HWVMXR0.cpp revision 6ca4e5aa3635ceff1141c84761528848805e1037
/* $Id$ */
/** @file
* HM VMX (VT-x) - Host Context Ring-0.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_HM
#include <iprt/asm-amd64-x86.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/dbgftrace.h>
#include <VBox/vmm/selm.h>
#include <VBox/vmm/iom.h>
#ifdef VBOX_WITH_REM
# include <VBox/vmm/rem.h>
#endif
#include <VBox/vmm/tm.h>
#include "HMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/pdmapi.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include <iprt/time.h>
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
# include <iprt/thread.h>
#endif
#include <iprt/x86.h>
#include "HWVMXR0.h"
#include "dtrace/VBoxVMM.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#if defined(RT_ARCH_AMD64)
# define VMX_IS_64BIT_HOST_MODE() (true)
#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
# define VMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
#else
# define VMX_IS_64BIT_HOST_MODE() (false)
#endif
# define VMX_WRITE_SELREG(REG, reg) \
do \
{ \
rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_##REG, pCtx->reg.Sel); \
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_##REG##_LIMIT, pCtx->reg.u32Limit); \
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_##REG##_BASE, pCtx->reg.u64Base); \
if ((pCtx->eflags.u32 & X86_EFL_VM)) \
{ \
/* Must override this or else VT-x will fail with invalid guest state errors. */ \
/* DPL=3, present, code/data, r/w/accessed. */ \
/** @todo we shouldn't have to do this, if it is not 0xf3 it means we screwed up elsewhere (recompiler). */ \
/** @todo VT-x docs explicitly mentions 0xF3. Why not just val = 0xf3 ??. */ \
val = (pCtx->reg.Attr.u & ~0xFF) | 0xF3; \
} \
else \
if ( CPUMIsGuestInRealModeEx(pCtx) \
&& !pVM->hm.s.vmx.fUnrestrictedGuest) \
{ \
/** @todo shouldn't the 'if' condition above check for 'pRealModeTSS' ? */ \
/* Must override this or else VT-x will fail with invalid guest state errors. */ \
/* DPL=3, present, code/data, r/w/accessed. */ \
val = 0xf3; \
} \
else \
if ( ( pCtx->reg.Sel \
|| !CPUMIsGuestInPagedProtectedModeEx(pCtx) \
|| (!pCtx->cs.Attr.n.u1DefBig && !CPUMIsGuestIn64BitCodeEx(pCtx)) \
) \
&& pCtx->reg.Attr.n.u1Present == 1) \
{ \
val = pCtx->reg.Attr.u | X86_SEL_TYPE_ACCESSED; \
} \
else \
val = 0x10000; /* Invalid guest state error otherwise. (BIT(16) = Unusable) */ \
\
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS, val); \
} while (0)
# define VMX_READ_SELREG(REG, reg) \
do \
{ \
VMXReadCachedVmcs(VMX_VMCS16_GUEST_FIELD_##REG, &val); \
pCtx->reg.Sel = val; \
pCtx->reg.ValidSel = val; \
pCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
VMXReadCachedVmcs(VMX_VMCS32_GUEST_##REG##_LIMIT, &val); \
pCtx->reg.u32Limit = val; \
VMXReadCachedVmcs(VMX_VMCS_GUEST_##REG##_BASE, &val); \
pCtx->reg.u64Base = val; \
VMXReadCachedVmcs(VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS, &val); \
pCtx->reg.Attr.u = val; \
} while (0)
/* Don't read from the cache in this macro; used only in case of failure where the cache is out of sync. */
# define VMX_LOG_SELREG(REG, szSelReg, val) \
do \
{ \
VMXReadVmcs(VMX_VMCS16_GUEST_FIELD_##REG, &(val)); \
Log(("%s Selector %x\n", szSelReg, (val))); \
VMXReadVmcs(VMX_VMCS32_GUEST_##REG##_LIMIT, &(val)); \
Log(("%s Limit %x\n", szSelReg, (val))); \
VMXReadVmcs(VMX_VMCS_GUEST_##REG##_BASE, &(val)); \
Log(("%s Base %RX64\n", szSelReg, (uint64_t)(val))); \
VMXReadVmcs(VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS, &(val)); \
Log(("%s Attributes %x\n", szSelReg, (val))); \
} while (0)
#define VMXSetupCachedReadVmcs(pCache, idxField) \
{ \
Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
}
#define VMX_SETUP_SELREG(REG, pCache) \
{ \
VMXSetupCachedReadVmcs(pCache, VMX_VMCS16_GUEST_FIELD_##REG); \
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_##REG##_LIMIT); \
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_##REG##_BASE); \
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_##REG##_ACCESS_RIGHTS); \
}
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/* IO operation lookup arrays. */
static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
static uint32_t const g_aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff};
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
/** See HMR0A.asm. */
extern "C" uint32_t g_fVMXIs64bitHost;
#endif
/*******************************************************************************
* Local Functions *
*******************************************************************************/
static DECLCALLBACK(void) hmR0VmxSetupTLBEPT(PVM pVM, PVMCPU pVCpu);
static DECLCALLBACK(void) hmR0VmxSetupTLBVPID(PVM pVM, PVMCPU pVCpu);
static DECLCALLBACK(void) hmR0VmxSetupTLBBoth(PVM pVM, PVMCPU pVCpu);
static DECLCALLBACK(void) hmR0VmxSetupTLBDummy(PVM pVM, PVMCPU pVCpu);
static void hmR0VmxFlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush);
static void hmR0VmxFlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
static void hmR0VmxUpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
static void hmR0VmxSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rc, PCPUMCTX pCtx);
/**
* Updates error from VMCS to HMCPU's lasterror record.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param rc The error code.
*/
static void hmR0VmxCheckError(PVM pVM, PVMCPU pVCpu, int rc)
{
if (rc == VERR_VMX_GENERIC)
{
RTCCUINTREG instrError;
VMXReadVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
pVCpu->hm.s.vmx.lasterror.u32InstrError = instrError;
}
pVM->hm.s.lLastError = rc;
}
/**
* Sets up and activates VT-x on the current CPU.
*
* @returns VBox status code.
* @param pCpu Pointer to the CPU info struct.
* @param pVM Pointer to the VM. (can be NULL after a resume!!)
* @param pvCpuPage Pointer to the global CPU page.
* @param HCPhysCpuPage Physical address of the global CPU page.
* @param fEnabledByHost Set if SUPR0EnableVTx or similar was used to enable
* VT-x/AMD-V on the host.
*/
VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
{
if (!fEnabledByHost)
{
AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
if (pVM)
{
/* Set revision dword at the beginning of the VMXON structure. */
*(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
}
/** @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption.
* (which can have very bad consequences!!!)
*/
/** @todo r=bird: Why is this code different than the probing code earlier
* on? It just sets VMXE if needed and doesn't check that it isn't
* set. Mac OS X host_vmxoff may leave this set and we'll fail here
* and debug-assert in the calling code. This is what caused the
* "regression" after backing out the SUPR0EnableVTx code hours before
* 4.2.0GA (reboot fixed the issue). I've changed here to do the same
* as the init code. */
uint64_t uCr4 = ASMGetCR4();
if (!(uCr4 & X86_CR4_VMXE))
ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE); /* Make sure the VMX instructions don't cause #UD faults. */
/*
* Enter VM root mode.
*/
int rc = VMXEnable(HCPhysCpuPage);
if (RT_FAILURE(rc))
{
ASMSetCR4(uCr4);
return VERR_VMX_VMXON_FAILED;
}
}
/*
* Flush all VPIDs (in case we or any other hypervisor have been using VPIDs) so that
* we can avoid an explicit flush while using new VPIDs. We would still need to flush
* each time while reusing a VPID after hitting the MaxASID limit once.
*/
if ( pVM
&& pVM->hm.s.vmx.fVpid
&& (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS))
{
hmR0VmxFlushVPID(pVM, NULL /* pvCpu */, VMX_FLUSH_VPID_ALL_CONTEXTS, 0 /* GCPtr */);
pCpu->fFlushAsidBeforeUse = false;
}
else
pCpu->fFlushAsidBeforeUse = true;
/*
* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
*/
++pCpu->cTlbFlushes;
return VINF_SUCCESS;
}
/**
* Deactivates VT-x on the current CPU.
*
* @returns VBox status code.
* @param pCpu Pointer to the CPU info struct.
* @param pvCpuPage Pointer to the global CPU page.
* @param HCPhysCpuPage Physical address of the global CPU page.
*/
VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
{
AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
NOREF(pCpu);
/* If we're somehow not in VMX root mode, then we shouldn't dare leaving it. */
if (!(ASMGetCR4() & X86_CR4_VMXE))
return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
/* Leave VMX Root Mode. */
VMXDisable();
/* And clear the X86_CR4_VMXE bit. */
ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
return VINF_SUCCESS;
}
VMMR0DECL(int) VMXR0GlobalInit(void)
{
/* Nothing to do. */
return VINF_SUCCESS;
}
VMMR0DECL(void) VMXR0GlobalTerm(void)
{
/* Nothing to do. */
}
/**
* Does Ring-0 per VM VT-x initialization.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0DECL(int) VMXR0InitVM(PVM pVM)
{
int rc;
#ifdef LOG_ENABLED
SUPR0Printf("VMXR0InitVM %p\n", pVM);
#endif
pVM->hm.s.vmx.hMemObjApicAccess = NIL_RTR0MEMOBJ;
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
{
/* Allocate one page for the APIC physical page (serves for filtering accesses). */
rc = RTR0MemObjAllocCont(&pVM->hm.s.vmx.hMemObjApicAccess, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVM->hm.s.vmx.pbApicAccess = (uint8_t *)RTR0MemObjAddress(pVM->hm.s.vmx.hMemObjApicAccess);
pVM->hm.s.vmx.HCPhysApicAccess = RTR0MemObjGetPagePhysAddr(pVM->hm.s.vmx.hMemObjApicAccess, 0);
ASMMemZero32(pVM->hm.s.vmx.pbApicAccess, PAGE_SIZE);
}
else
{
pVM->hm.s.vmx.hMemObjApicAccess = 0;
pVM->hm.s.vmx.pbApicAccess = 0;
pVM->hm.s.vmx.HCPhysApicAccess = 0;
}
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
{
rc = RTR0MemObjAllocCont(&pVM->hm.s.vmx.hMemObjScratch, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVM->hm.s.vmx.pScratch = (uint8_t *)RTR0MemObjAddress(pVM->hm.s.vmx.hMemObjScratch);
pVM->hm.s.vmx.pScratchPhys = RTR0MemObjGetPagePhysAddr(pVM->hm.s.vmx.hMemObjScratch, 0);
ASMMemZero32(pVM->hm.s.vmx.pbScratch, PAGE_SIZE);
strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
*(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xDEADBEEFDEADBEEF);
}
#endif
/* Allocate VMCSs for all guest CPUs. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->hm.s.vmx.hMemObjVmcs = NIL_RTR0MEMOBJ;
/* Allocate one page for the VM control structure (VMCS). */
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjVmcs, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVCpu->hm.s.vmx.pvVmcs = RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjVmcs);
pVCpu->hm.s.vmx.HCPhysVmcs = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjVmcs, 0);
ASMMemZeroPage(pVCpu->hm.s.vmx.pvVmcs);
pVCpu->hm.s.vmx.cr0_mask = 0;
pVCpu->hm.s.vmx.cr4_mask = 0;
/* Allocate one page for the virtual APIC page for TPR caching. */
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjVirtApic, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVCpu->hm.s.vmx.pbVirtApic = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjVirtApic);
pVCpu->hm.s.vmx.HCPhysVirtApic = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjVirtApic, 0);
ASMMemZeroPage(pVCpu->hm.s.vmx.pbVirtApic);
/* Allocate the MSR bitmap if this feature is supported. */
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
{
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVCpu->hm.s.vmx.pvMsrBitmap = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjMsrBitmap);
pVCpu->hm.s.vmx.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjMsrBitmap, 0);
memset(pVCpu->hm.s.vmx.pvMsrBitmap, 0xff, PAGE_SIZE);
}
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/* Allocate one page for the guest MSR load area (for preloading guest MSRs during the world switch). */
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjGuestMsr, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVCpu->hm.s.vmx.pvGuestMsr = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjGuestMsr);
pVCpu->hm.s.vmx.HCPhysGuestMsr = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjGuestMsr, 0);
Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf));
memset(pVCpu->hm.s.vmx.pvGuestMsr, 0, PAGE_SIZE);
/* Allocate one page for the host MSR load area (for restoring host MSRs after the world switch back). */
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjHostMsr, PAGE_SIZE, false /* fExecutable */);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
pVCpu->hm.s.vmx.pvHostMsr = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjHostMsr);
pVCpu->hm.s.vmx.HCPhysHostMsr = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjHostMsr, 0);
Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf));
memset(pVCpu->hm.s.vmx.pvHostMsr, 0, PAGE_SIZE);
#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
/* Current guest paging mode. */
pVCpu->hm.s.vmx.enmLastSeenGuestMode = PGMMODE_REAL;
#ifdef LOG_ENABLED
SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x)\n", pVM, pVCpu->hm.s.vmx.pvVmcs, (uint32_t)pVCpu->hm.s.vmx.HCPhysVmcs);
#endif
}
return VINF_SUCCESS;
}
/**
* Does Ring-0 per VM VT-x termination.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0DECL(int) VMXR0TermVM(PVM pVM)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
if (pVCpu->hm.s.vmx.hMemObjVmcs != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjVmcs, false);
pVCpu->hm.s.vmx.hMemObjVmcs = NIL_RTR0MEMOBJ;
pVCpu->hm.s.vmx.pvVmcs = 0;
pVCpu->hm.s.vmx.HCPhysVmcs = 0;
}
if (pVCpu->hm.s.vmx.hMemObjVirtApic != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjVirtApic, false);
pVCpu->hm.s.vmx.hMemObjVirtApic = NIL_RTR0MEMOBJ;
pVCpu->hm.s.vmx.pbVirtApic = 0;
pVCpu->hm.s.vmx.HCPhysVirtApic = 0;
}
if (pVCpu->hm.s.vmx.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjMsrBitmap, false);
pVCpu->hm.s.vmx.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
pVCpu->hm.s.vmx.pvMsrBitmap = 0;
pVCpu->hm.s.vmx.HCPhysMsrBitmap = 0;
}
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
if (pVCpu->hm.s.vmx.hMemObjHostMsr != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjHostMsr, false);
pVCpu->hm.s.vmx.hMemObjHostMsr = NIL_RTR0MEMOBJ;
pVCpu->hm.s.vmx.pvHostMsr = 0;
pVCpu->hm.s.vmx.HCPhysHostMsr = 0;
}
if (pVCpu->hm.s.vmx.hMemObjGuestMsr != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjGuestMsr, false);
pVCpu->hm.s.vmx.hMemObjGuestMsr = NIL_RTR0MEMOBJ;
pVCpu->hm.s.vmx.pvGuestMsr = 0;
pVCpu->hm.s.vmx.HCPhysGuestMsr = 0;
}
#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
}
if (pVM->hm.s.vmx.hMemObjApicAccess != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVM->hm.s.vmx.hMemObjApicAccess, false);
pVM->hm.s.vmx.hMemObjApicAccess = NIL_RTR0MEMOBJ;
pVM->hm.s.vmx.pbApicAccess = 0;
pVM->hm.s.vmx.HCPhysApicAccess = 0;
}
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
{
ASMMemZero32(pVM->hm.s.vmx.pScratch, PAGE_SIZE);
RTR0MemObjFree(pVM->hm.s.vmx.hMemObjScratch, false);
pVM->hm.s.vmx.hMemObjScratch = NIL_RTR0MEMOBJ;
pVM->hm.s.vmx.pScratch = 0;
pVM->hm.s.vmx.pScratchPhys = 0;
}
#endif
return VINF_SUCCESS;
}
/**
* Sets up VT-x for the specified VM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
{
int rc = VINF_SUCCESS;
uint32_t val;
AssertReturn(pVM, VERR_INVALID_PARAMETER);
/* Initialize these always, see hmR3InitFinalizeR0().*/
pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
/* Determine optimal flush type for EPT. */
if (pVM->hm.s.fNestedPaging)
{
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
{
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
else
{
/*
* Should never really happen. EPT is supported but no suitable flush types supported.
* We cannot ignore EPT at this point as we've already setup Unrestricted Guest execution.
*/
pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
return VERR_VMX_GENERIC;
}
}
else
{
/*
* Should never really happen. EPT is supported but INVEPT instruction is not supported.
*/
pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
return VERR_VMX_GENERIC;
}
}
/* Determine optimal flush type for VPID. */
if (pVM->hm.s.vmx.fVpid)
{
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
{
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
else
{
/*
* Neither SINGLE nor ALL context flush types for VPID supported by the CPU.
* We do not handle other flush type combinations, ignore VPID capabilities.
*/
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
Log(("VMXR0SetupVM: Only VMX_FLUSH_VPID_INDIV_ADDR supported. Ignoring VPID.\n"));
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
Log(("VMXR0SetupVM: Only VMX_FLUSH_VPID_SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
pVM->hm.s.vmx.fVpid = false;
}
}
else
{
/*
* Should not really happen. EPT is supported but INVEPT is not supported.
* Ignore VPID capabilities as our code relies on using INVEPT for selective flushing.
*/
Log(("VMXR0SetupVM: VPID supported without INVEPT support. Ignoring VPID.\n"));
pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
pVM->hm.s.vmx.fVpid = false;
}
}
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
/* Set revision dword at the beginning of the VMCS structure. */
*(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
/*
* Clear and activate the VMCS.
*/
Log(("HCPhysVmcs = %RHp\n", pVCpu->hm.s.vmx.HCPhysVmcs));
rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
if (RT_FAILURE(rc))
goto vmx_end;
rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
if (RT_FAILURE(rc))
goto vmx_end;
/*
* VMX_VMCS_CTRL_PIN_EXEC_CONTROLS
* Set required bits to one and zero according to the MSR capabilities.
*/
val = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0;
val |= VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT /* External interrupts */
| VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT; /* Non-maskable interrupts */
/*
* Enable the VMX preemption timer.
*/
if (pVM->hm.s.vmx.fUsePreemptTimer)
val |= VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER;
val &= pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, val);
AssertRC(rc);
pVCpu->hm.s.vmx.u32PinCtls = val;
/*
* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS
* Set required bits to one and zero according to the MSR capabilities.
*/
val = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0;
/* Program which event cause VM-exits and which features we want to use. */
val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TSC_OFFSETTING
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDPMC_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside
the guest (host thinks the cpu load is high) */
/* Without nested paging we should intercept invlpg and cr3 mov instructions. */
if (!pVM->hm.s.fNestedPaging)
{
val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
}
/*
* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT might cause a vmlaunch
* failure with an invalid control fields error. (combined with some other exit reasons)
*/
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
{
/* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */
val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW;
Assert(pVM->hm.s.vmx.pbApicAccess);
}
else
/* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */
val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT;
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
{
Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS;
}
/* We will use the secondary control if it's present. */
val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
/* Mask away the bits that the CPU doesn't support */
/** @todo make sure they don't conflict with the above requirements. */
val &= pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1;
pVCpu->hm.s.vmx.u32ProcCtls = val;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, val);
AssertRC(rc);
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
{
/*
* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS2
* Set required bits to one and zero according to the MSR capabilities.
*/
val = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0;
val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT;
if (pVM->hm.s.fNestedPaging)
val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT;
if (pVM->hm.s.vmx.fVpid)
val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID;
if (pVM->hm.s.fHasIoApic)
val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC;
if (pVM->hm.s.vmx.fUnrestrictedGuest)
val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST;
if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP;
/* Mask away the bits that the CPU doesn't support */
/** @todo make sure they don't conflict with the above requirements. */
val &= pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1;
pVCpu->hm.s.vmx.u32ProcCtls2 = val;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS2, val);
AssertRC(rc);
}
/*
* VMX_VMCS_CTRL_CR3_TARGET_COUNT
* Set required bits to one and zero according to the MSR capabilities.
*/
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
AssertRC(rc);
/*
* Forward all exception except #NM & #PF to the guest.
* We always need to check pagefaults since our shadow page table can be out of sync.
* And we always lazily sync the FPU & XMM state. .
*/
/** @todo Possible optimization:
* Keep the FPU and XMM state current in the EM thread. That way there's no need to
* lazily sync anything, but the downside is that we can't use the FPU stack or XMM
* registers ourselves of course.
*
* Note: only possible if the current state is actually ours (X86_CR0_TS flag)
*/
/*
* Don't filter page faults, all of them should cause a world switch.
*/
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
AssertRC(rc);
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
AssertRC(rc);
/*
* Set the MSR bitmap address.
*/
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
{
Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
AssertRC(rc);
/*
* Allow the guest to directly modify these MSRs; they are loaded/stored automatically
* using MSR-load/store areas in the VMCS.
*/
hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_TSC_AUX, true, true);
}
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/*
* Set the guest & host MSR load/store physical addresses.
*/
Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
AssertRC(rc);
Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
AssertRC(rc);
#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
AssertRC(rc);
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
AssertRC(rc);
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
AssertRC(rc);
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
{
Assert(pVM->hm.s.vmx.hMemObjApicAccess);
/* Optional */
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
AssertRC(rc);
}
/* Set link pointer to -1. Not currently used. */
rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFFULL);
AssertRC(rc);
/*
* Clear VMCS, marking it inactive. Clear implementation specific data and writing back
* VMCS data back to memory.
*/
rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
AssertRC(rc);
/*
* Configure the VMCS read cache.
*/
PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RIP);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RSP);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RFLAGS);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_CTRL_CR0_READ_SHADOW);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR0);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_CTRL_CR4_READ_SHADOW);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR4);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_DR7);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_SYSENTER_CS);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_GDTR_LIMIT);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_GDTR_BASE);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_IDTR_LIMIT);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_IDTR_BASE);
VMX_SETUP_SELREG(ES, pCache);
VMX_SETUP_SELREG(SS, pCache);
VMX_SETUP_SELREG(CS, pCache);
VMX_SETUP_SELREG(DS, pCache);
VMX_SETUP_SELREG(FS, pCache);
VMX_SETUP_SELREG(GS, pCache);
VMX_SETUP_SELREG(LDTR, pCache);
VMX_SETUP_SELREG(TR, pCache);
/*
* Status code VMCS reads.
*/
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_REASON);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_VM_INSTR_ERROR);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INSTR_LENGTH);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INSTR_INFO);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_IDT_INFO);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_IDT_ERROR_CODE);
if (pVM->hm.s.fNestedPaging)
{
VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR3);
VMXSetupCachedReadVmcs(pCache, VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL);
pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
}
else
pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
} /* for each VMCPU */
/*
* Setup the right TLB function based on CPU capabilities.
*/
if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBBoth;
else if (pVM->hm.s.fNestedPaging)
pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBEPT;
else if (pVM->hm.s.vmx.fVpid)
pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBVPID;
else
pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBDummy;
vmx_end:
hmR0VmxCheckError(pVM, &pVM->aCpus[0], rc);
return rc;
}
/**
* Sets the permission bits for the specified MSR.
*
* @param pVCpu Pointer to the VMCPU.
* @param ulMSR The MSR value.
* @param fRead Whether reading is allowed.
* @param fWrite Whether writing is allowed.
*/
static void hmR0VmxSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
{
unsigned ulBit;
uint8_t *pvMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
/*
* Layout:
* 0x000 - 0x3ff - Low MSR read bits
* 0x400 - 0x7ff - High MSR read bits
* 0x800 - 0xbff - Low MSR write bits
* 0xc00 - 0xfff - High MSR write bits
*/
if (ulMSR <= 0x00001FFF)
{
/* Pentium-compatible MSRs */
ulBit = ulMSR;
}
else if ( ulMSR >= 0xC0000000
&& ulMSR <= 0xC0001FFF)
{
/* AMD Sixth Generation x86 Processor MSRs */
ulBit = (ulMSR - 0xC0000000);
pvMsrBitmap += 0x400;
}
else
{
AssertFailed();
return;
}
Assert(ulBit <= 0x1fff);
if (fRead)
ASMBitClear(pvMsrBitmap, ulBit);
else
ASMBitSet(pvMsrBitmap, ulBit);
if (fWrite)
ASMBitClear(pvMsrBitmap + 0x800, ulBit);
else
ASMBitSet(pvMsrBitmap + 0x800, ulBit);
}
/**
* Injects an event (trap or external interrupt).
*
* @returns VBox status code. Note that it may return VINF_EM_RESET to
* indicate a triple fault when injecting X86_XCPT_DF.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU Context.
* @param intInfo VMX interrupt info.
* @param cbInstr Opcode length of faulting instruction.
* @param errCode Error code (optional).
*/
static int hmR0VmxInjectEvent(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode)
{
int rc;
uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
#ifdef VBOX_WITH_STATISTICS
STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[iGate & MASK_INJECT_IRQ_STAT]);
#endif
#ifdef VBOX_STRICT
if (iGate == 0xE)
{
LogFlow(("hmR0VmxInjectEvent: Injecting interrupt %d at %RGv error code=%08x CR2=%RGv intInfo=%08x\n", iGate,
(RTGCPTR)pCtx->rip, errCode, pCtx->cr2, intInfo));
}
else if (iGate < 0x20)
{
LogFlow(("hmR0VmxInjectEvent: Injecting interrupt %d at %RGv error code=%08x\n", iGate, (RTGCPTR)pCtx->rip,
errCode));
}
else
{
LogFlow(("INJ-EI: %x at %RGv\n", iGate, (RTGCPTR)pCtx->rip));
Assert( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
|| !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
Assert( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
|| pCtx->eflags.u32 & X86_EFL_IF);
}
#endif
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
RTGCPHYS GCPhysHandler;
uint16_t offset, ip;
RTSEL sel;
/*
* Injecting events doesn't work right with real mode emulation.
* (#GP if we try to inject external hardware interrupts)
* Inject the interrupt or trap directly instead.
*
* ASSUMES no access handlers for the bits we read or write below (should be safe).
*/
Log(("Manual interrupt/trap '%x' inject (real mode)\n", iGate));
/*
* Check if the interrupt handler is present.
*/
if (iGate * 4 + 3 > pCtx->idtr.cbIdt)
{
Log(("IDT cbIdt violation\n"));
if (iGate != X86_XCPT_DF)
{
uint32_t intInfo2;
intInfo2 = (iGate == X86_XCPT_GP) ? (uint32_t)X86_XCPT_DF : (uint32_t)X86_XCPT_GP;
intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
intInfo2 |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
return hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, 0, 0 /* no error code according to the Intel docs */);
}
Log(("Triple fault -> reset the VM!\n"));
return VINF_EM_RESET;
}
if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
|| iGate == 3 /* Both #BP and #OF point to the instruction after. */
|| iGate == 4)
{
ip = pCtx->ip + cbInstr;
}
else
ip = pCtx->ip;
/*
* Read the selector:offset pair of the interrupt handler.
*/
GCPhysHandler = (RTGCPHYS)pCtx->idtr.pIdt + iGate * 4;
rc = PGMPhysSimpleReadGCPhys(pVM, &offset, GCPhysHandler, sizeof(offset)); AssertRC(rc);
rc = PGMPhysSimpleReadGCPhys(pVM, &sel, GCPhysHandler + 2, sizeof(sel)); AssertRC(rc);
LogFlow(("IDT handler %04X:%04X\n", sel, offset));
/*
* Construct the stack frame.
*/
/** @todo Check stack limit. */
pCtx->sp -= 2;
LogFlow(("ss:sp %04X:%04X eflags=%x\n", pCtx->ss.Sel, pCtx->sp, pCtx->eflags.u));
rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &pCtx->eflags, sizeof(uint16_t)); AssertRC(rc);
pCtx->sp -= 2;
LogFlow(("ss:sp %04X:%04X cs=%x\n", pCtx->ss.Sel, pCtx->sp, pCtx->cs.Sel));
rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &pCtx->cs, sizeof(uint16_t)); AssertRC(rc);
pCtx->sp -= 2;
LogFlow(("ss:sp %04X:%04X ip=%x\n", pCtx->ss.Sel, pCtx->sp, ip));
rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &ip, sizeof(ip)); AssertRC(rc);
/*
* Update the CPU state for executing the handler.
*/
pCtx->rip = offset;
pCtx->cs.Sel = sel;
pCtx->cs.u64Base = sel << 4;
pCtx->eflags.u &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS;
return VINF_SUCCESS;
}
/*
* Set event injection state.
*/
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT));
rc |= VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
rc |= VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode);
AssertRC(rc);
return rc;
}
/**
* Checks for pending guest interrupts and injects them.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
static int hmR0VmxCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, CPUMCTX *pCtx)
{
int rc;
/*
* Dispatch any pending interrupts (injected before, but a VM exit occurred prematurely).
*/
if (pVCpu->hm.s.Event.fPending)
{
Log(("CPU%d: Reinjecting event %RX64 %08x at %RGv cr2=%RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntrInfo,
pVCpu->hm.s.Event.u32ErrCode, (RTGCPTR)pCtx->rip, pCtx->cr2));
STAM_COUNTER_INC(&pVCpu->hm.s.StatIntReinject);
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, pVCpu->hm.s.Event.u64IntrInfo, 0, pVCpu->hm.s.Event.u32ErrCode);
AssertRC(rc);
pVCpu->hm.s.Event.fPending = false;
return VINF_SUCCESS;
}
/*
* If an active trap is already pending, we must forward it first!
*/
if (!TRPMHasTrap(pVCpu))
{
if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
{
RTGCUINTPTR intInfo;
Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
intInfo = X86_XCPT_NMI;
intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0);
AssertRC(rc);
return VINF_SUCCESS;
}
/** @todo SMI interrupts. */
/*
* When external interrupts are pending, we should exit the VM when IF is set.
*/
if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
{
if (!(pCtx->eflags.u32 & X86_EFL_IF))
{
if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT))
{
LogFlow(("Enable irq window exit!\n"));
pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
}
/* else nothing to do but wait */
}
else if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
{
uint8_t u8Interrupt;
rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
Log(("CPU%d: Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc cs:rip=%04X:%RGv\n", pVCpu->idCpu,
u8Interrupt, u8Interrupt, rc, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
if (RT_SUCCESS(rc))
{
rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
AssertRC(rc);
}
else
{
/* Can only happen in rare cases where a pending interrupt is cleared behind our back */
Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
/* Just continue */
}
}
else
Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS!!\n", (RTGCPTR)pCtx->rip));
}
}
#ifdef VBOX_STRICT
if (TRPMHasTrap(pVCpu))
{
uint8_t u8Vector;
rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
AssertRC(rc);
}
#endif
if ( (pCtx->eflags.u32 & X86_EFL_IF)
&& (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
&& TRPMHasTrap(pVCpu)
)
{
uint8_t u8Vector;
TRPMEVENT enmType;
RTGCUINTPTR intInfo;
RTGCUINT errCode;
/*
* If a new event is pending, dispatch it now.
*/
rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &errCode, 0);
AssertRC(rc);
Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
Assert(enmType != TRPM_SOFTWARE_INT);
/*
* Clear the pending trap.
*/
rc = TRPMResetTrap(pVCpu);
AssertRC(rc);
intInfo = u8Vector;
intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
if (enmType == TRPM_TRAP)
{
switch (u8Vector)
{
case X86_XCPT_DF:
case X86_XCPT_TS:
case X86_XCPT_NP:
case X86_XCPT_SS:
case X86_XCPT_GP:
case X86_XCPT_PF:
case X86_XCPT_AC:
{
/** @todo r=ramshankar: setting this bit would blow up for real-mode guests with
* unrestricted guest execution. */
/* Valid error codes. */
intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
break;
}
default:
break;
}
if ( u8Vector == X86_XCPT_BP
|| u8Vector == X86_XCPT_OF)
{
intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
}
else
intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
}
else
intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo, 0, errCode);
AssertRC(rc);
} /* if (interrupts can be dispatched) */
return VINF_SUCCESS;
}
/**
* Checks for pending VMX events and converts them to TRPM. Before we execute any instruction
* outside of VMX, any pending VMX event must be converted so that it can be delivered properly.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
*/
static int hmR0VmxCheckPendingEvent(PVMCPU pVCpu)
{
if (pVCpu->hm.s.Event.fPending)
{
TRPMEVENT enmTrapType;
/* If a trap was already pending, we did something wrong! */
Assert((TRPMQueryTrap(pVCpu, NULL, NULL) == VERR_TRPM_NO_ACTIVE_TRAP));
/*
* Clear the pending event and move it over to TRPM for the rest
* of the world to see.
*/
pVCpu->hm.s.Event.fPending = false;
switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo))
{
case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT:
case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI:
enmTrapType = TRPM_HARDWARE_INT;
break;
case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /** @todo Is classifying #BP, #OF as TRPM_SOFTWARE_INT correct? */
case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT:
enmTrapType = TRPM_SOFTWARE_INT;
break;
case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
enmTrapType = TRPM_TRAP;
break;
default:
enmTrapType = TRPM_32BIT_HACK; /* Can't get here. */
AssertFailed();
}
TRPMAssertTrap(pVCpu, VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo), enmTrapType);
if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo))
TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode);
//@todo: Is there any situation where we need to call TRPMSetFaultAddress()?
}
return VINF_SUCCESS;
}
/**
* Save the host state into the VMCS.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
{
int rc = VINF_SUCCESS;
NOREF(pVM);
/*
* Host CPU Context.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT)
{
RTIDTR idtr;
RTGDTR gdtr;
RTSEL SelTR;
PCX86DESCHC pDesc;
uintptr_t trBase;
RTSEL cs;
RTSEL ss;
uint64_t cr3;
/*
* Control registers.
*/
rc = VMXWriteVmcs(VMX_VMCS_HOST_CR0, ASMGetCR0());
Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0()));
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (VMX_IS_64BIT_HOST_MODE())
{
cr3 = hmR0Get64bitCR3();
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_CR3, cr3);
}
else
#endif
{
cr3 = ASMGetCR3();
rc |= VMXWriteVmcs(VMX_VMCS_HOST_CR3, cr3);
}
Log2(("VMX_VMCS_HOST_CR3 %08RX64\n", cr3));
rc |= VMXWriteVmcs(VMX_VMCS_HOST_CR4, ASMGetCR4());
Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4()));
AssertRC(rc);
/*
* Selector registers.
*/
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (VMX_IS_64BIT_HOST_MODE())
{
cs = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
ss = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
}
else
{
/* sysenter loads LDT cs & ss, VMX doesn't like this. Load the GDT ones (safe). */
cs = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
ss = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
}
#else
cs = ASMGetCS();
ss = ASMGetSS();
#endif
Assert(!(cs & X86_SEL_LDT)); Assert((cs & X86_SEL_RPL) == 0);
Assert(!(ss & X86_SEL_LDT)); Assert((ss & X86_SEL_RPL) == 0);
rc = VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_CS, cs);
/* Note: VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */
rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_DS, 0);
rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_ES, 0);
#if HC_ARCH_BITS == 32
if (!VMX_IS_64BIT_HOST_MODE())
{
rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_FS, 0);
rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_GS, 0);
}
#endif
rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_SS, ss);
SelTR = ASMGetTR();
rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_TR, SelTR);
AssertRC(rc);
Log2(("VMX_VMCS_HOST_FIELD_CS %08x (%08x)\n", cs, ASMGetSS()));
Log2(("VMX_VMCS_HOST_FIELD_DS 00000000 (%08x)\n", ASMGetDS()));
Log2(("VMX_VMCS_HOST_FIELD_ES 00000000 (%08x)\n", ASMGetES()));
Log2(("VMX_VMCS_HOST_FIELD_FS 00000000 (%08x)\n", ASMGetFS()));
Log2(("VMX_VMCS_HOST_FIELD_GS 00000000 (%08x)\n", ASMGetGS()));
Log2(("VMX_VMCS_HOST_FIELD_SS %08x (%08x)\n", ss, ASMGetSS()));
Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR()));
/*
* GDTR & IDTR.
*/
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (VMX_IS_64BIT_HOST_MODE())
{
X86XDTR64 gdtr64, idtr64;
hmR0Get64bitGdtrAndIdtr(&gdtr64, &idtr64);
rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, gdtr64.uAddr);
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, idtr64.uAddr);
AssertRC(rc);
Log2(("VMX_VMCS_HOST_GDTR_BASE %RX64\n", gdtr64.uAddr));
Log2(("VMX_VMCS_HOST_IDTR_BASE %RX64\n", idtr64.uAddr));
gdtr.cbGdt = gdtr64.cb;
gdtr.pGdt = (uintptr_t)gdtr64.uAddr;
}
else
#endif
{
ASMGetGDTR(&gdtr);
rc = VMXWriteVmcs(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt);
ASMGetIDTR(&idtr);
rc |= VMXWriteVmcs(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt);
AssertRC(rc);
Log2(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", gdtr.pGdt));
Log2(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", idtr.pIdt));
}
/*
* Save the base address of the TR selector.
*/
if (SelTR > gdtr.cbGdt)
{
AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt));
return VERR_VMX_INVALID_HOST_STATE;
}
pDesc = (PCX86DESCHC)(gdtr.pGdt + (SelTR & X86_SEL_MASK));
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (VMX_IS_64BIT_HOST_MODE())
{
uint64_t trBase64 = X86DESC64_BASE((PX86DESC64)pDesc);
rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, trBase64);
Log2(("VMX_VMCS_HOST_TR_BASE %RX64\n", trBase64));
AssertRC(rc);
}
else
#endif
{
#if HC_ARCH_BITS == 64
trBase = X86DESC64_BASE(pDesc);
#else
trBase = X86DESC_BASE(pDesc);
#endif
rc = VMXWriteVmcs(VMX_VMCS_HOST_TR_BASE, trBase);
AssertRC(rc);
Log2(("VMX_VMCS_HOST_TR_BASE %RHv\n", trBase));
}
/*
* FS base and GS base.
*/
#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (VMX_IS_64BIT_HOST_MODE())
{
Log2(("MSR_K8_FS_BASE = %RX64\n", ASMRdMsr(MSR_K8_FS_BASE)));
Log2(("MSR_K8_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_GS_BASE)));
rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE));
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE));
}
#endif
AssertRC(rc);
/*
* Sysenter MSRs.
*/
/** @todo expensive!! */
rc = VMXWriteVmcs(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)));
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (VMX_IS_64BIT_HOST_MODE())
{
Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
}
else
{
rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
}
#elif HC_ARCH_BITS == 32
rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
#else
Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
#endif
AssertRC(rc);
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/*
* Store all host MSRs in the VM-Exit load area, so they will be reloaded after
* the world switch back to the host.
*/
PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvHostMsr;
unsigned idxMsr = 0;
uint32_t u32HostExtFeatures = ASMCpuId_EDX(0x80000001);
if (u32HostExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
{
pMsr->u32IndexMSR = MSR_K6_EFER;
pMsr->u32Reserved = 0;
# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (CPUMIsGuestInLongMode(pVCpu))
{
/* Must match the EFER value in our 64 bits switcher. */
pMsr->u64Value = ASMRdMsr(MSR_K6_EFER) | MSR_K6_EFER_LME | MSR_K6_EFER_SCE | MSR_K6_EFER_NXE;
}
else
# endif
pMsr->u64Value = ASMRdMsr(MSR_K6_EFER);
pMsr++; idxMsr++;
}
# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (VMX_IS_64BIT_HOST_MODE())
{
pMsr->u32IndexMSR = MSR_K6_STAR;
pMsr->u32Reserved = 0;
pMsr->u64Value = ASMRdMsr(MSR_K6_STAR); /* legacy syscall eip, cs & ss */
pMsr++; idxMsr++;
pMsr->u32IndexMSR = MSR_K8_LSTAR;
pMsr->u32Reserved = 0;
pMsr->u64Value = ASMRdMsr(MSR_K8_LSTAR); /* 64 bits mode syscall rip */
pMsr++; idxMsr++;
pMsr->u32IndexMSR = MSR_K8_SF_MASK;
pMsr->u32Reserved = 0;
pMsr->u64Value = ASMRdMsr(MSR_K8_SF_MASK); /* syscall flag mask */
pMsr++; idxMsr++;
/* The KERNEL_GS_BASE MSR doesn't work reliably with auto load/store. See @bugref{6208} */
#if 0
pMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
pMsr->u32Reserved = 0;
pMsr->u64Value = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); /* swapgs exchange value */
pMsr++; idxMsr++;
#endif
}
# endif
if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
{
pMsr->u32IndexMSR = MSR_K8_TSC_AUX;
pMsr->u32Reserved = 0;
pMsr->u64Value = ASMRdMsr(MSR_K8_TSC_AUX);
pMsr++; idxMsr++;
}
/** @todo r=ramshankar: check IA32_VMX_MISC bits 27:25 for valid idxMsr
* range. */
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, idxMsr);
AssertRC(rc);
#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
}
return rc;
}
/**
* Loads the 4 PDPEs into the guest state when nested paging is used and the
* guest operates in PAE mode.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
static int hmR0VmxLoadPaePdpes(PVMCPU pVCpu, PCPUMCTX pCtx)
{
if (CPUMIsGuestInPAEModeEx(pCtx))
{
X86PDPE aPdpes[4];
int rc = PGMGstGetPaePdpes(pVCpu, &aPdpes[0]);
AssertRCReturn(rc, rc);
rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, aPdpes[0].u); AssertRCReturn(rc, rc);
rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, aPdpes[1].u); AssertRCReturn(rc, rc);
rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, aPdpes[2].u); AssertRCReturn(rc, rc);
rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, aPdpes[3].u); AssertRCReturn(rc, rc);
}
return VINF_SUCCESS;
}
/**
* Saves the 4 PDPEs into the guest state when nested paging is used and the
* guest operates in PAE mode.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VM CPU.
* @param pCtx Pointer to the guest CPU context.
*
* @remarks Tell PGM about CR3 changes before calling this helper.
*/
static int hmR0VmxSavePaePdpes(PVMCPU pVCpu, PCPUMCTX pCtx)
{
if (CPUMIsGuestInPAEModeEx(pCtx))
{
int rc;
X86PDPE aPdpes[4];
rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &aPdpes[0].u); AssertRCReturn(rc, rc);
rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &aPdpes[1].u); AssertRCReturn(rc, rc);
rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &aPdpes[2].u); AssertRCReturn(rc, rc);
rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &aPdpes[3].u); AssertRCReturn(rc, rc);
rc = PGMGstUpdatePaePdpes(pVCpu, &aPdpes[0]);
AssertRCReturn(rc, rc);
}
return VINF_SUCCESS;
}
/**
* Update the exception bitmap according to the current CPU state.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
static void hmR0VmxUpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
uint32_t u32TrapMask;
Assert(pCtx);
/*
* Set up a mask for intercepting traps.
*/
/** @todo Do we really need to always intercept #DB? */
u32TrapMask = RT_BIT(X86_XCPT_DB)
| RT_BIT(X86_XCPT_NM)
#ifdef VBOX_ALWAYS_TRAP_PF
| RT_BIT(X86_XCPT_PF)
#endif
#ifdef VBOX_STRICT
| RT_BIT(X86_XCPT_BP)
| RT_BIT(X86_XCPT_DB)
| RT_BIT(X86_XCPT_DE)
| RT_BIT(X86_XCPT_NM)
| RT_BIT(X86_XCPT_UD)
| RT_BIT(X86_XCPT_NP)
| RT_BIT(X86_XCPT_SS)
| RT_BIT(X86_XCPT_GP)
| RT_BIT(X86_XCPT_MF)
#endif
;
/*
* Without nested paging, #PF must be intercepted to implement shadow paging.
*/
/** @todo NP state won't change so maybe we should build the initial trap mask up front? */
if (!pVM->hm.s.fNestedPaging)
u32TrapMask |= RT_BIT(X86_XCPT_PF);
/* Catch floating point exceptions if we need to report them to the guest in a different way. */
if (!(pCtx->cr0 & X86_CR0_NE))
u32TrapMask |= RT_BIT(X86_XCPT_MF);
#ifdef VBOX_STRICT
Assert(u32TrapMask & RT_BIT(X86_XCPT_GP));
#endif
/*
* Intercept all exceptions in real mode as none of them can be injected directly (#GP otherwise).
*/
/** @todo Despite the claim to intercept everything, with NP we do not intercept #PF. Should we? */
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
u32TrapMask |= RT_BIT(X86_XCPT_DE)
| RT_BIT(X86_XCPT_DB)
| RT_BIT(X86_XCPT_NMI)
| RT_BIT(X86_XCPT_BP)
| RT_BIT(X86_XCPT_OF)
| RT_BIT(X86_XCPT_BR)
| RT_BIT(X86_XCPT_UD)
| RT_BIT(X86_XCPT_DF)
| RT_BIT(X86_XCPT_CO_SEG_OVERRUN)
| RT_BIT(X86_XCPT_TS)
| RT_BIT(X86_XCPT_NP)
| RT_BIT(X86_XCPT_SS)
| RT_BIT(X86_XCPT_GP)
| RT_BIT(X86_XCPT_MF)
| RT_BIT(X86_XCPT_AC)
| RT_BIT(X86_XCPT_MC)
| RT_BIT(X86_XCPT_XF)
;
}
int rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32TrapMask);
AssertRC(rc);
}
/**
* Loads a minimal guest state.
*
* NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0DECL(void) VMXR0LoadMinimalGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
int rc;
X86EFLAGS eflags;
Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST));
/*
* Load EIP, ESP and EFLAGS.
*/
rc = VMXWriteVmcs64(VMX_VMCS_GUEST_RIP, pCtx->rip);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_RSP, pCtx->rsp);
AssertRC(rc);
/*
* Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1.
*/
eflags = pCtx->eflags;
eflags.u32 &= VMX_EFLAGS_RESERVED_0;
eflags.u32 |= VMX_EFLAGS_RESERVED_1;
/*
* Check if real mode emulation using v86 mode.
*/
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
pVCpu->hm.s.vmx.RealMode.eflags = eflags;
eflags.Bits.u1VM = 1;
eflags.Bits.u2IOPL = 0; /* must always be 0 or else certain instructions won't cause faults. */
}
rc = VMXWriteVmcs(VMX_VMCS_GUEST_RFLAGS, eflags.u32);
AssertRC(rc);
}
/**
* Sets up TSC offsetting and VMX preemption, if supported/configured/available.
*
* NOTE: This function reads the host TSC value. Therefore it must be executed very
* shortly before a VM entry and execution MUST NOT be rescheduled between a call to
* this function and a VM entry without calling this function again.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR0DECL(int) VMXR0SetupTscOffsetAndPreemption(PVM pVM, PVMCPU pVCpu)
{
int rc = VINF_SUCCESS;
bool fOffsettedTsc;
if (pVM->hm.s.vmx.fUsePreemptTimer)
{
uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
/* Make sure the returned values have sane upper and lower boundaries. */
uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64 of a second */
cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
rc = VMXWriteVmcs(VMX_VMCS32_GUEST_PREEMPTION_TIMER_VALUE, cPreemptionTickCount);
AssertRC(rc);
}
else
fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
if (fOffsettedTsc)
{
uint64_t u64CurTSC = ASMReadTSC();
if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
{
/* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset);
AssertRC(rc);
pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
}
else
{
/* Fall back to rdtsc, rdtscp emulation as we would otherwise pass decreasing tsc values to the guest. */
LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC,
pVCpu->hm.s.vmx.u64TSCOffset, u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset,
TMCpuTickGetLastSeen(pVCpu), TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVCpu->hm.s.vmx.u64TSCOffset,
TMCpuTickGet(pVCpu)));
pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
}
}
else
{
pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
}
return rc;
}
/**
* Loads the guest state.
*
* NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
int rc = VINF_SUCCESS;
RTGCUINTPTR val;
/*
* VMX_VMCS_CTRL_ENTRY_CONTROLS
* Set required bits to one and zero according to the MSR capabilities.
*/
val = pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0;
/*
* Load guest debug controls (DR7 & IA32_DEBUGCTL_MSR).
* Forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs
*/
val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_DEBUG;
if (CPUMIsGuestInLongModeEx(pCtx))
val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA32E_MODE_GUEST;
/* else Must be zero when AMD64 is not available. */
/*
* Mask away the bits that the CPU doesn't support.
*/
val &= pVM->hm.s.vmx.msr.vmx_entry.n.allowed1;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_CONTROLS, val);
AssertRC(rc);
/*
* VMX_VMCS_CTRL_EXIT_CONTROLS
* Set required bits to one and zero according to the MSR capabilities.
*/
val = pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0;
/*
* Save debug controls (DR7 & IA32_DEBUGCTL_MSR)
* Forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs
*/
val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG;
#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (VMX_IS_64BIT_HOST_MODE())
val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE;
/* else Must be zero when AMD64 is not available. */
#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
if (CPUMIsGuestInLongModeEx(pCtx))
val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE; /* our switcher goes to long mode */
else
Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE));
#endif
val &= pVM->hm.s.vmx.msr.vmx_exit.n.allowed1;
/*
* Don't acknowledge external interrupts on VM-exit.
*/
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_CONTROLS, val);
AssertRC(rc);
/*
* Guest CPU context: ES, CS, SS, DS, FS, GS.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
{
if (pVM->hm.s.vmx.pRealModeTSS)
{
PGMMODE enmGuestMode = PGMGetGuestMode(pVCpu);
if (pVCpu->hm.s.vmx.enmLastSeenGuestMode != enmGuestMode)
{
/*
* Correct weird requirements for switching to protected mode.
*/
if ( pVCpu->hm.s.vmx.enmLastSeenGuestMode == PGMMODE_REAL
&& enmGuestMode >= PGMMODE_PROTECTED)
{
#ifdef VBOX_WITH_REM
/*
* Flush the recompiler code cache as it's not unlikely the guest will rewrite code
* it will later execute in real mode (OpenBSD 4.0 is one such example)
*/
REMFlushTBs(pVM);
#endif
/*
* DPL of all hidden selector registers must match the current CPL (0).
*/
pCtx->cs.Attr.n.u2Dpl = 0;
pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_RW_ACC;
pCtx->ds.Attr.n.u2Dpl = 0;
pCtx->es.Attr.n.u2Dpl = 0;
pCtx->fs.Attr.n.u2Dpl = 0;
pCtx->gs.Attr.n.u2Dpl = 0;
pCtx->ss.Attr.n.u2Dpl = 0;
}
pVCpu->hm.s.vmx.enmLastSeenGuestMode = enmGuestMode;
}
}
VMX_WRITE_SELREG(ES, es);
AssertRC(rc);
VMX_WRITE_SELREG(CS, cs);
AssertRC(rc);
VMX_WRITE_SELREG(SS, ss);
AssertRC(rc);
VMX_WRITE_SELREG(DS, ds);
AssertRC(rc);
VMX_WRITE_SELREG(FS, fs);
AssertRC(rc);
VMX_WRITE_SELREG(GS, gs);
AssertRC(rc);
}
/*
* Guest CPU context: LDTR.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
{
if (pCtx->ldtr.Sel == 0)
{
rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_LDTR, 0);
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_LIMIT, 0);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_LDTR_BASE, 0); /* @todo removing "64" in the function should be the same. */
/* Note: vmlaunch will fail with 0 or just 0x02. No idea why. */
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */);
}
else
{
rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_LDTR, pCtx->ldtr.Sel);
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); /* @todo removing "64" and it should be the same */
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtr.Attr.u);
}
AssertRC(rc);
}
/*
* Guest CPU context: TR.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
{
/*
* Real mode emulation using v86 mode with CR4.VME (interrupt redirection
* using the int bitmap in the TSS).
*/
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
RTGCPHYS GCPhys;
/* We convert it here every time as PCI regions could be reconfigured. */
rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
AssertRC(rc);
rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_TR, 0);
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_LIMIT, HM_VTX_TSS_SIZE);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_TR_BASE, GCPhys /* phys = virt in this mode */);
X86DESCATTR attr;
attr.u = 0;
attr.n.u1Present = 1;
attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
val = attr.u;
}
else
{
rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_TR, pCtx->tr.Sel);
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_LIMIT, pCtx->tr.u32Limit);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_TR_BASE, pCtx->tr.u64Base);
val = pCtx->tr.Attr.u;
/* The TSS selector must be busy (REM bugs? see defect #XXXX). */
if (!(val & X86_SEL_TYPE_SYS_TSS_BUSY_MASK))
{
if (val & 0xf)
val |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
else
/* Default if no TR selector has been set (otherwise vmlaunch will fail!) */
val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY;
}
AssertMsg((val & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY || (val & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY,
("%#x\n", val));
}
rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, val);
AssertRC(rc);
}
/*
* Guest CPU context: GDTR.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
{
rc = VMXWriteVmcs(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
AssertRC(rc);
}
/*
* Guest CPU context: IDTR.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
{
rc = VMXWriteVmcs(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
AssertRC(rc);
}
/*
* Sysenter MSRs.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_MSR)
{
rc = VMXWriteVmcs(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
AssertRC(rc);
}
/*
* Guest CPU context: Control registers.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
{
val = pCtx->cr0;
rc = VMXWriteVmcs(VMX_VMCS_CTRL_CR0_READ_SHADOW, val);
Log2(("Guest CR0-shadow %08x\n", val));
if (CPUMIsGuestFPUStateActive(pVCpu) == false)
{
/* Always use #NM exceptions to load the FPU/XMM state on demand. */
val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
}
else
{
/** @todo check if we support the old style mess correctly. */
if (!(val & X86_CR0_NE))
Log(("Forcing X86_CR0_NE!!!\n"));
val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
}
/* Protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */
if (!pVM->hm.s.vmx.fUnrestrictedGuest)
val |= X86_CR0_PE | X86_CR0_PG;
if (pVM->hm.s.fNestedPaging)
{
if (CPUMIsGuestInPagedProtectedModeEx(pCtx))
{
/* Disable CR3 read/write monitoring as we don't need it for EPT. */
pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT);
}
else
{
/* Reenable CR3 read/write monitoring as our identity mapped page table is active. */
pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
}
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
}
else
{
/* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */
val |= X86_CR0_WP;
}
/* Always enable caching. */
val &= ~(X86_CR0_CD|X86_CR0_NW);
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_CR0, val);
Log2(("Guest CR0 %08x\n", val));
/*
* CR0 flags owned by the host; if the guests attempts to change them, then the VM will exit.
*/
val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */
| X86_CR0_WP /* Must monitor this bit (it must always be enabled). */
| X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */
| X86_CR0_CD /* Bit not restored during VM-exit! */
| X86_CR0_NW /* Bit not restored during VM-exit! */
| X86_CR0_NE;
/*
* When the guest's FPU state is active, then we no longer care about the FPU related bits.
*/
if (CPUMIsGuestFPUStateActive(pVCpu) == false)
val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_MP;
pVCpu->hm.s.vmx.cr0_mask = val;
rc |= VMXWriteVmcs(VMX_VMCS_CTRL_CR0_MASK, val);
Log2(("Guest CR0-mask %08x\n", val));
AssertRC(rc);
}
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
{
rc = VMXWriteVmcs(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4);
Log2(("Guest CR4-shadow %08x\n", pCtx->cr4));
/* Set the required bits in cr4 too (currently X86_CR4_VMXE). */
val = pCtx->cr4 | (uint32_t)pVM->hm.s.vmx.msr.vmx_cr4_fixed0;
if (!pVM->hm.s.fNestedPaging)
{
switch (pVCpu->hm.s.enmShadowMode)
{
case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */
case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */
case PGMMODE_32_BIT: /* 32-bit paging. */
val &= ~X86_CR4_PAE;
break;
case PGMMODE_PAE: /* PAE paging. */
case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
/** Must use PAE paging as we could use physical memory > 4 GB */
val |= X86_CR4_PAE;
break;
case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
#ifdef VBOX_ENABLE_64_BITS_GUESTS
break;
#else
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
#endif
default: /* shut up gcc */
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
}
}
else if ( !CPUMIsGuestInPagedProtectedModeEx(pCtx)
&& !pVM->hm.s.vmx.fUnrestrictedGuest)
{
/* We use 4 MB pages in our identity mapping page table for real and protected mode without paging. */
val |= X86_CR4_PSE;
/* Our identity mapping is a 32 bits page directory. */
val &= ~X86_CR4_PAE;
}
/*
* Turn off VME if we're in emulated real mode.
*/
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
val &= ~X86_CR4_VME;
}
rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_CR4, val);
Log2(("Guest CR4 %08x\n", val));
/*
* CR4 flags owned by the host; if the guests attempts to change them, then the VM will exit.
*/
val = 0
| X86_CR4_VME
| X86_CR4_PAE
| X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_VMXE;
pVCpu->hm.s.vmx.cr4_mask = val;
rc |= VMXWriteVmcs(VMX_VMCS_CTRL_CR4_MASK, val);
Log2(("Guest CR4-mask %08x\n", val));
AssertRC(rc);
}
#if 0
/* Enable single stepping if requested and CPU supports it. */
if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG)
if (DBGFIsStepping(pVCpu))
{
pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG;
rc = VMXWriteVmcs(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
}
#endif
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
{
if (pVM->hm.s.fNestedPaging)
{
Assert(PGMGetHyperCR3(pVCpu));
pVCpu->hm.s.vmx.GCPhysEPTP = PGMGetHyperCR3(pVCpu);
Assert(!(pVCpu->hm.s.vmx.GCPhysEPTP & 0xfff));
/** @todo Check the IA32_VMX_EPT_VPID_CAP MSR for other supported memory types. */
pVCpu->hm.s.vmx.GCPhysEPTP |= VMX_EPT_MEMTYPE_WB
| (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.GCPhysEPTP);
AssertRC(rc);
if ( !CPUMIsGuestInPagedProtectedModeEx(pCtx)
&& !pVM->hm.s.vmx.fUnrestrictedGuest)
{
RTGCPHYS GCPhys;
/* We convert it here every time as PCI regions could be reconfigured. */
rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
AssertMsgRC(rc, ("pNonPagingModeEPTPageTable = %RGv\n", pVM->hm.s.vmx.pNonPagingModeEPTPageTable));
/*
* We use our identity mapping page table here as we need to map guest virtual to
* guest physical addresses; EPT will take care of the translation to host physical addresses.
*/
val = GCPhys;
}
else
{
/* Save the real guest CR3 in VMX_VMCS_GUEST_CR3 */
val = pCtx->cr3;
rc = hmR0VmxLoadPaePdpes(pVCpu, pCtx);
AssertRCReturn(rc, rc);
}
}
else
{
val = PGMGetHyperCR3(pVCpu);
Assert(val || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
}
/* Save our shadow CR3 register. */
rc = VMXWriteVmcs64(VMX_VMCS_GUEST_CR3, val);
AssertRC(rc);
}
/*
* Guest CPU context: Debug registers.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
{
pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
pCtx->dr[7] |= 0x400; /* must be one */
/* Resync DR7 */
rc = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
AssertRC(rc);
#ifdef DEBUG
/* Sync the hypervisor debug state now if any breakpoint is armed. */
if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
&& !CPUMIsHyperDebugStateActive(pVCpu)
&& !DBGFIsStepping(pVCpu))
{
/* Save the host and load the hypervisor debug state. */
rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
AssertRC(rc);
/* DRx intercepts remain enabled. */
/* Override dr7 with the hypervisor value. */
rc = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, CPUMGetHyperDR7(pVCpu));
AssertRC(rc);
}
else
#endif
/* Sync the debug state now if any breakpoint is armed. */
if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
&& !CPUMIsGuestDebugStateActive(pVCpu)
&& !DBGFIsStepping(pVCpu))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
/* Disable DRx move intercepts. */
pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
/* Save the host and load the guest debug state. */
rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
AssertRC(rc);
}
/* IA32_DEBUGCTL MSR. */
rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
AssertRC(rc);
/** @todo do we really ever need this? */
rc |= VMXWriteVmcs(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
AssertRC(rc);
}
/*
* 64-bit guest mode.
*/
if (CPUMIsGuestInLongModeEx(pCtx))
{
#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
#else
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (!pVM->hm.s.fAllow64BitGuests)
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
# endif
pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
#endif
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_MSR)
{
/* Update these as wrmsr might have changed them. */
rc = VMXWriteVmcs64(VMX_VMCS_GUEST_FS_BASE, pCtx->fs.u64Base);
AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS_GUEST_GS_BASE, pCtx->gs.u64Base);
AssertRC(rc);
}
}
else
{
pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
}
hmR0VmxUpdateExceptionBitmap(pVM, pVCpu, pCtx);
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/*
* Store all guest MSRs in the VM-entry load area, so they will be loaded
* during VM-entry and restored into the VM-exit store area during VM-exit.
*/
PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
unsigned idxMsr = 0;
uint32_t u32GstExtFeatures;
uint32_t u32Temp;
CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Temp, &u32Temp, &u32Temp, &u32GstExtFeatures);
if (u32GstExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
{
pMsr->u32IndexMSR = MSR_K6_EFER;
pMsr->u32Reserved = 0;
pMsr->u64Value = pCtx->msrEFER;
/* VT-x will complain if only MSR_K6_EFER_LME is set. */
if (!CPUMIsGuestInLongModeEx(pCtx))
pMsr->u64Value &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
pMsr++; idxMsr++;
if (u32GstExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)
{
pMsr->u32IndexMSR = MSR_K8_LSTAR;
pMsr->u32Reserved = 0;
pMsr->u64Value = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
pMsr++; idxMsr++;
pMsr->u32IndexMSR = MSR_K6_STAR;
pMsr->u32Reserved = 0;
pMsr->u64Value = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
pMsr++; idxMsr++;
pMsr->u32IndexMSR = MSR_K8_SF_MASK;
pMsr->u32Reserved = 0;
pMsr->u64Value = pCtx->msrSFMASK; /* syscall flag mask */
pMsr++; idxMsr++;
/* The KERNEL_GS_BASE MSR doesn't work reliably with auto load/store. See @bugref{6208} */
#if 0
pMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
pMsr->u32Reserved = 0;
pMsr->u64Value = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
pMsr++; idxMsr++;
#endif
}
}
if ( pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP
&& (u32GstExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP))
{
pMsr->u32IndexMSR = MSR_K8_TSC_AUX;
pMsr->u32Reserved = 0;
rc = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pMsr->u64Value);
AssertRC(rc);
pMsr++; idxMsr++;
}
pVCpu->hm.s.vmx.cGuestMsrs = idxMsr;
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, idxMsr);
AssertRC(rc);
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, idxMsr);
AssertRC(rc);
#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
/* Done with the major changes */
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_ALL_GUEST;
/* Minimal guest state update (ESP, EIP, EFLAGS mostly) */
VMXR0LoadMinimalGuestState(pVM, pVCpu, pCtx);
return rc;
}
/**
* Syncs back the guest state from VMCS.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
DECLINLINE(int) VMXR0SaveGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
RTGCUINTREG val, valShadow;
RTGCUINTPTR uInterruptState;
int rc;
/* First sync back EIP, ESP, and EFLAGS. */
rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RIP, &val);
AssertRC(rc);
pCtx->rip = val;
rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RSP, &val);
AssertRC(rc);
pCtx->rsp = val;
rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RFLAGS, &val);
AssertRC(rc);
pCtx->eflags.u32 = val;
/* Take care of instruction fusing (sti, mov ss) */
rc |= VMXReadCachedVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &val);
uInterruptState = val;
if (uInterruptState != 0)
{
Assert(uInterruptState <= 2); /* only sti & mov ss */
Log(("uInterruptState %x eip=%RGv\n", (uint32_t)uInterruptState, pCtx->rip));
EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
}
else
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
/* Control registers. */
VMXReadCachedVmcs(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow);
VMXReadCachedVmcs(VMX_VMCS_GUEST_CR0, &val);
val = (valShadow & pVCpu->hm.s.vmx.cr0_mask) | (val & ~pVCpu->hm.s.vmx.cr0_mask);
CPUMSetGuestCR0(pVCpu, val);
VMXReadCachedVmcs(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow);
VMXReadCachedVmcs(VMX_VMCS_GUEST_CR4, &val);
val = (valShadow & pVCpu->hm.s.vmx.cr4_mask) | (val & ~pVCpu->hm.s.vmx.cr4_mask);
CPUMSetGuestCR4(pVCpu, val);
/*
* No reason to sync back the CRx registers. They can't be changed by the guest unless in
* the nested paging case where CR3 & CR4 can be changed by the guest.
*/
if ( pVM->hm.s.fNestedPaging
&& CPUMIsGuestInPagedProtectedModeEx(pCtx)) /** @todo check if we will always catch mode switches and such... */
{
PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
/* Can be updated behind our back in the nested paging case. */
CPUMSetGuestCR2(pVCpu, pCache->cr2);
VMXReadCachedVmcs(VMX_VMCS_GUEST_CR3, &val);
if (val != pCtx->cr3)
{
CPUMSetGuestCR3(pVCpu, val);
PGMUpdateCR3(pVCpu, val);
}
rc = hmR0VmxSavePaePdpes(pVCpu, pCtx);
AssertRCReturn(rc, rc);
}
/* Sync back DR7. */
VMXReadCachedVmcs(VMX_VMCS_GUEST_DR7, &val);
pCtx->dr[7] = val;
/* Guest CPU context: ES, CS, SS, DS, FS, GS. */
VMX_READ_SELREG(ES, es);
VMX_READ_SELREG(SS, ss);
VMX_READ_SELREG(CS, cs);
VMX_READ_SELREG(DS, ds);
VMX_READ_SELREG(FS, fs);
VMX_READ_SELREG(GS, gs);
/* System MSRs */
VMXReadCachedVmcs(VMX_VMCS32_GUEST_SYSENTER_CS, &val);
pCtx->SysEnter.cs = val;
VMXReadCachedVmcs(VMX_VMCS_GUEST_SYSENTER_EIP, &val);
pCtx->SysEnter.eip = val;
VMXReadCachedVmcs(VMX_VMCS_GUEST_SYSENTER_ESP, &val);
pCtx->SysEnter.esp = val;
/* Misc. registers; must sync everything otherwise we can get out of sync when jumping to ring 3. */
VMX_READ_SELREG(LDTR, ldtr);
VMXReadCachedVmcs(VMX_VMCS32_GUEST_GDTR_LIMIT, &val);
pCtx->gdtr.cbGdt = val;
VMXReadCachedVmcs(VMX_VMCS_GUEST_GDTR_BASE, &val);
pCtx->gdtr.pGdt = val;
VMXReadCachedVmcs(VMX_VMCS32_GUEST_IDTR_LIMIT, &val);
pCtx->idtr.cbIdt = val;
VMXReadCachedVmcs(VMX_VMCS_GUEST_IDTR_BASE, &val);
pCtx->idtr.pIdt = val;
/* Real mode emulation using v86 mode. */
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
/* Hide our emulation flags */
pCtx->eflags.Bits.u1VM = 0;
/* Restore original IOPL setting as we always use 0. */
pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.eflags.Bits.u2IOPL;
/* Force a TR resync every time in case we switch modes. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_TR;
}
else
{
/* In real mode we have a fake TSS, so only sync it back when it's supposed to be valid. */
VMX_READ_SELREG(TR, tr);
}
#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/*
* Save the possibly changed MSRs that we automatically restore and save during a world switch.
*/
for (unsigned i = 0; i < pVCpu->hm.s.vmx.cGuestMsrs; i++)
{
PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
pMsr += i;
switch (pMsr->u32IndexMSR)
{
case MSR_K8_LSTAR:
pCtx->msrLSTAR = pMsr->u64Value;
break;
case MSR_K6_STAR:
pCtx->msrSTAR = pMsr->u64Value;
break;
case MSR_K8_SF_MASK:
pCtx->msrSFMASK = pMsr->u64Value;
break;
/* The KERNEL_GS_BASE MSR doesn't work reliably with auto load/store. See @bugref{6208} */
#if 0
case MSR_K8_KERNEL_GS_BASE:
pCtx->msrKERNELGSBASE = pMsr->u64Value;
break;
#endif
case MSR_K8_TSC_AUX:
CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value);
break;
case MSR_K6_EFER:
/* EFER can't be changed without causing a VM-exit. */
/* Assert(pCtx->msrEFER == pMsr->u64Value); */
break;
default:
AssertFailed();
return VERR_HM_UNEXPECTED_LD_ST_MSR;
}
}
#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
return VINF_SUCCESS;
}
/**
* Dummy placeholder for TLB flush handling before VM-entry. Used in the case
* where neither EPT nor VPID is supported by the CPU.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
static DECLCALLBACK(void) hmR0VmxSetupTLBDummy(PVM pVM, PVMCPU pVCpu)
{
NOREF(pVM);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
pVCpu->hm.s.TlbShootdown.cPages = 0;
return;
}
/**
* Setup the tagged TLB for EPT+VPID.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
static DECLCALLBACK(void) hmR0VmxSetupTLBBoth(PVM pVM, PVMCPU pVCpu)
{
PHMGLOBLCPUINFO pCpu;
Assert(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid);
pCpu = HMR0GetCurrentCpu();
/*
* Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last
* This can happen both for start & resume due to long jumps back to ring-3.
* If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
* or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore.
*/
bool fNewAsid = false;
if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|| pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
{
pVCpu->hm.s.fForceTLBFlush = true;
fNewAsid = true;
}
/*
* Check for explicit TLB shootdowns.
*/
if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
pVCpu->hm.s.fForceTLBFlush = true;
pVCpu->hm.s.idLastCpu = pCpu->idCpu;
if (pVCpu->hm.s.fForceTLBFlush)
{
if (fNewAsid)
{
++pCpu->uCurrentAsid;
if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
{
pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
pCpu->cTlbFlushes++;
pCpu->fFlushAsidBeforeUse = true;
}
pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
if (pCpu->fFlushAsidBeforeUse)
hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
}
else
{
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_SINGLE_CONTEXT, 0 /* GCPtr */);
else
hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
}
pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
pVCpu->hm.s.fForceTLBFlush = false;
}
else
{
AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
pCpu->uCurrentAsid, pCpu->cTlbFlushes));
/** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
* not be executed. See hmQueueInvlPage() where it is commented
* out. Support individual entry flushing someday. */
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
/*
* Flush individual guest entries using VPID from the TLB or as little as possible with EPT
* as supported by the CPU.
*/
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
{
for (unsigned i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
}
else
hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
}
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
}
pVCpu->hm.s.TlbShootdown.cPages = 0;
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
/* Update VMCS with the VPID. */
int rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
AssertRC(rc);
}
/**
* Setup the tagged TLB for EPT only.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
static DECLCALLBACK(void) hmR0VmxSetupTLBEPT(PVM pVM, PVMCPU pVCpu)
{
PHMGLOBLCPUINFO pCpu;
Assert(pVM->hm.s.fNestedPaging);
Assert(!pVM->hm.s.vmx.fVpid);
pCpu = HMR0GetCurrentCpu();
/*
* Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last
* This can happen both for start & resume due to long jumps back to ring-3.
* A change in the TLB flush count implies the host Cpu is online after a suspend/resume.
*/
if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|| pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
{
pVCpu->hm.s.fForceTLBFlush = true;
}
/*
* Check for explicit TLB shootdown flushes.
*/
if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
pVCpu->hm.s.fForceTLBFlush = true;
pVCpu->hm.s.idLastCpu = pCpu->idCpu;
pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
if (pVCpu->hm.s.fForceTLBFlush)
hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
else
{
/** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
* not be executed. See hmQueueInvlPage() where it is commented
* out. Support individual entry flushing someday. */
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
{
/*
* We cannot flush individual entries without VPID support. Flush using EPT.
*/
STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
}
}
pVCpu->hm.s.TlbShootdown.cPages= 0;
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
#ifdef VBOX_WITH_STATISTICS
/** @todo r=ramshankar: this is not accurate anymore with the VPID+EPT
* handling. Should be fixed later. */
if (pVCpu->hm.s.fForceTLBFlush)
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
#endif
}
/**
* Setup the tagged TLB for VPID.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
static DECLCALLBACK(void) hmR0VmxSetupTLBVPID(PVM pVM, PVMCPU pVCpu)
{
PHMGLOBLCPUINFO pCpu;
Assert(pVM->hm.s.vmx.fVpid);
Assert(!pVM->hm.s.fNestedPaging);
pCpu = HMR0GetCurrentCpu();
/*
* Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last
* This can happen both for start & resume due to long jumps back to ring-3.
* If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
* or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore.
*/
if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|| pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
{
/* Force a TLB flush on VM entry. */
pVCpu->hm.s.fForceTLBFlush = true;
}
/*
* Check for explicit TLB shootdown flushes.
*/
if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
pVCpu->hm.s.fForceTLBFlush = true;
pVCpu->hm.s.idLastCpu = pCpu->idCpu;
if (pVCpu->hm.s.fForceTLBFlush)
{
++pCpu->uCurrentAsid;
if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
{
pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
pCpu->cTlbFlushes++;
pCpu->fFlushAsidBeforeUse = true;
}
pVCpu->hm.s.fForceTLBFlush = false;
pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
if (pCpu->fFlushAsidBeforeUse)
hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
}
else
{
AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
pCpu->uCurrentAsid, pCpu->cTlbFlushes));
/** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
* not be executed. See hmQueueInvlPage() where it is commented
* out. Support individual entry flushing someday. */
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
{
/*
* Flush individual guest entries using VPID from the TLB or as little as possible with EPT
* as supported by the CPU.
*/
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
{
for (unsigned i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
}
else
hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
}
}
pVCpu->hm.s.TlbShootdown.cPages = 0;
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
int rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
AssertRC(rc);
# ifdef VBOX_WITH_STATISTICS
/** @todo r=ramshankar: this is not accurate anymore with EPT+VPID handling.
* Should be fixed later. */
if (pVCpu->hm.s.fForceTLBFlush)
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
# endif
}
/**
* Runs guest code in a VT-x VM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
VBOXSTRICTRC rc = VINF_SUCCESS;
int rc2;
RTGCUINTREG val;
RTGCUINTREG exitReason = (RTGCUINTREG)VMX_EXIT_INVALID;
RTGCUINTREG instrError, cbInstr;
RTGCUINTPTR exitQualification = 0;
RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */
RTGCUINTPTR errCode, instrInfo;
bool fSetupTPRCaching = false;
bool fNeedTscSetup = true;
uint64_t u64OldLSTAR = 0;
uint8_t u8LastTPR = 0;
RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
unsigned cResume = 0;
#ifdef VBOX_STRICT
RTCPUID idCpuCheck;
bool fWasInLongMode = false;
#endif
#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
uint64_t u64LastTime = RTTimeMilliTS();
#endif
Assert(!(pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|| (pVCpu->hm.s.vmx.pbVirtApic && pVM->hm.s.vmx.pbApicAccess));
/*
* Check if we need to use TPR shadowing.
*/
if ( CPUMIsGuestInLongModeEx(pCtx)
|| ( (( pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|| pVM->hm.s.fTRPPatchingAllowed)
&& pVM->hm.s.fHasIoApic)
)
{
fSetupTPRCaching = true;
}
Log2(("\nE"));
/* This is not ideal, but if we don't clear the event injection in the VMCS right here,
* we may end up injecting some stale event into a VM, including injecting an event that
* originated before a VM reset *after* the VM has been reset. See @bugref{6220}.
*/
VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
#ifdef VBOX_STRICT
{
RTCCUINTREG val2;
rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, &val2);
AssertRC(rc2);
Log2(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS = %08x\n", val2));
/* allowed zero */
if ((val2 & pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0)
Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: zero\n"));
/* allowed one */
if ((val2 & ~pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0)
Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: one\n"));
rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, &val2);
AssertRC(rc2);
Log2(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS = %08x\n", val2));
/*
* Must be set according to the MSR, but can be cleared if nested paging is used.
*/
if (pVM->hm.s.fNestedPaging)
{
val2 |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
| VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
}
/* allowed zero */
if ((val2 & pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0)
Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: zero\n"));
/* allowed one */
if ((val2 & ~pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0)
Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: one\n"));
rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_ENTRY_CONTROLS, &val2);
AssertRC(rc2);
Log2(("VMX_VMCS_CTRL_ENTRY_CONTROLS = %08x\n", val2));
/* allowed zero */
if ((val2 & pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0)
Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: zero\n"));
/* allowed one */
if ((val2 & ~pVM->hm.s.vmx.msr.vmx_entry.n.allowed1) != 0)
Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: one\n"));
rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_EXIT_CONTROLS, &val2);
AssertRC(rc2);
Log2(("VMX_VMCS_CTRL_EXIT_CONTROLS = %08x\n", val2));
/* allowed zero */
if ((val2 & pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0)
Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: zero\n"));
/* allowed one */
if ((val2 & ~pVM->hm.s.vmx.msr.vmx_exit.n.allowed1) != 0)
Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: one\n"));
}
fWasInLongMode = CPUMIsGuestInLongModeEx(pCtx);
#endif /* VBOX_STRICT */
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
pVCpu->hm.s.vmx.VMCSCache.u64TimeEntry = RTTimeNanoTS();
#endif
/*
* We can jump to this point to resume execution after determining that a VM-exit is innocent.
*/
ResumeExecution:
if (!STAM_REL_PROFILE_ADV_IS_RUNNING(&pVCpu->hm.s.StatEntry))
STAM_REL_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit2, &pVCpu->hm.s.StatEntry, x);
AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
("Expected %d, I'm %d; cResume=%d exitReason=%RGv exitQualification=%RGv\n",
(int)pVCpu->hm.s.idEnteredCpu, (int)RTMpCpuId(), cResume, exitReason, exitQualification));
Assert(!HMR0SuspendPending());
/* Not allowed to switch modes without reloading the host state (32->64 switcher)!! */
Assert(fWasInLongMode == CPUMIsGuestInLongModeEx(pCtx));
/*
* Safety precaution; looping for too long here can have a very bad effect on the host.
*/
if (RT_UNLIKELY(++cResume > pVM->hm.s.cMaxResumeLoops))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
rc = VINF_EM_RAW_INTERRUPT;
goto end;
}
/*
* Check for IRQ inhibition due to instruction fusing (sti, mov ss).
*/
if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
{
Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
{
/*
* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
* Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
* force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
* break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
/* Irq inhibition is no longer active; clear the corresponding VMX state. */
rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
AssertRC(rc2);
}
}
else
{
/* Irq inhibition is no longer active; clear the corresponding VMX state. */
rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
AssertRC(rc2);
}
#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
if (RT_UNLIKELY((cResume & 0xf) == 0))
{
uint64_t u64CurTime = RTTimeMilliTS();
if (RT_UNLIKELY(u64CurTime > u64LastTime))
{
u64LastTime = u64CurTime;
TMTimerPollVoid(pVM, pVCpu);
}
}
#endif
/*
* Check for pending actions that force us to go back to ring-3.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_REQUEST))
{
/* Check if a sync operation is pending. */
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
{
rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
if (rc != VINF_SUCCESS)
{
AssertRC(VBOXSTRICTRC_VAL(rc));
Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
goto end;
}
}
#ifdef DEBUG
/* Intercept X86_XCPT_DB if stepping is enabled */
if (!DBGFIsStepping(pVCpu))
#endif
{
if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
goto end;
}
}
/* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
{
rc = VINF_EM_PENDING_REQUEST;
goto end;
}
/* Check if a pgm pool flush is in progress. */
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
{
rc = VINF_PGM_POOL_FLUSH_PENDING;
goto end;
}
/* Check if DMA work is pending (2nd+ run). */
if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
{
rc = VINF_EM_RAW_TO_R3;
goto end;
}
}
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/*
* Exit to ring-3 preemption/work is pending.
*
* Interrupts are disabled before the call to make sure we don't miss any interrupt
* that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
* further down, but hmR0VmxCheckPendingInterrupt makes that impossible.)
*
* Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
* shootdowns rely on this.
*/
uOldEFlags = ASMIntDisableFlags();
if (RTThreadPreemptIsPending(NIL_RTTHREAD))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptPending);
rc = VINF_EM_RAW_INTERRUPT;
goto end;
}
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
#endif
/*
* When external interrupts are pending, we should exit the VM when IF is set.
* Note: *After* VM_FF_INHIBIT_INTERRUPTS check!
*/
rc = hmR0VmxCheckPendingInterrupt(pVM, pVCpu, pCtx);
if (RT_FAILURE(rc))
goto end;
/** @todo check timers?? */
/*
* TPR caching using CR8 is only available in 64-bit mode.
* Note: The 32-bit exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but this appears missing in Intel CPUs.
* Note: We can't do this in LoadGuestState() as PDMApicGetTPR can jump back to ring-3 (lock)!! (no longer true) .
*/
/** @todo query and update the TPR only when it could have been changed (mmio
* access & wrsmr (x2apic) */
if (fSetupTPRCaching)
{
/* TPR caching in CR8 */
bool fPending;
rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
AssertRC(rc2);
/* The TPR can be found at offset 0x80 in the APIC mmio page. */
pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8LastTPR;
/*
* Two options here:
* - external interrupt pending, but masked by the TPR value.
* -> a CR8 update that lower the current TPR value should cause an exit
* - no pending interrupts
* -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts.
*/
/* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
rc = VMXWriteVmcs(VMX_VMCS32_CTRL_TPR_THRESHOLD, (fPending) ? (u8LastTPR >> 4) : 0);
AssertRC(VBOXSTRICTRC_VAL(rc));
if (pVM->hm.s.fTPRPatchingActive)
{
Assert(!CPUMIsGuestInLongModeEx(pCtx));
/* Our patch code uses LSTAR for TPR caching. */
pCtx->msrLSTAR = u8LastTPR;
/** @todo r=ramshankar: we should check for MSR-bitmap support here. */
if (fPending)
{
/* A TPR change could activate a pending interrupt, so catch lstar writes. */
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
}
else
{
/*
* No interrupts are pending, so we don't need to be explicitely notified.
* There are enough world switches for detecting pending interrupts.
*/
hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
}
}
}
#ifdef LOG_ENABLED
if ( pVM->hm.s.fNestedPaging
|| pVM->hm.s.vmx.fVpid)
{
PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
if (pVCpu->hm.s.idLastCpu != pCpu->idCpu)
{
LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hm.s.idLastCpu,
pCpu->idCpu));
}
else if (pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
{
LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hm.s.cTlbFlushes,
pCpu->cTlbFlushes));
}
else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH))
LogFlow(("Manual TLB flush\n"));
}
#endif
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
PGMRZDynMapFlushAutoSet(pVCpu);
#endif
/*
* NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING-3!
* (until the actual world switch)
*/
#ifdef VBOX_STRICT
idCpuCheck = RTMpCpuId();
#endif
#ifdef LOG_ENABLED
VMMR0LogFlushDisable(pVCpu);
#endif
/*
* Save the host state first.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT)
{
rc = VMXR0SaveHostState(pVM, pVCpu);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
VMMR0LogFlushEnable(pVCpu);
goto end;
}
}
/*
* Load the guest state.
*/
if (!pVCpu->hm.s.fContextUseFlags)
{
VMXR0LoadMinimalGuestState(pVM, pVCpu, pCtx);
STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
if (fNeedTscSetup)
{
VMXR0SetupTscOffsetAndPreemption(pVM, pVCpu);
fNeedTscSetup = false;
}
}
else
{
rc = VMXR0LoadGuestState(pVM, pVCpu, pCtx);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
VMMR0LogFlushEnable(pVCpu);
goto end;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
VMXR0SetupTscOffsetAndPreemption(pVM, pVCpu);
}
#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/*
* Disable interrupts to make sure a poke will interrupt execution.
* This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
*/
uOldEFlags = ASMIntDisableFlags();
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
#endif
/* Non-register state Guest Context */
/** @todo change me according to cpu state */
rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
AssertRC(rc2);
/* Set TLB flush state as checked until we return from the world switch. */
ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
/* Deal with tagged TLB setup and invalidation. */
pVM->hm.s.vmx.pfnFlushTaggedTlb(pVM, pVCpu);
/*
* Manual save and restore:
* - General purpose registers except RIP, RSP
*
* Trashed:
* - CR2 (we don't care)
* - LDTR (reset to 0)
* - DRx (presumably not changed at all)
* - DR7 (reset to 0x400)
* - EFLAGS (reset to RT_BIT(1); not relevant)
*/
/* All done! Let's start VM execution. */
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
Assert(idCpuCheck == RTMpCpuId());
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
pVCpu->hm.s.vmx.VMCSCache.cResume = cResume;
pVCpu->hm.s.vmx.VMCSCache.u64TimeSwitch = RTTimeNanoTS();
#endif
/*
* Save the current TPR value in the LSTAR MSR so our patches can access it.
*/
if (pVM->hm.s.fTPRPatchingActive)
{
Assert(pVM->hm.s.fTPRPatchingActive);
u64OldLSTAR = ASMRdMsr(MSR_K8_LSTAR);
ASMWrMsr(MSR_K8_LSTAR, u8LastTPR);
}
TMNotifyStartOfExecution(pVCpu);
#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/*
* Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
* RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
*/
if ( (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
&& !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT))
{
pVCpu->hm.s.u64HostTSCAux = ASMRdMsr(MSR_K8_TSC_AUX);
uint64_t u64GuestTSCAux = 0;
rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTSCAux);
AssertRC(rc2);
ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTSCAux);
}
#endif
#ifdef VBOX_WITH_KERNEL_USING_XMM
rc = hmR0VMXStartVMWrapXMM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
#else
rc = pVCpu->hm.s.vmx.pfnStartVM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
#endif
ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false);
ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits);
/* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */
if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT))
{
#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
/* Restore host's TSC_AUX. */
if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTSCAux);
#endif
TMCpuTickSetLastSeen(pVCpu,
ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
}
TMNotifyEndOfExecution(pVCpu);
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
Assert(!(ASMGetFlags() & X86_EFL_IF));
/*
* Restore the host LSTAR MSR if the guest could have changed it.
*/
if (pVM->hm.s.fTPRPatchingActive)
{
Assert(pVM->hm.s.fTPRPatchingActive);
pVCpu->hm.s.vmx.pbVirtApic[0x80] = pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
ASMWrMsr(MSR_K8_LSTAR, u64OldLSTAR);
}
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
ASMSetFlags(uOldEFlags);
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
uOldEFlags = ~(RTCCUINTREG)0;
#endif
AssertMsg(!pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries, ("pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries=%d\n",
pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries));
/* In case we execute a goto ResumeExecution later on. */
pVCpu->hm.s.fResumeVM = true;
pVCpu->hm.s.fForceTLBFlush = false;
/*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*/
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
VMMR0LogFlushEnable(pVCpu);
goto end;
}
/* Success. Query the guest state and figure out what has happened. */
/* Investigate why there was a VM-exit. */
rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]);
exitReason &= 0xffff; /* bit 0-15 contain the exit code. */
rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &cbInstr);
rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &intInfo);
/* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */
rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &errCode);
rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INSTR_INFO, &instrInfo);
rc2 |= VMXReadCachedVmcs(VMX_VMCS_RO_EXIT_QUALIFICATION, &exitQualification);
AssertRC(rc2);
/*
* Sync back the guest state.
*/
rc2 = VMXR0SaveGuestState(pVM, pVCpu, pCtx);
AssertRC(rc2);
/* Note! NOW IT'S SAFE FOR LOGGING! */
VMMR0LogFlushEnable(pVCpu);
Log2(("Raw exit reason %08x\n", exitReason));
#if ARCH_BITS == 64 /* for the time being */
VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, exitReason);
#endif
/*
* Check if an injected event was interrupted prematurely.
*/
rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_IDT_INFO, &val);
AssertRC(rc2);
pVCpu->hm.s.Event.u64IntrInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val);
if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hm.s.Event.u64IntrInfo)
/* Ignore 'int xx' as they'll be restarted anyway. */
&& VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
/* Ignore software exceptions (such as int3) as they'll reoccur when we restart the instruction anyway. */
&& VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
{
Assert(!pVCpu->hm.s.Event.fPending);
pVCpu->hm.s.Event.fPending = true;
/* Error code present? */
if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo))
{
rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_IDT_ERROR_CODE, &val);
AssertRC(rc2);
pVCpu->hm.s.Event.u32ErrCode = val;
Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv pending error=%RX64\n",
pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification, val));
}
else
{
Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hm.s.Event.u64IntrInfo,
(RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
pVCpu->hm.s.Event.u32ErrCode = 0;
}
}
#ifdef VBOX_STRICT
else if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hm.s.Event.u64IntrInfo)
/* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */
&& VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
{
Log(("Ignore pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n",
pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
}
if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE)
HMDumpRegs(pVM, pVCpu, pCtx);
#endif
Log2(("E%d: New EIP=%x:%RGv\n", (uint32_t)exitReason, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
Log2(("Exit reason %d, exitQualification %RGv\n", (uint32_t)exitReason, exitQualification));
Log2(("instrInfo=%d instrError=%d instr length=%d\n", (uint32_t)instrInfo, (uint32_t)instrError, (uint32_t)cbInstr));
Log2(("Interruption error code %d\n", (uint32_t)errCode));
Log2(("IntInfo = %08x\n", (uint32_t)intInfo));
/*
* Sync back the TPR if it was changed.
*/
if ( fSetupTPRCaching
&& u8LastTPR != pVCpu->hm.s.vmx.pbVirtApic[0x80])
{
rc2 = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
AssertRC(rc2);
}
#ifdef DBGFTRACE_ENABLED /** @todo DTrace later. */
RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x %016RX64 at %04:%08RX64 %RX64",
exitReason, (uint64_t)exitQualification, pCtx->cs.Sel, pCtx->rip, (uint64_t)intInfo);
#endif
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
/* Some cases don't need a complete resync of the guest CPU state; handle them here. */
Assert(rc == VINF_SUCCESS); /* might consider VERR_IPE_UNINITIALIZED_STATUS here later... */
switch (exitReason)
{
case VMX_EXIT_XCPT_NMI: /* 0 Exception or non-maskable interrupt (NMI). */
case VMX_EXIT_EXT_INT: /* 1 External interrupt. */
{
uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
if (!VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
{
Assert(exitReason == VMX_EXIT_EXT_INT);
/* External interrupt; leave to allow it to be dispatched again. */
rc = VINF_EM_RAW_INTERRUPT;
break;
}
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExit2Sub3, y3);
switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo))
{
case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */
/* External interrupt; leave to allow it to be dispatched again. */
rc = VINF_EM_RAW_INTERRUPT;
break;
case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT: /* External hardware interrupt. */
AssertFailed(); /* can't come here; fails the first check. */
break;
case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT: /* Unknown why we get this type for #DB */
case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
Assert(vector == 1 || vector == 3 || vector == 4);
/* no break */
case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT: /* Hardware exception. */
Log2(("Hardware/software interrupt %d\n", vector));
switch (vector)
{
case X86_XCPT_NM:
{
Log(("#NM fault at %RGv error code %x\n", (RTGCPTR)pCtx->rip, errCode));
/** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
/* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
if (rc == VINF_SUCCESS)
{
Assert(CPUMIsGuestFPUStateActive(pVCpu));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
/* Continue execution. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
Log(("Forward #NM fault to the guest\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, 0);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
case X86_XCPT_PF: /* Page fault */
{
#ifdef VBOX_ALWAYS_TRAP_PF
if (pVM->hm.s.fNestedPaging)
{
/*
* A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
*/
Log(("Guest page fault at %RGv cr2=%RGv error code %RGv rsp=%RGv\n", (RTGCPTR)pCtx->rip, exitQualification,
errCode, (RTGCPTR)pCtx->rsp));
Assert(CPUMIsGuestInPagedProtectedModeEx(pCtx));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
/* Now we must update CR2. */
pCtx->cr2 = exitQualification;
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
#else
Assert(!pVM->hm.s.fNestedPaging);
#endif
#ifdef VBOX_HM_WITH_GUEST_PATCHING
/* Shortcut for APIC TPR reads and writes; 32 bits guests only */
if ( pVM->hm.s.fTRPPatchingAllowed
&& pVM->hm.s.pGuestPatchMem
&& (exitQualification & 0xfff) == 0x080
&& !(errCode & X86_TRAP_PF_P) /* not present */
&& CPUMGetGuestCPL(pVCpu) == 0
&& !CPUMIsGuestInLongModeEx(pCtx)
&& pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
{
RTGCPHYS GCPhysApicBase, GCPhys;
GCPhysApicBase = pCtx->msrApicBase;
GCPhysApicBase &= PAGE_BASE_GC_MASK;
rc = PGMGstGetPage(pVCpu, (RTGCPTR)exitQualification, NULL, &GCPhys);
if ( rc == VINF_SUCCESS
&& GCPhys == GCPhysApicBase)
{
/* Only attempt to patch the instruction once. */
PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
{
rc = VINF_EM_HM_PATCH_TPR_INSTR;
break;
}
}
}
#endif
Log2(("Page fault at %RGv error code %x\n", exitQualification, errCode));
/* Exit qualification contains the linear address of the page fault. */
TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
TRPMSetErrorCode(pVCpu, errCode);
TRPMSetFaultAddress(pVCpu, exitQualification);
/* Shortcut for APIC TPR reads and writes. */
if ( (exitQualification & 0xfff) == 0x080
&& !(errCode & X86_TRAP_PF_P) /* not present */
&& fSetupTPRCaching
&& (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
{
RTGCPHYS GCPhysApicBase, GCPhys;
GCPhysApicBase = pCtx->msrApicBase;
GCPhysApicBase &= PAGE_BASE_GC_MASK;
rc = PGMGstGetPage(pVCpu, (RTGCPTR)exitQualification, NULL, &GCPhys);
if ( rc == VINF_SUCCESS
&& GCPhys == GCPhysApicBase)
{
Log(("Enable VT-x virtual APIC access filtering\n"));
rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess,
X86_PTE_RW | X86_PTE_P);
AssertRC(rc2);
}
}
/* Forward it to our trap handler first, in case our shadow pages are out of sync. */
rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification);
Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
if (rc == VINF_SUCCESS)
{ /* We've successfully synced our shadow pages, so let's just continue execution. */
Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, exitQualification ,errCode));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
TRPMResetTrap(pVCpu);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
else if (rc == VINF_EM_RAW_GUEST_TRAP)
{
/*
* A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
*/
Log2(("Forward page fault to the guest\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
/* The error code might have been changed. */
errCode = TRPMGetErrorCode(pVCpu);
TRPMResetTrap(pVCpu);
/* Now we must update CR2. */
pCtx->cr2 = exitQualification;
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
#ifdef VBOX_STRICT
if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
Log2(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
#endif
/* Need to go back to the recompiler to emulate the instruction. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
TRPMResetTrap(pVCpu);
/* If event delivery caused the #PF (shadow or not), tell TRPM. */
hmR0VmxCheckPendingEvent(pVCpu);
break;
}
case X86_XCPT_MF: /* Floating point exception. */
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
if (!(pCtx->cr0 & X86_CR0_NE))
{
/* old style FPU error reporting needs some extra work. */
/** @todo don't fall back to the recompiler, but do it manually. */
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
case X86_XCPT_DB: /* Debug exception. */
{
uint64_t uDR6;
/*
* DR6, DR7.GD and IA32_DEBUGCTL.LBR are not updated yet.
*
* Exit qualification bits:
* 3:0 B0-B3 which breakpoint condition was met
* 12:4 Reserved (0)
* 13 BD - debug register access detected
* 14 BS - single step execution or branch taken
* 63:15 Reserved (0)
*/
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
/* Note that we don't support guest and host-initiated debugging at the same time. */
uDR6 = X86_DR6_INIT_VAL;
uDR6 |= (exitQualification & (X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3|X86_DR6_BD|X86_DR6_BS));
rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), uDR6);
if (rc == VINF_EM_RAW_GUEST_TRAP)
{
/* Update DR6 here. */
pCtx->dr[6] = uDR6;
/* Resync DR6 if the debug state is active. */
if (CPUMIsGuestDebugStateActive(pVCpu))
ASMSetDR6(pCtx->dr[6]);
/* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
pCtx->dr[7] &= ~X86_DR7_GD;
/* Paranoia. */
pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
pCtx->dr[7] |= 0x400; /* must be one */
/* Resync DR7 */
rc2 = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
AssertRC(rc2);
Log(("Trap %x (debug) at %RGv exit qualification %RX64 dr6=%x dr7=%x\n", vector, (RTGCPTR)pCtx->rip,
exitQualification, (uint32_t)pCtx->dr[6], (uint32_t)pCtx->dr[7]));
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
/* Return to ring 3 to deal with the debug exit code. */
Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
break;
}
case X86_XCPT_BP: /* Breakpoint. */
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_EM_RAW_GUEST_TRAP)
{
Log(("Guest #BP at %04x:%RGv\n", pCtx->cs.Sel, pCtx->rip));
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
if (rc == VINF_SUCCESS)
{
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
Log(("Debugger BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
break;
}
case X86_XCPT_GP: /* General protection failure exception. */
{
uint32_t cbOp;
PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
#ifdef VBOX_STRICT
if ( !CPUMIsGuestInRealModeEx(pCtx)
|| !pVM->hm.s.vmx.pRealModeTSS)
{
Log(("Trap %x at %04X:%RGv errorCode=%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, errCode));
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
#endif
Assert(CPUMIsGuestInRealModeEx(pCtx));
LogFlow(("Real mode X86_XCPT_GP instruction emulation at %x:%RGv\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
rc2 = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
if (RT_SUCCESS(rc2))
{
bool fUpdateRIP = true;
rc = VINF_SUCCESS;
Assert(cbOp == pDis->cbInstr);
switch (pDis->pCurInstr->uOpcode)
{
case OP_CLI:
pCtx->eflags.Bits.u1IF = 0;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
break;
case OP_STI:
pCtx->eflags.Bits.u1IF = 1;
EMSetInhibitInterruptsPC(pVCpu, pCtx->rip + pDis->cbInstr);
Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE,
VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
AssertRC(rc2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
break;
case OP_HLT:
fUpdateRIP = false;
rc = VINF_EM_HALT;
pCtx->rip += pDis->cbInstr;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
break;
case OP_POPF:
{
RTGCPTR GCPtrStack;
uint32_t cbParm;
uint32_t uMask;
X86EFLAGS eflags;
if (pDis->fPrefix & DISPREFIX_OPSIZE)
{
cbParm = 4;
uMask = 0xffffffff;
}
else
{
cbParm = 2;
uMask = 0xffff;
}
rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack);
if (RT_FAILURE(rc2))
{
rc = VERR_EM_INTERPRETER;
break;
}
eflags.u = 0;
rc2 = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm);
if (RT_FAILURE(rc2))
{
rc = VERR_EM_INTERPRETER;
break;
}
LogFlow(("POPF %x -> %RGv mask=%x\n", eflags.u, pCtx->rsp, uMask));
pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask))
| (eflags.u & X86_EFL_POPF_BITS & uMask);
/* RF cleared when popped in real mode; see pushf description in AMD manual. */
pCtx->eflags.Bits.u1RF = 0;
pCtx->esp += cbParm;
pCtx->esp &= uMask;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
break;
}
case OP_PUSHF:
{
RTGCPTR GCPtrStack;
uint32_t cbParm;
uint32_t uMask;
X86EFLAGS eflags;
if (pDis->fPrefix & DISPREFIX_OPSIZE)
{
cbParm = 4;
uMask = 0xffffffff;
}
else
{
cbParm = 2;
uMask = 0xffff;
}
rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), (pCtx->esp - cbParm) & uMask, 0,
&GCPtrStack);
if (RT_FAILURE(rc2))
{
rc = VERR_EM_INTERPRETER;
break;
}
eflags = pCtx->eflags;
/* RF & VM cleared when pushed in real mode; see pushf description in AMD manual. */
eflags.Bits.u1RF = 0;
eflags.Bits.u1VM = 0;
rc2 = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm);
if (RT_FAILURE(rc2))
{
rc = VERR_EM_INTERPRETER;
break;
}
LogFlow(("PUSHF %x -> %RGv\n", eflags.u, GCPtrStack));
pCtx->esp -= cbParm;
pCtx->esp &= uMask;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
break;
}
case OP_IRET:
{
RTGCPTR GCPtrStack;
uint32_t uMask = 0xffff;
uint16_t aIretFrame[3];
if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
{
rc = VERR_EM_INTERPRETER;
break;
}
rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack);
if (RT_FAILURE(rc2))
{
rc = VERR_EM_INTERPRETER;
break;
}
rc2 = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
if (RT_FAILURE(rc2))
{
rc = VERR_EM_INTERPRETER;
break;
}
pCtx->ip = aIretFrame[0];
pCtx->cs.Sel = aIretFrame[1];
pCtx->cs.ValidSel = aIretFrame[1];
pCtx->cs.u64Base = (uint32_t)pCtx->cs.Sel << 4;
pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask))
| (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
pCtx->sp += sizeof(aIretFrame);
LogFlow(("iret to %04x:%x\n", pCtx->cs.Sel, pCtx->ip));
fUpdateRIP = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
break;
}
case OP_INT:
{
uint32_t intInfo2;
LogFlow(("Realmode: INT %x\n", pDis->Param1.uValue & 0xff));
intInfo2 = pDis->Param1.uValue & 0xff;
intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0);
AssertRC(VBOXSTRICTRC_VAL(rc));
fUpdateRIP = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
break;
}
case OP_INTO:
{
if (pCtx->eflags.Bits.u1OF)
{
uint32_t intInfo2;
LogFlow(("Realmode: INTO\n"));
intInfo2 = X86_XCPT_OF;
intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0);
AssertRC(VBOXSTRICTRC_VAL(rc));
fUpdateRIP = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
}
break;
}
case OP_INT3:
{
uint32_t intInfo2;
LogFlow(("Realmode: INT 3\n"));
intInfo2 = 3;
intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0);
AssertRC(VBOXSTRICTRC_VAL(rc));
fUpdateRIP = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
break;
}
default:
rc = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pCtx), 0, EMCODETYPE_SUPERVISOR);
fUpdateRIP = false;
break;
}
if (rc == VINF_SUCCESS)
{
if (fUpdateRIP)
pCtx->rip += cbOp; /* Move on to the next instruction. */
/*
* LIDT, LGDT can end up here. In the future CRx changes as well. Just reload the
* whole context to be done with it.
*/
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL;
/* Only resume if successful. */
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
}
else
rc = VERR_EM_INTERPRETER;
AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
("Unexpected rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
break;
}
#ifdef VBOX_STRICT
case X86_XCPT_XF: /* SIMD exception. */
case X86_XCPT_DE: /* Divide error. */
case X86_XCPT_UD: /* Unknown opcode exception. */
case X86_XCPT_SS: /* Stack segment exception. */
case X86_XCPT_NP: /* Segment not present exception. */
{
switch (vector)
{
case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
}
Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
#endif
default:
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
if ( CPUMIsGuestInRealModeEx(pCtx)
&& pVM->hm.s.vmx.pRealModeTSS)
{
Log(("Real Mode Trap %x at %04x:%04X error code %x\n", vector, pCtx->cs.Sel, pCtx->eip, errCode));
rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
cbInstr, errCode);
AssertRC(VBOXSTRICTRC_VAL(rc)); /* Strict RC check below. */
/* Go back to ring-3 in case of a triple fault. */
if ( vector == X86_XCPT_DF
&& rc == VINF_EM_RESET)
{
break;
}
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
goto ResumeExecution;
}
AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
rc = VERR_VMX_UNEXPECTED_EXCEPTION;
break;
} /* switch (vector) */
break;
default:
rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
AssertMsgFailed(("Unexpected interruption code %x\n", intInfo));
break;
}
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
break;
}
/*
* 48 EPT violation. An attempt to access memory with a guest-physical address was disallowed
* by the configuration of the EPT paging structures.
*/
case VMX_EXIT_EPT_VIOLATION:
{
RTGCPHYS GCPhys;
Assert(pVM->hm.s.fNestedPaging);
rc2 = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
AssertRC(rc2);
Assert(((exitQualification >> 7) & 3) != 2);
/* Determine the kind of violation. */
errCode = 0;
if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
errCode |= X86_TRAP_PF_ID;
if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
errCode |= X86_TRAP_PF_RW;
/* If the page is present, then it's a page level protection fault. */
if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
errCode |= X86_TRAP_PF_P;
else
{
/* Shortcut for APIC TPR reads and writes. */
if ( (GCPhys & 0xfff) == 0x080
&& GCPhys > 0x1000000 /* to skip VGA frame buffer accesses */
&& fSetupTPRCaching
&& (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
{
RTGCPHYS GCPhysApicBase;
GCPhysApicBase = pCtx->msrApicBase;
GCPhysApicBase &= PAGE_BASE_GC_MASK;
if (GCPhys == GCPhysApicBase + 0x80)
{
Log(("Enable VT-x virtual APIC access filtering\n"));
rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess,
X86_PTE_RW | X86_PTE_P);
AssertRC(rc2);
}
}
}
Log(("EPT Page fault %x at %RGp error code %x\n", (uint32_t)exitQualification, GCPhys, errCode));
/* GCPhys contains the guest physical address of the page fault. */
TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
TRPMSetErrorCode(pVCpu, errCode);
TRPMSetFaultAddress(pVCpu, GCPhys);
/* Handle the pagefault trap for the nested shadow table. */
rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, errCode, CPUMCTX2CORE(pCtx), GCPhys);
/*
* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment below, @bugref{6043}.
*/
if ( rc == VINF_SUCCESS
|| rc == VERR_PAGE_TABLE_NOT_PRESENT
|| rc == VERR_PAGE_NOT_PRESENT)
{
/* We've successfully synced our shadow pages, so let's just continue execution. */
Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, exitQualification , errCode));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
TRPMResetTrap(pVCpu);
goto ResumeExecution;
}
#ifdef VBOX_STRICT
if (rc != VINF_EM_RAW_EMULATE_INSTR)
LogFlow(("PGMTrap0eHandlerNestedPaging at %RGv failed with %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
#endif
/* Need to go back to the recompiler to emulate the instruction. */
TRPMResetTrap(pVCpu);
break;
}
case VMX_EXIT_EPT_MISCONFIG:
{
RTGCPHYS GCPhys;
Assert(pVM->hm.s.fNestedPaging);
rc2 = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
AssertRC(rc2);
Log(("VMX_EXIT_EPT_MISCONFIG for %RGp\n", GCPhys));
/* Shortcut for APIC TPR reads and writes. */
if ( (GCPhys & 0xfff) == 0x080
&& GCPhys > 0x1000000 /* to skip VGA frame buffer accesses */
&& fSetupTPRCaching
&& (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
{
RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
GCPhysApicBase &= PAGE_BASE_GC_MASK;
if (GCPhys == GCPhysApicBase + 0x80)
{
Log(("Enable VT-x virtual APIC access filtering\n"));
rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess,
X86_PTE_RW | X86_PTE_P);
AssertRC(rc2);
}
}
rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
/*
* If we succeed, resume execution.
* Or, if fail in interpreting the instruction because we couldn't get the guest physical address
* of the page containing the instruction via the guest's page tables (we would invalidate the guest page
* in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
* weird case. See @bugref{6043}.
*/
if ( rc == VINF_SUCCESS
|| rc == VERR_PAGE_TABLE_NOT_PRESENT
|| rc == VERR_PAGE_NOT_PRESENT)
{
Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhys, (RTGCPTR)pCtx->rip));
goto ResumeExecution;
}
Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> %Rrc\n", GCPhys, (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
break;
}
case VMX_EXIT_INT_WINDOW: /* 7 Interrupt window exiting. */
/* Clear VM-exit on IF=1 change. */
LogFlow(("VMX_EXIT_INT_WINDOW %RGv pending=%d IF=%d\n", (RTGCPTR)pCtx->rip,
VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)), pCtx->eflags.Bits.u1IF));
pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT;
rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
goto ResumeExecution; /* we check for pending guest interrupts there */
case VMX_EXIT_WBINVD: /* 54 Guest software attempted to execute WBINVD. (conditional) */
case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. (unconditional) */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
/* Skip instruction and continue directly. */
pCtx->rip += cbInstr;
/* Continue execution.*/
goto ResumeExecution;
case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
{
Log2(("VMX: Cpuid %x\n", pCtx->eax));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
Assert(cbInstr == 2);
pCtx->rip += cbInstr;
goto ResumeExecution;
}
AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
{
Log2(("VMX: Rdpmc %x\n", pCtx->ecx));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
Assert(cbInstr == 2);
pCtx->rip += cbInstr;
goto ResumeExecution;
}
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
{
Log2(("VMX: Rdtsc\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
Assert(cbInstr == 2);
pCtx->rip += cbInstr;
fNeedTscSetup = true; /* See @bugref{6634}. */
goto ResumeExecution;
}
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case VMX_EXIT_RDTSCP: /* 51 Guest software attempted to execute RDTSCP. */
{
Log2(("VMX: Rdtscp\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
Assert(cbInstr == 3);
pCtx->rip += cbInstr;
fNeedTscSetup = true; /* See @bugref{6634}. */
goto ResumeExecution;
}
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case VMX_EXIT_INVLPG: /* 14 Guest software attempted to execute INVLPG. */
{
Log2(("VMX: invlpg\n"));
Assert(!pVM->hm.s.fNestedPaging);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
rc = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), exitQualification);
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += cbInstr;
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %RGv failed with %Rrc\n", exitQualification, VBOXSTRICTRC_VAL(rc)));
break;
}
case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
{
Log2(("VMX: monitor\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += cbInstr;
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
break;
}
case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
/* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
if ( pVM->hm.s.fTPRPatchingActive
&& pCtx->ecx == MSR_K8_LSTAR)
{
Assert(!CPUMIsGuestInLongModeEx(pCtx));
if ((pCtx->eax & 0xff) != u8LastTPR)
{
Log(("VMX: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
/* Our patch code uses LSTAR for TPR caching. */
rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
AssertRC(rc2);
}
/* Skip the instruction and continue. */
pCtx->rip += cbInstr; /* wrmsr = [0F 30] */
/* Only resume if successful. */
goto ResumeExecution;
}
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_MSR;
/* no break */
case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
{
STAM_COUNTER_INC((exitReason == VMX_EXIT_RDMSR) ? &pVCpu->hm.s.StatExitRdmsr : &pVCpu->hm.s.StatExitWrmsr);
Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr"));
rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
if (rc == VINF_SUCCESS)
{
/* EIP has been updated already. */
/* Only resume if successful. */
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n",
(exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", VBOXSTRICTRC_VAL(rc)));
break;
}
case VMX_EXIT_MOV_CRX: /* 28 Control-register accesses. */
{
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExit2Sub2, y2);
switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification))
{
case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE:
{
Log2(("VMX: %RGv mov cr%d, x\n", (RTGCPTR)pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification),
VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification));
switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))
{
case 0:
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_CR3;
break;
case 2:
break;
case 3:
Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx));
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
break;
case 4:
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
break;
case 8:
/* CR8 contains the APIC TPR */
Assert(!(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1
& VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
break;
default:
AssertFailed();
break;
}
break;
}
case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ:
{
Log2(("VMX: mov x, crx\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
Assert( !pVM->hm.s.fNestedPaging
|| !CPUMIsGuestInPagedProtectedModeEx(pCtx)
|| VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != DISCREG_CR3);
/* CR8 reads only cause an exit when the TPR shadow feature isn't present. */
Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8
|| !(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification),
VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification));
break;
}
case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS:
{
Log2(("VMX: clts\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
rc = EMInterpretCLTS(pVM, pVCpu);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
break;
}
case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW:
{
Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification));
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
break;
}
}
/* Update EIP if no error occurred. */
if (RT_SUCCESS(rc))
pCtx->rip += cbInstr;
if (rc == VINF_SUCCESS)
{
/* Only resume if successful. */
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub2, y2);
goto ResumeExecution;
}
Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub2, y2);
break;
}
case VMX_EXIT_MOV_DRX: /* 29 Debug-register accesses. */
{
if ( !DBGFIsStepping(pVCpu)
&& !CPUMIsHyperDebugStateActive(pVCpu))
{
/* Disable DRx move intercepts. */
pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc2);
/* Save the host and load the guest debug state. */
rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
AssertRC(rc2);
#ifdef LOG_ENABLED
if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
{
Log(("VMX_EXIT_MOV_DRX: write DR%d genreg %d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
}
else
Log(("VMX_EXIT_MOV_DRX: read DR%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification)));
#endif
#ifdef VBOX_WITH_STATISTICS
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
#endif
goto ResumeExecution;
}
/** @todo clear VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT after the first
* time and restore DRx registers afterwards */
if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
{
Log2(("VMX: mov DRx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification));
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
Log2(("DR7=%08x\n", pCtx->dr[7]));
}
else
{
Log2(("VMX: mov x, DRx\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification),
VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification));
}
/* Update EIP if no error occurred. */
if (RT_SUCCESS(rc))
pCtx->rip += cbInstr;
if (rc == VINF_SUCCESS)
{
/* Only resume if successful. */
goto ResumeExecution;
}
Assert(rc == VERR_EM_INTERPRETER);
break;
}
/* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
case VMX_EXIT_IO_INSTR: /* 30 I/O instruction. */
{
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExit2Sub1, y1);
uint32_t uPort;
uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification);
bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
/** @todo necessary to make the distinction? */
if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX)
uPort = pCtx->edx & 0xffff;
else
uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */
if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4)) /* paranoia */
{
rc = fIOWrite ? VINF_IOM_R3_IOPORT_WRITE : VINF_IOM_R3_IOPORT_READ;
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
break;
}
uint32_t cbSize = g_aIOSize[uIOWidth];
if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification))
{
/* ins/outs */
PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
/* Disassemble manually to deal with segment prefixes. */
/** @todo VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR contains the flat pointer
* operand of the instruction. */
/** @todo VMX_VMCS32_RO_EXIT_INSTR_INFO also contains segment prefix info. */
rc2 = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
if (RT_SUCCESS(rc))
{
if (fIOWrite)
{
Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
rc = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), uPort, pDis->fPrefix,
(DISCPUMODE)pDis->uAddrMode, cbSize);
}
else
{
Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
rc = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), uPort, pDis->fPrefix,
(DISCPUMODE)pDis->uAddrMode, cbSize);
}
}
else
rc = VINF_EM_RAW_EMULATE_INSTR;
}
else
{
/* Normal in/out */
uint32_t uAndVal = g_aIOOpAnd[uIOWidth];
Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification));
if (fIOWrite)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
rc = IOMIOPortWrite(pVM, pVCpu, uPort, pCtx->eax & uAndVal, cbSize);
if (rc == VINF_IOM_R3_IOPORT_WRITE)
HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pCtx->rip + cbInstr, uPort, uAndVal, cbSize);
}
else
{
uint32_t u32Val = 0;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
rc = IOMIOPortRead(pVM, pVCpu, uPort, &u32Val, cbSize);
if (IOM_SUCCESS(rc))
{
/* Write back to the EAX register. */
pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
}
else
if (rc == VINF_IOM_R3_IOPORT_READ)
HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pCtx->rip + cbInstr, uPort, uAndVal, cbSize);
}
}
/*
* Handled the I/O return codes.
* (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
*/
if (IOM_SUCCESS(rc))
{
/* Update EIP and continue execution. */
pCtx->rip += cbInstr;
if (RT_LIKELY(rc == VINF_SUCCESS))
{
/* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
for (unsigned i = 0; i < 4; i++)
{
unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
if ( (uPort >= pCtx->dr[i] && uPort < pCtx->dr[i] + uBPLen)
&& (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
&& (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
{
uint64_t uDR6;
Assert(CPUMIsGuestDebugStateActive(pVCpu));
uDR6 = ASMGetDR6();
/* Clear all breakpoint status flags and set the one we just hit. */
uDR6 &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
uDR6 |= (uint64_t)RT_BIT(i);
/*
* Note: AMD64 Architecture Programmer's Manual 13.1:
* Bits 15:13 of the DR6 register is never cleared by the processor and must
* be cleared by software after the contents have been read.
*/
ASMSetDR6(uDR6);
/* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
pCtx->dr[7] &= ~X86_DR7_GD;
/* Paranoia. */
pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
pCtx->dr[7] |= 0x400; /* must be one */
/* Resync DR7 */
rc2 = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
AssertRC(rc2);
/* Construct inject info. */
intInfo = X86_XCPT_DB;
intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
0 /* cbInstr */, 0 /* errCode */);
AssertRC(rc2);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
goto ResumeExecution;
}
}
}
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
goto ResumeExecution;
}
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
break;
}
#ifdef VBOX_STRICT
if (rc == VINF_IOM_R3_IOPORT_READ)
Assert(!fIOWrite);
else if (rc == VINF_IOM_R3_IOPORT_WRITE)
Assert(fIOWrite);
else
{
AssertMsg( RT_FAILURE(rc)
|| rc == VINF_EM_RAW_EMULATE_INSTR
|| rc == VINF_EM_RAW_GUEST_TRAP
|| rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
}
#endif
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
break;
}
case VMX_EXIT_TPR_BELOW_THRESHOLD: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
LogFlow(("VMX_EXIT_TPR_BELOW_THRESHOLD\n"));
/* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */
goto ResumeExecution;
case VMX_EXIT_APIC_ACCESS: /* 44 APIC access. Guest software attempted to access memory at a physical address
on the APIC-access page. */
{
LogFlow(("VMX_EXIT_APIC_ACCESS\n"));
unsigned uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(exitQualification);
switch (uAccessType)
{
case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
{
RTGCPHYS GCPhys = pCtx->msrApicBase;
GCPhys &= PAGE_BASE_GC_MASK;
GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(exitQualification);
LogFlow(("Apic access at %RGp\n", GCPhys));
rc = IOMMMIOPhysHandler(pVM, pVCpu, (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
CPUMCTX2CORE(pCtx), GCPhys);
if (rc == VINF_SUCCESS)
goto ResumeExecution; /* rip already updated */
break;
}
default:
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
break;
}
case VMX_EXIT_PREEMPTION_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */
if (!TMTimerPollBool(pVM, pVCpu))
goto ResumeExecution;
rc = VINF_EM_RAW_TIMER_PENDING;
break;
default:
/* The rest is handled after syncing the entire CPU state. */
break;
}
/*
* Note: The guest state is not entirely synced back at this stage!
*/
/* Investigate why there was a VM-exit. (part 2) */
switch (exitReason)
{
case VMX_EXIT_XCPT_NMI: /* 0 Exception or non-maskable interrupt (NMI). */
case VMX_EXIT_EXT_INT: /* 1 External interrupt. */
case VMX_EXIT_EPT_VIOLATION:
case VMX_EXIT_EPT_MISCONFIG: /* 49 EPT misconfig is used by the PGM/MMIO optimizations. */
case VMX_EXIT_PREEMPTION_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */
/* Already handled above. */
break;
case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */
rc = VINF_EM_RESET; /* Triple fault equals a reset. */
break;
case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */
case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */
rc = VINF_EM_RAW_INTERRUPT;
AssertFailed(); /* Can't happen. Yet. */
break;
case VMX_EXIT_IO_SMI: /* 5 I/O system-management interrupt (SMI). */
case VMX_EXIT_SMI: /* 6 Other SMI. */
rc = VINF_EM_RAW_INTERRUPT;
AssertFailed(); /* Can't happen afaik. */
break;
case VMX_EXIT_TASK_SWITCH: /* 9 Task switch: too complicated to emulate, so fall back to the recompiler */
Log(("VMX_EXIT_TASK_SWITCH: exit=%RX64\n", exitQualification));
if ( (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(exitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
&& pVCpu->hm.s.Event.fPending)
{
/* Caused by an injected interrupt. */
pVCpu->hm.s.Event.fPending = false;
Log(("VMX_EXIT_TASK_SWITCH: reassert trap %d\n", VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo)));
Assert(!VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo));
//@todo: Why do we assume this had to be a hardware interrupt? What about software interrupts or exceptions?
rc2 = TRPMAssertTrap(pVCpu, VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo), TRPM_HARDWARE_INT);
AssertRC(rc2);
}
/* else Exceptions and software interrupts can just be restarted. */
rc = VERR_EM_INTERPRETER;
break;
case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */
/* Check if external interrupts are pending; if so, don't switch back. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
pCtx->rip++; /* skip hlt */
if (EMShouldContinueAfterHalt(pVCpu, pCtx))
goto ResumeExecution;
rc = VINF_EM_HALT;
break;
case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */
Log2(("VMX: mwait\n"));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if ( rc == VINF_EM_HALT
|| rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += cbInstr;
/* Check if external interrupts are pending; if so, don't switch back. */
if ( rc == VINF_SUCCESS
|| ( rc == VINF_EM_HALT
&& EMShouldContinueAfterHalt(pVCpu, pCtx))
)
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
break;
case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */
AssertFailed(); /* can't happen. */
rc = VERR_EM_INTERPRETER;
break;
case VMX_EXIT_MTF: /* 37 Exit due to Monitor Trap Flag. */
LogFlow(("VMX_EXIT_MTF at %RGv\n", (RTGCPTR)pCtx->rip));
pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG;
rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
#if 0
DBGFDoneStepping(pVCpu);
#endif
rc = VINF_EM_DBG_STOP;
break;
case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */
case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */
case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */
case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */
case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */
case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */
case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */
case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */
case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */
case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */
/** @todo inject #UD immediately */
rc = VERR_EM_INTERPRETER;
break;
case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
case VMX_EXIT_INVLPG: /* 14 Guest software attempted to execute INVLPG. */
case VMX_EXIT_MOV_CRX: /* 28 Control-register accesses. */
case VMX_EXIT_MOV_DRX: /* 29 Debug-register accesses. */
case VMX_EXIT_IO_INSTR: /* 30 I/O instruction. */
case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
case VMX_EXIT_RDTSCP: /* 51 Guest software attempted to execute RDTSCP. */
/* already handled above */
AssertMsg( rc == VINF_PGM_CHANGE_MODE
|| rc == VINF_EM_RAW_INTERRUPT
|| rc == VERR_EM_INTERPRETER
|| rc == VINF_EM_RAW_EMULATE_INSTR
|| rc == VINF_PGM_SYNC_CR3
|| rc == VINF_IOM_R3_IOPORT_READ
|| rc == VINF_IOM_R3_IOPORT_WRITE
|| rc == VINF_EM_RAW_GUEST_TRAP
|| rc == VINF_TRPM_XCPT_DISPATCHED
|| rc == VINF_EM_RESCHEDULE_REM,
("rc = %d\n", VBOXSTRICTRC_VAL(rc)));
break;
case VMX_EXIT_TPR_BELOW_THRESHOLD: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */
case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
case VMX_EXIT_APIC_ACCESS: /* 44 APIC access. Guest software attempted to access memory at a physical address
on the APIC-access page. */
{
/*
* If we decided to emulate them here, then we must sync the MSRs that could have been changed (sysenter, FS/GS base)
*/
rc = VERR_EM_INTERPRETER;
break;
}
case VMX_EXIT_INT_WINDOW: /* 7 Interrupt window. */
Assert(rc == VINF_EM_RAW_INTERRUPT);
break;
case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */
{
#ifdef VBOX_STRICT
RTCCUINTREG val2 = 0;
Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n"));
VMXReadVmcs(VMX_VMCS_GUEST_RIP, &val2);
Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val2));
VMXReadVmcs(VMX_VMCS_GUEST_CR0, &val2);
Log(("VMX_VMCS_GUEST_CR0 %RX64\n", (uint64_t)val2));
VMXReadVmcs(VMX_VMCS_GUEST_CR3, &val2);
Log(("VMX_VMCS_GUEST_CR3 %RX64\n", (uint64_t)val2));
VMXReadVmcs(VMX_VMCS_GUEST_CR4, &val2);
Log(("VMX_VMCS_GUEST_CR4 %RX64\n", (uint64_t)val2));
VMXReadVmcs(VMX_VMCS_GUEST_RFLAGS, &val2);
Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val2));
VMX_LOG_SELREG(CS, "CS", val2);
VMX_LOG_SELREG(DS, "DS", val2);
VMX_LOG_SELREG(ES, "ES", val2);
VMX_LOG_SELREG(FS, "FS", val2);
VMX_LOG_SELREG(GS, "GS", val2);
VMX_LOG_SELREG(SS, "SS", val2);
VMX_LOG_SELREG(TR, "TR", val2);
VMX_LOG_SELREG(LDTR, "LDTR", val2);
VMXReadVmcs(VMX_VMCS_GUEST_GDTR_BASE, &val2);
Log(("VMX_VMCS_GUEST_GDTR_BASE %RX64\n", (uint64_t)val2));
VMXReadVmcs(VMX_VMCS_GUEST_IDTR_BASE, &val2);
Log(("VMX_VMCS_GUEST_IDTR_BASE %RX64\n", (uint64_t)val2));
#endif /* VBOX_STRICT */
rc = VERR_VMX_INVALID_GUEST_STATE;
break;
}
case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */
case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */
default:
rc = VERR_VMX_UNEXPECTED_EXIT_CODE;
AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */
break;
}
end:
/* We now going back to ring-3, so clear the action flag. */
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
/*
* Signal changes for the recompiler.
*/
CPUMSetChangedFlags(pVCpu,
CPUM_CHANGED_SYSENTER_MSR
| CPUM_CHANGED_LDTR
| CPUM_CHANGED_GDTR
| CPUM_CHANGED_IDTR
| CPUM_CHANGED_TR
| CPUM_CHANGED_HIDDEN_SEL_REGS);
/*
* If we executed vmlaunch/vmresume and an external IRQ was pending, then we don't have to do a full sync the next time.
*/
if ( exitReason == VMX_EXIT_EXT_INT
&& !VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
/* On the next entry we'll only sync the host context. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
}
else
{
/* On the next entry we'll sync everything. */
/** @todo we can do better than this */
/* Not in the VINF_PGM_CHANGE_MODE though! */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL;
}
/* Translate into a less severe return code */
if (rc == VERR_EM_INTERPRETER)
rc = VINF_EM_RAW_EMULATE_INSTR;
else if (rc == VERR_VMX_INVALID_VMCS_PTR)
{
/* Try to extract more information about what might have gone wrong here. */
VMXGetActivateVMCS(&pVCpu->hm.s.vmx.lasterror.u64VMCSPhys);
pVCpu->hm.s.vmx.lasterror.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
pVCpu->hm.s.vmx.lasterror.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
pVCpu->hm.s.vmx.lasterror.idCurrentCpu = RTMpCpuId();
}
/* Just set the correct state here instead of trying to catch every goto above. */
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/* Restore interrupts if we exited after disabling them. */
if (uOldEFlags != ~(RTCCUINTREG)0)
ASMSetFlags(uOldEFlags);
#endif
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
Log2(("X"));
return VBOXSTRICTRC_TODO(rc);
}
/**
* Enters the VT-x session.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCpu Pointer to the CPU info struct.
*/
VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
{
Assert(pVM->hm.s.vmx.fSupported);
NOREF(pCpu);
unsigned cr4 = ASMGetCR4();
if (!(cr4 & X86_CR4_VMXE))
{
AssertMsgFailed(("X86_CR4_VMXE should be set!\n"));
return VERR_VMX_X86_CR4_VMXE_CLEARED;
}
/* Activate the VMCS. */
int rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
if (RT_FAILURE(rc))
return rc;
pVCpu->hm.s.fResumeVM = false;
return VINF_SUCCESS;
}
/**
* Leaves the VT-x session.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guests CPU context.
*/
VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(pVM->hm.s.vmx.fSupported);
#ifdef DEBUG
if (CPUMIsHyperDebugStateActive(pVCpu))
{
CPUMR0LoadHostDebugState(pVM, pVCpu);
Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
}
else
#endif
/*
* Save the guest debug state if necessary.
*/
if (CPUMIsGuestDebugStateActive(pVCpu))
{
CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
/* Enable DRx move intercepts again. */
pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
int rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
AssertRC(rc);
/* Resync the debug registers the next time. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
}
else
Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
/*
* Clear VMCS, marking it inactive, clearing implementation-specific data and writing
* VMCS data back to memory.
*/
int rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
AssertRC(rc);
return VINF_SUCCESS;
}
/**
* Flush the TLB using EPT.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param enmFlush Type of flush.
*/
static void hmR0VmxFlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
{
uint64_t descriptor[2];
LogFlow(("hmR0VmxFlushEPT %d\n", enmFlush));
Assert(pVM->hm.s.fNestedPaging);
descriptor[0] = pVCpu->hm.s.vmx.GCPhysEPTP;
descriptor[1] = 0; /* MBZ. Intel spec. 33.3 VMX Instructions */
int rc = VMXR0InvEPT(enmFlush, &descriptor[0]);
AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %x %RGv failed with %d\n", enmFlush, pVCpu->hm.s.vmx.GCPhysEPTP, rc));
#ifdef VBOX_WITH_STATISTICS
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
#endif
}
/**
* Flush the TLB using VPID.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
* enmFlush).
* @param enmFlush Type of flush.
* @param GCPtr Virtual address of the page to flush (can be 0 depending
* on @a enmFlush).
*/
static void hmR0VmxFlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
{
uint64_t descriptor[2];
Assert(pVM->hm.s.vmx.fVpid);
if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
{
descriptor[0] = 0;
descriptor[1] = 0;
}
else
{
AssertPtr(pVCpu);
AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
descriptor[0] = pVCpu->hm.s.uCurrentAsid;
descriptor[1] = GCPtr;
}
int rc = VMXR0InvVPID(enmFlush, &descriptor[0]); NOREF(rc);
AssertMsg(rc == VINF_SUCCESS,
("VMXR0InvVPID %x %x %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
#ifdef VBOX_WITH_STATISTICS
if (pVCpu)
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
#endif
}
/**
* Invalidates a guest page by guest virtual address. Only relevant for
* EPT/VPID, otherwise there is nothing really to invalidate.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param GCVirt Guest virtual address of the page to invalidate.
*/
VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
{
bool fFlushPending = VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
Log2(("VMXR0InvalidatePage %RGv\n", GCVirt));
if (!fFlushPending)
{
/*
* We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
* See @bugref{6043} and @bugref{6177}
*
* Set the VMCPU_FF_TLB_FLUSH force flag and flush before VMENTRY in hmR0VmxSetupTLB*() as this
* function maybe called in a loop with individual addresses.
*/
if (pVM->hm.s.vmx.fVpid)
{
/* If we can flush just this page do it, otherwise flush as little as possible. */
if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
else
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
}
else if (pVM->hm.s.fNestedPaging)
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
}
return VINF_SUCCESS;
}
/**
* Invalidates a guest page by physical address. Only relevant for EPT/VPID,
* otherwise there is nothing really to invalidate.
*
* NOTE: Assumes the current instruction references this physical page though a virtual address!!
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param GCPhys Guest physical address of the page to invalidate.
*/
VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
{
LogFlow(("VMXR0InvalidatePhysPage %RGp\n", GCPhys));
/*
* We cannot flush a page by guest-physical address. invvpid takes only a linear address
* while invept only flushes by EPT not individual addresses. We update the force flag here
* and flush before VMENTRY in hmR0VmxSetupTLB*(). This function might be called in a loop.
*/
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
return VINF_SUCCESS;
}
/**
* Report world switch error and dump some useful debug info.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param rc Return code.
* @param pCtx Pointer to the current guest CPU context (not updated).
*/
static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rc, PCPUMCTX pCtx)
{
NOREF(pVM);
switch (VBOXSTRICTRC_VAL(rc))
{
case VERR_VMX_INVALID_VMXON_PTR:
AssertFailed();
break;
case VERR_VMX_UNABLE_TO_START_VM:
case VERR_VMX_UNABLE_TO_RESUME_VM:
{
int rc2;
RTCCUINTREG exitReason, instrError;
rc2 = VMXReadVmcs(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
rc2 |= VMXReadVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
AssertRC(rc2);
if (rc2 == VINF_SUCCESS)
{
Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason,
(uint32_t)instrError));
Log(("Current stack %08x\n", &rc2));
pVCpu->hm.s.vmx.lasterror.u32InstrError = instrError;
pVCpu->hm.s.vmx.lasterror.u32ExitReason = exitReason;
#ifdef VBOX_STRICT
RTGDTR gdtr;
PCX86DESCHC pDesc;
RTCCUINTREG val;
ASMGetGDTR(&gdtr);
VMXReadVmcs(VMX_VMCS_GUEST_RIP, &val);
Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val));
VMXReadVmcs(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, &val);
Log(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS %08x\n", val));
VMXReadVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, &val);
Log(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS %08x\n", val));
VMXReadVmcs(VMX_VMCS32_CTRL_ENTRY_CONTROLS, &val);
Log(("VMX_VMCS_CTRL_ENTRY_CONTROLS %08x\n", val));
VMXReadVmcs(VMX_VMCS32_CTRL_EXIT_CONTROLS, &val);
Log(("VMX_VMCS_CTRL_EXIT_CONTROLS %08x\n", val));
VMXReadVmcs(VMX_VMCS_HOST_CR0, &val);
Log(("VMX_VMCS_HOST_CR0 %08x\n", val));
VMXReadVmcs(VMX_VMCS_HOST_CR3, &val);
Log(("VMX_VMCS_HOST_CR3 %08x\n", val));
VMXReadVmcs(VMX_VMCS_HOST_CR4, &val);
Log(("VMX_VMCS_HOST_CR4 %08x\n", val));
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_CS, &val);
Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val));
VMXReadVmcs(VMX_VMCS_GUEST_RFLAGS, &val);
Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "CS: ");
}
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_DS, &val);
Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "DS: ");
}
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_ES, &val);
Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "ES: ");
}
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_FS, &val);
Log(("VMX_VMCS16_HOST_FIELD_FS %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "FS: ");
}
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_GS, &val);
Log(("VMX_VMCS16_HOST_FIELD_GS %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "GS: ");
}
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_SS, &val);
Log(("VMX_VMCS16_HOST_FIELD_SS %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "SS: ");
}
VMXReadVmcs(VMX_VMCS16_HOST_FIELD_TR, &val);
Log(("VMX_VMCS16_HOST_FIELD_TR %08x\n", val));
if (val < gdtr.cbGdt)
{
pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
HMR0DumpDescriptor(pDesc, val, "TR: ");
}
VMXReadVmcs(VMX_VMCS_HOST_TR_BASE, &val);
Log(("VMX_VMCS_HOST_TR_BASE %RHv\n", val));
VMXReadVmcs(VMX_VMCS_HOST_GDTR_BASE, &val);
Log(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", val));
VMXReadVmcs(VMX_VMCS_HOST_IDTR_BASE, &val);
Log(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", val));
VMXReadVmcs(VMX_VMCS32_HOST_SYSENTER_CS, &val);
Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val));
VMXReadVmcs(VMX_VMCS_HOST_SYSENTER_EIP, &val);
Log(("VMX_VMCS_HOST_SYSENTER_EIP %RHv\n", val));
VMXReadVmcs(VMX_VMCS_HOST_SYSENTER_ESP, &val);
Log(("VMX_VMCS_HOST_SYSENTER_ESP %RHv\n", val));
VMXReadVmcs(VMX_VMCS_HOST_RSP, &val);
Log(("VMX_VMCS_HOST_RSP %RHv\n", val));
VMXReadVmcs(VMX_VMCS_HOST_RIP, &val);
Log(("VMX_VMCS_HOST_RIP %RHv\n", val));
# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (VMX_IS_64BIT_HOST_MODE())
{
Log(("MSR_K6_EFER = %RX64\n", ASMRdMsr(MSR_K6_EFER)));
Log(("MSR_K6_STAR = %RX64\n", ASMRdMsr(MSR_K6_STAR)));
Log(("MSR_K8_LSTAR = %RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
Log(("MSR_K8_CSTAR = %RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
Log(("MSR_K8_SF_MASK = %RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
Log(("MSR_K8_KERNEL_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
}
# endif
#endif /* VBOX_STRICT */
}
break;
}
default:
/* impossible */
AssertMsgFailed(("%Rrc (%#x)\n", VBOXSTRICTRC_VAL(rc), VBOXSTRICTRC_VAL(rc)));
break;
}
}
#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
/**
* Prepares for and executes VMLAUNCH (64 bits guest mode).
*
* @returns VBox status code.
* @param fResume Whether to vmlauch/vmresume.
* @param pCtx Pointer to the guest CPU context.
* @param pCache Pointer to the VMCS cache.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
{
uint32_t aParam[6];
PHMGLOBLCPUINFO pCpu;
RTHCPHYS HCPhysCpuPage;
int rc;
pCpu = HMR0GetCurrentCpu();
HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
pCache->uPos = 1;
pCache->interPD = PGMGetInterPaeCR3(pVM);
pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
#endif
#ifdef DEBUG
pCache->TestIn.HCPhysCpuPage= 0;
pCache->TestIn.HCPhysVmcs = 0;
pCache->TestIn.pCache = 0;
pCache->TestOut.HCPhysVmcs = 0;
pCache->TestOut.pCache = 0;
pCache->TestOut.pCtx = 0;
pCache->TestOut.eflags = 0;
#endif
aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
aParam[5] = 0;
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
#endif
rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnVMXGCStartVM64, 6, &aParam[0]);
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
Assert(pCtx->dr[4] == 10);
*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
#endif
#ifdef DEBUG
AssertMsg(pCache->TestIn.HCPhysCpuPage== HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
pVCpu->hm.s.vmx.HCPhysVmcs));
AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
pCache->TestOut.HCPhysVmcs));
AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
pCache->TestOut.pCache));
AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
pCache->TestOut.pCtx));
Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
#endif
return rc;
}
# ifdef VBOX_STRICT
static bool hmR0VmxIsValidReadField(uint32_t idxField)
{
switch (idxField)
{
case VMX_VMCS_GUEST_RIP:
case VMX_VMCS_GUEST_RSP:
case VMX_VMCS_GUEST_RFLAGS:
case VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE:
case VMX_VMCS_CTRL_CR0_READ_SHADOW:
case VMX_VMCS_GUEST_CR0:
case VMX_VMCS_CTRL_CR4_READ_SHADOW:
case VMX_VMCS_GUEST_CR4:
case VMX_VMCS_GUEST_DR7:
case VMX_VMCS32_GUEST_SYSENTER_CS:
case VMX_VMCS_GUEST_SYSENTER_EIP:
case VMX_VMCS_GUEST_SYSENTER_ESP:
case VMX_VMCS32_GUEST_GDTR_LIMIT:
case VMX_VMCS_GUEST_GDTR_BASE:
case VMX_VMCS32_GUEST_IDTR_LIMIT:
case VMX_VMCS_GUEST_IDTR_BASE:
case VMX_VMCS16_GUEST_FIELD_CS:
case VMX_VMCS32_GUEST_CS_LIMIT:
case VMX_VMCS_GUEST_CS_BASE:
case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_DS:
case VMX_VMCS32_GUEST_DS_LIMIT:
case VMX_VMCS_GUEST_DS_BASE:
case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_ES:
case VMX_VMCS32_GUEST_ES_LIMIT:
case VMX_VMCS_GUEST_ES_BASE:
case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_FS:
case VMX_VMCS32_GUEST_FS_LIMIT:
case VMX_VMCS_GUEST_FS_BASE:
case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_GS:
case VMX_VMCS32_GUEST_GS_LIMIT:
case VMX_VMCS_GUEST_GS_BASE:
case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_SS:
case VMX_VMCS32_GUEST_SS_LIMIT:
case VMX_VMCS_GUEST_SS_BASE:
case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_LDTR:
case VMX_VMCS32_GUEST_LDTR_LIMIT:
case VMX_VMCS_GUEST_LDTR_BASE:
case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
case VMX_VMCS16_GUEST_FIELD_TR:
case VMX_VMCS32_GUEST_TR_LIMIT:
case VMX_VMCS_GUEST_TR_BASE:
case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
case VMX_VMCS32_RO_EXIT_REASON:
case VMX_VMCS32_RO_VM_INSTR_ERROR:
case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
case VMX_VMCS32_RO_EXIT_INSTR_INFO:
case VMX_VMCS_RO_EXIT_QUALIFICATION:
case VMX_VMCS32_RO_IDT_INFO:
case VMX_VMCS32_RO_IDT_ERROR_CODE:
case VMX_VMCS_GUEST_CR3:
case VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL:
return true;
}
return false;
}
static bool hmR0VmxIsValidWriteField(uint32_t idxField)
{
switch (idxField)
{
case VMX_VMCS_GUEST_LDTR_BASE:
case VMX_VMCS_GUEST_TR_BASE:
case VMX_VMCS_GUEST_GDTR_BASE:
case VMX_VMCS_GUEST_IDTR_BASE:
case VMX_VMCS_GUEST_SYSENTER_EIP:
case VMX_VMCS_GUEST_SYSENTER_ESP:
case VMX_VMCS_GUEST_CR0:
case VMX_VMCS_GUEST_CR4:
case VMX_VMCS_GUEST_CR3:
case VMX_VMCS_GUEST_DR7:
case VMX_VMCS_GUEST_RIP:
case VMX_VMCS_GUEST_RSP:
case VMX_VMCS_GUEST_CS_BASE:
case VMX_VMCS_GUEST_DS_BASE:
case VMX_VMCS_GUEST_ES_BASE:
case VMX_VMCS_GUEST_FS_BASE:
case VMX_VMCS_GUEST_GS_BASE:
case VMX_VMCS_GUEST_SS_BASE:
return true;
}
return false;
}
# endif /* VBOX_STRICT */
/**
* Executes the specified handler in 64-bit mode.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
* @param pfnHandler Pointer to the RC handler function.
* @param cbParam Number of parameters.
* @param paParam Array of 32-bit parameters.
*/
VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam,
uint32_t *paParam)
{
int rc, rc2;
PHMGLOBLCPUINFO pCpu;
RTHCPHYS HCPhysCpuPage;
RTHCUINTREG uOldEFlags;
AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
Assert(pfnHandler);
Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
#ifdef VBOX_STRICT
for (unsigned i=0;i<pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries;i++)
Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
for (unsigned i=0;i<pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries;i++)
Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
#endif
/* Disable interrupts. */
uOldEFlags = ASMIntDisableFlags();
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
RTCPUID idHostCpu = RTMpCpuId();
CPUMR0SetLApic(pVM, idHostCpu);
#endif
pCpu = HMR0GetCurrentCpu();
HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
/* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
/* Leave VMX Root Mode. */
VMXDisable();
ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
CPUMSetHyperEIP(pVCpu, pfnHandler);
for (int i=(int)cbParam-1;i>=0;i--)
CPUMPushHyper(pVCpu, paParam[i]);
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
/* Call switcher. */
rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
/* Make sure the VMX instructions don't cause #UD faults. */
ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
/* Enter VMX Root Mode */
rc2 = VMXEnable(HCPhysCpuPage);
if (RT_FAILURE(rc2))
{
ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
ASMSetFlags(uOldEFlags);
return VERR_VMX_VMXON_FAILED;
}
rc2 = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
AssertRC(rc2);
Assert(!(ASMGetFlags() & X86_EFL_IF));
ASMSetFlags(uOldEFlags);
return rc;
}
#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
/**
* Executes VMWRITE.
*
* @returns VBox status code
* @param pVCpu Pointer to the VMCPU.
* @param idxField VMCS field index.
* @param u64Val 16, 32 or 64 bits value.
*/
VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
{
int rc;
switch (idxField)
{
case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
case VMX_VMCS64_GUEST_PDPTE0_FULL:
case VMX_VMCS64_GUEST_PDPTE1_FULL:
case VMX_VMCS64_GUEST_PDPTE2_FULL:
case VMX_VMCS64_GUEST_PDPTE3_FULL:
case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
case VMX_VMCS64_GUEST_EFER_FULL:
case VMX_VMCS64_CTRL_EPTP_FULL:
/* These fields consist of two parts, which are both writable in 32 bits mode. */
rc = VMXWriteVmcs32(idxField, u64Val);
rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32ULL));
AssertRC(rc);
return rc;
case VMX_VMCS_GUEST_LDTR_BASE:
case VMX_VMCS_GUEST_TR_BASE:
case VMX_VMCS_GUEST_GDTR_BASE:
case VMX_VMCS_GUEST_IDTR_BASE:
case VMX_VMCS_GUEST_SYSENTER_EIP:
case VMX_VMCS_GUEST_SYSENTER_ESP:
case VMX_VMCS_GUEST_CR0:
case VMX_VMCS_GUEST_CR4:
case VMX_VMCS_GUEST_CR3:
case VMX_VMCS_GUEST_DR7:
case VMX_VMCS_GUEST_RIP:
case VMX_VMCS_GUEST_RSP:
case VMX_VMCS_GUEST_CS_BASE:
case VMX_VMCS_GUEST_DS_BASE:
case VMX_VMCS_GUEST_ES_BASE:
case VMX_VMCS_GUEST_FS_BASE:
case VMX_VMCS_GUEST_GS_BASE:
case VMX_VMCS_GUEST_SS_BASE:
/* Queue a 64 bits value as we can't set it in 32 bits host mode. */
if (u64Val >> 32ULL)
rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
else
rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
return rc;
default:
AssertMsgFailed(("Unexpected field %x\n", idxField));
return VERR_INVALID_PARAMETER;
}
}
/**
* Cache VMCS writes for running 64 bits guests on 32 bits hosts.
*
* @param pVCpu Pointer to the VMCPU.
* @param idxField VMCS field index.
* @param u64Val 16, 32 or 64 bits value.
*/
VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
{
PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
("entries=%x\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
/* Make sure there are no duplicates. */
for (unsigned i = 0; i < pCache->Write.cValidEntries; i++)
{
if (pCache->Write.aField[i] == idxField)
{
pCache->Write.aFieldVal[i] = u64Val;
return VINF_SUCCESS;
}
}
pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
pCache->Write.cValidEntries++;
return VINF_SUCCESS;
}
#endif /* HC_ARCH_BITS == 32 && !VBOX_WITH_HYBRID_32BIT_KERNEL */