CPUMR3CpuId.cpp revision 41d680dd6eb0287afc200adc5b0d61b07a32b72d
/* $Id$ */
/** @file
* CPUM - CPU ID part.
*/
/*
* Copyright (C) 2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_CPUM
#include <VBox/vmm/cpum.h>
#include "CPUMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/err.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/ctype.h>
#include <iprt/mem.h>
#include <iprt/stream.h>
#include <iprt/string.h>
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/**
* The intel pentium family.
*/
static const CPUMMICROARCH g_aenmIntelFamily06[] =
{
/* [ 0(0x00)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro A-step (says sandpile.org). */
/* [ 1(0x01)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro */
/* [ 2(0x02)] = */ kCpumMicroarch_Intel_Unknown,
/* [ 3(0x03)] = */ kCpumMicroarch_Intel_P6_II, /* PII Klamath */
/* [ 4(0x04)] = */ kCpumMicroarch_Intel_Unknown,
/* [ 5(0x05)] = */ kCpumMicroarch_Intel_P6_II, /* PII Deschutes */
/* [ 6(0x06)] = */ kCpumMicroarch_Intel_P6_II, /* Celeron Mendocino. */
/* [ 7(0x07)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Katmai. */
/* [ 8(0x08)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Coppermine (includes Celeron). */
/* [ 9(0x09)] = */ kCpumMicroarch_Intel_P6_M_Banias, /* Pentium/Celeron M Banias. */
/* [10(0x0a)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Xeon */
/* [11(0x0b)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Tualatin (includes Celeron). */
/* [12(0x0c)] = */ kCpumMicroarch_Intel_Unknown,
/* [13(0x0d)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Pentium/Celeron M Dothan. */
/* [14(0x0e)] = */ kCpumMicroarch_Intel_Core_Yonah, /* Core Yonah (Enhanced Pentium M). */
/* [15(0x0f)] = */ kCpumMicroarch_Intel_Core2_Merom, /* Merom */
/* [16(0x10)] = */ kCpumMicroarch_Intel_Unknown,
/* [17(0x11)] = */ kCpumMicroarch_Intel_Unknown,
/* [18(0x12)] = */ kCpumMicroarch_Intel_Unknown,
/* [19(0x13)] = */ kCpumMicroarch_Intel_Unknown,
/* [20(0x14)] = */ kCpumMicroarch_Intel_Unknown,
/* [21(0x15)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Tolapai - System-on-a-chip. */
/* [22(0x16)] = */ kCpumMicroarch_Intel_Core2_Merom,
/* [23(0x17)] = */ kCpumMicroarch_Intel_Core2_Penryn,
/* [24(0x18)] = */ kCpumMicroarch_Intel_Unknown,
/* [25(0x19)] = */ kCpumMicroarch_Intel_Unknown,
/* [26(0x1a)] = */ kCpumMicroarch_Intel_Core7_Nehalem,
/* [27(0x1b)] = */ kCpumMicroarch_Intel_Unknown,
/* [28(0x1c)] = */ kCpumMicroarch_Intel_Atom_Bonnell, /* Diamonville, Pineview, */
/* [29(0x1d)] = */ kCpumMicroarch_Intel_Core2_Penryn,
/* [30(0x1e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Clarksfield, Lynnfield, Jasper Forest. */
/* [31(0x1f)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Only listed by sandpile.org. 2 cores ABD/HVD, whatever that means. */
/* [32(0x20)] = */ kCpumMicroarch_Intel_Unknown,
/* [33(0x21)] = */ kCpumMicroarch_Intel_Unknown,
/* [34(0x22)] = */ kCpumMicroarch_Intel_Unknown,
/* [35(0x23)] = */ kCpumMicroarch_Intel_Unknown,
/* [36(0x24)] = */ kCpumMicroarch_Intel_Unknown,
/* [37(0x25)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Arrandale, Clarksdale. */
/* [38(0x26)] = */ kCpumMicroarch_Intel_Atom_Lincroft,
/* [39(0x27)] = */ kCpumMicroarch_Intel_Atom_Saltwell,
/* [40(0x28)] = */ kCpumMicroarch_Intel_Unknown,
/* [41(0x29)] = */ kCpumMicroarch_Intel_Unknown,
/* [42(0x2a)] = */ kCpumMicroarch_Intel_Core7_SandyBridge,
/* [43(0x2b)] = */ kCpumMicroarch_Intel_Unknown,
/* [44(0x2c)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Gulftown, Westmere-EP. */
/* [45(0x2d)] = */ kCpumMicroarch_Intel_Core7_SandyBridge, /* SandyBridge-E, SandyBridge-EN, SandyBridge-EP. */
/* [46(0x2e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Beckton (Xeon). */
/* [47(0x2f)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Westmere-EX. */
/* [48(0x30)] = */ kCpumMicroarch_Intel_Unknown,
/* [49(0x31)] = */ kCpumMicroarch_Intel_Unknown,
/* [50(0x32)] = */ kCpumMicroarch_Intel_Unknown,
/* [51(0x33)] = */ kCpumMicroarch_Intel_Unknown,
/* [52(0x34)] = */ kCpumMicroarch_Intel_Unknown,
/* [53(0x35)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* ?? */
/* [54(0x36)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* Cedarview, ++ */
/* [55(0x37)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
/* [56(0x38)] = */ kCpumMicroarch_Intel_Unknown,
/* [57(0x39)] = */ kCpumMicroarch_Intel_Unknown,
/* [58(0x3a)] = */ kCpumMicroarch_Intel_Core7_IvyBridge,
/* [59(0x3b)] = */ kCpumMicroarch_Intel_Unknown,
/* [60(0x3c)] = */ kCpumMicroarch_Intel_Core7_Haswell,
/* [61(0x3d)] = */ kCpumMicroarch_Intel_Core7_Broadwell,
/* [62(0x3e)] = */ kCpumMicroarch_Intel_Core7_IvyBridge,
/* [63(0x3f)] = */ kCpumMicroarch_Intel_Core7_Haswell,
/* [64(0x40)] = */ kCpumMicroarch_Intel_Unknown,
/* [65(0x41)] = */ kCpumMicroarch_Intel_Unknown,
/* [66(0x42)] = */ kCpumMicroarch_Intel_Unknown,
/* [67(0x43)] = */ kCpumMicroarch_Intel_Unknown,
/* [68(0x44)] = */ kCpumMicroarch_Intel_Unknown,
/* [69(0x45)] = */ kCpumMicroarch_Intel_Core7_Haswell,
/* [70(0x46)] = */ kCpumMicroarch_Intel_Core7_Haswell,
/* [71(0x47)] = */ kCpumMicroarch_Intel_Unknown,
/* [72(0x48)] = */ kCpumMicroarch_Intel_Unknown,
/* [73(0x49)] = */ kCpumMicroarch_Intel_Unknown,
/* [74(0x4a)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
/* [75(0x4b)] = */ kCpumMicroarch_Intel_Unknown,
/* [76(0x4c)] = */ kCpumMicroarch_Intel_Unknown,
/* [77(0x4d)] = */ kCpumMicroarch_Intel_Atom_Silvermont,
/* [78(0x4e)] = */ kCpumMicroarch_Intel_Unknown,
/* [79(0x4f)] = */ kCpumMicroarch_Intel_Unknown,
};
/**
* Figures out the (sub-)micro architecture given a bit of CPUID info.
*
* @returns Micro architecture.
* @param enmVendor The CPU vendor .
* @param bFamily The CPU family.
* @param bModel The CPU model.
* @param bStepping The CPU stepping.
*/
VMMR3DECL(CPUMMICROARCH) CPUMR3CpuIdDetermineMicroarchEx(CPUMCPUVENDOR enmVendor, uint8_t bFamily,
uint8_t bModel, uint8_t bStepping)
{
if (enmVendor == CPUMCPUVENDOR_AMD)
{
switch (bFamily)
{
case 0x02: return kCpumMicroarch_AMD_Am286; /* Not really kosher... */
case 0x03: return kCpumMicroarch_AMD_Am386;
case 0x23: return kCpumMicroarch_AMD_Am386; /* SX*/
case 0x04: return bModel < 14 ? kCpumMicroarch_AMD_Am486 : kCpumMicroarch_AMD_Am486Enh;
case 0x05: return bModel < 6 ? kCpumMicroarch_AMD_K5 : kCpumMicroarch_AMD_K6; /* Genode LX is 0x0a, lump it with K6. */
case 0x06:
switch (bModel)
{
case 0: kCpumMicroarch_AMD_K7_Palomino;
case 1: kCpumMicroarch_AMD_K7_Palomino;
case 2: kCpumMicroarch_AMD_K7_Palomino;
case 3: kCpumMicroarch_AMD_K7_Spitfire;
case 4: kCpumMicroarch_AMD_K7_Thunderbird;
case 6: kCpumMicroarch_AMD_K7_Palomino;
case 7: kCpumMicroarch_AMD_K7_Morgan;
case 8: kCpumMicroarch_AMD_K7_Thoroughbred;
case 10: kCpumMicroarch_AMD_K7_Barton; /* Thorton too. */
}
return kCpumMicroarch_AMD_K7_Unknown;
case 0x0f:
/*
* This family is a friggin mess. Trying my best to make some
* sense out of it. Too much happened in the 0x0f family to
* lump it all together as K8 (130nm->90nm->65nm, AMD-V, ++).
*
* Emperical CPUID.01h.EAX evidence from revision guides, wikipedia,
* cpu-world.com, and other places:
* - 130nm:
* - ClawHammer: F7A/SH-CG, F5A/-CG, F4A/-CG, F50/-B0, F48/-C0, F58/-C0,
* - SledgeHammer: F50/SH-B0, F48/-C0, F58/-C0, F4A/-CG, F5A/-CG, F7A/-CG, F51/-B3
* - Newcastle: FC0/DH-CG (errum #180: FE0/DH-CG), FF0/DH-CG
* - Dublin: FC0/-CG, FF0/-CG, F82/CH-CG, F4A/-CG, F48/SH-C0,
* - Odessa: FC0/DH-CG (errum #180: FE0/DH-CG)
* - Paris: FF0/DH-CG, FC0/DH-CG (errum #180: FE0/DH-CG),
* - 90nm:
* - Winchester: 10FF0/DH-D0, 20FF0/DH-E3.
* - Oakville: 10FC0/DH-D0.
* - Georgetown: 10FC0/DH-D0.
* - Sonora: 10FC0/DH-D0.
* - Venus: 20F71/SH-E4
* - Troy: 20F51/SH-E4
* - Athens: 20F51/SH-E4
* - San Diego: 20F71/SH-E4.
* - Lancaster: 20F42/SH-E5
* - Newark: 20F42/SH-E5.
* - Albany: 20FC2/DH-E6.
* - Roma: 20FC2/DH-E6.
* - Venice: 20FF0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6.
* - Palermo: 10FC0/DH-D0, 20FF0/DH-E3, 20FC0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6
* - 90nm introducing Dual core:
* - Denmark: 20F30/JH-E1, 20F32/JH-E6
* - Italy: 20F10/JH-E1, 20F12/JH-E6
* - Egypt: 20F10/JH-E1, 20F12/JH-E6
* - Toledo: 20F32/JH-E6, 30F72/DH-E6 (single code variant).
* - Manchester: 20FB1/BH-E4, 30FF2/BH-E4.
* - 90nm 2nd gen opteron ++, AMD-V introduced (might be missing in some cheeper models):
* - Santa Ana: 40F32/JH-F2, /-F3
* - Santa Rosa: 40F12/JH-F2, 40F13/JH-F3
* - Windsor: 40F32/JH-F2, 40F33/JH-F3, C0F13/JH-F3, 40FB2/BH-F2, ??20FB1/BH-E4??.
* - Manila: 50FF2/DH-F2, 40FF2/DH-F2
* - Orleans: 40FF2/DH-F2, 50FF2/DH-F2, 50FF3/DH-F3.
* - Keene: 40FC2/DH-F2.
* - Richmond: 40FC2/DH-F2
* - Taylor: 40F82/BH-F2
* - Trinidad: 40F82/BH-F2
*
* - 65nm:
* - Brisbane: 60FB1/BH-G1, 60FB2/BH-G2.
* - Tyler: 60F81/BH-G1, 60F82/BH-G2.
* - Sparta: 70FF1/DH-G1, 70FF2/DH-G2.
* - Lima: 70FF1/DH-G1, 70FF2/DH-G2.
* - Sherman: /-G1, 70FC2/DH-G2.
* - Huron: 70FF2/DH-G2.
*/
if (bModel < 0x10)
return kCpumMicroarch_AMD_K8_130nm;
if (bModel >= 0x60 && bModel < 0x80)
return kCpumMicroarch_AMD_K8_65nm;
if (bModel >= 0x40)
return kCpumMicroarch_AMD_K8_90nm_AMDV;
switch (bModel)
{
case 0x21:
case 0x23:
case 0x2b:
case 0x2f:
case 0x37:
case 0x3f:
return kCpumMicroarch_AMD_K8_90nm_DualCore;
}
return kCpumMicroarch_AMD_K8_90nm;
case 0x10:
return kCpumMicroarch_AMD_K10;
case 0x11:
return kCpumMicroarch_AMD_K10_Lion;
case 0x12:
return kCpumMicroarch_AMD_K10_Llano;
case 0x14:
return kCpumMicroarch_AMD_Bobcat;
case 0x15:
switch (bModel)
{
case 0x00: return kCpumMicroarch_AMD_15h_Bulldozer; /* Any? prerelease? */
case 0x01: return kCpumMicroarch_AMD_15h_Bulldozer; /* Opteron 4200, FX-81xx. */
case 0x02: return kCpumMicroarch_AMD_15h_Piledriver; /* Opteron 4300, FX-83xx. */
case 0x10: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-5800K for e.g. */
case 0x11: /* ?? */
case 0x12: /* ?? */
case 0x13: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-6800K for e.g. */
}
return kCpumMicroarch_AMD_15h_Unknown;
case 0x16:
return kCpumMicroarch_AMD_Jaguar;
}
return kCpumMicroarch_AMD_Unknown;
}
if (enmVendor == CPUMCPUVENDOR_INTEL)
{
switch (bFamily)
{
case 3:
return kCpumMicroarch_Intel_80386;
case 4:
return kCpumMicroarch_Intel_80486;
case 5:
return kCpumMicroarch_Intel_P5;
case 6:
if (bModel < RT_ELEMENTS(g_aenmIntelFamily06))
return g_aenmIntelFamily06[bModel];
return kCpumMicroarch_Intel_Atom_Unknown;
case 15:
switch (bModel)
{
case 0: return kCpumMicroarch_Intel_NB_Willamette;
case 1: return kCpumMicroarch_Intel_NB_Willamette;
case 2: return kCpumMicroarch_Intel_NB_Northwood;
case 3: return kCpumMicroarch_Intel_NB_Prescott;
case 4: return kCpumMicroarch_Intel_NB_Prescott2M; /* ?? */
case 5: return kCpumMicroarch_Intel_NB_Unknown; /*??*/
case 6: return kCpumMicroarch_Intel_NB_CedarMill;
case 7: return kCpumMicroarch_Intel_NB_Gallatin;
default: return kCpumMicroarch_Intel_NB_Unknown;
}
break;
/* The following are not kosher but kind of follow intuitively from 6, 5 & 4. */
case 1:
return kCpumMicroarch_Intel_8086;
case 2:
return kCpumMicroarch_Intel_80286;
}
return kCpumMicroarch_Intel_Unknown;
}
if (enmVendor == CPUMCPUVENDOR_VIA)
{
switch (bFamily)
{
case 5:
switch (bModel)
{
case 1: return kCpumMicroarch_Centaur_C6;
case 4: return kCpumMicroarch_Centaur_C6;
case 8: return kCpumMicroarch_Centaur_C2;
case 9: return kCpumMicroarch_Centaur_C3;
}
break;
case 6:
switch (bModel)
{
case 5: return kCpumMicroarch_VIA_C3_M2;
case 6: return kCpumMicroarch_VIA_C3_C5A;
case 7: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5B : kCpumMicroarch_VIA_C3_C5C;
case 8: return kCpumMicroarch_VIA_C3_C5N;
case 9: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5XL : kCpumMicroarch_VIA_C3_C5P;
case 10: return kCpumMicroarch_VIA_C7_C5J;
case 15: return kCpumMicroarch_VIA_Isaiah;
}
break;
}
return kCpumMicroarch_VIA_Unknown;
}
if (enmVendor == CPUMCPUVENDOR_CYRIX)
{
switch (bFamily)
{
case 4:
switch (bModel)
{
case 9: return kCpumMicroarch_Cyrix_5x86;
}
break;
case 5:
switch (bModel)
{
case 2: return kCpumMicroarch_Cyrix_M1;
case 4: return kCpumMicroarch_Cyrix_MediaGX;
case 5: return kCpumMicroarch_Cyrix_MediaGXm;
}
break;
case 6:
switch (bModel)
{
case 0: return kCpumMicroarch_Cyrix_M2;
}
break;
}
return kCpumMicroarch_Cyrix_Unknown;
}
return kCpumMicroarch_Unknown;
}
/**
* Translates a microarchitecture enum value to the corresponding string
* constant.
*
* @returns Read-only string constant (omits "kCpumMicroarch_" prefix). Returns
* NULL if the value is invalid.
*
* @param enmMicroarch The enum value to convert.
*/
VMMR3DECL(const char *) CPUMR3MicroarchName(CPUMMICROARCH enmMicroarch)
{
switch (enmMicroarch)
{
#define CASE_RET_STR(enmValue) case enmValue: return #enmValue + (sizeof("kCpumMicroarch_") - 1)
CASE_RET_STR(kCpumMicroarch_Intel_8086);
CASE_RET_STR(kCpumMicroarch_Intel_80186);
CASE_RET_STR(kCpumMicroarch_Intel_80286);
CASE_RET_STR(kCpumMicroarch_Intel_80386);
CASE_RET_STR(kCpumMicroarch_Intel_80486);
CASE_RET_STR(kCpumMicroarch_Intel_P5);
CASE_RET_STR(kCpumMicroarch_Intel_P6);
CASE_RET_STR(kCpumMicroarch_Intel_P6_II);
CASE_RET_STR(kCpumMicroarch_Intel_P6_III);
CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Banias);
CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Dothan);
CASE_RET_STR(kCpumMicroarch_Intel_Core_Yonah);
CASE_RET_STR(kCpumMicroarch_Intel_Core2_Merom);
CASE_RET_STR(kCpumMicroarch_Intel_Core2_Penryn);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_Nehalem);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_Westmere);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_SandyBridge);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_IvyBridge);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_Haswell);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_Broadwell);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_Skylake);
CASE_RET_STR(kCpumMicroarch_Intel_Core7_Cannonlake);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Bonnell);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Lincroft);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Saltwell);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Silvermont);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Airmount);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Goldmont);
CASE_RET_STR(kCpumMicroarch_Intel_Atom_Unknown);
CASE_RET_STR(kCpumMicroarch_Intel_NB_Willamette);
CASE_RET_STR(kCpumMicroarch_Intel_NB_Northwood);
CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott);
CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott2M);
CASE_RET_STR(kCpumMicroarch_Intel_NB_CedarMill);
CASE_RET_STR(kCpumMicroarch_Intel_NB_Gallatin);
CASE_RET_STR(kCpumMicroarch_Intel_NB_Unknown);
CASE_RET_STR(kCpumMicroarch_Intel_Unknown);
CASE_RET_STR(kCpumMicroarch_AMD_Am286);
CASE_RET_STR(kCpumMicroarch_AMD_Am386);
CASE_RET_STR(kCpumMicroarch_AMD_Am486);
CASE_RET_STR(kCpumMicroarch_AMD_Am486Enh);
CASE_RET_STR(kCpumMicroarch_AMD_K5);
CASE_RET_STR(kCpumMicroarch_AMD_K6);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Palomino);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Spitfire);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Thunderbird);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Morgan);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Thoroughbred);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Barton);
CASE_RET_STR(kCpumMicroarch_AMD_K7_Unknown);
CASE_RET_STR(kCpumMicroarch_AMD_K8_130nm);
CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm);
CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_DualCore);
CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_AMDV);
CASE_RET_STR(kCpumMicroarch_AMD_K8_65nm);
CASE_RET_STR(kCpumMicroarch_AMD_K10);
CASE_RET_STR(kCpumMicroarch_AMD_K10_Lion);
CASE_RET_STR(kCpumMicroarch_AMD_K10_Llano);
CASE_RET_STR(kCpumMicroarch_AMD_Bobcat);
CASE_RET_STR(kCpumMicroarch_AMD_Jaguar);
CASE_RET_STR(kCpumMicroarch_AMD_15h_Bulldozer);
CASE_RET_STR(kCpumMicroarch_AMD_15h_Piledriver);
CASE_RET_STR(kCpumMicroarch_AMD_15h_Steamroller);
CASE_RET_STR(kCpumMicroarch_AMD_15h_Excavator);
CASE_RET_STR(kCpumMicroarch_AMD_15h_Unknown);
CASE_RET_STR(kCpumMicroarch_AMD_16h_First);
CASE_RET_STR(kCpumMicroarch_AMD_Unknown);
CASE_RET_STR(kCpumMicroarch_Centaur_C6);
CASE_RET_STR(kCpumMicroarch_Centaur_C2);
CASE_RET_STR(kCpumMicroarch_Centaur_C3);
CASE_RET_STR(kCpumMicroarch_VIA_C3_M2);
CASE_RET_STR(kCpumMicroarch_VIA_C3_C5A);
CASE_RET_STR(kCpumMicroarch_VIA_C3_C5B);
CASE_RET_STR(kCpumMicroarch_VIA_C3_C5C);
CASE_RET_STR(kCpumMicroarch_VIA_C3_C5N);
CASE_RET_STR(kCpumMicroarch_VIA_C3_C5XL);
CASE_RET_STR(kCpumMicroarch_VIA_C3_C5P);
CASE_RET_STR(kCpumMicroarch_VIA_C7_C5J);
CASE_RET_STR(kCpumMicroarch_VIA_Isaiah);
CASE_RET_STR(kCpumMicroarch_VIA_Unknown);
CASE_RET_STR(kCpumMicroarch_Cyrix_5x86);
CASE_RET_STR(kCpumMicroarch_Cyrix_M1);
CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGX);
CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGXm);
CASE_RET_STR(kCpumMicroarch_Cyrix_M2);
CASE_RET_STR(kCpumMicroarch_Cyrix_Unknown);
CASE_RET_STR(kCpumMicroarch_Unknown);
#undef CASE_RET_STR
case kCpumMicroarch_Invalid:
case kCpumMicroarch_Intel_End:
case kCpumMicroarch_Intel_Core7_End:
case kCpumMicroarch_Intel_Atom_End:
case kCpumMicroarch_Intel_P6_Core_Atom_End:
case kCpumMicroarch_Intel_NB_End:
case kCpumMicroarch_AMD_K7_End:
case kCpumMicroarch_AMD_K8_End:
case kCpumMicroarch_AMD_15h_End:
case kCpumMicroarch_AMD_16h_End:
case kCpumMicroarch_AMD_End:
case kCpumMicroarch_VIA_End:
case kCpumMicroarch_Cyrix_End:
case kCpumMicroarch_32BitHack:
break;
/* no default! */
}
return NULL;
}
/**
* Gets a matching leaf in the CPUID leaf array.
*
* @returns Pointer to the matching leaf, or NULL if not found.
* @param paLeaves The CPUID leaves to search. This is sorted.
* @param cLeaves The number of leaves in the array.
* @param uLeaf The leaf to locate.
* @param uSubLeaf The subleaf to locate. Pass 0 if no subleaves.
*/
PCPUMCPUIDLEAF cpumR3CpuIdGetLeaf(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf)
{
/* Lazy bird does linear lookup here since this is only used for the
occational CPUID overrides. */
for (uint32_t i = 0; i < cLeaves; i++)
if ( paLeaves[i].uLeaf == uLeaf
&& paLeaves[i].uSubLeaf == (uSubLeaf & paLeaves[i].fSubLeafMask))
return &paLeaves[i];
return NULL;
}
/**
* Gets a matching leaf in the CPUID leaf array, converted to a CPUMCPUID.
*
* @returns true if found, false it not.
* @param paLeaves The CPUID leaves to search. This is sorted.
* @param cLeaves The number of leaves in the array.
* @param uLeaf The leaf to locate.
* @param uSubLeaf The subleaf to locate. Pass 0 if no subleaves.
* @param pLegacy The legacy output leaf.
*/
bool cpumR3CpuIdGetLeafLegacy(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf, PCPUMCPUID pLeagcy)
{
PCPUMCPUIDLEAF pLeaf = cpumR3CpuIdGetLeaf(paLeaves, cLeaves, uLeaf, uSubLeaf);
if (pLeaf)
{
pLeagcy->eax = pLeaf->uEax;
pLeagcy->ebx = pLeaf->uEbx;
pLeagcy->ecx = pLeaf->uEcx;
pLeagcy->edx = pLeaf->uEdx;
return true;
}
return false;
}
/**
* Ensures that the CPUID leaf array can hold one more leaf.
*
* @returns Pointer to the CPUID leaf array (*ppaLeaves) on success. NULL on
* failure.
* @param ppaLeaves Pointer to the variable holding the array
* pointer (input/output).
* @param cLeaves The current array size.
*/
static PCPUMCPUIDLEAF cpumR3CpuIdEnsureSpace(PCPUMCPUIDLEAF *ppaLeaves, uint32_t cLeaves)
{
uint32_t cAllocated = RT_ALIGN(cLeaves, 16);
if (cLeaves + 1 > cAllocated)
{
void *pvNew = RTMemRealloc(*ppaLeaves, (cAllocated + 16) * sizeof(**ppaLeaves));
if (!pvNew)
{
RTMemFree(*ppaLeaves);
*ppaLeaves = NULL;
return NULL;
}
*ppaLeaves = (PCPUMCPUIDLEAF)pvNew;
}
return *ppaLeaves;
}
/**
* Append a CPUID leaf or sub-leaf.
*
* ASSUMES linear insertion order, so we'll won't need to do any searching or
* replace anything. Use cpumR3CpuIdInsert for those cases.
*
* @returns VINF_SUCCESS or VERR_NO_MEMORY. On error, *ppaLeaves is freed, so
* the caller need do no more work.
* @param ppaLeaves Pointer to the the pointer to the array of sorted
* CPUID leaves and sub-leaves.
* @param pcLeaves Where we keep the leaf count for *ppaLeaves.
* @param uLeaf The leaf we're adding.
* @param uSubLeaf The sub-leaf number.
* @param fSubLeafMask The sub-leaf mask.
* @param uEax The EAX value.
* @param uEbx The EBX value.
* @param uEcx The ECX value.
* @param uEdx The EDX value.
* @param fFlags The flags.
*/
static int cpumR3CollectCpuIdInfoAddOne(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves,
uint32_t uLeaf, uint32_t uSubLeaf, uint32_t fSubLeafMask,
uint32_t uEax, uint32_t uEbx, uint32_t uEcx, uint32_t uEdx, uint32_t fFlags)
{
if (!cpumR3CpuIdEnsureSpace(ppaLeaves, *pcLeaves))
return VERR_NO_MEMORY;
PCPUMCPUIDLEAF pNew = &(*ppaLeaves)[*pcLeaves];
Assert( *pcLeaves == 0
|| pNew[-1].uLeaf < uLeaf
|| (pNew[-1].uLeaf == uLeaf && pNew[-1].uSubLeaf < uSubLeaf) );
pNew->uLeaf = uLeaf;
pNew->uSubLeaf = uSubLeaf;
pNew->fSubLeafMask = fSubLeafMask;
pNew->uEax = uEax;
pNew->uEbx = uEbx;
pNew->uEcx = uEcx;
pNew->uEdx = uEdx;
pNew->fFlags = fFlags;
*pcLeaves += 1;
return VINF_SUCCESS;
}
/**
* Inserts a CPU ID leaf, replacing any existing ones.
*
* When inserting a simple leaf where we already got a series of subleaves with
* the same leaf number (eax), the simple leaf will replace the whole series.
*
* This ASSUMES that the leave array is still on the normal heap and has only
* been allocated/reallocated by the cpumR3CpuIdEnsureSpace function.
*
* @returns VBox status code.
* @param ppaLeaves Pointer to the the pointer to the array of sorted
* CPUID leaves and sub-leaves.
* @param pcLeaves Where we keep the leaf count for *ppaLeaves.
* @param pNewLeaf Pointer to the data of the new leaf we're about to
* insert.
*/
int cpumR3CpuIdInsert(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves, PCPUMCPUIDLEAF pNewLeaf)
{
PCPUMCPUIDLEAF paLeaves = *ppaLeaves;
uint32_t cLeaves = *pcLeaves;
/*
* Validate the new leaf a little.
*/
AssertReturn(!(pNewLeaf->fFlags & ~CPUMCPUIDLEAF_F_SUBLEAVES_ECX_UNCHANGED), VERR_INVALID_FLAGS);
AssertReturn(pNewLeaf->fSubLeafMask != 0 || pNewLeaf->uSubLeaf == 0, VERR_INVALID_PARAMETER);
AssertReturn(RT_IS_POWER_OF_TWO(pNewLeaf->fSubLeafMask + 1), VERR_INVALID_PARAMETER);
AssertReturn((pNewLeaf->fSubLeafMask & pNewLeaf->uSubLeaf) == pNewLeaf->uSubLeaf, VERR_INVALID_PARAMETER);
/*
* Find insertion point. The lazy bird uses the same excuse as in
* cpumR3CpuIdGetLeaf().
*/
uint32_t i = 0;
while ( i < cLeaves
&& paLeaves[i].uLeaf < pNewLeaf->uLeaf)
i++;
if ( i < cLeaves
&& paLeaves[i].uLeaf == pNewLeaf->uLeaf)
{
if (paLeaves[i].fSubLeafMask != pNewLeaf->fSubLeafMask)
{
/*
* The subleaf mask differs, replace all existing leaves with the
* same leaf number.
*/
uint32_t c = 1;
while ( i + c < cLeaves
&& paLeaves[i + c].uSubLeaf == pNewLeaf->uLeaf)
c++;
if (c > 1 && i + c < cLeaves)
{
memmove(&paLeaves[i + c], &paLeaves[i + 1], (cLeaves - i - c) * sizeof(paLeaves[0]));
*pcLeaves = cLeaves -= c - 1;
}
paLeaves[i] = *pNewLeaf;
return VINF_SUCCESS;
}
/* Find subleaf insertion point. */
while ( i < cLeaves
&& paLeaves[i].uSubLeaf < pNewLeaf->uSubLeaf)
i++;
/*
* If we've got an exactly matching leaf, replace it.
*/
if ( paLeaves[i].uLeaf == pNewLeaf->uLeaf
&& paLeaves[i].uSubLeaf == pNewLeaf->uSubLeaf)
{
paLeaves[i] = *pNewLeaf;
return VINF_SUCCESS;
}
}
/*
* Adding a new leaf at 'i'.
*/
paLeaves = cpumR3CpuIdEnsureSpace(ppaLeaves, cLeaves);
if (!paLeaves)
return VERR_NO_MEMORY;
if (i < cLeaves)
memmove(&paLeaves[i + 1], &paLeaves[i], (cLeaves - i) * sizeof(paLeaves[0]));
*pcLeaves += 1;
paLeaves[i] = *pNewLeaf;
return VINF_SUCCESS;
}
/**
* Removes a range of CPUID leaves.
*
* This will not reallocate the array.
*
* @param paLeaves The array of sorted CPUID leaves and sub-leaves.
* @param pcLeaves Where we keep the leaf count for @a paLeaves.
* @param uFirst The first leaf.
* @param uLast The last leaf.
*/
void cpumR3CpuIdRemoveRange(PCPUMCPUIDLEAF paLeaves, uint32_t *pcLeaves, uint32_t uFirst, uint32_t uLast)
{
uint32_t cLeaves = *pcLeaves;
Assert(uFirst <= uLast);
/*
* Find the first one.
*/
uint32_t iFirst = 0;
while ( iFirst < cLeaves
&& paLeaves[iFirst].uLeaf < uFirst)
iFirst++;
/*
* Find the end (last + 1).
*/
uint32_t iEnd = iFirst;
while ( iEnd < cLeaves
&& paLeaves[iEnd].uLeaf <= uLast)
iEnd++;
/*
* Adjust the array if anything needs removing.
*/
if (iFirst < iEnd)
{
if (iEnd < cLeaves)
memmove(&paLeaves[iFirst], &paLeaves[iEnd], (cLeaves - iEnd) * sizeof(paLeaves[0]));
*pcLeaves = cLeaves -= (iEnd - iFirst);
}
}
/**
* Checks if ECX make a difference when reading a given CPUID leaf.
*
* @returns @c true if it does, @c false if it doesn't.
* @param uLeaf The leaf we're reading.
* @param pcSubLeaves Number of sub-leaves accessible via ECX.
* @param pfFinalEcxUnchanged Whether ECX is passed thru when going beyond the
* final sub-leaf.
*/
static bool cpumR3IsEcxRelevantForCpuIdLeaf(uint32_t uLeaf, uint32_t *pcSubLeaves, bool *pfFinalEcxUnchanged)
{
*pfFinalEcxUnchanged = false;
uint32_t auPrev[4];
ASMCpuIdExSlow(uLeaf, 0, 0, 0, &auPrev[0], &auPrev[1], &auPrev[2], &auPrev[3]);
/* Look for sub-leaves. */
uint32_t uSubLeaf = 1;
for (;;)
{
uint32_t auCur[4];
ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
if (memcmp(auCur, auPrev, sizeof(auCur)))
break;
/* Advance / give up. */
uSubLeaf++;
if (uSubLeaf >= 64)
{
*pcSubLeaves = 1;
return false;
}
}
/* Count sub-leaves. */
uSubLeaf = 0;
for (;;)
{
uint32_t auCur[4];
ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
/* Exactly when this terminates isn't quite consistent. When working
0xb, we should probably only check if ebx == 0... */
if ( auCur[0] == 0
&& auCur[1] == 0
&& (auCur[2] == 0 || auCur[2] == uSubLeaf)
&& (auCur[3] == 0 || uLeaf == 0xb) )
{
if (auCur[2] == uSubLeaf)
*pfFinalEcxUnchanged = true;
*pcSubLeaves = uSubLeaf + 1;
return true;
}
/* Advance / give up. */
uSubLeaf++;
if (uSubLeaf >= 128)
{
*pcSubLeaves = UINT32_MAX;
return true;
}
}
}
/**
* Collects CPUID leaves and sub-leaves, returning a sorted array of them.
*
* @returns VBox status code.
* @param ppaLeaves Where to return the array pointer on success.
* Use RTMemFree to release.
* @param pcLeaves Where to return the size of the array on
* success.
*/
VMMR3DECL(int) CPUMR3CpuIdCollectLeaves(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves)
{
*ppaLeaves = NULL;
*pcLeaves = 0;
/*
* Try out various candidates. This must be sorted!
*/
static struct { uint32_t uMsr; bool fSpecial; } const s_aCandidates[] =
{
{ UINT32_C(0x00000000), false },
{ UINT32_C(0x10000000), false },
{ UINT32_C(0x20000000), false },
{ UINT32_C(0x30000000), false },
{ UINT32_C(0x40000000), false },
{ UINT32_C(0x50000000), false },
{ UINT32_C(0x60000000), false },
{ UINT32_C(0x70000000), false },
{ UINT32_C(0x80000000), false },
{ UINT32_C(0x80860000), false },
{ UINT32_C(0x8ffffffe), true },
{ UINT32_C(0x8fffffff), true },
{ UINT32_C(0x90000000), false },
{ UINT32_C(0xa0000000), false },
{ UINT32_C(0xb0000000), false },
{ UINT32_C(0xc0000000), false },
{ UINT32_C(0xd0000000), false },
{ UINT32_C(0xe0000000), false },
{ UINT32_C(0xf0000000), false },
};
for (uint32_t iOuter = 0; iOuter < RT_ELEMENTS(s_aCandidates); iOuter++)
{
uint32_t uLeaf = s_aCandidates[iOuter].uMsr;
uint32_t uEax, uEbx, uEcx, uEdx;
ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx);
/*
* Does EAX look like a typical leaf count value?
*/
if ( uEax > uLeaf
&& uEax - uLeaf < UINT32_C(0xff)) /* Adjust 0xff limit when exceeded by real HW. */
{
/* Yes, dump them. */
uint32_t cLeaves = uEax - uLeaf + 1;
while (cLeaves-- > 0)
{
/* Check three times here to reduce the chance of CPU migration
resulting in false positives with things like the APIC ID. */
uint32_t cSubLeaves;
bool fFinalEcxUnchanged;
if ( cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)
&& cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)
&& cpumR3IsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged))
{
if (cSubLeaves > 16)
return VERR_CPUM_TOO_MANY_CPUID_SUBLEAVES;
for (uint32_t uSubLeaf = 0; uSubLeaf < cSubLeaves; uSubLeaf++)
{
ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &uEax, &uEbx, &uEcx, &uEdx);
int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
uLeaf, uSubLeaf, UINT32_MAX, uEax, uEbx, uEcx, uEdx,
uSubLeaf + 1 == cSubLeaves && fFinalEcxUnchanged
? CPUMCPUIDLEAF_F_SUBLEAVES_ECX_UNCHANGED : 0);
if (RT_FAILURE(rc))
return rc;
}
}
else
{
ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx);
int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0);
if (RT_FAILURE(rc))
return rc;
}
/* next */
uLeaf++;
}
}
/*
* Special CPUIDs needs special handling as they don't follow the
* leaf count principle used above.
*/
else if (s_aCandidates[iOuter].fSpecial)
{
bool fKeep = false;
if (uLeaf == 0x8ffffffe && uEax == UINT32_C(0x00494544))
fKeep = true;
else if ( uLeaf == 0x8fffffff
&& RT_C_IS_PRINT(RT_BYTE1(uEax))
&& RT_C_IS_PRINT(RT_BYTE2(uEax))
&& RT_C_IS_PRINT(RT_BYTE3(uEax))
&& RT_C_IS_PRINT(RT_BYTE4(uEax))
&& RT_C_IS_PRINT(RT_BYTE1(uEbx))
&& RT_C_IS_PRINT(RT_BYTE2(uEbx))
&& RT_C_IS_PRINT(RT_BYTE3(uEbx))
&& RT_C_IS_PRINT(RT_BYTE4(uEbx))
&& RT_C_IS_PRINT(RT_BYTE1(uEcx))
&& RT_C_IS_PRINT(RT_BYTE2(uEcx))
&& RT_C_IS_PRINT(RT_BYTE3(uEcx))
&& RT_C_IS_PRINT(RT_BYTE4(uEcx))
&& RT_C_IS_PRINT(RT_BYTE1(uEdx))
&& RT_C_IS_PRINT(RT_BYTE2(uEdx))
&& RT_C_IS_PRINT(RT_BYTE3(uEdx))
&& RT_C_IS_PRINT(RT_BYTE4(uEdx)) )
fKeep = true;
if (fKeep)
{
int rc = cpumR3CollectCpuIdInfoAddOne(ppaLeaves, pcLeaves,
uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0);
if (RT_FAILURE(rc))
return rc;
}
}
}
return VINF_SUCCESS;
}
/**
* Determines the method the CPU uses to handle unknown CPUID leaves.
*
* @returns VBox status code.
* @param penmUnknownMethod Where to return the method.
* @param pDefUnknown Where to return default unknown values. This
* will be set, even if the resulting method
* doesn't actually needs it.
*/
VMMR3DECL(int) CPUMR3CpuIdDetectUnknownLeafMethod(PCPUMUKNOWNCPUID penmUnknownMethod, PCPUMCPUID pDefUnknown)
{
uint32_t uLastStd = ASMCpuId_EAX(0);
uint32_t uLastExt = ASMCpuId_EAX(0x80000000);
if (!ASMIsValidExtRange(uLastExt))
uLastExt = 0x80000000;
uint32_t auChecks[] =
{
uLastStd + 1,
uLastStd + 5,
uLastStd + 8,
uLastStd + 32,
uLastStd + 251,
uLastExt + 1,
uLastExt + 8,
uLastExt + 15,
uLastExt + 63,
uLastExt + 255,
0x7fbbffcc,
0x833f7872,
0xefff2353,
0x35779456,
0x1ef6d33e,
};
static const uint32_t s_auValues[] =
{
0xa95d2156,
0x00000001,
0x00000002,
0x00000008,
0x00000000,
0x55773399,
0x93401769,
0x12039587,
};
/*
* Simple method, all zeros.
*/
*penmUnknownMethod = CPUMUKNOWNCPUID_DEFAULTS;
pDefUnknown->eax = 0;
pDefUnknown->ebx = 0;
pDefUnknown->ecx = 0;
pDefUnknown->edx = 0;
/*
* Intel has been observed returning the last standard leaf.
*/
uint32_t auLast[4];
ASMCpuIdExSlow(uLastStd, 0, 0, 0, &auLast[0], &auLast[1], &auLast[2], &auLast[3]);
uint32_t cChecks = RT_ELEMENTS(auChecks);
while (cChecks > 0)
{
uint32_t auCur[4];
ASMCpuIdExSlow(auChecks[cChecks - 1], 0, 0, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
if (memcmp(auCur, auLast, sizeof(auCur)))
break;
cChecks--;
}
if (cChecks == 0)
{
/* Now, what happens when the input changes? Esp. ECX. */
uint32_t cTotal = 0;
uint32_t cSame = 0;
uint32_t cLastWithEcx = 0;
uint32_t cNeither = 0;
uint32_t cValues = RT_ELEMENTS(s_auValues);
while (cValues > 0)
{
uint32_t uValue = s_auValues[cValues - 1];
uint32_t auLastWithEcx[4];
ASMCpuIdExSlow(uLastStd, uValue, uValue, uValue,
&auLastWithEcx[0], &auLastWithEcx[1], &auLastWithEcx[2], &auLastWithEcx[3]);
cChecks = RT_ELEMENTS(auChecks);
while (cChecks > 0)
{
uint32_t auCur[4];
ASMCpuIdExSlow(auChecks[cChecks - 1], uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
if (!memcmp(auCur, auLast, sizeof(auCur)))
{
cSame++;
if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
cLastWithEcx++;
}
else if (!memcmp(auCur, auLastWithEcx, sizeof(auCur)))
cLastWithEcx++;
else
cNeither++;
cTotal++;
cChecks--;
}
cValues--;
}
RTStrmPrintf(g_pStdErr, "cNeither=%d cSame=%d cLastWithEcx=%d cTotal=%d\n", cNeither, cSame, cLastWithEcx, cTotal);
if (cSame == cTotal)
*penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF;
else if (cLastWithEcx == cTotal)
*penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF_WITH_ECX;
else
*penmUnknownMethod = CPUMUKNOWNCPUID_LAST_STD_LEAF;
pDefUnknown->eax = auLast[0];
pDefUnknown->ebx = auLast[1];
pDefUnknown->ecx = auLast[2];
pDefUnknown->edx = auLast[3];
return VINF_SUCCESS;
}
/*
* Unchanged register values?
*/
cChecks = RT_ELEMENTS(auChecks);
while (cChecks > 0)
{
uint32_t const uLeaf = auChecks[cChecks - 1];
uint32_t cValues = RT_ELEMENTS(s_auValues);
while (cValues > 0)
{
uint32_t uValue = s_auValues[cValues - 1];
uint32_t auCur[4];
ASMCpuIdExSlow(uLeaf, uValue, uValue, uValue, &auCur[0], &auCur[1], &auCur[2], &auCur[3]);
if ( auCur[0] != uLeaf
|| auCur[1] != uValue
|| auCur[2] != uValue
|| auCur[3] != uValue)
break;
cValues--;
}
if (cValues != 0)
break;
cChecks--;
}
if (cChecks == 0)
{
*penmUnknownMethod = CPUMUKNOWNCPUID_PASSTHRU;
return VINF_SUCCESS;
}
/*
* Just go with the simple method.
*/
return VINF_SUCCESS;
}
/**
* Translates a unknow CPUID leaf method into the constant name (sans prefix).
*
* @returns Read only name string.
* @param enmUnknownMethod The method to translate.
*/
VMMR3DECL(const char *) CPUMR3CpuIdUnknownLeafMethodName(CPUMUKNOWNCPUID enmUnknownMethod)
{
switch (enmUnknownMethod)
{
case CPUMUKNOWNCPUID_DEFAULTS: return "DEFAULTS";
case CPUMUKNOWNCPUID_LAST_STD_LEAF: return "LAST_STD_LEAF";
case CPUMUKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: return "LAST_STD_LEAF_WITH_ECX";
case CPUMUKNOWNCPUID_PASSTHRU: return "PASSTHRU";
case CPUMUKNOWNCPUID_INVALID:
case CPUMUKNOWNCPUID_END:
case CPUMUKNOWNCPUID_32BIT_HACK:
break;
}
return "Invalid-unknown-CPUID-method";
}
/**
* Detect the CPU vendor give n the
*
* @returns The vendor.
* @param uEAX EAX from CPUID(0).
* @param uEBX EBX from CPUID(0).
* @param uECX ECX from CPUID(0).
* @param uEDX EDX from CPUID(0).
*/
VMMR3DECL(CPUMCPUVENDOR) CPUMR3CpuIdDetectVendorEx(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
{
if (ASMIsValidStdRange(uEAX))
{
if (ASMIsAmdCpuEx(uEBX, uECX, uEDX))
return CPUMCPUVENDOR_AMD;
if (ASMIsIntelCpuEx(uEBX, uECX, uEDX))
return CPUMCPUVENDOR_INTEL;
if (ASMIsViaCentaurCpuEx(uEBX, uECX, uEDX))
return CPUMCPUVENDOR_VIA;
if ( uEBX == UINT32_C(0x69727943) /* CyrixInstead */
&& uECX == UINT32_C(0x64616574)
&& uEDX == UINT32_C(0x736E4978))
return CPUMCPUVENDOR_CYRIX;
/* "Geode by NSC", example: family 5, model 9. */
/** @todo detect the other buggers... */
}
return CPUMCPUVENDOR_UNKNOWN;
}
/**
* Translates a CPU vendor enum value into the corresponding string constant.
*
* The named can be prefixed with 'CPUMCPUVENDOR_' to construct a valid enum
* value name. This can be useful when generating code.
*
* @returns Read only name string.
* @param enmVendor The CPU vendor value.
*/
VMMR3DECL(const char *) CPUMR3CpuVendorName(CPUMCPUVENDOR enmVendor)
{
switch (enmVendor)
{
case CPUMCPUVENDOR_INTEL: return "INTEL";
case CPUMCPUVENDOR_AMD: return "AMD";
case CPUMCPUVENDOR_VIA: return "VIA";
case CPUMCPUVENDOR_CYRIX: return "CYRIX";
case CPUMCPUVENDOR_UNKNOWN: return "UNKNOWN";
case CPUMCPUVENDOR_INVALID:
case CPUMCPUVENDOR_32BIT_HACK:
break;
}
return "Invalid-cpu-vendor";
}
static PCCPUMCPUIDLEAF cpumR3CpuIdFindLeaf(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf)
{
/* Could do binary search, doing linear now because I'm lazy. */
PCCPUMCPUIDLEAF pLeaf = paLeaves;
while (cLeaves-- > 0)
{
if (pLeaf->uLeaf == uLeaf)
return pLeaf;
pLeaf++;
}
return NULL;
}
int cpumR3CpuIdExplodeFeatures(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCPUMFEATURES pFeatures)
{
RT_ZERO(*pFeatures);
if (cLeaves >= 2)
{
AssertLogRelReturn(paLeaves[0].uLeaf == 0, VERR_CPUM_IPE_1);
AssertLogRelReturn(paLeaves[1].uLeaf == 1, VERR_CPUM_IPE_1);
pFeatures->enmCpuVendor = CPUMR3CpuIdDetectVendorEx(paLeaves[0].uEax,
paLeaves[0].uEbx,
paLeaves[0].uEcx,
paLeaves[0].uEdx);
pFeatures->uFamily = ASMGetCpuFamily(paLeaves[1].uEax);
pFeatures->uModel = ASMGetCpuModel(paLeaves[1].uEax, pFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL);
pFeatures->uStepping = ASMGetCpuStepping(paLeaves[1].uEax);
pFeatures->enmMicroarch = CPUMR3CpuIdDetermineMicroarchEx((CPUMCPUVENDOR)pFeatures->enmCpuVendor,
pFeatures->uFamily,
pFeatures->uModel,
pFeatures->uStepping);
PCCPUMCPUIDLEAF pLeaf = cpumR3CpuIdFindLeaf(paLeaves, cLeaves, 0x80000008);
if (pLeaf)
pFeatures->cMaxPhysAddrWidth = pLeaf->uEax & 0xff;
else if (paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE36)
pFeatures->cMaxPhysAddrWidth = 36;
else
pFeatures->cMaxPhysAddrWidth = 32;
/* Standard features. */
pFeatures->fMsr = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_MSR);
pFeatures->fApic = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_APIC);
pFeatures->fX2Apic = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_X2APIC);
pFeatures->fPse = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE);
pFeatures->fPse36 = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PSE36);
pFeatures->fPae = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PAE);
pFeatures->fPat = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_PAT);
pFeatures->fFxSaveRstor = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_FXSR);
pFeatures->fSysEnter = RT_BOOL(paLeaves[1].uEdx & X86_CPUID_FEATURE_EDX_SEP);
pFeatures->fHypervisorPresent = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_HVP);
pFeatures->fMonitorMWait = RT_BOOL(paLeaves[1].uEcx & X86_CPUID_FEATURE_ECX_MONITOR);
/* Extended features. */
PCCPUMCPUIDLEAF const pExtLeaf = cpumR3CpuIdFindLeaf(paLeaves, cLeaves, 0x80000001);
if (pExtLeaf)
{
pFeatures->fLongMode = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE);
pFeatures->fSysCall = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL);
pFeatures->fNoExecute = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_NX);
pFeatures->fLahfSahf = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF);
pFeatures->fRdTscP = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_RDTSCP);
}
if ( pExtLeaf
&& pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD)
{
/* AMD features. */
pFeatures->fMsr |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_MSR);
pFeatures->fApic |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_APIC);
pFeatures->fPse |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE);
pFeatures->fPse36 |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE36);
pFeatures->fPae |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAE);
pFeatures->fPat |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAT);
pFeatures->fFxSaveRstor |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FXSR);
}
/*
* Quirks.
*/
pFeatures->fLeakyFxSR = pExtLeaf
&& (pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
&& pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD
&& pFeatures->uFamily >= 6 /* K7 and up */;
}
else
AssertLogRelReturn(cLeaves == 0, VERR_CPUM_IPE_1);
return VINF_SUCCESS;
}