CPUM.cpp revision 4306e52e991acec6ff7cfdadd4235a70689c9700
/* $Id$ */
/** @file
* CPUM - CPU Monitor / Manager.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_cpum CPUM - CPU Monitor / Manager
*
* The CPU Monitor / Manager keeps track of all the CPU registers. It is
* also responsible for lazy FPU handling and some of the context loading
* in raw mode.
*
* There are three CPU contexts, the most important one is the guest one (GC).
* When running in raw-mode (RC) there is a special hyper context for the VMM
* part that floats around inside the guest address space. When running in
* raw-mode, CPUM also maintains a host context for saving and restoring
* registers across world switches. This latter is done in cooperation with the
* world switcher (@see pg_vmm).
*
* @see grp_cpum
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_CPUM
#include <VBox/vmm/cpum.h>
#include <VBox/vmm/cpumdis.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/selm.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/patm.h>
#include <VBox/vmm/hwaccm.h>
#include <VBox/vmm/ssm.h>
#include "CPUMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/param.h>
#include <VBox/dis.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/string.h>
#include <iprt/mp.h>
#include <iprt/cpuset.h>
#include "internal/pgm.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The current saved state version. */
#define CPUM_SAVED_STATE_VERSION 12
/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
* selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
#define CPUM_SAVED_STATE_VERSION_VER3_2 11
/** The saved state version of 3.0 and 3.1 trunk before the teleportation
* changes. */
#define CPUM_SAVED_STATE_VERSION_VER3_0 10
/** The saved state version for the 2.1 trunk before the MSR changes. */
#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
/** The saved state version of 2.0, used for backwards compatibility. */
#define CPUM_SAVED_STATE_VERSION_VER2_0 8
/** The saved state version of 1.6, used for backwards compatibility. */
#define CPUM_SAVED_STATE_VERSION_VER1_6 6
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* What kind of cpu info dump to perform.
*/
typedef enum CPUMDUMPTYPE
{
CPUMDUMPTYPE_TERSE,
CPUMDUMPTYPE_DEFAULT,
CPUMDUMPTYPE_VERBOSE
} CPUMDUMPTYPE;
/** Pointer to a cpu info dump type. */
typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
static int cpumR3CpuIdInit(PVM pVM);
static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
/**
* Initializes the CPUM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) CPUMR3Init(PVM pVM)
{
LogFlow(("CPUMR3Init\n"));
/*
* Assert alignment and sizes.
*/
AssertCompileMemberAlignment(VM, cpum.s, 32);
AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
AssertCompileSizeAlignment(CPUMCTX, 64);
AssertCompileSizeAlignment(CPUMCTXMSR, 64);
AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
AssertCompileMemberAlignment(VM, cpum, 64);
AssertCompileMemberAlignment(VM, aCpus, 64);
AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
/* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
/* Calculate the offset from CPUMCPU to CPUM. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
/*
* Setup any fixed pointers and offsets.
*/
pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
}
/*
* Check that the CPU supports the minimum features we require.
*/
if (!ASMHasCpuId())
{
Log(("The CPU doesn't support CPUID!\n"));
return VERR_UNSUPPORTED_CPU;
}
ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
/* Setup the CR4 AND and OR masks used in the switcher */
/* Depends on the presence of FXSAVE(SSE) support on the host CPU */
if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
{
Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
/* No FXSAVE implies no SSE */
pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
pVM->cpum.s.CR4.OrMask = 0;
}
else
{
pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
}
if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
{
Log(("The CPU doesn't support MMX!\n"));
return VERR_UNSUPPORTED_CPU;
}
if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
{
Log(("The CPU doesn't support TSC!\n"));
return VERR_UNSUPPORTED_CPU;
}
/* Bogus on AMD? */
if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
/*
* Detect the host CPU vendor.
* (The guest CPU vendor is re-detected later on.)
*/
uint32_t uEAX, uEBX, uECX, uEDX;
ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
/*
* Setup hypervisor startup values.
*/
/*
* Register saved state data item.
*/
int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
NULL, cpumR3LiveExec, NULL,
NULL, cpumR3SaveExec, NULL,
cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
if (RT_FAILURE(rc))
return rc;
/*
* Register info handlers and registers with the debugger facility.
*/
DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
rc = cpumR3DbgInit(pVM);
if (RT_FAILURE(rc))
return rc;
/*
* Initialize the Guest CPUID state.
*/
rc = cpumR3CpuIdInit(pVM);
if (RT_FAILURE(rc))
return rc;
CPUMR3Reset(pVM);
return VINF_SUCCESS;
}
/**
* Detect the CPU vendor give n the
*
* @returns The vendor.
* @param uEAX EAX from CPUID(0).
* @param uEBX EBX from CPUID(0).
* @param uECX ECX from CPUID(0).
* @param uEDX EDX from CPUID(0).
*/
static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
{
if ( uEAX >= 1
&& uEBX == X86_CPUID_VENDOR_AMD_EBX
&& uECX == X86_CPUID_VENDOR_AMD_ECX
&& uEDX == X86_CPUID_VENDOR_AMD_EDX)
return CPUMCPUVENDOR_AMD;
if ( uEAX >= 1
&& uEBX == X86_CPUID_VENDOR_INTEL_EBX
&& uECX == X86_CPUID_VENDOR_INTEL_ECX
&& uEDX == X86_CPUID_VENDOR_INTEL_EDX)
return CPUMCPUVENDOR_INTEL;
/** @todo detect the other buggers... */
return CPUMCPUVENDOR_UNKNOWN;
}
/**
* Fetches overrides for a CPUID leaf.
*
* @returns VBox status code.
* @param pLeaf The leaf to load the overrides into.
* @param pCfgNode The CFGM node containing the overrides
* (/CPUM/HostCPUID/ or /CPUM/CPUID/).
* @param iLeaf The CPUID leaf number.
*/
static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
{
PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
if (pLeafNode)
{
uint32_t u32;
int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
if (RT_SUCCESS(rc))
pLeaf->eax = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
if (RT_SUCCESS(rc))
pLeaf->ebx = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
if (RT_SUCCESS(rc))
pLeaf->ecx = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
if (RT_SUCCESS(rc))
pLeaf->edx = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
}
return VINF_SUCCESS;
}
/**
* Load the overrides for a set of CPUID leaves.
*
* @returns VBox status code.
* @param paLeaves The leaf array.
* @param cLeaves The number of leaves.
* @param uStart The start leaf number.
* @param pCfgNode The CFGM node containing the overrides
* (/CPUM/HostCPUID/ or /CPUM/CPUID/).
*/
static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
{
for (uint32_t i = 0; i < cLeaves; i++)
{
int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
if (RT_FAILURE(rc))
return rc;
}
return VINF_SUCCESS;
}
/**
* Init a set of host CPUID leaves.
*
* @returns VBox status code.
* @param paLeaves The leaf array.
* @param cLeaves The number of leaves.
* @param uStart The start leaf number.
* @param pCfgNode The /CPUM/HostCPUID/ node.
*/
static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
{
/* Using the ECX variant for all of them can't hurt... */
for (uint32_t i = 0; i < cLeaves; i++)
ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
/* Load CPUID leaf override; we currently don't care if the user
specifies features the host CPU doesn't support. */
return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
}
/**
* Initializes the emulated CPU's cpuid information.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
static int cpumR3CpuIdInit(PVM pVM)
{
PCPUM pCPUM = &pVM->cpum.s;
PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
uint32_t i;
int rc;
#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
{ \
LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
}
#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
{ \
LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
}
/*
* Read the configuration.
*/
/** @cfgm{CPUM/SyntheticCpu, boolean, false}
* Enables the Synthetic CPU. The Vendor ID and Processor Name are
* completely overridden by VirtualBox custom strings. Some
* CPUID information is withheld, like the cache info. */
rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
AssertRCReturn(rc, rc);
/** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
* When non-zero CPUID features that could cause portability issues will be
* stripped. The higher the value the more features gets stripped. Higher
* values should only be used when older CPUs are involved since it may
* harm performance and maybe also cause problems with specific guests. */
rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
AssertRCReturn(rc, rc);
AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_INTERNAL_ERROR_2);
/*
* Get the host CPUID leaves and redetect the guest CPU vendor (could've
* been overridden).
*/
/** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
* Overrides the host CPUID leaf values used for calculating the guest CPUID
* leaves. This can be used to preserve the CPUID values when moving a VM
* to a different machine. Another use is restricting (or extending) the
* feature set exposed to the guest. */
PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
AssertRCReturn(rc, rc);
rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
AssertRCReturn(rc, rc);
rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
AssertRCReturn(rc, rc);
pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
/*
* Determine the default leaf.
*
* Intel returns values of the highest standard function, while AMD
* returns zeros. VIA on the other hand seems to returning nothing or
* perhaps some random garbage, we don't try to duplicate this behavior.
*/
ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
&pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
&pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
/* Cpuid 1 & 0x80000001:
* Only report features we can support.
*
* Note! When enabling new features the Synthetic CPU and Portable CPUID
* options may require adjusting (i.e. stripping what was enabled).
*/
pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
| X86_CPUID_FEATURE_EDX_VME
| X86_CPUID_FEATURE_EDX_DE
| X86_CPUID_FEATURE_EDX_PSE
| X86_CPUID_FEATURE_EDX_TSC
| X86_CPUID_FEATURE_EDX_MSR
//| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
| X86_CPUID_FEATURE_EDX_MCE
| X86_CPUID_FEATURE_EDX_CX8
//| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
/* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
//| X86_CPUID_FEATURE_EDX_SEP
| X86_CPUID_FEATURE_EDX_MTRR
| X86_CPUID_FEATURE_EDX_PGE
| X86_CPUID_FEATURE_EDX_MCA
| X86_CPUID_FEATURE_EDX_CMOV
| X86_CPUID_FEATURE_EDX_PAT
| X86_CPUID_FEATURE_EDX_PSE36
//| X86_CPUID_FEATURE_EDX_PSN - no serial number.
| X86_CPUID_FEATURE_EDX_CLFSH
//| X86_CPUID_FEATURE_EDX_DS - no debug store.
//| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
| X86_CPUID_FEATURE_EDX_MMX
| X86_CPUID_FEATURE_EDX_FXSR
| X86_CPUID_FEATURE_EDX_SSE
| X86_CPUID_FEATURE_EDX_SSE2
//| X86_CPUID_FEATURE_EDX_SS - no self snoop.
//| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
//| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
//| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
| 0;
pCPUM->aGuestCpuIdStd[1].ecx &= 0
| X86_CPUID_FEATURE_ECX_SSE3
/* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
| ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
//| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
//| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
//| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
//| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
| X86_CPUID_FEATURE_ECX_SSSE3
//| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
//| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
/* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
//| X86_CPUID_FEATURE_ECX_TPRUPDATE
/* ECX Bit 21 - x2APIC support - not yet. */
// | X86_CPUID_FEATURE_ECX_X2APIC
/* ECX Bit 23 - POPCNT instruction. */
//| X86_CPUID_FEATURE_ECX_POPCNT
| 0;
if (pCPUM->u8PortableCpuIdLevel > 0)
{
PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
| X86_CPUID_FEATURE_EDX_PSN
| X86_CPUID_FEATURE_EDX_DS
| X86_CPUID_FEATURE_EDX_ACPI
| X86_CPUID_FEATURE_EDX_SS
| X86_CPUID_FEATURE_EDX_TM
| X86_CPUID_FEATURE_EDX_PBE
)));
Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
| X86_CPUID_FEATURE_ECX_DTES64
| X86_CPUID_FEATURE_ECX_CPLDS
| X86_CPUID_FEATURE_ECX_VMX
| X86_CPUID_FEATURE_ECX_SMX
| X86_CPUID_FEATURE_ECX_EST
| X86_CPUID_FEATURE_ECX_TM2
| X86_CPUID_FEATURE_ECX_CNTXID
| X86_CPUID_FEATURE_ECX_FMA
| X86_CPUID_FEATURE_ECX_CX16
| X86_CPUID_FEATURE_ECX_TPRUPDATE
| X86_CPUID_FEATURE_ECX_PDCM
| X86_CPUID_FEATURE_ECX_DCA
| X86_CPUID_FEATURE_ECX_MOVBE
| X86_CPUID_FEATURE_ECX_AES
| X86_CPUID_FEATURE_ECX_POPCNT
| X86_CPUID_FEATURE_ECX_XSAVE
| X86_CPUID_FEATURE_ECX_OSXSAVE
| X86_CPUID_FEATURE_ECX_AVX
)));
}
/* Cpuid 0x80000001:
* Only report features we can support.
*
* Note! When enabling new features the Synthetic CPU and Portable CPUID
* options may require adjusting (i.e. stripping what was enabled).
*
* ASSUMES that this is ALWAYS the AMD defined feature set if present.
*/
pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
| X86_CPUID_AMD_FEATURE_EDX_VME
| X86_CPUID_AMD_FEATURE_EDX_DE
| X86_CPUID_AMD_FEATURE_EDX_PSE
| X86_CPUID_AMD_FEATURE_EDX_TSC
| X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
//| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
//| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
| X86_CPUID_AMD_FEATURE_EDX_CX8
//| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
/* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
//| X86_CPUID_AMD_FEATURE_EDX_SEP
| X86_CPUID_AMD_FEATURE_EDX_MTRR
| X86_CPUID_AMD_FEATURE_EDX_PGE
| X86_CPUID_AMD_FEATURE_EDX_MCA
| X86_CPUID_AMD_FEATURE_EDX_CMOV
| X86_CPUID_AMD_FEATURE_EDX_PAT
| X86_CPUID_AMD_FEATURE_EDX_PSE36
//| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
//| X86_CPUID_AMD_FEATURE_EDX_AXMMX
| X86_CPUID_AMD_FEATURE_EDX_MMX
| X86_CPUID_AMD_FEATURE_EDX_FXSR
| X86_CPUID_AMD_FEATURE_EDX_FFXSR
//| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
//| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
//| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
| X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
| X86_CPUID_AMD_FEATURE_EDX_3DNOW
| 0;
pCPUM->aGuestCpuIdExt[1].ecx &= 0
//| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
//| X86_CPUID_AMD_FEATURE_ECX_CMPL
//| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
//| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
/* Note: This could prevent teleporting from AMD to Intel CPUs! */
| X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
//| X86_CPUID_AMD_FEATURE_ECX_ABM
//| X86_CPUID_AMD_FEATURE_ECX_SSE4A
//| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
//| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
//| X86_CPUID_AMD_FEATURE_ECX_OSVW
//| X86_CPUID_AMD_FEATURE_ECX_IBS
//| X86_CPUID_AMD_FEATURE_ECX_SSE5
//| X86_CPUID_AMD_FEATURE_ECX_SKINIT
//| X86_CPUID_AMD_FEATURE_ECX_WDT
| 0;
if (pCPUM->u8PortableCpuIdLevel > 0)
{
PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
| X86_CPUID_AMD_FEATURE_ECX_SVM
| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
| X86_CPUID_AMD_FEATURE_ECX_CR8L
| X86_CPUID_AMD_FEATURE_ECX_ABM
| X86_CPUID_AMD_FEATURE_ECX_SSE4A
| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
| X86_CPUID_AMD_FEATURE_ECX_OSVW
| X86_CPUID_AMD_FEATURE_ECX_IBS
| X86_CPUID_AMD_FEATURE_ECX_SSE5
| X86_CPUID_AMD_FEATURE_ECX_SKINIT
| X86_CPUID_AMD_FEATURE_ECX_WDT
| UINT32_C(0xffffc000)
)));
Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
| X86_CPUID_AMD_FEATURE_EDX_SEP
| RT_BIT(18)
| RT_BIT(19)
| RT_BIT(21)
| X86_CPUID_AMD_FEATURE_EDX_AXMMX
| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
| RT_BIT(28)
)));
}
/*
* Apply the Synthetic CPU modifications. (TODO: move this up)
*/
if (pCPUM->fSyntheticCpu)
{
static const char s_szVendor[13] = "VirtualBox ";
static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
/* Limit the nr of standard leaves; 5 for monitor/mwait */
pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
/* 0: Vendor */
pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
/* 1.eax: Version information. family : model : stepping */
pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
/* Leaves 2 - 4 are Intel only - zero them out */
memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
/* Leaf 5 = monitor/mwait */
/* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
/* AMD only - set to zero. */
pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
/* 0x800000001: AMD only; shared feature bits are set dynamically. */
memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
/* 0x800000002-4: Processor Name String Identifier. */
pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
/* 0x800000005-7 - reserved -> zero */
memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
/* 0x800000008: only the max virtual and physical address size. */
pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
}
/*
* Hide HTT, multicode, SMP, whatever.
* (APIC-ID := 0 and #LogCpus := 0)
*/
pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
#ifdef VBOX_WITH_MULTI_CORE
if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
&& pVM->cCpus > 1)
{
/* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
}
#endif
/* Cpuid 2:
* Intel: Cache and TLB information
* AMD: Reserved
* Safe to expose; restrict the number of calls to 1 for the portable case.
*/
if ( pCPUM->u8PortableCpuIdLevel > 0
&& pCPUM->aGuestCpuIdStd[0].eax >= 2
&& (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
{
LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
}
/* Cpuid 3:
* Intel: EAX, EBX - reserved (transmeta uses these)
* ECX, EDX - Processor Serial Number if available, otherwise reserved
* AMD: Reserved
* Safe to expose
*/
if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
{
pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
if (pCPUM->u8PortableCpuIdLevel > 0)
pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
}
/* Cpuid 4:
* Intel: Deterministic Cache Parameters Leaf
* Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
* AMD: Reserved
* Safe to expose, except for EAX:
* Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
* Bits 31-26: Maximum number of processor cores in this physical package**
* Note: These SMP values are constant regardless of ECX
*/
pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
#ifdef VBOX_WITH_MULTI_CORE
if ( pVM->cCpus > 1
&& pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
{
AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
/* One logical processor with possibly multiple cores. */
/* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
}
#endif
/* Cpuid 5: Monitor/mwait Leaf
* Intel: ECX, EDX - reserved
* EAX, EBX - Smallest and largest monitor line size
* AMD: EDX - reserved
* EAX, EBX - Smallest and largest monitor line size
* ECX - extensions (ignored for now)
* Safe to expose
*/
if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
/** @cfgm{/CPUM/MWaitExtensions, boolean, false}
* Expose MWAIT extended features to the guest. For now we expose
* just MWAIT break on interrupt feature (bit 1).
*/
bool fMWaitExtensions;
rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
if (fMWaitExtensions)
{
pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
/* @todo: for now we just expose host's MWAIT C-states, although conceptually
it shall be part of our power management virtualization model */
#if 0
/* MWAIT sub C-states */
pCPUM->aGuestCpuIdStd[5].edx =
(0 << 0) /* 0 in C0 */ |
(2 << 4) /* 2 in C1 */ |
(2 << 8) /* 2 in C2 */ |
(2 << 12) /* 2 in C3 */ |
(0 << 16) /* 0 in C4 */
;
#endif
}
else
pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
/* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
* Safe to pass on to the guest.
*
* Intel: 0x800000005 reserved
* 0x800000006 L2 cache information
* AMD: 0x800000005 L1 cache information
* 0x800000006 L2/L3 cache information
*/
/* Cpuid 0x800000007:
* AMD: EAX, EBX, ECX - reserved
* EDX: Advanced Power Management Information
* Intel: Reserved
*/
if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
{
Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
{
/* Only expose the TSC invariant capability bit to the guest. */
pCPUM->aGuestCpuIdExt[7].edx &= 0
//| X86_CPUID_AMD_ADVPOWER_EDX_TS
//| X86_CPUID_AMD_ADVPOWER_EDX_FID
//| X86_CPUID_AMD_ADVPOWER_EDX_VID
//| X86_CPUID_AMD_ADVPOWER_EDX_TTP
//| X86_CPUID_AMD_ADVPOWER_EDX_TM
//| X86_CPUID_AMD_ADVPOWER_EDX_STC
//| X86_CPUID_AMD_ADVPOWER_EDX_MC
//| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
* Linux kernels blindly assume that the AMD performance counters work
* if this is set for 64 bits guests. (Can't really find a CPUID feature
* bit for them though.) */
| X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
#endif
| 0;
}
else
pCPUM->aGuestCpuIdExt[7].edx = 0;
}
/* Cpuid 0x800000008:
* AMD: EBX, EDX - reserved
* EAX: Virtual/Physical/Guest address Size
* ECX: Number of cores + APICIdCoreIdSize
* Intel: EAX: Virtual/Physical address Size
* EBX, ECX, EDX - reserved
*/
if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
{
/* Only expose the virtual and physical address sizes to the guest. */
pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
/* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
* NC (0-7) Number of cores; 0 equals 1 core */
pCPUM->aGuestCpuIdExt[8].ecx = 0;
#ifdef VBOX_WITH_MULTI_CORE
if ( pVM->cCpus > 1
&& pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
{
/* Legacy method to determine the number of cores. */
pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
}
#endif
}
/** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
* Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
* bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
* This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
*/
bool fNt4LeafLimit;
rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
if (fNt4LeafLimit)
pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
/*
* Limit it the number of entries and fill the remaining with the defaults.
*
* The limits are masking off stuff about power saving and similar, this
* is perhaps a bit crudely done as there is probably some relatively harmless
* info too in these leaves (like words about having a constant TSC).
*/
if (pCPUM->aGuestCpuIdStd[0].eax > 5)
pCPUM->aGuestCpuIdStd[0].eax = 5;
for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
: 0;
i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
i++)
pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
/*
* Centaur stuff (VIA).
*
* The important part here (we think) is to make sure the 0xc0000000
* function returns 0xc0000001. As for the features, we don't currently
* let on about any of those... 0xc0000002 seems to be some
* temperature/hz/++ stuff, include it as well (static).
*/
if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
&& pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
{
pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
i++)
pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
}
else
for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
/*
* Load CPUID overrides from configuration.
* Note: Kind of redundant now, but allows unchanged overrides
*/
/** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
* Overrides the CPUID leaf values. */
PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
AssertRCReturn(rc, rc);
rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
AssertRCReturn(rc, rc);
rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
AssertRCReturn(rc, rc);
/*
* Check if PAE was explicitely enabled by the user.
*/
bool fEnable;
rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
if (fEnable)
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
/*
* We don't normally enable NX for raw-mode, so give the user a chance to
* force it on.
*/
rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
if (fEnable)
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
/*
* Log the cpuid and we're good.
*/
bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
RTCPUSET OnlineSet;
LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
(unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
LogRel(("************************* CPUID dump ************************\n"));
DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
LogRel(("\n"));
DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
RTLogRelSetBuffering(fOldBuffered);
LogRel(("******************** End of CPUID dump **********************\n"));
#undef PORTABLE_DISABLE_FEATURE_BIT
#undef PORTABLE_CLEAR_BITS_WHEN
return VINF_SUCCESS;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* The CPUM will update the addresses used by the switcher.
*
* @param pVM The VM.
*/
VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
{
LogFlow(("CPUMR3Relocate\n"));
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
/*
* Switcher pointers.
*/
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
}
}
/**
* Apply late CPUM property changes based on the fHWVirtEx setting
*
* @param pVM The VM to operate on.
* @param fHWVirtExEnabled HWVirtEx enabled/disabled
*/
VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
{
/*
* Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
* If we miss to patch a cpuid(0).eax then Linux tries to determine the number
* of processors from (cpuid(4).eax >> 26) + 1.
*
* Note: this code is obsolete, but let's keep it here for reference.
* Purpose is valid when we artificially cap the max std id to less than 4.
*/
if (!fHWVirtExEnabled)
{
Assert(pVM->cpum.s.aGuestCpuIdStd[4].eax == 0);
pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
}
}
/**
* Terminates the CPUM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) CPUMR3Term(PVM pVM)
{
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
pVCpu->cpum.s.uMagic = 0;
pCtx->dr[5] = 0;
}
#endif
return 0;
}
/**
* Resets a virtual CPU.
*
* Used by CPUMR3Reset and CPU hot plugging.
*
* @param pVCpu The virtual CPU handle.
*/
VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
{
/** @todo anything different for VCPU > 0? */
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
/*
* Initialize everything to ZERO first.
*/
uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
memset(pCtx, 0, sizeof(*pCtx));
pVCpu->cpum.s.fUseFlags = fUseFlags;
pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
pCtx->eip = 0x0000fff0;
pCtx->edx = 0x00000600; /* P6 processor */
pCtx->eflags.Bits.u1Reserved0 = 1;
pCtx->cs = 0xf000;
pCtx->csHid.u64Base = UINT64_C(0xffff0000);
pCtx->csHid.u32Limit = 0x0000ffff;
pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->csHid.Attr.n.u1Present = 1;
pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
pCtx->dsHid.u32Limit = 0x0000ffff;
pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->dsHid.Attr.n.u1Present = 1;
pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->esHid.u32Limit = 0x0000ffff;
pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->esHid.Attr.n.u1Present = 1;
pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->fsHid.u32Limit = 0x0000ffff;
pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->fsHid.Attr.n.u1Present = 1;
pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->gsHid.u32Limit = 0x0000ffff;
pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->gsHid.Attr.n.u1Present = 1;
pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->ssHid.u32Limit = 0x0000ffff;
pCtx->ssHid.Attr.n.u1Present = 1;
pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->idtr.cbIdt = 0xffff;
pCtx->gdtr.cbGdt = 0xffff;
pCtx->ldtrHid.u32Limit = 0xffff;
pCtx->ldtrHid.Attr.n.u1Present = 1;
pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
pCtx->trHid.u32Limit = 0xffff;
pCtx->trHid.Attr.n.u1Present = 1;
pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
pCtx->dr[6] = X86_DR6_INIT_VAL;
pCtx->dr[7] = X86_DR7_INIT_VAL;
pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
pCtx->fpu.FCW = 0x37f;
/* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
pCtx->fpu.MXCSR = 0x1F80;
/* Init PAT MSR */
pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
/* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
* The Intel docs don't mention it.
*/
pCtx->msrEFER = 0;
}
/**
* Resets the CPU.
*
* @returns VINF_SUCCESS.
* @param pVM The VM handle.
*/
VMMR3DECL(void) CPUMR3Reset(PVM pVM)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
CPUMR3ResetCpu(&pVM->aCpus[i]);
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
/* Magic marker for searching in crash dumps. */
strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
#endif
}
}
/**
* Called both in pass 0 and the final pass.
*
* @param pVM The VM handle.
* @param pSSM The saved state handle.
*/
static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
{
/*
* Save all the CPU ID leaves here so we can check them for compatibility
* upon loading.
*/
SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
/*
* Save a good portion of the raw CPU IDs as well as they may come in
* handy when validating features for raw mode.
*/
CPUMCPUID aRawStd[16];
for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
CPUMCPUID aRawExt[32];
for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
}
/**
* Loads the CPU ID leaves saved by pass 0.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pSSM The saved state handle.
* @param uVersion The format version.
*/
static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
{
AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
/*
* Define a bunch of macros for simplifying the code.
*/
/* Generic expression + failure message. */
#define CPUID_CHECK_RET(expr, fmt) \
do { \
if (!(expr)) \
{ \
char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
if (fStrictCpuIdChecks) \
{ \
int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
RTStrFree(pszMsg); \
return rcCpuid; \
} \
LogRel(("CPUM: %s\n", pszMsg)); \
RTStrFree(pszMsg); \
} \
} while (0)
#define CPUID_CHECK_WRN(expr, fmt) \
do { \
if (!(expr)) \
LogRel(fmt); \
} while (0)
/* For comparing two values and bitch if they differs. */
#define CPUID_CHECK2_RET(what, host, saved) \
do { \
if ((host) != (saved)) \
{ \
if (fStrictCpuIdChecks) \
return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
} \
} while (0)
#define CPUID_CHECK2_WRN(what, host, saved) \
do { \
if ((host) != (saved)) \
LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
} while (0)
/* For checking raw cpu features (raw mode). */
#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
do { \
if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
{ \
if (fStrictCpuIdChecks) \
return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
N_(#bit " mismatch: host=%d saved=%d"), \
!!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
!!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
} \
} while (0)
#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
do { \
if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
!!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
} while (0)
#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
/* For checking guest features. */
#define CPUID_GST_FEATURE_RET(set, reg, bit) \
do { \
if ( (aGuestCpuId##set [1].reg & bit) \
&& !(aHostRaw##set [1].reg & bit) \
&& !(aHostOverride##set [1].reg & bit) \
&& !(aGuestOverride##set [1].reg & bit) \
) \
{ \
if (fStrictCpuIdChecks) \
return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
N_(#bit " is not supported by the host but has already exposed to the guest")); \
LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
} \
} while (0)
#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
do { \
if ( (aGuestCpuId##set [1].reg & bit) \
&& !(aHostRaw##set [1].reg & bit) \
&& !(aHostOverride##set [1].reg & bit) \
&& !(aGuestOverride##set [1].reg & bit) \
) \
LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
} while (0)
#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
do { \
if ( (aGuestCpuId##set [1].reg & bit) \
&& !(aHostRaw##set [1].reg & bit) \
&& !(aHostOverride##set [1].reg & bit) \
&& !(aGuestOverride##set [1].reg & bit) \
) \
LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
} while (0)
#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
/* For checking guest features if AMD guest CPU. */
#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
do { \
if ( (aGuestCpuId##set [1].reg & bit) \
&& fGuestAmd \
&& (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
&& !(aHostOverride##set [1].reg & bit) \
&& !(aGuestOverride##set [1].reg & bit) \
) \
{ \
if (fStrictCpuIdChecks) \
return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
N_(#bit " is not supported by the host but has already exposed to the guest")); \
LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
} \
} while (0)
#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
do { \
if ( (aGuestCpuId##set [1].reg & bit) \
&& fGuestAmd \
&& (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
&& !(aHostOverride##set [1].reg & bit) \
&& !(aGuestOverride##set [1].reg & bit) \
) \
LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
} while (0)
#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
do { \
if ( (aGuestCpuId##set [1].reg & bit) \
&& fGuestAmd \
&& (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
&& !(aHostOverride##set [1].reg & bit) \
&& !(aGuestOverride##set [1].reg & bit) \
) \
LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
} while (0)
#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
/* For checking AMD features which have a corresponding bit in the standard
range. (Intel defines very few bits in the extended feature sets.) */
#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
do { \
if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
&& !(fHostAmd \
? aHostRawExt[1].reg & (ExtBit) \
: aHostRawStd[1].reg & (StdBit)) \
&& !(aHostOverrideExt[1].reg & (ExtBit)) \
&& !(aGuestOverrideExt[1].reg & (ExtBit)) \
) \
{ \
if (fStrictCpuIdChecks) \
return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
} \
} while (0)
#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
do { \
if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
&& !(fHostAmd \
? aHostRawExt[1].reg & (ExtBit) \
: aHostRawStd[1].reg & (StdBit)) \
&& !(aHostOverrideExt[1].reg & (ExtBit)) \
&& !(aGuestOverrideExt[1].reg & (ExtBit)) \
) \
LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
} while (0)
#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
do { \
if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
&& !(fHostAmd \
? aHostRawExt[1].reg & (ExtBit) \
: aHostRawStd[1].reg & (StdBit)) \
&& !(aHostOverrideExt[1].reg & (ExtBit)) \
&& !(aGuestOverrideExt[1].reg & (ExtBit)) \
) \
LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
} while (0)
#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
/*
* Load them into stack buffers first.
*/
CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
uint32_t cGuestCpuIdStd;
int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
uint32_t cGuestCpuIdExt;
rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
uint32_t cGuestCpuIdCentaur;
rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
CPUMCPUID GuestCpuIdDef;
rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
AssertRCReturn(rc, rc);
CPUMCPUID aRawStd[16];
uint32_t cRawStd;
rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
if (cRawStd > RT_ELEMENTS(aRawStd))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
CPUMCPUID aRawExt[32];
uint32_t cRawExt;
rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
if (cRawExt > RT_ELEMENTS(aRawExt))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
AssertRCReturn(rc, rc);
/*
* Note that we support restoring less than the current amount of standard
* leaves because we've been allowed more is newer version of VBox.
*
* So, pad new entries with the default.
*/
for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
aGuestCpuIdStd[i] = GuestCpuIdDef;
for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
aGuestCpuIdExt[i] = GuestCpuIdDef;
for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
aGuestCpuIdCentaur[i] = GuestCpuIdDef;
for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
/*
* Get the raw CPU IDs for the current host.
*/
CPUMCPUID aHostRawStd[16];
for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
CPUMCPUID aHostRawExt[32];
for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
/*
* Get the host and guest overrides so we don't reject the state because
* some feature was enabled thru these interfaces.
* Note! We currently only need the feature leaves, so skip rest.
*/
PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
CPUMCPUID aGuestOverrideStd[2];
memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
CPUMCPUID aGuestOverrideExt[2];
memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
CPUMCPUID aHostOverrideStd[2];
memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
CPUMCPUID aHostOverrideExt[2];
memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
/*
* This can be skipped.
*/
bool fStrictCpuIdChecks;
CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
/*
* For raw-mode we'll require that the CPUs are very similar since we don't
* intercept CPUID instructions for user mode applications.
*/
if (!HWACCMIsEnabled(pVM))
{
/* CPUID(0) */
CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
&& aHostRawStd[0].ecx == aRawStd[0].ecx
&& aHostRawStd[0].edx == aRawStd[0].edx,
(N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
&aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
&aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
/* CPUID(1).eax */
CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
/* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
/* CPUID(1).ecx */
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
/* CPUID(1).edx */
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
/* CPUID(2) - config, mostly about caches. ignore. */
/* CPUID(3) - processor serial number. ignore. */
/* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
/* CPUID(5) - mwait/monitor config. ignore. */
/* CPUID(6) - power management. ignore. */
/* CPUID(7) - ???. ignore. */
/* CPUID(8) - ???. ignore. */
/* CPUID(9) - DCA. ignore for now. */
/* CPUID(a) - PeMo info. ignore for now. */
/* CPUID(b) - topology info - takes ECX as input. ignore. */
/* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
|| aHostRawStd[0].eax >= UINT32_C(0x0000000d),
("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
&& aHostRawStd[0].eax >= UINT32_C(0x0000000d))
{
CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
}
/* CPUID(0x80000000) - same as CPUID(0) except for eax.
Note! Intel have/is marking many of the fields here as reserved. We
will verify them as if it's an AMD CPU. */
CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
|| !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
(N_("Extended leaves was present on saved state host, but is missing on the current\n")));
if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
{
CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
&& aHostRawExt[0].ecx == aRawExt[0].ecx
&& aHostRawExt[0].edx == aRawExt[0].edx,
(N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
&aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
&aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
/* CPUID(0x80000001).eax - same as CPUID(0).eax. */
CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
/* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
/* CPUID(0x80000001).ecx */
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
/* CPUID(0x80000001).edx */
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
/** @todo verify the rest as well. */
}
}
/*
* Verify that we can support the features already exposed to the guest on
* this host.
*
* Most of the features we're emulating requires intercepting instruction
* and doing it the slow way, so there is no need to warn when they aren't
* present in the host CPU. Thus we use IGN instead of EMU on these.
*
* Trailing comments:
* "EMU" - Possible to emulate, could be lots of work and very slow.
* "EMU?" - Can this be emulated?
*/
/* CPUID(1).ecx */
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
/* CPUID(1).edx */
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
/* CPUID(0x80000000). */
if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
&& aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
{
/** @todo deal with no 0x80000001 on the host. */
bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
/* CPUID(0x80000001).ecx */
CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
/* CPUID(0x80000001).edx */
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
}
/*
* We're good, commit the CPU ID leaves.
*/
memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
#undef CPUID_CHECK_RET
#undef CPUID_CHECK_WRN
#undef CPUID_CHECK2_RET
#undef CPUID_CHECK2_WRN
#undef CPUID_RAW_FEATURE_RET
#undef CPUID_RAW_FEATURE_WRN
#undef CPUID_RAW_FEATURE_IGN
#undef CPUID_GST_FEATURE_RET
#undef CPUID_GST_FEATURE_WRN
#undef CPUID_GST_FEATURE_EMU
#undef CPUID_GST_FEATURE_IGN
#undef CPUID_GST_FEATURE2_RET
#undef CPUID_GST_FEATURE2_WRN
#undef CPUID_GST_FEATURE2_EMU
#undef CPUID_GST_FEATURE2_IGN
#undef CPUID_GST_AMD_FEATURE_RET
#undef CPUID_GST_AMD_FEATURE_WRN
#undef CPUID_GST_AMD_FEATURE_EMU
#undef CPUID_GST_AMD_FEATURE_IGN
return VINF_SUCCESS;
}
/**
* Pass 0 live exec callback.
*
* @returns VINF_SSM_DONT_CALL_AGAIN.
* @param pVM The VM handle.
* @param pSSM The saved state handle.
* @param uPass The pass (0).
*/
static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
{
AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
cpumR3SaveCpuId(pVM, pSSM);
return VINF_SSM_DONT_CALL_AGAIN;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
{
/*
* Save.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
}
SSMR3PutU32(pSSM, pVM->cCpus);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
}
cpumR3SaveCpuId(pVM, pSSM);
return VINF_SUCCESS;
}
/**
* Load a version 1.6 CPUMCTX structure.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pCpumctx16 Version 1.6 CPUMCTX
*/
static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
{
#define CPUMCTX16_LOADREG(RegName) \
pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
#define CPUMCTX16_LOADDRXREG(RegName) \
pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
#define CPUMCTX16_LOADHIDREG(RegName) \
pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
#define CPUMCTX16_LOADSEGREG(RegName) \
pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
CPUMCTX16_LOADHIDREG(RegName);
pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
CPUMCTX16_LOADREG(rax);
CPUMCTX16_LOADREG(rbx);
CPUMCTX16_LOADREG(rcx);
CPUMCTX16_LOADREG(rdx);
CPUMCTX16_LOADREG(rdi);
CPUMCTX16_LOADREG(rsi);
CPUMCTX16_LOADREG(rbp);
CPUMCTX16_LOADREG(esp);
CPUMCTX16_LOADREG(rip);
CPUMCTX16_LOADREG(rflags);
CPUMCTX16_LOADSEGREG(cs);
CPUMCTX16_LOADSEGREG(ds);
CPUMCTX16_LOADSEGREG(es);
CPUMCTX16_LOADSEGREG(fs);
CPUMCTX16_LOADSEGREG(gs);
CPUMCTX16_LOADSEGREG(ss);
CPUMCTX16_LOADREG(r8);
CPUMCTX16_LOADREG(r9);
CPUMCTX16_LOADREG(r10);
CPUMCTX16_LOADREG(r11);
CPUMCTX16_LOADREG(r12);
CPUMCTX16_LOADREG(r13);
CPUMCTX16_LOADREG(r14);
CPUMCTX16_LOADREG(r15);
CPUMCTX16_LOADREG(cr0);
CPUMCTX16_LOADREG(cr2);
CPUMCTX16_LOADREG(cr3);
CPUMCTX16_LOADREG(cr4);
CPUMCTX16_LOADDRXREG(0);
CPUMCTX16_LOADDRXREG(1);
CPUMCTX16_LOADDRXREG(2);
CPUMCTX16_LOADDRXREG(3);
CPUMCTX16_LOADDRXREG(4);
CPUMCTX16_LOADDRXREG(5);
CPUMCTX16_LOADDRXREG(6);
CPUMCTX16_LOADDRXREG(7);
pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
CPUMCTX16_LOADREG(ldtr);
CPUMCTX16_LOADREG(tr);
pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
CPUMCTX16_LOADREG(msrEFER);
CPUMCTX16_LOADREG(msrSTAR);
CPUMCTX16_LOADREG(msrPAT);
CPUMCTX16_LOADREG(msrLSTAR);
CPUMCTX16_LOADREG(msrCSTAR);
CPUMCTX16_LOADREG(msrSFMASK);
CPUMCTX16_LOADREG(msrKERNELGSBASE);
CPUMCTX16_LOADHIDREG(ldtr);
CPUMCTX16_LOADHIDREG(tr);
#undef CPUMCTX16_LOADSEGREG
#undef CPUMCTX16_LOADHIDREG
#undef CPUMCTX16_LOADDRXREG
#undef CPUMCTX16_LOADREG
}
/**
* @copydoc FNSSMINTLOADPREP
*/
static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
{
pVM->cpum.s.fPendingRestore = true;
return VINF_SUCCESS;
}
/**
* @copydoc FNSSMINTLOADEXEC
*/
static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
/*
* Validate version.
*/
if ( uVersion != CPUM_SAVED_STATE_VERSION
&& uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
&& uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
&& uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
&& uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
&& uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
{
AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
if (uPass == SSM_PASS_FINAL)
{
/*
* Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
* really old SSM file versions.)
*/
if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
/*
* Restore.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
pVCpu->cpum.s.Hyper.cr3 = uCR3;
pVCpu->cpum.s.Hyper.esp = uESP;
}
if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
{
CPUMCTX_VER1_6 cpumctx16;
memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
/* Save the old cpumctx state into the new one. */
cpumR3LoadCPUM1_6(pVM, &cpumctx16);
SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
}
else
{
if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
{
uint32_t cCpus;
int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
VERR_SSM_UNEXPECTED_DATA);
}
AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
|| pVM->cCpus == 1,
("cCpus=%u\n", pVM->cCpus),
VERR_SSM_UNEXPECTED_DATA);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
}
}
/* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
raw-mode guest, so we have to do it ourselves. */
if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
&& !HWACCMIsEnabled(pVM))
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
}
pVM->cpum.s.fPendingRestore = false;
/*
* Guest CPUIDs.
*/
if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
return cpumR3LoadCpuId(pVM, pSSM, uVersion);
/** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
* actually required. */
/*
* Restore the CPUID leaves.
*
* Note that we support restoring less than the current amount of standard
* leaves because we've been allowed more is newer version of VBox.
*/
uint32_t cElements;
int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
/*
* Check that the basic cpuid id information is unchanged.
*/
/** @todo we should check the 64 bits capabilities too! */
uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
uint32_t au32CpuIdSaved[8];
rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
if (RT_SUCCESS(rc))
{
/* Ignore CPU stepping. */
au32CpuId[4] &= 0xfffffff0;
au32CpuIdSaved[4] &= 0xfffffff0;
/* Ignore APIC ID (AMD specs). */
au32CpuId[5] &= ~0xff000000;
au32CpuIdSaved[5] &= ~0xff000000;
/* Ignore the number of Logical CPUs (AMD specs). */
au32CpuId[5] &= ~0x00ff0000;
au32CpuIdSaved[5] &= ~0x00ff0000;
/* Ignore some advanced capability bits, that we don't expose to the guest. */
au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
| X86_CPUID_FEATURE_ECX_VMX
| X86_CPUID_FEATURE_ECX_SMX
| X86_CPUID_FEATURE_ECX_EST
| X86_CPUID_FEATURE_ECX_TM2
| X86_CPUID_FEATURE_ECX_CNTXID
| X86_CPUID_FEATURE_ECX_TPRUPDATE
| X86_CPUID_FEATURE_ECX_PDCM
| X86_CPUID_FEATURE_ECX_DCA
| X86_CPUID_FEATURE_ECX_X2APIC
);
au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
| X86_CPUID_FEATURE_ECX_VMX
| X86_CPUID_FEATURE_ECX_SMX
| X86_CPUID_FEATURE_ECX_EST
| X86_CPUID_FEATURE_ECX_TM2
| X86_CPUID_FEATURE_ECX_CNTXID
| X86_CPUID_FEATURE_ECX_TPRUPDATE
| X86_CPUID_FEATURE_ECX_PDCM
| X86_CPUID_FEATURE_ECX_DCA
| X86_CPUID_FEATURE_ECX_X2APIC
);
/* Make sure we don't forget to update the masks when enabling
* features in the future.
*/
AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
( X86_CPUID_FEATURE_ECX_DTES64
| X86_CPUID_FEATURE_ECX_VMX
| X86_CPUID_FEATURE_ECX_SMX
| X86_CPUID_FEATURE_ECX_EST
| X86_CPUID_FEATURE_ECX_TM2
| X86_CPUID_FEATURE_ECX_CNTXID
| X86_CPUID_FEATURE_ECX_TPRUPDATE
| X86_CPUID_FEATURE_ECX_PDCM
| X86_CPUID_FEATURE_ECX_DCA
| X86_CPUID_FEATURE_ECX_X2APIC
)));
/* do the compare */
if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
{
if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
"Saved=%.*Rhxs\n"
"Real =%.*Rhxs\n",
sizeof(au32CpuIdSaved), au32CpuIdSaved,
sizeof(au32CpuId), au32CpuId));
else
{
LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
"Saved=%.*Rhxs\n"
"Real =%.*Rhxs\n",
sizeof(au32CpuIdSaved), au32CpuIdSaved,
sizeof(au32CpuId), au32CpuId));
rc = VERR_SSM_LOAD_CPUID_MISMATCH;
}
}
}
return rc;
}
/**
* @copydoc FNSSMINTLOADPREP
*/
static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
{
if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
return VINF_SUCCESS;
/* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
if (pVM->cpum.s.fPendingRestore)
{
LogRel(("CPUM: Missing state!\n"));
return VERR_INTERNAL_ERROR_2;
}
/* Notify PGM of the NXE states in case they've changed. */
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
return VINF_SUCCESS;
}
/**
* Checks if the CPUM state restore is still pending.
*
* @returns true / false.
* @param pVM The VM handle.
*/
VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
{
return pVM->cpum.s.fPendingRestore;
}
/**
* Formats the EFLAGS value into mnemonics.
*
* @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
* @param efl The EFLAGS value.
*/
static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
{
/*
* Format the flags.
*/
static const struct
{
const char *pszSet; const char *pszClear; uint32_t fFlag;
} s_aFlags[] =
{
{ "vip",NULL, X86_EFL_VIP },
{ "vif",NULL, X86_EFL_VIF },
{ "ac", NULL, X86_EFL_AC },
{ "vm", NULL, X86_EFL_VM },
{ "rf", NULL, X86_EFL_RF },
{ "nt", NULL, X86_EFL_NT },
{ "ov", "nv", X86_EFL_OF },
{ "dn", "up", X86_EFL_DF },
{ "ei", "di", X86_EFL_IF },
{ "tf", NULL, X86_EFL_TF },
{ "nt", "pl", X86_EFL_SF },
{ "nz", "zr", X86_EFL_ZF },
{ "ac", "na", X86_EFL_AF },
{ "po", "pe", X86_EFL_PF },
{ "cy", "nc", X86_EFL_CF },
};
char *psz = pszEFlags;
for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
{
const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
if (pszAdd)
{
strcpy(psz, pszAdd);
psz += strlen(pszAdd);
*psz++ = ' ';
}
}
psz[-1] = '\0';
}
/**
* Formats a full register dump.
*
* @param pVM VM Handle.
* @param pCtx The context to format.
* @param pCtxCore The context core to format.
* @param pHlp Output functions.
* @param enmType The dump type.
* @param pszPrefix Register name prefix.
*/
static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
{
/*
* Format the EFLAGS.
*/
uint32_t efl = pCtxCore->eflags.u32;
char szEFlags[80];
cpumR3InfoFormatFlags(&szEFlags[0], efl);
/*
* Format the registers.
*/
switch (enmType)
{
case CPUMDUMPTYPE_TERSE:
if (CPUMIsGuestIn64BitCodeEx(pCtx))
pHlp->pfnPrintf(pHlp,
"%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
"%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
"%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
"%sr14=%016RX64 %sr15=%016RX64\n"
"%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
else
pHlp->pfnPrintf(pHlp,
"%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
"%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
break;
case CPUMDUMPTYPE_DEFAULT:
if (CPUMIsGuestIn64BitCodeEx(pCtx))
pHlp->pfnPrintf(pHlp,
"%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
"%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
"%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
"%sr14=%016RX64 %sr15=%016RX64\n"
"%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
"%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
,
pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
else
pHlp->pfnPrintf(pHlp,
"%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
"%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
"%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
,
pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
break;
case CPUMDUMPTYPE_VERBOSE:
if (CPUMIsGuestIn64BitCodeEx(pCtx))
pHlp->pfnPrintf(pHlp,
"%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
"%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
"%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
"%sr14=%016RX64 %sr15=%016RX64\n"
"%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
"%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
"%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
"%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
"%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
"%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
,
pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
else
pHlp->pfnPrintf(pHlp,
"%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
"%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
"%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
"%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
"%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
"%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
"%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
"%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
"%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
"%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
,
pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
pHlp->pfnPrintf(pHlp,
"%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
"%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
,
pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsrvd1,
pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
);
unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
{
unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
/** @todo This isn't entirenly correct and needs more work! */
pHlp->pfnPrintf(pHlp,
"%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
pszPrefix, iST, pszPrefix, iFPR,
pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
uTag, chSign, iInteger, u64Fraction, uExponent);
if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
else
pHlp->pfnPrintf(pHlp, "\n");
}
for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
pHlp->pfnPrintf(pHlp,
iXMM & 1
? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
: "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
pszPrefix, iXMM, iXMM < 10 ? " " : "",
pCtx->fpu.aXMM[iXMM].au32[3],
pCtx->fpu.aXMM[iXMM].au32[2],
pCtx->fpu.aXMM[iXMM].au32[1],
pCtx->fpu.aXMM[iXMM].au32[0]);
for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
if (pCtx->fpu.au32RsrvdRest[i])
pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
pHlp->pfnPrintf(pHlp,
"%sEFER =%016RX64\n"
"%sPAT =%016RX64\n"
"%sSTAR =%016RX64\n"
"%sCSTAR =%016RX64\n"
"%sLSTAR =%016RX64\n"
"%sSFMASK =%016RX64\n"
"%sKERNELGSBASE =%016RX64\n",
pszPrefix, pCtx->msrEFER,
pszPrefix, pCtx->msrPAT,
pszPrefix, pCtx->msrSTAR,
pszPrefix, pCtx->msrCSTAR,
pszPrefix, pCtx->msrLSTAR,
pszPrefix, pCtx->msrSFMASK,
pszPrefix, pCtx->msrKERNELGSBASE);
break;
}
}
/**
* Display all cpu states and any other cpum info.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
cpumR3InfoGuest(pVM, pHlp, pszArgs);
cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
cpumR3InfoHyper(pVM, pHlp, pszArgs);
cpumR3InfoHost(pVM, pHlp, pszArgs);
}
/**
* Parses the info argument.
*
* The argument starts with 'verbose', 'terse' or 'default' and then
* continues with the comment string.
*
* @param pszArgs The pointer to the argument string.
* @param penmType Where to store the dump type request.
* @param ppszComment Where to store the pointer to the comment string.
*/
static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
{
if (!pszArgs)
{
*penmType = CPUMDUMPTYPE_DEFAULT;
*ppszComment = "";
}
else
{
if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
{
pszArgs += 5;
*penmType = CPUMDUMPTYPE_VERBOSE;
}
else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
{
pszArgs += 5;
*penmType = CPUMDUMPTYPE_TERSE;
}
else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
{
pszArgs += 7;
*penmType = CPUMDUMPTYPE_DEFAULT;
}
else
*penmType = CPUMDUMPTYPE_DEFAULT;
*ppszComment = RTStrStripL(pszArgs);
}
}
/**
* Display the guest cpu state.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
CPUMDUMPTYPE enmType;
const char *pszComment;
cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
/* @todo SMP support! */
PVMCPU pVCpu = VMMGetCpu(pVM);
if (!pVCpu)
pVCpu = &pVM->aCpus[0];
pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
}
/**
* Display the current guest instruction
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
char szInstruction[256];
/* @todo SMP support! */
PVMCPU pVCpu = VMMGetCpu(pVM);
if (!pVCpu)
pVCpu = &pVM->aCpus[0];
int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
if (RT_SUCCESS(rc))
pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
}
/**
* Display the hypervisor cpu state.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
CPUMDUMPTYPE enmType;
const char *pszComment;
/* @todo SMP */
PVMCPU pVCpu = &pVM->aCpus[0];
cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
}
/**
* Display the host cpu state.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
CPUMDUMPTYPE enmType;
const char *pszComment;
cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
/*
* Format the EFLAGS.
*/
/* @todo SMP */
PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
#if HC_ARCH_BITS == 32
uint32_t efl = pCtx->eflags.u32;
#else
uint64_t efl = pCtx->rflags;
#endif
char szEFlags[80];
cpumR3InfoFormatFlags(&szEFlags[0], efl);
/*
* Format the registers.
*/
#if HC_ARCH_BITS == 32
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (!(pCtx->efer & MSR_K6_EFER_LMA))
# endif
{
pHlp->pfnPrintf(pHlp,
"eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
"eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
"cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
"cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
"dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
"SysEnter={cs=%04x eip=%08x esp=%08x}\n"
,
/*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
/*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
(RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
(uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
}
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
else
# endif
#endif
#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
{
pHlp->pfnPrintf(pHlp,
"rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
"rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
"rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
" r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
"r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
"r14=%016RX64 r15=%016RX64\n"
"iopl=%d %31s\n"
"cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
"cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
"cr4=%016RX64 ldtr=%04x tr=%04x\n"
"dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
"dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
"gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
"SysEnter={cs=%04x eip=%08x esp=%08x}\n"
"FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
,
/*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
/*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
/*pCtx->r8, pCtx->r9,*/ pCtx->r10,
pCtx->r11, pCtx->r12, pCtx->r13,
pCtx->r14, pCtx->r15,
X86_EFL_GET_IOPL(efl), szEFlags,
(RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
pCtx->cr4, pCtx->ldtr, pCtx->tr,
pCtx->dr0, pCtx->dr1, pCtx->dr2,
pCtx->dr3, pCtx->dr6, pCtx->dr7,
pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
pCtx->FSbase, pCtx->GSbase, pCtx->efer);
}
#endif
}
/**
* Get L1 cache / TLS associativity.
*/
static const char *getCacheAss(unsigned u, char *pszBuf)
{
if (u == 0)
return "res0 ";
if (u == 1)
return "direct";
if (u == 255)
return "fully";
if (u >= 256)
return "???";
RTStrPrintf(pszBuf, 16, "%d way", u);
return pszBuf;
}
/**
* Get L2 cache associativity.
*/
const char *getL2CacheAss(unsigned u)
{
switch (u)
{
case 0: return "off ";
case 1: return "direct";
case 2: return "2 way ";
case 3: return "res3 ";
case 4: return "4 way ";
case 5: return "res5 ";
case 6: return "8 way ";
case 7: return "res7 ";
case 8: return "16 way";
case 9: return "res9 ";
case 10: return "res10 ";
case 11: return "res11 ";
case 12: return "res12 ";
case 13: return "res13 ";
case 14: return "res14 ";
case 15: return "fully ";
default: return "????";
}
}
/**
* Display the guest CpuId leaves.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs "terse", "default" or "verbose".
*/
static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/*
* Parse the argument.
*/
unsigned iVerbosity = 1;
if (pszArgs)
{
pszArgs = RTStrStripL(pszArgs);
if (!strcmp(pszArgs, "terse"))
iVerbosity--;
else if (!strcmp(pszArgs, "verbose"))
iVerbosity++;
}
/*
* Start cracking.
*/
CPUMCPUID Host;
CPUMCPUID Guest;
unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
pHlp->pfnPrintf(pHlp,
" RAW Standard CPUIDs\n"
" Function eax ebx ecx edx\n");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
{
Guest = pVM->cpum.s.aGuestCpuIdStd[i];
ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
pHlp->pfnPrintf(pHlp,
"Gst: %08x %08x %08x %08x %08x%s\n"
"Hst: %08x %08x %08x %08x\n",
i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
i <= cStdMax ? "" : "*",
Host.eax, Host.ebx, Host.ecx, Host.edx);
}
/*
* If verbose, decode it.
*/
if (iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdStd[0];
pHlp->pfnPrintf(pHlp,
"Name: %.04s%.04s%.04s\n"
"Supports: 0-%x\n",
&Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
}
/*
* Get Features.
*/
bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
pVM->cpum.s.aGuestCpuIdStd[0].ecx,
pVM->cpum.s.aGuestCpuIdStd[0].edx);
if (cStdMax >= 1 && iVerbosity)
{
static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
Guest = pVM->cpum.s.aGuestCpuIdStd[1];
uint32_t uEAX = Guest.eax;
pHlp->pfnPrintf(pHlp,
"Family: %d \tExtended: %d \tEffective: %d\n"
"Model: %d \tExtended: %d \tEffective: %d\n"
"Stepping: %d\n"
"Type: %d (%s)\n"
"APIC ID: %#04x\n"
"Logical CPUs: %d\n"
"CLFLUSH Size: %d\n"
"Brand ID: %#04x\n",
(uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
(uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
ASMGetCpuStepping(uEAX),
(uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
(Guest.ebx >> 24) & 0xff,
(Guest.ebx >> 16) & 0xff,
(Guest.ebx >> 8) & 0xff,
(Guest.ebx >> 0) & 0xff);
if (iVerbosity == 1)
{
uint32_t uEDX = Guest.edx;
pHlp->pfnPrintf(pHlp, "Features EDX: ");
if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
pHlp->pfnPrintf(pHlp, "\n");
uint32_t uECX = Guest.ecx;
pHlp->pfnPrintf(pHlp, "Features ECX: ");
if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
pHlp->pfnPrintf(pHlp, "\n");
}
else
{
ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
pHlp->pfnPrintf(pHlp, "31 - Reserved (always 0) = %d (%d)\n", EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
}
}
if (cStdMax >= 2 && iVerbosity)
{
/** @todo */
}
/*
* Extended.
* Implemented after AMD specs.
*/
unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
pHlp->pfnPrintf(pHlp,
"\n"
" RAW Extended CPUIDs\n"
" Function eax ebx ecx edx\n");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
{
Guest = pVM->cpum.s.aGuestCpuIdExt[i];
ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
pHlp->pfnPrintf(pHlp,
"Gst: %08x %08x %08x %08x %08x%s\n"
"Hst: %08x %08x %08x %08x\n",
0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
i <= cExtMax ? "" : "*",
Host.eax, Host.ebx, Host.ecx, Host.edx);
}
/*
* Understandable output
*/
if (iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdExt[0];
pHlp->pfnPrintf(pHlp,
"Ext Name: %.4s%.4s%.4s\n"
"Ext Supports: 0x80000000-%#010x\n",
&Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
}
if (iVerbosity && cExtMax >= 1)
{
Guest = pVM->cpum.s.aGuestCpuIdExt[1];
uint32_t uEAX = Guest.eax;
pHlp->pfnPrintf(pHlp,
"Family: %d \tExtended: %d \tEffective: %d\n"
"Model: %d \tExtended: %d \tEffective: %d\n"
"Stepping: %d\n"
"Brand ID: %#05x\n",
(uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
(uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
ASMGetCpuStepping(uEAX),
Guest.ebx & 0xfff);
if (iVerbosity == 1)
{
uint32_t uEDX = Guest.edx;
pHlp->pfnPrintf(pHlp, "Features EDX: ");
if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
pHlp->pfnPrintf(pHlp, "\n");
uint32_t uECX = Guest.ecx;
pHlp->pfnPrintf(pHlp, "Features ECX: ");
if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
for (unsigned iBit = 5; iBit < 32; iBit++)
if (uECX & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
else
{
ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
uint32_t uEdxGst = Guest.edx;
uint32_t uEdxHst = Host.edx;
pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
uint32_t uEcxGst = Guest.ecx;
uint32_t uEcxHst = Host.ecx;
pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
}
}
if (iVerbosity && cExtMax >= 2)
{
char szString[4*4*3+1] = {0};
uint32_t *pu32 = (uint32_t *)szString;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
if (cExtMax >= 3)
{
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
}
if (cExtMax >= 4)
{
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
}
pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
}
if (iVerbosity && cExtMax >= 5)
{
uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
char sz1[32];
char sz2[32];
pHlp->pfnPrintf(pHlp,
"TLB 2/4M Instr/Uni: %s %3d entries\n"
"TLB 2/4M Data: %s %3d entries\n",
getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
pHlp->pfnPrintf(pHlp,
"TLB 4K Instr/Uni: %s %3d entries\n"
"TLB 4K Data: %s %3d entries\n",
getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
"L1 Instr Cache Lines Per Tag: %d\n"
"L1 Instr Cache Associativity: %s\n"
"L1 Instr Cache Size: %d KB\n",
(uEDX >> 0) & 0xff,
(uEDX >> 8) & 0xff,
getCacheAss((uEDX >> 16) & 0xff, sz1),
(uEDX >> 24) & 0xff);
pHlp->pfnPrintf(pHlp,
"L1 Data Cache Line Size: %d bytes\n"
"L1 Data Cache Lines Per Tag: %d\n"
"L1 Data Cache Associativity: %s\n"
"L1 Data Cache Size: %d KB\n",
(uECX >> 0) & 0xff,
(uECX >> 8) & 0xff,
getCacheAss((uECX >> 16) & 0xff, sz1),
(uECX >> 24) & 0xff);
}
if (iVerbosity && cExtMax >= 6)
{
uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
pHlp->pfnPrintf(pHlp,
"L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
"L2 TLB 2/4M Data: %s %4d entries\n",
getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
pHlp->pfnPrintf(pHlp,
"L2 TLB 4K Instr/Uni: %s %4d entries\n"
"L2 TLB 4K Data: %s %4d entries\n",
getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
pHlp->pfnPrintf(pHlp,
"L2 Cache Line Size: %d bytes\n"
"L2 Cache Lines Per Tag: %d\n"
"L2 Cache Associativity: %s\n"
"L2 Cache Size: %d KB\n",
(uEDX >> 0) & 0xff,
(uEDX >> 8) & 0xf,
getL2CacheAss((uEDX >> 12) & 0xf),
(uEDX >> 16) & 0xffff);
}
if (iVerbosity && cExtMax >= 7)
{
uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
pHlp->pfnPrintf(pHlp, "APM Features: ");
if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
for (unsigned iBit = 6; iBit < 32; iBit++)
if (uEDX & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
if (iVerbosity && cExtMax >= 8)
{
uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
pHlp->pfnPrintf(pHlp,
"Physical Address Width: %d bits\n"
"Virtual Address Width: %d bits\n"
"Guest Physical Address Width: %d bits\n",
(uEAX >> 0) & 0xff,
(uEAX >> 8) & 0xff,
(uEAX >> 16) & 0xff);
pHlp->pfnPrintf(pHlp,
"Physical Core Count: %d\n",
(uECX >> 0) & 0xff);
}
/*
* Centaur.
*/
unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
pHlp->pfnPrintf(pHlp,
"\n"
" RAW Centaur CPUIDs\n"
" Function eax ebx ecx edx\n");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
{
Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
pHlp->pfnPrintf(pHlp,
"Gst: %08x %08x %08x %08x %08x%s\n"
"Hst: %08x %08x %08x %08x\n",
0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
i <= cCentaurMax ? "" : "*",
Host.eax, Host.ebx, Host.ecx, Host.edx);
}
/*
* Understandable output
*/
if (iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
pHlp->pfnPrintf(pHlp,
"Centaur Supports: 0xc0000000-%#010x\n",
Guest.eax);
}
if (iVerbosity && cCentaurMax >= 1)
{
ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
uint32_t uEdxHst = Host.edx;
if (iVerbosity == 1)
{
pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
/* possibly indicating MM/HE and MM/HE-E on older chips... */
if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
for (unsigned iBit = 14; iBit < 32; iBit++)
if (uEdxGst & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
else
{
pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
/* possibly indicating MM/HE and MM/HE-E on older chips... */
pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
for (unsigned iBit = 14; iBit < 32; iBit++)
if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
pHlp->pfnPrintf(pHlp, "\n");
}
}
}
/**
* Structure used when disassembling and instructions in DBGF.
* This is used so the reader function can get the stuff it needs.
*/
typedef struct CPUMDISASSTATE
{
/** Pointer to the CPU structure. */
PDISCPUSTATE pCpu;
/** The VM handle. */
PVM pVM;
/** The VMCPU handle. */
PVMCPU pVCpu;
/** Pointer to the first byte in the segment. */
RTGCUINTPTR GCPtrSegBase;
/** Pointer to the byte after the end of the segment. (might have wrapped!) */
RTGCUINTPTR GCPtrSegEnd;
/** The size of the segment minus 1. */
RTGCUINTPTR cbSegLimit;
/** Pointer to the current page - R3 Ptr. */
void const *pvPageR3;
/** Pointer to the current page - GC Ptr. */
RTGCPTR pvPageGC;
/** The lock information that PGMPhysReleasePageMappingLock needs. */
PGMPAGEMAPLOCK PageMapLock;
/** Whether the PageMapLock is valid or not. */
bool fLocked;
/** 64 bits mode or not. */
bool f64Bits;
} CPUMDISASSTATE, *PCPUMDISASSTATE;
/**
* Instruction reader.
*
* @returns VBox status code.
* @param PtrSrc Address to read from.
* In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
* @param pu8Dst Where to store the bytes.
* @param cbRead Number of bytes to read.
* @param uDisCpu Pointer to the disassembler cpu state.
* In this context it's always pointer to the Core of a DBGFDISASSTATE.
*/
static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
{
PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
Assert(cbRead > 0);
for (;;)
{
RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
/* Need to update the page translation? */
if ( !pState->pvPageR3
|| (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
{
int rc = VINF_SUCCESS;
/* translate the address */
pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
&& !HWACCMIsEnabled(pState->pVM))
{
pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
if (!pState->pvPageR3)
rc = VERR_INVALID_POINTER;
}
else
{
/* Release mapping lock previously acquired. */
if (pState->fLocked)
PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
pState->fLocked = RT_SUCCESS_NP(rc);
}
if (RT_FAILURE(rc))
{
pState->pvPageR3 = NULL;
return rc;
}
}
/* check the segment limit */
if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
return VERR_OUT_OF_SELECTOR_BOUNDS;
/* calc how much we can read */
uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
if (!pState->f64Bits)
{
RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
if (cb > cbSeg && cbSeg)
cb = cbSeg;
}
if (cb > cbRead)
cb = cbRead;
/* read and advance */
memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
cbRead -= cb;
if (!cbRead)
return VINF_SUCCESS;
pu8Dst += cb;
PtrSrc += cb;
}
}
/**
* Disassemble an instruction and return the information in the provided structure.
*
* @returns VBox status code.
* @param pVM VM Handle
* @param pVCpu VMCPU Handle
* @param pCtx CPU context
* @param GCPtrPC Program counter (relative to CS) to disassemble from.
* @param pCpu Disassembly state
* @param pszPrefix String prefix for logging (debug only)
*
*/
VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
{
CPUMDISASSTATE State;
int rc;
const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
State.pCpu = pCpu;
State.pvPageGC = 0;
State.pvPageR3 = NULL;
State.pVM = pVM;
State.pVCpu = pVCpu;
State.fLocked = false;
State.f64Bits = false;
/*
* Get selector information.
*/
if ( (pCtx->cr0 & X86_CR0_PE)
&& pCtx->eflags.Bits.u1VM == 0)
{
if (CPUMAreHiddenSelRegsValid(pVCpu))
{
State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
State.GCPtrSegBase = pCtx->csHid.u64Base;
State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
State.cbSegLimit = pCtx->csHid.u32Limit;
pCpu->mode = (State.f64Bits)
? CPUMODE_64BIT
: pCtx->csHid.Attr.n.u1DefBig
? CPUMODE_32BIT
: CPUMODE_16BIT;
}
else
{
DBGFSELINFO SelInfo;
rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
return rc;
}
/*
* Validate the selector.
*/
rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
return rc;
}
State.GCPtrSegBase = SelInfo.GCPtrBase;
State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
State.cbSegLimit = SelInfo.cbLimit;
pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
}
}
else
{
/* real or V86 mode */
pCpu->mode = CPUMODE_16BIT;
State.GCPtrSegBase = pCtx->cs * 16;
State.GCPtrSegEnd = 0xFFFFFFFF;
State.cbSegLimit = 0xFFFFFFFF;
}
/*
* Disassemble the instruction.
*/
pCpu->pfnReadBytes = cpumR3DisasInstrRead;
pCpu->apvUserData[0] = &State;
uint32_t cbInstr;
#ifndef LOG_ENABLED
rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
if (RT_SUCCESS(rc))
{
#else
char szOutput[160];
rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
if (RT_SUCCESS(rc))
{
/* log it */
if (pszPrefix)
Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
else
Log(("%s", szOutput));
#endif
rc = VINF_SUCCESS;
}
else
Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
/* Release mapping lock acquired in cpumR3DisasInstrRead. */
if (State.fLocked)
PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
return rc;
}
#ifdef DEBUG
/**
* Disassemble an instruction and dump it to the log
*
* @returns VBox status code.
* @param pVM VM Handle
* @param pVCpu VMCPU Handle
* @param pCtx CPU context
* @param pc GC instruction pointer
* @param pszPrefix String prefix for logging
*
* @deprecated Use DBGFR3DisasInstrCurrentLog().
*/
VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
{
DISCPUSTATE Cpu;
CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
}
/**
* Debug helper - Saves guest context on raw mode entry (for fatal dump)
*
* @internal
*/
VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
{
/** @todo SMP support!! */
pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
}
#endif /* DEBUG */
/**
* API for controlling a few of the CPU features found in CR4.
*
* Currently only X86_CR4_TSD is accepted as input.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param fOr The CR4 OR mask.
* @param fAnd The CR4 AND mask.
*/
VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
{
AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
pVM->cpum.s.CR4.OrMask &= fAnd;
pVM->cpum.s.CR4.OrMask |= fOr;
return VINF_SUCCESS;
}
/**
* Gets a pointer to the array of standard CPUID leaves.
*
* CPUMR3GetGuestCpuIdStdMax() give the size of the array.
*
* @returns Pointer to the standard CPUID leaves (read-only).
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
{
return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
}
/**
* Gets a pointer to the array of extended CPUID leaves.
*
* CPUMGetGuestCpuIdExtMax() give the size of the array.
*
* @returns Pointer to the extended CPUID leaves (read-only).
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
{
return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
}
/**
* Gets a pointer to the array of centaur CPUID leaves.
*
* CPUMGetGuestCpuIdCentaurMax() give the size of the array.
*
* @returns Pointer to the centaur CPUID leaves (read-only).
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
{
return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
}
/**
* Gets a pointer to the default CPUID leaf.
*
* @returns Pointer to the default CPUID leaf (read-only).
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
{
return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
}
/**
* Transforms the guest CPU state to raw-ring mode.
*
* This function will change the any of the cs and ss register with DPL=0 to DPL=1.
*
* @returns VBox status. (recompiler failure)
* @param pVCpu The VMCPU handle.
* @param pCtxCore The context core (for trap usage).
* @see @ref pg_raw
*/
VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
Assert(!pVCpu->cpum.s.fRawEntered);
Assert(!pVCpu->cpum.s.fRemEntered);
if (!pCtxCore)
pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
/*
* Are we in Ring-0?
*/
if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
&& !pCtxCore->eflags.Bits.u1VM)
{
/*
* Enter execution mode.
*/
PATMRawEnter(pVM, pCtxCore);
/*
* Set CPL to Ring-1.
*/
pCtxCore->ss |= 1;
if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
pCtxCore->cs |= 1;
}
else
{
AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
("ring-1 code not supported\n"));
/*
* PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
*/
PATMRawEnter(pVM, pCtxCore);
}
/*
* Invalidate the hidden registers.
*/
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
/*
* Assert sanity.
*/
AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
|| pCtxCore->eflags.Bits.u1VM,
("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
pVCpu->cpum.s.fRawEntered = true;
return VINF_SUCCESS;
}
/**
* Transforms the guest CPU state from raw-ring mode to correct values.
*
* This function will change any selector registers with DPL=1 to DPL=0.
*
* @returns Adjusted rc.
* @param pVCpu The VMCPU handle.
* @param rc Raw mode return code
* @param pCtxCore The context core (for trap usage).
* @see @ref pg_raw
*/
VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
/*
* Don't leave if we've already left (in GC).
*/
Assert(pVCpu->cpum.s.fRawEntered);
Assert(!pVCpu->cpum.s.fRemEntered);
if (!pVCpu->cpum.s.fRawEntered)
return rc;
pVCpu->cpum.s.fRawEntered = false;
PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
if (!pCtxCore)
pCtxCore = CPUMCTX2CORE(pCtx);
Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
/*
* Are we executing in raw ring-1?
*/
if ( (pCtxCore->ss & X86_SEL_RPL) == 1
&& !pCtxCore->eflags.Bits.u1VM)
{
/*
* Leave execution mode.
*/
PATMRawLeave(pVM, pCtxCore, rc);
/* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
/** @todo See what happens if we remove this. */
if ((pCtxCore->ds & X86_SEL_RPL) == 1)
pCtxCore->ds &= ~X86_SEL_RPL;
if ((pCtxCore->es & X86_SEL_RPL) == 1)
pCtxCore->es &= ~X86_SEL_RPL;
if ((pCtxCore->fs & X86_SEL_RPL) == 1)
pCtxCore->fs &= ~X86_SEL_RPL;
if ((pCtxCore->gs & X86_SEL_RPL) == 1)
pCtxCore->gs &= ~X86_SEL_RPL;
/*
* Ring-1 selector => Ring-0.
*/
pCtxCore->ss &= ~X86_SEL_RPL;
if ((pCtxCore->cs & X86_SEL_RPL) == 1)
pCtxCore->cs &= ~X86_SEL_RPL;
}
else
{
/*
* PATM is taking care of the IOPL and IF flags for us.
*/
PATMRawLeave(pVM, pCtxCore, rc);
if (!pCtxCore->eflags.Bits.u1VM)
{
/** @todo See what happens if we remove this. */
if ((pCtxCore->ds & X86_SEL_RPL) == 1)
pCtxCore->ds &= ~X86_SEL_RPL;
if ((pCtxCore->es & X86_SEL_RPL) == 1)
pCtxCore->es &= ~X86_SEL_RPL;
if ((pCtxCore->fs & X86_SEL_RPL) == 1)
pCtxCore->fs &= ~X86_SEL_RPL;
if ((pCtxCore->gs & X86_SEL_RPL) == 1)
pCtxCore->gs &= ~X86_SEL_RPL;
}
}
return rc;
}
/**
* Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
*
* Only REM should ever call this function!
*
* @returns The changed flags.
* @param pVCpu The VMCPU handle.
* @param puCpl Where to return the current privilege level (CPL).
*/
VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
{
Assert(!pVCpu->cpum.s.fRawEntered);
Assert(!pVCpu->cpum.s.fRemEntered);
/*
* Get the CPL first.
*/
*puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
/*
* Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
*/
uint32_t fFlags = pVCpu->cpum.s.fChanged;
pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
/** @todo change the switcher to use the fChanged flags. */
if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
{
fFlags |= CPUM_CHANGED_FPU_REM;
pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
}
pVCpu->cpum.s.fRemEntered = true;
return fFlags;
}
/**
* Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
*
* @param pVCpu The virtual CPU handle.
* @param fNoOutOfSyncSels This is @c false if there are out of sync
* registers.
*/
VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
{
Assert(!pVCpu->cpum.s.fRawEntered);
Assert(pVCpu->cpum.s.fRemEntered);
if (fNoOutOfSyncSels)
pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
else
pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
pVCpu->cpum.s.fRemEntered = false;
}