;
/*
* Read configuration.
*/
PCFGMNODE pCfgHM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
/** @cfgm{/HM/HMForced, bool, false}
* Forces hardware virtualization, no falling back on raw-mode. HM must be
* enabled, i.e. /HMEnabled must be true. */
bool fHMForced;
#ifdef VBOX_WITH_RAW_MODE
rc = CFGMR3QueryBoolDef(pCfgHM, "HMForced", &fHMForced, false);
AssertRCReturn(rc, rc);
AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
VERR_INVALID_PARAMETER);
# if defined(RT_OS_DARWIN)
if (pVM->fHMEnabled)
fHMForced = true;
# endif
AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
VERR_INVALID_PARAMETER);
if (pVM->cCpus > 1)
fHMForced = true;
#else /* !VBOX_WITH_RAW_MODE */
AssertRelease(pVM->fHMEnabled);
fHMForced = true;
#endif /* !VBOX_WITH_RAW_MODE */
/** @cfgm{/HM/EnableNestedPaging, bool, false}
* Enables nested paging (aka extended page tables). */
rc = CFGMR3QueryBoolDef(pCfgHM, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
AssertRCReturn(rc, rc);
/** @cfgm{/HM/EnableUX, bool, true}
* Enables the VT-x unrestricted execution feature. */
rc = CFGMR3QueryBoolDef(pCfgHM, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
AssertRCReturn(rc, rc);
/** @cfgm{/HM/EnableLargePages, bool, false}
* Enables using large pages (2 MB) for guest memory, thus saving on (nested)
* page table walking and maybe better TLB hit rate in some cases. */
rc = CFGMR3QueryBoolDef(pCfgHM, "EnableLargePages", &pVM->hm.s.fLargePages, false);
AssertRCReturn(rc, rc);
/** @cfgm{/HM/EnableVPID, bool, false}
* Enables the VT-x VPID feature. */
rc = CFGMR3QueryBoolDef(pCfgHM, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
AssertRCReturn(rc, rc);
/** @cfgm{/HM/TPRPatchingEnabled, bool, false}
* Enables TPR patching for 32-bit windows guests with IO-APIC. */
rc = CFGMR3QueryBoolDef(pCfgHM, "TPRPatchingEnabled", &pVM->hm.s.fTRPPatchingAllowed, false);
AssertRCReturn(rc, rc);
/** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
* Enables AMD64 cpu features.
* On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
* already have the support. */
#ifdef VBOX_ENABLE_64_BITS_GUESTS
rc = CFGMR3QueryBoolDef(pCfgHM, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
AssertLogRelRCReturn(rc, rc);
#else
pVM->hm.s.fAllow64BitGuests = false;
#endif
/** @cfgm{/HM/Exclusive, bool}
* Determines the init method for AMD-V and VT-x. If set to true, HM will do a
* global init for each host CPU. If false, we do local init each time we wish
* to execute guest code.
*
* Default is false for Mac OS X and Windows due to the higher risk of conflicts
* with other hypervisors.
*/
rc = CFGMR3QueryBoolDef(pCfgHM, "Exclusive", &pVM->hm.s.fGlobalInit,
#if defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS)
false
#else
true
#endif
);
AssertLogRelRCReturn(rc, rc);
/** @cfgm{/HM/MaxResumeLoops, uint32_t}
* The number of times to resume guest execution before we forcibly return to
* ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
* determines the default value. */
rc = CFGMR3QueryU32Def(pCfgHM, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
AssertLogRelRCReturn(rc, rc);
/*
* Check if VT-x or AMD-v support according to the users wishes.
*/
/** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
* VERR_SVM_IN_USE. */
if (pVM->fHMEnabled)
{
uint32_t fCaps;
rc = SUPR3QueryVTCaps(&fCaps);
if (RT_SUCCESS(rc))
{
if (fCaps & SUPVTCAPS_AMD_V)
LogRel(("HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
else if (fCaps & SUPVTCAPS_VT_X)
{
rc = SUPR3QueryVTxSupported();
if (RT_SUCCESS(rc))
LogRel(("HMR3Init: VT-x%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
else
{
#ifdef RT_OS_LINUX
const char *pszMinReq = " Linux 2.6.13 or newer required!";
#else
const char *pszMinReq = "";
#endif
if (fHMForced)
return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x.%s\n", pszMinReq);
/* Fall back to raw-mode. */
LogRel(("HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x.%s\n", pszMinReq));
pVM->fHMEnabled = false;
}
}
else
AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
VERR_INTERNAL_ERROR_5);
/*
* Do we require a little bit or raw-mode for 64-bit guest execution?
*/
pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
&& pVM->fHMEnabled
&& pVM->hm.s.fAllow64BitGuests;
}
else
{
const char *pszMsg;
switch (rc)
{
case VERR_UNSUPPORTED_CPU:
pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained.";
break;
case VERR_VMX_NO_VMX:
pszMsg = "VT-x is not available.";
break;
case VERR_VMX_MSR_LOCKED_OR_DISABLED:
pszMsg = "VT-x is disabled in the BIOS (or by the host OS).";
break;
case VERR_SVM_NO_SVM:
pszMsg = "AMD-V is not available.";
break;
case VERR_SVM_DISABLED:
pszMsg = "AMD-V is disabled in the BIOS (or by the host OS).";
break;
default:
pszMsg = NULL;
break;
}
if (fHMForced && pszMsg)
return VM_SET_ERROR(pVM, rc, pszMsg);
if (!pszMsg)
return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
/* Fall back to raw-mode. */
LogRel(("HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
pVM->fHMEnabled = false;
}
}
/* It's now OK to use the predicate function. */
pVM->fHMEnabledFixed = true;
return VINF_SUCCESS;
}
/**
* Initializes the per-VCPU HM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
static int hmR3InitCPU(PVM pVM)
{
LogFlow(("HMR3InitCPU\n"));
if (!HMIsEnabled(pVM))
return VINF_SUCCESS;
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->hm.s.fActive = false;
}
#ifdef VBOX_WITH_STATISTICS
STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccess, STAMTYPE_COUNTER, "/HM/TPR/Replace/Success",STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
#endif
/*
* Statistics.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
int rc;
#ifdef VBOX_WITH_STATISTICS
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of RTMpPokeCpu",
"/PROF/CPU%d/HM/Poke", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of poke wait",
"/PROF/CPU%d/HM/PokeWait", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of poke wait when RTMpPokeCpu fails",
"/PROF/CPU%d/HM/PokeWaitFailed", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of VMXR0RunGuestCode entry",
"/PROF/CPU%d/HM/StatEntry", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of VMXR0RunGuestCode exit part 1",
"/PROF/CPU%d/HM/SwitchFromGC_1", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of VMXR0RunGuestCode exit part 2",
"/PROF/CPU%d/HM/SwitchFromGC_2", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"I/O",
"/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"MOV CRx",
"/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Exceptions, NMIs",
"/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of VMXR0LoadGuestState",
"/PROF/CPU%d/HM/StatLoadGuestState", i);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
"Profiling of VMLAUNCH/VMRESUME.",
"/PROF/CPU%d/HM/InGC", i);
AssertRC(rc);
# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
"/PROF/CPU%d/HM/Switcher3264", i);
AssertRC(rc);
# endif
# ifdef HM_PROFILE_EXIT_DISPATCH
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
"/PROF/CPU%d/HM/ExitDispatch", i);
AssertRC(rc);
# endif
#endif
# define HM_REG_COUNTER(a, b, desc) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
AssertRC(rc);
#ifdef VBOX_WITH_STATISTICS
HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) execption.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvlpg, "/HM/CPU%d/Exit/Instr/Invlpg", "Guest attempted to execute INVLPG.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvd, "/HM/CPU%d/Exit/Instr/Invd", "Guest attempted to execute INVD.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitWbinvd, "/HM/CPU%d/Exit/Instr/Wbinvd", "Guest attempted to execute WBINVD.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitPause, "/HM/CPU%d/Exit/Instr/Pause", "Guest attempted to execute PAUSE.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitCpuid, "/HM/CPU%d/Exit/Instr/Cpuid", "Guest attempted to execute CPUID.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtsc, "/HM/CPU%d/Exit/Instr/Rdtsc", "Guest attempted to execute RDTSC.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtscp, "/HM/CPU%d/Exit/Instr/Rdtscp", "Guest attempted to execute RDTSCP.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdpmc, "/HM/CPU%d/Exit/Instr/Rdpmc", "Guest attempted to execute RDPMC.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdrand, "/HM/CPU%d/Exit/Instr/Rdrand", "Guest attempted to execute RDRAND.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR/Write", "Guest attempted to write a debug register.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR/Read", "Guest attempted to read a debug register.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitMaxResume, "/HM/CPU%d/Exit/MaxResume", "Maximum VMRESUME inner-loop counter reached.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
#endif
HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmi, "/HM/CPU%d/Exit/HostNmi", "Host NMI received.");
#ifdef VBOX_WITH_STATISTICS
HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception back to the guest.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Guest is in catchup mode, intercept TSC accesses.");
HM_REG_COUNTER(&pVCpu->hm.s.StatTscInterceptOverFlow, "/HM/CPU%d/TSC/InterceptOverflow", "TSC offset overflow, fallback to intercept TSC accesses.");
HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
HM_REG_COUNTER(&pVCpu->hm.s.StatLoadMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry loading minimal guest-state.");
HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/Full", "VM-entry loading the full guest-state.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
#endif
for (unsigned j = 0; j < RT_ELEMENTS(pVCpu->hm.s.StatExitCRxWrite); j++)
{
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxWrite[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
STAMUNIT_OCCURENCES, "Profiling of CRx writes",
"/HM/CPU%d/Exit/Instr/CR/Write/%x", i, j);
AssertRC(rc);
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxRead[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
STAMUNIT_OCCURENCES, "Profiling of CRx reads",
"/HM/CPU%d/Exit/Instr/CR/Read/%x", i, j);
AssertRC(rc);
}
#undef HM_REG_COUNTER
pVCpu->hm.s.paStatExitReason = NULL;
rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT*sizeof(*pVCpu->hm.s.paStatExitReason), 0, MM_TAG_HM,
(void **)&pVCpu->hm.s.paStatExitReason);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
const char * const *papszDesc = ASMIsIntelCpu() ? &g_apszVTxExitReasons[0] : &g_apszAmdVExitReasons[0];
for (int j = 0; j < MAX_EXITREASON_STAT; j++)
{
if (papszDesc[j])
{
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
AssertRC(rc);
}
}
rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
AssertRC(rc);
}
pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
# else
Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
# endif
rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
AssertRCReturn(rc, rc);
pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
# else
Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
# endif
for (unsigned j = 0; j < 255; j++)
{
STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"Injected event.",
(j < 0x20) ? "/HM/CPU%d/EventInject/Event/Trap/%02X" : "/HM/CPU%d/EventInject/Event/IRQ/%02X", i, j);
}
#endif /* VBOX_WITH_STATISTICS */
}
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
/*
* Magic marker for searching in crash dumps.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
}
#endif
return VINF_SUCCESS;
}
/**
* Called when a init phase has completed.
*
* @returns VBox status code.
* @param pVM The VM.
* @param enmWhat The phase that completed.
*/
VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
{
switch (enmWhat)
{
case VMINITCOMPLETED_RING3:
return hmR3InitCPU(pVM);
case VMINITCOMPLETED_RING0:
return hmR3InitFinalizeR0(pVM);
default:
return VINF_SUCCESS;
}
}
/**
* Turns off normal raw mode features.
*
* @param pVM Pointer to the VM.
*/
static void hmR3DisableRawMode(PVM pVM)
{
/* Reinit the paging mode to force the new shadow mode. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
}
}
/**
* Initialize VT-x or AMD-V.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
static int hmR3InitFinalizeR0(PVM pVM)
{
int rc;
if (!HMIsEnabled(pVM))
return VINF_SUCCESS;
/*
* Hack to allow users to work around broken BIOSes that incorrectly set
* EFER.SVME, which makes us believe somebody else is already using AMD-V.
*/
if ( !pVM->hm.s.vmx.fSupported
&& !pVM->hm.s.svm.fSupported
&& pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
&& RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
{
LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
pVM->hm.s.svm.fSupported = true;
pVM->hm.s.svm.fIgnoreInUseError = true;
pVM->hm.s.lLastError = VINF_SUCCESS;
}
/*
* Report ring-0 init errors.
*/
if ( !pVM->hm.s.vmx.fSupported
&& !pVM->hm.s.svm.fSupported)
{
LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.msr.feature_ctrl));
switch (pVM->hm.s.lLastError)
{
case VERR_VMX_IN_VMX_ROOT_MODE:
return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor.");
case VERR_VMX_NO_VMX:
return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available.");
case VERR_VMX_MSR_LOCKED_OR_DISABLED:
return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is disabled in the BIOS (or by the host OS).");
case VERR_SVM_IN_USE:
return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor.");
case VERR_SVM_NO_SVM:
return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available.");
case VERR_SVM_DISABLED:
return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS.");
}
return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
}
/*
* Enable VT-x or AMD-V on all host CPUs.
*/
rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
if (RT_FAILURE(rc))
{
LogRel(("HMR3InitFinalize: SUPR3CallVMMR0Ex VMMR0_DO_HM_ENABLE failed with %Rrc\n", rc));
return rc;
}
/*
* No TPR patching is required when the IO-APIC is not enabled for this VM.
* (Main should have taken care of this already)
*/
pVM->hm.s.fHasIoApic = PDMHasIoApic(pVM);
if (!pVM->hm.s.fHasIoApic)
{
Assert(!pVM->hm.s.fTRPPatchingAllowed); /* paranoia */
pVM->hm.s.fTRPPatchingAllowed = false;
}
/*
* Do the vendor specific initalization .
* .
* Note! We disable release log buffering here since we're doing relatively .
* lot of logging and doesn't want to hit the disk with each LogRel .
* statement.
*/
AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
if (pVM->hm.s.vmx.fSupported)
rc = hmR3InitFinalizeR0Intel(pVM);
else
rc = hmR3InitFinalizeR0Amd(pVM);
LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
RTLogRelSetBuffering(fOldBuffered);
pVM->hm.s.fInitialized = true;
return rc;
}
/**
* Finish VT-x initialization (after ring-0 init).
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
static int hmR3InitFinalizeR0Intel(PVM pVM)
{
int rc;
Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
AssertLogRelReturn(pVM->hm.s.vmx.msr.feature_ctrl != 0, VERR_HM_IPE_4);
uint64_t val;
uint64_t zap;
RTGCPHYS GCPhys = 0;
LogRel(("HM: Using VT-x implementation 2.0!\n"));
LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.msr.feature_ctrl));
LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.msr.vmx_basic_info));
LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info)));
LogRel(("HM: VMCS size = %u\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.msr.vmx_basic_info)));
LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.msr.vmx_basic_info) ? "< 4 GB" : "None"));
LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.msr.vmx_basic_info)));
LogRel(("HM: Dual-monitor treatment support = %RTbool\n", !!MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.msr.vmx_basic_info)));
LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", !!MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.msr.vmx_basic_info)));
LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.msr.vmx_pin_ctls.u));
val = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1;
zap = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0;
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.msr.vmx_proc_ctls.u));
val = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1;
zap = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0;
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
{
LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.msr.vmx_proc_ctls2.u));
val = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1;
zap = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0;
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_EPT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VPID);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
}
LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.msr.vmx_entry.u));
val = pVM->hm.s.vmx.msr.vmx_entry.n.allowed1;
zap = pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0;
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.msr.vmx_exit.u));
val = pVM->hm.s.vmx.msr.vmx_exit.n.allowed1;
zap = pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0;
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps)
{
val = pVM->hm.s.vmx.msr.vmx_ept_vpid_caps;
LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_RWX_W_ONLY);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_RWX_WX_ONLY);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_21_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_30_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_39_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_48_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_57_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WC);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WT);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WP);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_21_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_30_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_39_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_48_BITS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
}
LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", pVM->hm.s.vmx.msr.vmx_misc));
if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(pVM->hm.s.vmx.msr.vmx_misc) == pVM->hm.s.vmx.cPreemptTimerShift)
{
LogRel(("HM: MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT = %#x\n",
MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(pVM->hm.s.vmx.msr.vmx_misc)));
}
else
{
LogRel(("HM: MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(pVM->hm.s.vmx.msr.vmx_misc), pVM->hm.s.vmx.cPreemptTimerShift));
}
LogRel(("HM: MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT = %RTbool\n", !!MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM = %RTbool\n", !!MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2 = %RTbool\n", !!MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO = %RTbool\n", !!MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(pVM->hm.s.vmx.msr.vmx_misc)));
LogRel(("HM: MSR_IA32_VMX_MISC_MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(pVM->hm.s.vmx.msr.vmx_misc)));
/* Paranoia */
AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc) >= 512);
LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.msr.vmx_cr0_fixed0));
LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.msr.vmx_cr0_fixed1));
LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.msr.vmx_cr4_fixed0));
LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.msr.vmx_cr4_fixed1));
LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", pVM->hm.s.vmx.msr.vmx_vmcs_enum));
LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(pVM->hm.s.vmx.msr.vmx_vmcs_enum)));
val = pVM->hm.s.vmx.msr.vmx_vmfunc;
if (val)
{
LogRel(("HM: MSR_A32_VMX_VMFUNC = %#RX64\n", val));
HMVMX_REPORT_ALLOWED_FEATURE(val, VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
}
LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
}
if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT)
pVM->hm.s.fNestedPaging = pVM->hm.s.fAllowNestedPaging;
if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
/*
* Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
* RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
* in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
*/
if ( !(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
&& CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
{
CPUMClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
LogRel(("HM: RDTSCP disabled.\n"));
}
/* Unrestricted guest execution also requires EPT. */
if ( pVM->hm.s.vmx.fAllowUnrestricted
&& pVM->hm.s.fNestedPaging
&& (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST))
{
pVM->hm.s.vmx.fUnrestrictedGuest = true;
}
if (!pVM->hm.s.vmx.fUnrestrictedGuest)
{
/* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
if (RT_SUCCESS(rc))
{
/* The IO bitmap starts right after the virtual interrupt redirection bitmap.
Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
esp. Figure 20-5.*/
ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
/* Bit set to 0 means software interrupts are redirected to the
8086 program interrupt handler rather than switching to
protected-mode handler. */
memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
/* Allow all port IO, so that port IO instructions do not cause
exceptions and would instead cause a VM-exit (based on VT-x's
IO bitmap which we currently configure to always cause an exit). */
memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
*((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
/*
* Construct a 1024 element page directory with 4 MB pages for
* the identity mapped page table used in real and protected mode
* without paging with EPT.
*/
pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
{
pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
| X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
| X86_PDE4M_G;
}
/* We convert it here every time as pci regions could be reconfigured. */
rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
AssertRCReturn(rc, rc);
LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
AssertRCReturn(rc, rc);
LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
}
else
{
/** @todo This cannot possibly work, there are other places which assumes
* this allocation cannot fail (see HMR3CanExecuteGuest()). Make this
* a failure case. */
LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
pVM->hm.s.vmx.pRealModeTSS = NULL;
pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
}
}
/*
* Call ring-0 to set up the VM.
*/
rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
if (rc != VINF_SUCCESS)
{
AssertMsgFailed(("%Rrc\n", rc));
LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
}
return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
}
LogRel(("HM: VMX enabled!\n"));
pVM->hm.s.vmx.fEnabled = true;
hmR3DisableRawMode(pVM); /** @todo make this go away! */
/*
* Change the CPU features.
*/
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
if (pVM->hm.s.fAllow64BitGuests)
{
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
#if 0 /** @todo r=bird: This ain't making any sense whatsoever. */
#if RT_ARCH_X86
if ( !CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE)
|| !(pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE))
LogRel(("NX is only supported for 64-bit guests!\n"));
#endif
#endif
}
/* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
(we reuse the host EFER in the switcher). */
/** @todo this needs to be fixed properly!! */
else if ( CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE)
&& (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE))
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
else
LogRel(("HM: NX not supported by the host.\n"));
/*
* Log configuration details.
*/
LogRel((pVM->hm.s.fAllow64BitGuests
? "HM: Guest support: 32-bit and 64-bit.\n"
: "HM: Guest support: 32-bit only.\n"));
if (pVM->hm.s.fNestedPaging)
{
LogRel(("HM: Nested paging enabled!\n"));
LogRel(("HM: EPT root page physaddr = %#RHp\n", PGMGetHyperCR3(VMMGetCpu(pVM))));
if (pVM->hm.s.vmx.enmFlushEpt == VMX_FLUSH_EPT_SINGLE_CONTEXT)
LogRel(("HM: EPT flush type = VMX_FLUSH_EPT_SINGLE_CONTEXT\n"));
else if (pVM->hm.s.vmx.enmFlushEpt == VMX_FLUSH_EPT_ALL_CONTEXTS)
LogRel(("HM: EPT flush type = VMX_FLUSH_EPT_ALL_CONTEXTS\n"));
else if (pVM->hm.s.vmx.enmFlushEpt == VMX_FLUSH_EPT_NOT_SUPPORTED)
LogRel(("HM: EPT flush type = VMX_FLUSH_EPT_NOT_SUPPORTED\n"));
else
LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
if (pVM->hm.s.vmx.fUnrestrictedGuest)
LogRel(("HM: Unrestricted guest execution enabled!\n"));
#if HC_ARCH_BITS == 64
if (pVM->hm.s.fLargePages)
{
/* Use large (2 MB) pages for our EPT PDEs where possible. */
PGMSetLargePageUsage(pVM, true);
LogRel(("HM: Large page support enabled!\n"));
}
#endif
}
else
Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
if (pVM->hm.s.vmx.fVpid)
{
LogRel(("HM: VPID enabled!\n"));
if (pVM->hm.s.vmx.enmFlushVpid == VMX_FLUSH_VPID_INDIV_ADDR)
LogRel(("HM: VPID flush type = VMX_FLUSH_VPID_INDIV_ADDR\n"));
else if (pVM->hm.s.vmx.enmFlushVpid == VMX_FLUSH_VPID_SINGLE_CONTEXT)
LogRel(("HM: VPID flush type = VMX_FLUSH_VPID_SINGLE_CONTEXT\n"));
else if (pVM->hm.s.vmx.enmFlushVpid == VMX_FLUSH_VPID_ALL_CONTEXTS)
LogRel(("HM: VPID flush type = VMX_FLUSH_VPID_ALL_CONTEXTS\n"));
else if (pVM->hm.s.vmx.enmFlushVpid == VMX_FLUSH_VPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
LogRel(("HM: VPID flush type = VMX_FLUSH_VPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
else
LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
}
else if (pVM->hm.s.vmx.enmFlushVpid == VMX_FLUSH_VPID_NOT_SUPPORTED)
LogRel(("HM: Ignoring VPID capabilities of CPU.\n"));
/*
* Check for preemption timer config override and log the state of it.
*/
if (pVM->hm.s.vmx.fUsePreemptTimer)
{
PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM");
rc = CFGMR3QueryBoolDef(pCfgHm, "UsePreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
AssertLogRelRCReturn(rc, rc);
}
if (pVM->hm.s.vmx.fUsePreemptTimer)
LogRel(("HM: VMX-preemption timer enabled (cPreemptTimerShift=%u).\n", pVM->hm.s.vmx.cPreemptTimerShift));
else
LogRel(("HM: VMX-preemption timer disabled.\n"));
return VINF_SUCCESS;
}
/**
* Finish AMD-V initialization (after ring-0 init).
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
static int hmR3InitFinalizeR0Amd(PVM pVM)
{
Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
LogRel(("HM: Using AMD-V implementation 2.0!\n"));
uint32_t u32Family;
uint32_t u32Model;
uint32_t u32Stepping;
if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.msrHwcr));
LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
/*
* Enumerate AMD-V features.
*/
static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
{
#define HMSVM_REPORT_FEATURE(a_Define) { a_Define, #a_Define }
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_AVIC),
#undef HMSVM_REPORT_FEATURE
};
uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
{
LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
}
if (fSvmFeatures)
for (unsigned iBit = 0; iBit < 32; iBit++)
if (RT_BIT_32(iBit) & fSvmFeatures)
LogRel(("HM: Reserved bit %u\n", iBit));
/*
* Adjust feature(s).
*/
if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING)
pVM->hm.s.fNestedPaging = pVM->hm.s.fAllowNestedPaging;
/*
* Call ring-0 to set up the VM.
*/
int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
if (rc != VINF_SUCCESS)
{
AssertMsgFailed(("%Rrc\n", rc));
LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
}
LogRel(("HM: AMD-V enabled!\n"));
pVM->hm.s.svm.fEnabled = true;
if (pVM->hm.s.fNestedPaging)
{
LogRel(("HM: Nested paging enabled!\n"));
/*
* Enable large pages (2 MB) if applicable.
*/
#if HC_ARCH_BITS == 64
if (pVM->hm.s.fLargePages)
{
PGMSetLargePageUsage(pVM, true);
LogRel(("HM: Large page support enabled!\n"));
}
#endif
}
hmR3DisableRawMode(pVM);
/*
* Change the CPU features.
*/
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
if (pVM->hm.s.fAllow64BitGuests)
{
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
}
/* Turn on NXE if PAE has been enabled. */
else if (CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
LogRel(("HM: TPR Patching %s.\n", (pVM->hm.s.fTRPPatchingAllowed) ? "enabled" : "disabled"));
LogRel((pVM->hm.s.fAllow64BitGuests
? "HM: Guest support: 32-bit and 64-bit.\n"
: "HM: Guest support: 32-bit only.\n"));
return VINF_SUCCESS;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* @param pVM The VM.
*/
VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
{
Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
/* Fetch the current paging mode during the relocate callback during state loading. */
if (VMR3GetState(pVM) == VMSTATE_LOADING)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
}
}
#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (HMIsEnabled(pVM))
{
switch (PGMGetHostMode(pVM))
{
case PGMMODE_32_BIT:
pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
break;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
break;
default:
AssertFailed();
break;
}
}
#endif
return;
}
/**
* Notification callback which is called whenever there is a chance that a CR3
* value might have changed.
*
* This is called by PGM.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param enmShadowMode New shadow paging mode.
* @param enmGuestMode New guest paging mode.
*/
VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
{
/* Ignore page mode changes during state loading. */
if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
return;
pVCpu->hm.s.enmShadowMode = enmShadowMode;
/*
* If the guest left protected mode VMX execution, we'll have to be
* extra careful if/when the guest switches back to protected mode.
*/
if (enmGuestMode == PGMMODE_REAL)
{
Log(("HMR3PagingModeChanged indicates real mode execution\n"));
pVCpu->hm.s.vmx.fWasInRealMode = true;
}
/** @todo r=ramshankar: Disabling for now. If nothing breaks remove it
* eventually. (Test platforms that use the cache ofc). */
#if 0
#ifdef VMX_USE_CACHED_VMCS_ACCESSES
/* Reset the contents of the read cache. */
PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
pCache->Read.aFieldVal[j] = 0;
#endif
#endif
}
/**
* Terminates the HM.
*
* Termination means cleaning up and freeing all resources,
* the VM itself is, at this point, powered off or suspended.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
{
if (pVM->hm.s.vmx.pRealModeTSS)
{
PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
pVM->hm.s.vmx.pRealModeTSS = 0;
}
hmR3TermCPU(pVM);
return 0;
}
/**
* Terminates the per-VCPU HM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
static int hmR3TermCPU(PVM pVM)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
#ifdef VBOX_WITH_STATISTICS
if (pVCpu->hm.s.paStatExitReason)
{
MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
pVCpu->hm.s.paStatExitReason = NULL;
pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
}
if (pVCpu->hm.s.paStatInjectedIrqs)
{
MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
pVCpu->hm.s.paStatInjectedIrqs = NULL;
pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
}
#endif
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
#endif
}
return 0;
}
/**
* Resets a virtual CPU.
*
* Used by HMR3Reset and CPU hot plugging.
*
* @param pVCpu The CPU to reset.
*/
VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
{
/* On first entry we'll sync everything. */
pVCpu->hm.s.fContextUseFlags = (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
pVCpu->hm.s.vmx.u32CR0Mask = 0;
pVCpu->hm.s.vmx.u32CR4Mask = 0;
pVCpu->hm.s.fActive = false;
pVCpu->hm.s.Event.fPending = false;
pVCpu->hm.s.vmx.fWasInRealMode = true;
/* Reset the contents of the read cache. */
PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
pCache->Read.aFieldVal[j] = 0;
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
/* Magic marker for searching in crash dumps. */
strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
#endif
}
/**
* The VM is being reset.
*
* For the HM component this means that any GDT/LDT/TSS monitors
* needs to be removed.
*
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
{
LogFlow(("HMR3Reset:\n"));
if (HMIsEnabled(pVM))
hmR3DisableRawMode(pVM);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
HMR3ResetCpu(pVCpu);
}
/* Clear all patch information. */
pVM->hm.s.pGuestPatchMem = 0;
pVM->hm.s.pFreeGuestPatchMem = 0;
pVM->hm.s.cbGuestPatchMem = 0;
pVM->hm.s.cPatches = 0;
pVM->hm.s.PatchTree = 0;
pVM->hm.s.fTPRPatchingActive = false;
ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
}
/**
* Callback to patch a TPR instruction (vmmcall or mov cr8).
*
* @returns VBox strict status code.
* @param pVM Pointer to the VM.
* @param pVCpu The VMCPU for the EMT we're being called on.
* @param pvUser Unused.
*/
DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
/* Only execute the handler on the VCPU the original patch request was issued. */
if (pVCpu->idCpu != idCpu)
return VINF_SUCCESS;
Log(("hmR3RemovePatches\n"));
for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
{
uint8_t abInstr[15];
PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
int rc;
#ifdef LOG_ENABLED
char szOutput[256];
rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
szOutput, sizeof(szOutput), NULL);
if (RT_SUCCESS(rc))
Log(("Patched instr: %s\n", szOutput));
#endif
/* Check if the instruction is still the same. */
rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
if (rc != VINF_SUCCESS)
{
Log(("Patched code removed? (rc=%Rrc0\n", rc));
continue; /* swapped out or otherwise removed; skip it. */
}
if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
{
Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
continue; /* skip it. */
}
rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
AssertRC(rc);
#ifdef LOG_ENABLED
rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
szOutput, sizeof(szOutput), NULL);
if (RT_SUCCESS(rc))
Log(("Original instr: %s\n", szOutput));
#endif
}
pVM->hm.s.cPatches = 0;
pVM->hm.s.PatchTree = 0;
pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
pVM->hm.s.fTPRPatchingActive = false;
return VINF_SUCCESS;
}
/**
* Worker for enabling patching in a VT-x/AMD-V guest.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param idCpu VCPU to execute hmR3RemovePatches on.
* @param pPatchMem Patch memory range.
* @param cbPatchMem Size of the memory range.
*/
static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
{
int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
AssertRC(rc);
pVM->hm.s.pGuestPatchMem = pPatchMem;
pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
pVM->hm.s.cbGuestPatchMem = cbPatchMem;
return VINF_SUCCESS;
}
/**
* Enable patching in a VT-x/AMD-V guest
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pPatchMem Patch memory range.
* @param cbPatchMem Size of the memory range.
*/
VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
{
VM_ASSERT_EMT(pVM);
Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
if (pVM->cCpus > 1)
{
/* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
(PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
AssertRC(rc);
return rc;
}
return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
}
/**
* Disable patching in a VT-x/AMD-V guest.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pPatchMem Patch memory range.
* @param cbPatchMem Size of the memory range.
*/
VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
{
Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
/* @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
(void *)(uintptr_t)VMMGetCpuId(pVM));
AssertRC(rc);
pVM->hm.s.pGuestPatchMem = 0;
pVM->hm.s.pFreeGuestPatchMem = 0;
pVM->hm.s.cbGuestPatchMem = 0;
pVM->hm.s.fTPRPatchingActive = false;
return VINF_SUCCESS;
}
/**
* Callback to patch a TPR instruction (vmmcall or mov cr8).
*
* @returns VBox strict status code.
* @param pVM Pointer to the VM.
* @param pVCpu The VMCPU for the EMT we're being called on.
* @param pvUser User specified CPU context.
*
*/
DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
/*
* Only execute the handler on the VCPU the original patch request was
* issued. (The other CPU(s) might not yet have switched to protected
* mode, nor have the correct memory context.)
*/
VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
if (pVCpu->idCpu != idCpu)
return VINF_SUCCESS;
/*
* We're racing other VCPUs here, so don't try patch the instruction twice
* and make sure there is still room for our patch record.
*/
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (pPatch)
{
Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
return VINF_SUCCESS;
}
uint32_t const idx = pVM->hm.s.cPatches;
if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
{
Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
return VINF_SUCCESS;
}
pPatch = &pVM->hm.s.aPatches[idx];
Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
/*
* Disassembler the instruction and get cracking.
*/
DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
uint32_t cbOp;
int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
AssertRC(rc);
if ( rc == VINF_SUCCESS
&& pDis->pCurInstr->uOpcode == OP_MOV
&& cbOp >= 3)
{
static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
AssertRC(rc);
pPatch->cbOp = cbOp;
if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
{
/* write. */
if (pDis->Param2.fUse == DISUSE_REG_GEN32)
{
pPatch->enmType = HMTPRINSTR_WRITE_REG;
pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
}
else
{
Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
pPatch->enmType = HMTPRINSTR_WRITE_IMM;
pPatch->uSrcOperand = pDis->Param2.uValue;
Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
}
rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
AssertRC(rc);
memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
pPatch->cbNewOp = sizeof(s_abVMMCall);
}
else
{
/*
* TPR Read.
*
* Found:
* mov eax, dword [fffe0080] (5 bytes)
* Check if next instruction is:
* shr eax, 4
*/
Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
uint8_t const cbOpMmio = cbOp;
uint64_t const uSavedRip = pCtx->rip;
pCtx->rip += cbOp;
rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
pCtx->rip = uSavedRip;
if ( rc == VINF_SUCCESS
&& pDis->pCurInstr->uOpcode == OP_SHR
&& pDis->Param1.fUse == DISUSE_REG_GEN32
&& pDis->Param1.Base.idxGenReg == idxMmioReg
&& pDis->Param2.fUse == DISUSE_IMMEDIATE8
&& pDis->Param2.uValue == 4
&& cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
{
uint8_t abInstr[15];
/* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
access CR8 in 32-bit mode and not cause a #VMEXIT. */
rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
AssertRC(rc);
pPatch->cbOp = cbOpMmio + cbOp;
/* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
abInstr[0] = 0xF0;
abInstr[1] = 0x0F;
abInstr[2] = 0x20;
abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
for (unsigned i = 4; i < pPatch->cbOp; i++)
abInstr[i] = 0x90; /* nop */
rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
AssertRC(rc);
memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
pPatch->cbNewOp = pPatch->cbOp;
Log(("Acceptable read/shr candidate!\n"));
pPatch->enmType = HMTPRINSTR_READ_SHR4;
}
else
{
pPatch->enmType = HMTPRINSTR_READ;
pPatch->uDstOperand = idxMmioReg;
rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
AssertRC(rc);
memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
pPatch->cbNewOp = sizeof(s_abVMMCall);
Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
}
}
pPatch->Core.Key = pCtx->eip;
rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
AssertRC(rc);
pVM->hm.s.cPatches++;
STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccess);
return VINF_SUCCESS;
}
/*
* Save invalid patch, so we will not try again.
*/
Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
pPatch->Core.Key = pCtx->eip;
pPatch->enmType = HMTPRINSTR_INVALID;
rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
AssertRC(rc);
pVM->hm.s.cPatches++;
STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
return VINF_SUCCESS;
}
/**
* Callback to patch a TPR instruction (jump to generated code).
*
* @returns VBox strict status code.
* @param pVM Pointer to the VM.
* @param pVCpu The VMCPU for the EMT we're being called on.
* @param pvUser User specified CPU context.
*
*/
DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
/*
* Only execute the handler on the VCPU the original patch request was
* issued. (The other CPU(s) might not yet have switched to protected
* mode, nor have the correct memory context.)
*/
VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
if (pVCpu->idCpu != idCpu)
return VINF_SUCCESS;
/*
* We're racing other VCPUs here, so don't try patch the instruction twice
* and make sure there is still room for our patch record.
*/
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (pPatch)
{
Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
return VINF_SUCCESS;
}
uint32_t const idx = pVM->hm.s.cPatches;
if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
{
Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
return VINF_SUCCESS;
}
pPatch = &pVM->hm.s.aPatches[idx];
Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
/*
* Disassemble the instruction and get cracking.
*/
PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
uint32_t cbOp;
int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
AssertRC(rc);
if ( rc == VINF_SUCCESS
&& pDis->pCurInstr->uOpcode == OP_MOV
&& cbOp >= 5)
{
uint8_t aPatch[64];
uint32_t off = 0;
rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
AssertRC(rc);
pPatch->cbOp = cbOp;
pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
{
/*
* TPR write:
*
* push ECX [51]
* push EDX [52]
* push EAX [50]
* xor EDX,EDX [31 D2]
* mov EAX,EAX [89 C0]
* or
* mov EAX,0000000CCh [B8 CC 00 00 00]
* mov ECX,0C0000082h [B9 82 00 00 C0]
* wrmsr [0F 30]
* pop EAX [58]
* pop EDX [5A]
* pop ECX [59]
* jmp return_address [E9 return_address]
*
*/
bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
aPatch[off++] = 0x51; /* push ecx */
aPatch[off++] = 0x52; /* push edx */
if (!fUsesEax)
aPatch[off++] = 0x50; /* push eax */
aPatch[off++] = 0x31; /* xor edx, edx */
aPatch[off++] = 0xD2;
if (pDis->Param2.fUse == DISUSE_REG_GEN32)
{
if (!fUsesEax)
{
aPatch[off++] = 0x89; /* mov eax, src_reg */
aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
}
}
else
{
Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
aPatch[off++] = 0xB8; /* mov eax, immediate */
*(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
off += sizeof(uint32_t);
}
aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
*(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
off += sizeof(uint32_t);
aPatch[off++] = 0x0F; /* wrmsr */
aPatch[off++] = 0x30;
if (!fUsesEax)
aPatch[off++] = 0x58; /* pop eax */
aPatch[off++] = 0x5A; /* pop edx */
aPatch[off++] = 0x59; /* pop ecx */
}
else
{
/*
* TPR read:
*
* push ECX [51]
* push EDX [52]
* push EAX [50]
* mov ECX,0C0000082h [B9 82 00 00 C0]
* rdmsr [0F 32]
* mov EAX,EAX [89 C0]
* pop EAX [58]
* pop EDX [5A]
* pop ECX [59]
* jmp return_address [E9 return_address]
*
*/
Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
aPatch[off++] = 0x51; /* push ecx */
if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
aPatch[off++] = 0x52; /* push edx */
if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
aPatch[off++] = 0x50; /* push eax */
aPatch[off++] = 0x31; /* xor edx, edx */
aPatch[off++] = 0xD2;
aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
*(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
off += sizeof(uint32_t);
aPatch[off++] = 0x0F; /* rdmsr */
aPatch[off++] = 0x32;
if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
{
aPatch[off++] = 0x89; /* mov dst_reg, eax */
aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
}
if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
aPatch[off++] = 0x58; /* pop eax */
if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
aPatch[off++] = 0x5A; /* pop edx */
if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
aPatch[off++] = 0x59; /* pop ecx */
}
aPatch[off++] = 0xE9; /* jmp return_address */
*(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
off += sizeof(RTRCUINTPTR);
if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
{
/* Write new code to the patch buffer. */
rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
AssertRC(rc);
#ifdef LOG_ENABLED
uint32_t cbCurInstr;
for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
GCPtrInstr += RT_MAX(cbCurInstr, 1))
{
char szOutput[256];
rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
szOutput, sizeof(szOutput), &cbCurInstr);
if (RT_SUCCESS(rc))
Log(("Patch instr %s\n", szOutput));
else
Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
}
#endif
pPatch->aNewOpcode[0] = 0xE9;
*(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
/* Overwrite the TPR instruction with a jump. */
rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
AssertRC(rc);
DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
pVM->hm.s.pFreeGuestPatchMem += off;
pPatch->cbNewOp = 5;
pPatch->Core.Key = pCtx->eip;
rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
AssertRC(rc);
pVM->hm.s.cPatches++;
pVM->hm.s.fTPRPatchingActive = true;
STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
return VINF_SUCCESS;
}
Log(("Ran out of space in our patch buffer!\n"));
}
else
Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
/*
* Save invalid patch, so we will not try again.
*/
pPatch = &pVM->hm.s.aPatches[idx];
pPatch->Core.Key = pCtx->eip;
pPatch->enmType = HMTPRINSTR_INVALID;
rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
AssertRC(rc);
pVM->hm.s.cPatches++;
STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
return VINF_SUCCESS;
}
/**
* Attempt to patch TPR mmio instructions.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
NOREF(pCtx);
int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
(void *)(uintptr_t)pVCpu->idCpu);
AssertRC(rc);
return rc;
}
/**
* Checks if a code selector (CS) is suitable for execution
* within VMX when unrestricted execution isn't available.
*
* @returns true if selector is suitable for VMX, otherwise
* false.
* @param pSel Pointer to the selector to check (CS).
* uStackDpl The DPL of the stack segment.
*/
static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
{
bool rc = false;
do
{
/* Segment must be accessed. */
if (!(pSel->Attr.u & X86_SEL_TYPE_ACCESSED))
break;
/* Segment must be a code segment. */
if (!(pSel->Attr.u & X86_SEL_TYPE_CODE))
break;
/* The S bit must be set. */
if (!pSel->Attr.n.u1DescType)
break;
if (pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF)
{
/* For conforming segments, CS.DPL must be <= SS.DPL. */
if (pSel->Attr.n.u2Dpl > uStackDpl)
break;
}
else
{
/* For non-conforming segments, CS.DPL must equal SS.DPL. */
if (pSel->Attr.n.u2Dpl != uStackDpl)
break;
}
/* Segment must be present. */
if (!pSel->Attr.n.u1Present)
break;
/* G bit must be set if any high limit bits are set. */
if ((pSel->u32Limit & 0xfff00000) && !pSel->Attr.n.u1Granularity)
break;
/* G bit must be clear if any low limit bits are clear. */
if ((pSel->u32Limit & 0x0fff) != 0x0fff && pSel->Attr.n.u1Granularity)
break;
rc = true;
} while (0);
return rc;
}
/**
* Checks if a data selector (DS/ES/FS/GS) is suitable for
* execution within VMX when unrestricted execution isn't
* available.
*
* @returns true if selector is suitable for VMX, otherwise
* false.
* @param pSel Pointer to the selector to check
* (DS/ES/FS/GS).
*/
static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
{
bool rc = false;
/* If attributes are all zero, consider the segment unusable and therefore OK.
* This logic must be in sync with HMVMXR0.cpp!
*/
if (!pSel->Attr.u)
return true;
do
{
/* Segment must be accessed. */
if (!(pSel->Attr.u & X86_SEL_TYPE_ACCESSED))
break;
/* Code segments must also be readable. */
if (pSel->Attr.u & X86_SEL_TYPE_CODE && !(pSel->Attr.u & X86_SEL_TYPE_READ))
break;
/* The S bit must be set. */
if (!pSel->Attr.n.u1DescType)
break;
/* Except for conforming segments, DPL >= RPL. */
if (pSel->Attr.n.u4Type <= X86_SEL_TYPE_ER_ACC && pSel->Attr.n.u2Dpl < (pSel->Sel & X86_SEL_RPL))
break;
/* Segment must be present. */
if (!pSel->Attr.n.u1Present)
break;
/* G bit must be set if any high limit bits are set. */
if ((pSel->u32Limit & 0xfff00000) && !pSel->Attr.n.u1Granularity)
break;
/* G bit must be clear if any low limit bits are clear. */
if ((pSel->u32Limit & 0x0fff) != 0x0fff && pSel->Attr.n.u1Granularity)
break;
rc = true;
} while (0);
return rc;
}
/**
* Checks if the stack selector (SS) is suitable for execution
* within VMX when unrestricted execution isn't available.
*
* @returns true if selector is suitable for VMX, otherwise
* false.
* @param pSel Pointer to the selector to check (SS).
*/
static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
{
bool rc = false;
/* If attributes are all zero, consider the segment unusable and therefore OK.
* This logic must be in sync with HMVMXR0.cpp!
*/
if (!pSel->Attr.u)
return true;
do
{
/* Segment must be accessed. */
if (!(pSel->Attr.u & X86_SEL_TYPE_ACCESSED))
break;
/* Segment must be writable. */
if (!(pSel->Attr.u & X86_SEL_TYPE_WRITE))
break;
/* Segment must not be a code segment. */
if (pSel->Attr.u & X86_SEL_TYPE_CODE)
break;
/* The S bit must be set. */
if (!pSel->Attr.n.u1DescType)
break;
/* DPL must equal RPL. */
if (pSel->Attr.n.u2Dpl != (pSel->Sel & X86_SEL_RPL))
break;
/* Segment must be present. */
if (!pSel->Attr.n.u1Present)
break;
/* G bit must be set if any high limit bits are set. */
if ((pSel->u32Limit & 0xfff00000) && !pSel->Attr.n.u1Granularity)
break;
/* G bit must be clear if any low limit bits are clear. */
if ((pSel->u32Limit & 0x0fff) != 0x0fff && pSel->Attr.n.u1Granularity)
break;
rc = true;
} while (0);
return rc;
}
/**
* Force execution of the current IO code in the recompiler.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pCtx Partial VM execution context.
*/
VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
{
PVMCPU pVCpu = VMMGetCpu(pVM);
Assert(HMIsEnabled(pVM));
Log(("HMR3EmulateIoBlock\n"));
/* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
if (HMCanEmulateIoBlockEx(pCtx))
{
Log(("HMR3EmulateIoBlock -> enabled\n"));
pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
return VINF_EM_RESCHEDULE_REM;
}
return VINF_SUCCESS;
}
/**
* Checks if we can currently use hardware accelerated raw mode.
*
* @returns true if we can currently use hardware acceleration, otherwise false.
* @param pVM Pointer to the VM.
* @param pCtx Partial VM execution context.
*/
VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
{
PVMCPU pVCpu = VMMGetCpu(pVM);
Assert(HMIsEnabled(pVM));
/* If we're still executing the IO code, then return false. */
if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
&& pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
&& pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
&& pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
return false;
pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
/* AMD-V supports real & protected mode with or without paging. */
if (pVM->hm.s.svm.fEnabled)
{
pVCpu->hm.s.fActive = true;
return true;
}
pVCpu->hm.s.fActive = false;
/* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
|| (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
if (!pVM->hm.s.vmx.fUnrestrictedGuest)
{
/*
* The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
* guest execution feature i missing (VT-x only).
*/
if (fSupportsRealMode)
{
if (CPUMIsGuestInRealModeEx(pCtx))
{
/* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
* bases and limits, i.e. limit must be 64K and base must be selector * 16.
* If this is not true, we cannot execute real mode as V86 and have to fall
* back to emulation.
*/
if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
|| pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
|| pCtx->es.Sel != (pCtx->es.u64Base >> 4)
|| pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
|| pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
|| pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
return false;
}
if ( (pCtx->cs.u32Limit != 0xffff)
|| (pCtx->ds.u32Limit != 0xffff)
|| (pCtx->es.u32Limit != 0xffff)
|| (pCtx->ss.u32Limit != 0xffff)
|| (pCtx->fs.u32Limit != 0xffff)
|| (pCtx->gs.u32Limit != 0xffff))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
return false;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
}
else
{
PGMMODE enmGuestMode = PGMGetGuestMode(pVCpu);
/* Verify the requirements for executing code in protected
mode. VT-x can't handle the CPU state right after a switch
from real to protected mode. (all sorts of RPL & DPL assumptions). */
if (pVCpu->hm.s.vmx.fWasInRealMode)
{
/** @todo If guest is in V86 mode, these checks should be different! */
if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
return false;
}
if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
|| !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
|| !hmR3IsDataSelectorOkForVmx(&pCtx->es)
|| !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
|| !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
|| !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
return false;
}
}
/* VT-x also chokes on invalid TR or LDTR selectors (minix). */
if (pCtx->gdtr.cbGdt)
{
if (pCtx->tr.Sel > pCtx->gdtr.cbGdt)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
return false;
}
else if (pCtx->ldtr.Sel > pCtx->gdtr.cbGdt)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
return false;
}
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
}
}
else
{
if ( !CPUMIsGuestInLongModeEx(pCtx)
&& !pVM->hm.s.vmx.fUnrestrictedGuest)
{
if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
|| CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
return false;
/* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
return false;
/* The guest is about to complete the switch to protected mode. Wait a bit longer. */
/* Windows XP; switch to protected mode; all selectors are marked not present in the
* hidden registers (possible recompiler bug; see load_seg_vm) */
if (pCtx->cs.Attr.n.u1Present == 0)
return false;
if (pCtx->ss.Attr.n.u1Present == 0)
return false;
/* Windows XP: possible same as above, but new recompiler requires new heuristics?
VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
/** @todo This check is actually wrong, it doesn't take the direction of the
* stack segment into account. But, it does the job for now. */
if (pCtx->rsp >= pCtx->ss.u32Limit)
return false;
}
}
}
if (pVM->hm.s.vmx.fEnabled)
{
uint32_t mask;
/* if bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
mask = (uint32_t)pVM->hm.s.vmx.msr.vmx_cr0_fixed0;
/* Note: We ignore the NE bit here on purpose; see vmmr0\hmr0.cpp for details. */
mask &= ~X86_CR0_NE;
if (fSupportsRealMode)
{
/* Note: We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
mask &= ~(X86_CR0_PG|X86_CR0_PE);
}
else
{
/* We support protected mode without paging using identity mapping. */
mask &= ~X86_CR0_PG;
}
if ((pCtx->cr0 & mask) != mask)
return false;
/* if bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
mask = (uint32_t)~pVM->hm.s.vmx.msr.vmx_cr0_fixed1;
if ((pCtx->cr0 & mask) != 0)
return false;
/* if bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
mask = (uint32_t)pVM->hm.s.vmx.msr.vmx_cr4_fixed0;
mask &= ~X86_CR4_VMXE;
if ((pCtx->cr4 & mask) != mask)
return false;
/* if bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
mask = (uint32_t)~pVM->hm.s.vmx.msr.vmx_cr4_fixed1;
if ((pCtx->cr4 & mask) != 0)
return false;
pVCpu->hm.s.fActive = true;
return true;
}
return false;
}
/**
* Checks if we need to reschedule due to VMM device heap changes.
*
* @returns true if a reschedule is required, otherwise false.
* @param pVM Pointer to the VM.
* @param pCtx VM execution context.
*/
VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
{
/*
* The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
* when the unrestricted guest execution feature is missing (VT-x only).
*/
if ( pVM->hm.s.vmx.fEnabled
&& !pVM->hm.s.vmx.fUnrestrictedGuest
&& CPUMIsGuestInRealModeEx(pCtx)
&& !PDMVmmDevHeapIsEnabled(pVM))
{
return true;
}
return false;
}
/**
* Notification from EM about a rescheduling into hardware assisted execution
* mode.
*
* @param pVCpu Pointer to the current VMCPU.
*/
VMMR3_INT_DECL(void) HMR3NotifyScheduled(PVMCPU pVCpu)
{
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
}
/**
* Notification from EM about returning from instruction emulation (REM / EM).
*
* @param pVCpu Pointer to the VMCPU.
*/
VMMR3_INT_DECL(void) HMR3NotifyEmulated(PVMCPU pVCpu)
{
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
}
/**
* Checks if we are currently using hardware accelerated raw mode.
*
* @returns true if hardware acceleration is being used, otherwise false.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
{
return pVCpu->hm.s.fActive;
}
/**
* External interface for querying whether hardware accelerated raw mode is
* enabled.
*
* @returns true if VT-x or AMD-V is being used, otherwise false.
* @param pUVM The user mode VM handle.
* @sa HMIsEnabled, HMIsEnabledNotMacro.
*/
VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
}
/**
* External interface for querying whether VT-x is being used.
*
* @returns true if VT-x is being used, otherwise false.
* @param pUVM The user mode VM handle.
* @sa HMR3IsSvmEnabled, HMIsEnabled
*/
VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->hm.s.vmx.fEnabled
&& pVM->hm.s.vmx.fSupported
&& pVM->fHMEnabled;
}
/**
* External interface for querying whether AMD-V is being used.
*
* @returns true if VT-x is being used, otherwise false.
* @param pUVM The user mode VM handle.
* @sa HMR3IsVmxEnabled, HMIsEnabled
*/
VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->hm.s.svm.fEnabled
&& pVM->hm.s.svm.fSupported
&& pVM->fHMEnabled;
}
/**
* Checks if we are currently using nested paging.
*
* @returns true if nested paging is being used, otherwise false.
* @param pUVM The user mode VM handle.
*/
VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->hm.s.fNestedPaging;
}
/**
* Checks if we are currently using VPID in VT-x mode.
*
* @returns true if VPID is being used, otherwise false.
* @param pUVM The user mode VM handle.
*/
VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->hm.s.vmx.fVpid;
}
/**
* Checks if we are currently using VT-x unrestricted execution,
* aka UX.
*
* @returns true if UX is being used, otherwise false.
* @param pUVM The user mode VM handle.
*/
VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, false);
return pVM->hm.s.vmx.fUnrestrictedGuest;
}
/**
* Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
*
* @returns true if an internal event is pending, otherwise false.
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
{
return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
}
/**
* Checks if the VMX-preemption timer is being used.
*
* @returns true if the VMX-preemption timer is being used, otherwise false.
* @param pVM Pointer to the VM.
*/
VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
{
return HMIsEnabled(pVM)
&& pVM->hm.s.vmx.fEnabled
&& pVM->hm.s.vmx.fUsePreemptTimer;
}
/**
* Restart an I/O instruction that was refused in ring-0
*
* @returns Strict VBox status code. Informational status codes other than the one documented
* here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
* @retval VINF_SUCCESS Success.
* @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
* status code must be passed on to EM.
* @retval VERR_NOT_FOUND if no pending I/O instruction.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
if ( pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip
|| enmType == HMPENDINGIO_INVALID)
return VERR_NOT_FOUND;
VBOXSTRICTRC rcStrict;
switch (enmType)
{
case HMPENDINGIO_PORT_READ:
{
uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
uint32_t u32Val = 0;
rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort,
&u32Val,
pVCpu->hm.s.PendingIO.s.Port.cbSize);
if (IOM_SUCCESS(rcStrict))
{
/* Write back to the EAX register. */
pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
}
break;
}
case HMPENDINGIO_PORT_WRITE:
rcStrict = IOMIOPortWrite(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort,
pCtx->eax & pVCpu->hm.s.PendingIO.s.Port.uAndVal,
pVCpu->hm.s.PendingIO.s.Port.cbSize);
if (IOM_SUCCESS(rcStrict))
pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
break;
default:
AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
}
if (IOM_SUCCESS(rcStrict))
{
/*
* Check for I/O breakpoints.
*/
uint32_t const uDr7 = pCtx->dr[7];
if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
&& X86_DR7_ANY_RW_IO(uDr7)
&& (pCtx->cr4 & X86_CR4_DE))
|| DBGFBpIsHwIoArmed(pVM))
{
VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
pVCpu->hm.s.PendingIO.s.Port.cbSize);
if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
/* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
rcStrict = rcStrict2;
}
}
return rcStrict;
}
/**
* Check fatal VT-x/AMD-V error and produce some meaningful
* log release message.
*
* @param pVM Pointer to the VM.
* @param iStatusCode VBox status code.
*/
VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
switch (iStatusCode)
{
case VERR_VMX_INVALID_VMCS_FIELD:
break;
case VERR_VMX_INVALID_VMCS_PTR:
LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
pVCpu->hm.s.vmx.HCPhysVmcs));
LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
break;
case VERR_VMX_UNABLE_TO_START_VM:
LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
|| pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
{
LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
}
else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
{
LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
LogRel(("HM: CPU[%u] MSRBitmapPhys %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
LogRel(("HM: CPU[%u] GuestMSRPhys %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
LogRel(("HM: CPU[%u] HostMsrPhys %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
LogRel(("HM: CPU[%u] cGuestMSRs %u\n", i, pVCpu->hm.s.vmx.cGuestMsrs));
#endif
}
/** @todo Log VM-entry event injection control fields
* VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
* and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
break;
case VERR_VMX_INVALID_VMXON_PTR:
break;
case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
case VERR_VMX_INVALID_GUEST_STATE:
case VERR_VMX_UNEXPECTED_EXIT_CODE:
case VERR_SVM_UNKNOWN_EXIT:
case VERR_SVM_UNEXPECTED_EXIT:
case VERR_SVM_UNEXPECTED_PATCH_TYPE:
case VERR_SVM_UNEXPECTED_XCPT_EXIT:
{
LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
break;
}
}
}
if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
{
LogRel(("VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.msr.vmx_entry.n.allowed1));
LogRel(("VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0));
}
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
int rc;
Log(("hmR3Save:\n"));
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
/*
* Save the basic bits - fortunately all the other things can be resynced on load.
*/
rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.fPending);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.u32ErrCode);
AssertRCReturn(rc, rc);
rc = SSMR3PutU64(pSSM, pVM->aCpus[i].hm.s.Event.u64IntrInfo);
AssertRCReturn(rc, rc);
/** @todo We only need to save pVM->aCpus[i].hm.s.vmx.fWasInRealMode and
* perhaps not even that (the initial value of @c true is safe. */
uint32_t u32Dummy = PGMMODE_REAL;
rc = SSMR3PutU32(pSSM, u32Dummy);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, u32Dummy);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, u32Dummy);
AssertRCReturn(rc, rc);
}
#ifdef VBOX_HM_WITH_GUEST_PATCHING
rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
AssertRCReturn(rc, rc);
rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
AssertRCReturn(rc, rc);
/* Store all the guest patch records too. */
rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
AssertRCReturn(rc, rc);
for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
{
PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
AssertRCReturn(rc, rc);
rc = SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pPatch->cbOp);
AssertRCReturn(rc, rc);
rc = SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pPatch->cbNewOp);
AssertRCReturn(rc, rc);
AssertCompileSize(HMTPRINSTR, 4);
rc = SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pPatch->uSrcOperand);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pPatch->uDstOperand);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pPatch->pJumpTarget);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pPatch->cFaults);
AssertRCReturn(rc, rc);
}
#endif
return VINF_SUCCESS;
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pSSM SSM operation handle.
* @param uVersion Data layout version.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
int rc;
Log(("hmR3Load:\n"));
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
/*
* Validate version.
*/
if ( uVersion != HM_SSM_VERSION
&& uVersion != HM_SSM_VERSION_NO_PATCHING
&& uVersion != HM_SSM_VERSION_2_0_X)
{
AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
AssertRCReturn(rc, rc);
rc = SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntrInfo);
AssertRCReturn(rc, rc);
if (uVersion >= HM_SSM_VERSION_NO_PATCHING)
{
uint32_t val;
/** @todo See note in hmR3Save(). */
rc = SSMR3GetU32(pSSM, &val);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &val);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &val);
AssertRCReturn(rc, rc);
}
}
#ifdef VBOX_HM_WITH_GUEST_PATCHING
if (uVersion > HM_SSM_VERSION_NO_PATCHING)
{
rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
AssertRCReturn(rc, rc);
rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
AssertRCReturn(rc, rc);
/* Fetch all TPR patch records. */
rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
AssertRCReturn(rc, rc);
for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
{
PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
AssertRCReturn(rc, rc);
rc = SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pPatch->cbOp);
AssertRCReturn(rc, rc);
rc = SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pPatch->cbNewOp);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
AssertRCReturn(rc, rc);
if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
pVM->hm.s.fTPRPatchingActive = true;
Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
rc = SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pPatch->uDstOperand);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pPatch->cFaults);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
AssertRCReturn(rc, rc);
Log(("hmR3Load: patch %d\n", i));
Log(("Key = %x\n", pPatch->Core.Key));
Log(("cbOp = %d\n", pPatch->cbOp));
Log(("cbNewOp = %d\n", pPatch->cbNewOp));
Log(("type = %d\n", pPatch->enmType));
Log(("srcop = %d\n", pPatch->uSrcOperand));
Log(("dstop = %d\n", pPatch->uDstOperand));
Log(("cFaults = %d\n", pPatch->cFaults));
Log(("target = %x\n", pPatch->pJumpTarget));
rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
AssertRC(rc);
}
}
#endif
return VINF_SUCCESS;
}