HWSVMR0.cpp revision 962a914fb7f1d645575fa67df18aaf324c317ab4
/* $Id$ */
/** @file
* HWACCM SVM - Host Context Ring 0.
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_HWACCM
#include <VBox/vmm/hwaccm.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/selm.h>
#include <VBox/vmm/iom.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/tm.h>
#include <VBox/vmm/pdmapi.h>
#include "HWACCMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/x86.h>
#include <VBox/vmm/hwacc_svm.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <iprt/param.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/cpuset.h>
#include <iprt/mp.h>
#include <iprt/time.h>
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
# include <iprt/thread.h>
#endif
#include "HWSVMR0.h"
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static int svmR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID);
static int svmR0EmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
static void svmR0SetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/**
* Sets up and activates AMD-V on the current CPU
*
* @returns VBox status code.
* @param pCpu CPU info struct
* @param pVM The VM to operate on. (can be NULL after a resume!!)
* @param pvCpuPage Pointer to the global cpu page.
* @param HCPhysCpuPage Physical address of the global cpu page.
*/
VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
{
AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
/* We must turn on AMD-V and setup the host state physical address, as
those MSRs are per-cpu/core. */
uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
if (fEfer & MSR_K6_EFER_SVME)
{
/* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE hack is active, then we
blindly use AMD-V. */
if ( pVM
&& pVM->hwaccm.s.svm.fIgnoreInUseError)
pCpu->fIgnoreAMDVInUseError = true;
if (!pCpu->fIgnoreAMDVInUseError)
return VERR_SVM_IN_USE;
}
/* Turn on AMD-V in the EFER MSR. */
ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
/* Write the physical page address where the CPU will store the host state
while executing the VM. */
ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
return VINF_SUCCESS;
}
/**
* Deactivates AMD-V on the current CPU
*
* @returns VBox status code.
* @param pCpu CPU info struct
* @param pvCpuPage Pointer to the global cpu page.
* @param HCPhysCpuPage Physical address of the global cpu page.
*/
VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
{
AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
/* Turn off AMD-V in the EFER MSR. */
uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
/* Invalidate host state physical address. */
ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
return VINF_SUCCESS;
}
/**
* Does Ring-0 per VM AMD-V init.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR0DECL(int) SVMR0InitVM(PVM pVM)
{
int rc;
pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
/* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
if (RT_FAILURE(rc))
return rc;
pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
/* Set all bits to intercept all IO accesses. */
ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
/* Erratum 170 which requires a forced TLB flush for each world switch:
* See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
*
* All BH-G1/2 and DH-G1/2 models include a fix:
* Athlon X2: 0x6b 1/2
* 0x68 1/2
* Athlon 64: 0x7f 1
* 0x6f 2
* Sempron: 0x7f 1/2
* 0x6f 2
* 0x6c 2
* 0x7c 2
* Turion 64: 0x68 2
*
*/
uint32_t u32Dummy;
uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
u32BaseFamily= (u32Version >> 8) & 0xf;
u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
u32Model = ((u32Version >> 4) & 0xf);
u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
u32Stepping = u32Version & 0xf;
if ( u32Family == 0xf
&& !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
&& !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
{
Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
}
/* Allocate VMCBs for all guest CPUs. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
pVCpu->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
/* Allocate one page for the host context */
rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
if (RT_FAILURE(rc))
return rc;
pVCpu->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCBHost);
pVCpu->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, 0);
Assert(pVCpu->hwaccm.s.svm.pVMCBHostPhys < _4G);
ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCBHost);
/* Allocate one page for the VM control block (VMCB). */
rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
if (RT_FAILURE(rc))
return rc;
pVCpu->hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjVMCB);
pVCpu->hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjVMCB, 0);
Assert(pVCpu->hwaccm.s.svm.pVMCBPhys < _4G);
ASMMemZeroPage(pVCpu->hwaccm.s.svm.pVMCB);
/* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
if (RT_FAILURE(rc))
return rc;
pVCpu->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap);
pVCpu->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, 0);
/* Set all bits to intercept all MSR accesses. */
ASMMemFill32(pVCpu->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
}
return VINF_SUCCESS;
}
/**
* Does Ring-0 per VM AMD-V termination.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR0DECL(int) SVMR0TermVM(PVM pVM)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
if (pVCpu->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCBHost, false);
pVCpu->hwaccm.s.svm.pVMCBHost = 0;
pVCpu->hwaccm.s.svm.pVMCBHostPhys = 0;
pVCpu->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
}
if (pVCpu->hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjVMCB, false);
pVCpu->hwaccm.s.svm.pVMCB = 0;
pVCpu->hwaccm.s.svm.pVMCBPhys = 0;
pVCpu->hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
}
if (pVCpu->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hwaccm.s.svm.pMemObjMSRBitmap, false);
pVCpu->hwaccm.s.svm.pMSRBitmap = 0;
pVCpu->hwaccm.s.svm.pMSRBitmapPhys = 0;
pVCpu->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
}
}
if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
pVM->hwaccm.s.svm.pIOBitmap = 0;
pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
}
return VINF_SUCCESS;
}
/**
* Sets up AMD-V for the specified VM
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
{
int rc = VINF_SUCCESS;
AssertReturn(pVM, VERR_INVALID_PARAMETER);
Assert(pVM->hwaccm.s.svm.fSupported);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
SVM_VMCB *pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
/* Program the control fields. Most of them never have to be changed again. */
/* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
/* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
if (!pVM->hwaccm.s.fNestedPaging)
pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
else
pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
/*
* CR0/3/4 writes must be intercepted for obvious reasons.
*/
if (!pVM->hwaccm.s.fNestedPaging)
pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
else
pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
/* Intercept all DRx reads and writes by default. Changed later on. */
pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
/* Currently we don't care about DRx reads or writes. DRx registers are trashed.
* All breakpoints are automatically cleared when the VM exits.
*/
pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
#ifndef DEBUG
if (pVM->hwaccm.s.fNestedPaging)
pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
#endif
pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
| SVM_CTRL1_INTERCEPT_VINTR
| SVM_CTRL1_INTERCEPT_NMI
| SVM_CTRL1_INTERCEPT_SMI
| SVM_CTRL1_INTERCEPT_INIT
| SVM_CTRL1_INTERCEPT_RDPMC
| SVM_CTRL1_INTERCEPT_CPUID
| SVM_CTRL1_INTERCEPT_RSM
| SVM_CTRL1_INTERCEPT_HLT
| SVM_CTRL1_INTERCEPT_INOUT_BITMAP
| SVM_CTRL1_INTERCEPT_MSR_SHADOW
| SVM_CTRL1_INTERCEPT_INVLPG
| SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
| SVM_CTRL1_INTERCEPT_TASK_SWITCH
| SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
| SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
;
/* With nested paging we don't care about invlpg anymore. */
if (pVM->hwaccm.s.fNestedPaging)
pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
| SVM_CTRL2_INTERCEPT_VMMCALL
| SVM_CTRL2_INTERCEPT_VMLOAD
| SVM_CTRL2_INTERCEPT_VMSAVE
| SVM_CTRL2_INTERCEPT_STGI
| SVM_CTRL2_INTERCEPT_CLGI
| SVM_CTRL2_INTERCEPT_SKINIT
| SVM_CTRL2_INTERCEPT_WBINVD
| SVM_CTRL2_INTERCEPT_MONITOR
| SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
;
Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
/* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
/* Ignore the priority in the TPR; just deliver it when we tell it to. */
pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
/* Set IO and MSR bitmap addresses. */
pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
pVMCB->ctrl.u64MSRPMPhysAddr = pVCpu->hwaccm.s.svm.pMSRBitmapPhys;
/* No LBR virtualization. */
pVMCB->ctrl.u64LBRVirt = 0;
/** The ASID must start at 1; the host uses 0. */
pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
/** Setup the PAT msr (nested paging only) */
/* The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB, so choose type 6 for all PAT slots. */
pVMCB->guest.u64GPAT = 0x0006060606060606ULL;
/* The following MSRs are saved automatically by vmload/vmsave, so we allow the guest
* to modify them directly.
*/
svmR0SetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
svmR0SetMSRPermission(pVCpu, MSR_K8_CSTAR, true, true);
svmR0SetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
svmR0SetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
svmR0SetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
svmR0SetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
svmR0SetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
svmR0SetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
svmR0SetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
svmR0SetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
}
return rc;
}
/**
* Sets the permission bits for the specified MSR
*
* @param pVCpu The VMCPU to operate on.
* @param ulMSR MSR value
* @param fRead Reading allowed/disallowed
* @param fWrite Writing allowed/disallowed
*/
static void svmR0SetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
{
unsigned ulBit;
uint8_t *pMSRBitmap = (uint8_t *)pVCpu->hwaccm.s.svm.pMSRBitmap;
if (ulMSR <= 0x00001FFF)
{
/* Pentium-compatible MSRs */
ulBit = ulMSR * 2;
}
else
if ( ulMSR >= 0xC0000000
&& ulMSR <= 0xC0001FFF)
{
/* AMD Sixth Generation x86 Processor MSRs and SYSCALL */
ulBit = (ulMSR - 0xC0000000) * 2;
pMSRBitmap += 0x800;
}
else
if ( ulMSR >= 0xC0010000
&& ulMSR <= 0xC0011FFF)
{
/* AMD Seventh and Eighth Generation Processor MSRs */
ulBit = (ulMSR - 0xC0001000) * 2;
pMSRBitmap += 0x1000;
}
else
{
AssertFailed();
return;
}
Assert(ulBit < 16 * 1024 - 1);
if (fRead)
ASMBitClear(pMSRBitmap, ulBit);
else
ASMBitSet(pMSRBitmap, ulBit);
if (fWrite)
ASMBitClear(pMSRBitmap, ulBit + 1);
else
ASMBitSet(pMSRBitmap, ulBit + 1);
}
/**
* Injects an event (trap or external interrupt)
*
* @param pVCpu The VMCPU to operate on.
* @param pVMCB SVM control block
* @param pCtx CPU Context
* @param pIntInfo SVM interrupt info
*/
inline void SVMR0InjectEvent(PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
{
#ifdef VBOX_WITH_STATISTICS
STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
#endif
#ifdef VBOX_STRICT
if (pEvent->n.u8Vector == 0xE)
Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
else
if (pEvent->n.u8Vector < 0x20)
Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
else
{
Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
Assert(pCtx->eflags.u32 & X86_EFL_IF);
}
#endif
/* Set event injection state. */
pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
}
/**
* Checks for pending guest interrupts and injects them
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param pVMCB SVM control block
* @param pCtx CPU Context
*/
static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
{
int rc;
/* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
if (pVCpu->hwaccm.s.Event.fPending)
{
SVM_EVENT Event;
Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
pVCpu->hwaccm.s.Event.fPending = false;
return VINF_SUCCESS;
}
/* If an active trap is already pending, then we must forward it first! */
if (!TRPMHasTrap(pVCpu))
{
if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
{
SVM_EVENT Event;
Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
Event.n.u8Vector = X86_XCPT_NMI;
Event.n.u1Valid = 1;
Event.n.u32ErrorCode = 0;
Event.n.u3Type = SVM_EVENT_NMI;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
return VINF_SUCCESS;
}
/* @todo SMI interrupts. */
/* When external interrupts are pending, we should exit the VM when IF is set. */
if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
{
if ( !(pCtx->eflags.u32 & X86_EFL_IF)
|| VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
{
if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
{
if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
LogFlow(("Enable irq window exit!\n"));
else
Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
/** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
}
}
else
{
uint8_t u8Interrupt;
rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
if (RT_SUCCESS(rc))
{
rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
AssertRC(rc);
}
else
{
/* Can only happen in rare cases where a pending interrupt is cleared behind our back */
Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
/* Just continue */
}
}
}
}
#ifdef VBOX_STRICT
if (TRPMHasTrap(pVCpu))
{
uint8_t u8Vector;
rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
AssertRC(rc);
}
#endif
if ( (pCtx->eflags.u32 & X86_EFL_IF)
&& (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
&& TRPMHasTrap(pVCpu)
)
{
uint8_t u8Vector;
TRPMEVENT enmType;
SVM_EVENT Event;
RTGCUINT u32ErrorCode;
Event.au64[0] = 0;
/* If a new event is pending, then dispatch it now. */
rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
AssertRC(rc);
Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
Assert(enmType != TRPM_SOFTWARE_INT);
/* Clear the pending trap. */
rc = TRPMResetTrap(pVCpu);
AssertRC(rc);
Event.n.u8Vector = u8Vector;
Event.n.u1Valid = 1;
Event.n.u32ErrorCode = u32ErrorCode;
if (enmType == TRPM_TRAP)
{
switch (u8Vector) {
case 8:
case 10:
case 11:
case 12:
case 13:
case 14:
case 17:
/* Valid error codes. */
Event.n.u1ErrorCodeValid = 1;
break;
default:
break;
}
if (u8Vector == X86_XCPT_NMI)
Event.n.u3Type = SVM_EVENT_NMI;
else
Event.n.u3Type = SVM_EVENT_EXCEPTION;
}
else
Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
} /* if (interrupts can be dispatched) */
return VINF_SUCCESS;
}
/**
* Save the host state
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
*/
VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
{
NOREF(pVM);
NOREF(pVCpu);
/* Nothing to do here. */
return VINF_SUCCESS;
}
/**
* Loads the guest state
*
* NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param pCtx Guest context
*/
VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
RTGCUINTPTR val;
SVM_VMCB *pVMCB;
if (pVM == NULL)
return VERR_INVALID_PARAMETER;
/* Setup AMD SVM. */
Assert(pVM->hwaccm.s.svm.fSupported);
pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
/* Guest CPU context: ES, CS, SS, DS, FS, GS. */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
{
SVM_WRITE_SELREG(CS, cs);
SVM_WRITE_SELREG(SS, ss);
SVM_WRITE_SELREG(DS, ds);
SVM_WRITE_SELREG(ES, es);
SVM_WRITE_SELREG(FS, fs);
SVM_WRITE_SELREG(GS, gs);
}
/* Guest CPU context: LDTR. */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
{
SVM_WRITE_SELREG(LDTR, ldtr);
}
/* Guest CPU context: TR. */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
{
SVM_WRITE_SELREG(TR, tr);
}
/* Guest CPU context: GDTR. */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
{
pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
}
/* Guest CPU context: IDTR. */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
{
pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
}
/*
* Sysenter MSRs (unconditional)
*/
pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
/* Control registers */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
{
val = pCtx->cr0;
if (!CPUMIsGuestFPUStateActive(pVCpu))
{
/* Always use #NM exceptions to load the FPU/XMM state on demand. */
val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
}
else
{
/** @todo check if we support the old style mess correctly. */
if (!(val & X86_CR0_NE))
{
Log(("Forcing X86_CR0_NE!!!\n"));
/* Also catch floating point exceptions as we need to report them to the guest in a different way. */
if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
{
pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
}
}
val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
}
/* Always enable caching. */
val &= ~(X86_CR0_CD|X86_CR0_NW);
/* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
/* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
if (!pVM->hwaccm.s.fNestedPaging)
{
val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
val |= X86_CR0_WP; /* Must set this as we rely on protecting various pages and supervisor writes must be caught. */
}
pVMCB->guest.u64CR0 = val;
}
/* CR2 as well */
pVMCB->guest.u64CR2 = pCtx->cr2;
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
{
/* Save our shadow CR3 register. */
if (pVM->hwaccm.s.fNestedPaging)
{
PGMMODE enmShwPagingMode;
#if HC_ARCH_BITS == 32
if (CPUMIsGuestInLongModeEx(pCtx))
enmShwPagingMode = PGMMODE_AMD64_NX;
else
#endif
enmShwPagingMode = PGMGetHostMode(pVM);
pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
Assert(pVMCB->ctrl.u64NestedPagingCR3);
pVMCB->guest.u64CR3 = pCtx->cr3;
}
else
{
pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
Assert(pVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
}
}
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
{
val = pCtx->cr4;
if (!pVM->hwaccm.s.fNestedPaging)
{
switch(pVCpu->hwaccm.s.enmShadowMode)
{
case PGMMODE_REAL:
case PGMMODE_PROTECTED: /* Protected mode, no paging. */
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
case PGMMODE_32_BIT: /* 32-bit paging. */
val &= ~X86_CR4_PAE;
break;
case PGMMODE_PAE: /* PAE paging. */
case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
/** Must use PAE paging as we could use physical memory > 4 GB */
val |= X86_CR4_PAE;
break;
case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
#ifdef VBOX_ENABLE_64_BITS_GUESTS
break;
#else
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
#endif
default: /* shut up gcc */
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
}
}
pVMCB->guest.u64CR4 = val;
}
/* Debug registers. */
if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
{
pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
pCtx->dr[7] |= 0x400; /* must be one */
pVMCB->guest.u64DR7 = pCtx->dr[7];
pVMCB->guest.u64DR6 = pCtx->dr[6];
#ifdef DEBUG
/* Sync the hypervisor debug state now if any breakpoint is armed. */
if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
&& !CPUMIsHyperDebugStateActive(pVCpu)
&& !DBGFIsStepping(pVCpu))
{
/* Save the host and load the hypervisor debug state. */
int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
AssertRC(rc);
/* DRx intercepts remain enabled. */
/* Override dr6 & dr7 with the hypervisor values. */
pVMCB->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
pVMCB->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
}
else
#endif
/* Sync the debug state now if any breakpoint is armed. */
if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
&& !CPUMIsGuestDebugStateActive(pVCpu)
&& !DBGFIsStepping(pVCpu))
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
/* Disable drx move intercepts. */
pVMCB->ctrl.u16InterceptRdDRx = 0;
pVMCB->ctrl.u16InterceptWrDRx = 0;
/* Save the host and load the guest debug state. */
int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
AssertRC(rc);
}
}
/* EIP, ESP and EFLAGS */
pVMCB->guest.u64RIP = pCtx->rip;
pVMCB->guest.u64RSP = pCtx->rsp;
pVMCB->guest.u64RFlags = pCtx->eflags.u32;
/* Set CPL */
pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
/* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
pVMCB->guest.u64RAX = pCtx->rax;
/* vmrun will fail without MSR_K6_EFER_SVME. */
pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
/* 64 bits guest mode? */
if (CPUMIsGuestInLongModeEx(pCtx))
{
#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
#else
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (!pVM->hwaccm.s.fAllow64BitGuests)
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
# endif
pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
#endif
/* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
}
else
{
/* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
}
/* TSC offset. */
if (TMCpuTickCanUseRealTSC(pVCpu, &pVMCB->ctrl.u64TSCOffset))
{
uint64_t u64CurTSC = ASMReadTSC();
if (u64CurTSC + pVMCB->ctrl.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
{
pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
}
else
{
/* Fall back to rdtsc emulation as we would otherwise pass decreasing tsc values to the guest. */
LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC, pVMCB->ctrl.u64TSCOffset, u64CurTSC + pVMCB->ctrl.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu), TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVMCB->ctrl.u64TSCOffset, TMCpuTickGet(pVCpu)));
pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCInterceptOverFlow);
}
}
else
{
pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
}
/* Sync the various msrs for 64 bits mode. */
pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
#ifdef DEBUG
/* Intercept X86_XCPT_DB if stepping is enabled */
if ( DBGFIsStepping(pVCpu)
|| CPUMIsHyperDebugStateActive(pVCpu))
pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
else
pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
#endif
/* Done. */
pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
return VINF_SUCCESS;
}
/**
* Runs guest code in an AMD-V VM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param pCtx Guest context
*/
VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hwaccm.s.StatExit1);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hwaccm.s.StatExit2);
VBOXSTRICTRC rc = VINF_SUCCESS;
int rc2;
uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
SVM_VMCB *pVMCB;
bool fSyncTPR = false;
unsigned cResume = 0;
uint8_t u8LastTPR;
PHMGLOBLCPUINFO pCpu = 0;
RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
#ifdef VBOX_STRICT
RTCPUID idCpuCheck;
#endif
#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
uint64_t u64LastTime = RTTimeMilliTS();
#endif
pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
/* We can jump to this point to resume execution after determining that a VM-exit is innocent.
*/
ResumeExecution:
if (!STAM_PROFILE_ADV_IS_RUNNING(&pVCpu->hwaccm.s.StatEntry))
STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatExit2, &pVCpu->hwaccm.s.StatEntry, x);
Assert(!HWACCMR0SuspendPending());
/* Safety precaution; looping for too long here can have a very bad effect on the host */
if (RT_UNLIKELY(++cResume > pVM->hwaccm.s.cMaxResumeLoops))
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
rc = VINF_EM_RAW_INTERRUPT;
goto end;
}
/* Check for irq inhibition due to instruction fusing (sti, mov ss). */
if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
{
Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
{
/* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
* Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
* force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
* break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
/* Irq inhibition is no longer active; clear the corresponding SVM state. */
pVMCB->ctrl.u64IntShadow = 0;
}
}
else
{
/* Irq inhibition is no longer active; clear the corresponding SVM state. */
pVMCB->ctrl.u64IntShadow = 0;
}
#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
if (RT_UNLIKELY((cResume & 0xf) == 0))
{
uint64_t u64CurTime = RTTimeMilliTS();
if (RT_UNLIKELY(u64CurTime > u64LastTime))
{
u64LastTime = u64CurTime;
TMTimerPollVoid(pVM, pVCpu);
}
}
#endif
/* Check for pending actions that force us to go back to ring 3. */
if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_REQUEST))
{
/* Check if a sync operation is pending. */
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
{
rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
AssertRC(VBOXSTRICTRC_VAL(rc));
if (rc != VINF_SUCCESS)
{
Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
goto end;
}
}
#ifdef DEBUG
/* Intercept X86_XCPT_DB if stepping is enabled */
if (!DBGFIsStepping(pVCpu))
#endif
{
if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK))
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
goto end;
}
}
/* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
{
rc = VINF_EM_PENDING_REQUEST;
goto end;
}
/* Check if a pgm pool flush is in progress. */
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
{
rc = VINF_PGM_POOL_FLUSH_PENDING;
goto end;
}
/* Check if DMA work is pending (2nd+ run). */
if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
{
rc = VINF_EM_RAW_TO_R3;
goto end;
}
}
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/*
* Exit to ring-3 preemption/work is pending.
*
* Interrupts are disabled before the call to make sure we don't miss any interrupt
* that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
* further down, but SVMR0CheckPendingInterrupt makes that impossible.)
*
* Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
* shootdowns rely on this.
*/
uOldEFlags = ASMIntDisableFlags();
if (RTThreadPreemptIsPending(NIL_RTTHREAD))
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitPreemptPending);
rc = VINF_EM_RAW_INTERRUPT;
goto end;
}
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
#endif
/* When external interrupts are pending, we should exit the VM when IF is set. */
/* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
if (RT_FAILURE(rc))
goto end;
/* TPR caching using CR8 is only available in 64 bits mode or with 32 bits guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is supported. */
/* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! (no longer true)
* @todo query and update the TPR only when it could have been changed (mmio access)
*/
if (pVM->hwaccm.s.fHasIoApic)
{
bool fPending;
/* TPR caching in CR8 */
rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
AssertRC(rc2);
if (pVM->hwaccm.s.fTPRPatchingActive)
{
/* Our patch code uses LSTAR for TPR caching. */
pCtx->msrLSTAR = u8LastTPR;
if (fPending)
{
/* A TPR change could activate a pending interrupt, so catch lstar writes. */
svmR0SetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
}
else
/* No interrupts are pending, so we don't need to be explicitely notified.
* There are enough world switches for detecting pending interrupts.
*/
svmR0SetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
}
else
{
pVMCB->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
if (fPending)
{
/* A TPR change could activate a pending interrupt, so catch cr8 writes. */
pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
}
else
/* No interrupts are pending, so we don't need to be explicitely notified.
* There are enough world switches for detecting pending interrupts.
*/
pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
}
fSyncTPR = !fPending;
}
/* All done! Let's start VM execution. */
/* Enable nested paging if necessary (disabled each time after #VMEXIT). */
pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
#ifdef LOG_ENABLED
pCpu = HWACCMR0GetCurrentCpu();
if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
|| pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
{
if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
else
LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
}
if (pCpu->fFlushTLB)
LogFlow(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
#endif
/*
* NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
* (until the actual world switch)
*/
#ifdef VBOX_STRICT
idCpuCheck = RTMpCpuId();
#endif
VMMR0LogFlushDisable(pVCpu);
/* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
VMMR0LogFlushEnable(pVCpu);
goto end;
}
#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/* Disable interrupts to make sure a poke will interrupt execution.
* This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
*/
uOldEFlags = ASMIntDisableFlags();
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
#endif
STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatEntry, &pVCpu->hwaccm.s.StatInGC, x);
pCpu = HWACCMR0GetCurrentCpu();
/* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
/* Note that this can happen both for start and resume due to long jumps back to ring 3. */
if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
/* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
|| pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
{
/* Force a TLB flush on VM entry. */
pVCpu->hwaccm.s.fForceTLBFlush = true;
}
else
Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
/* Set TLB flush state as checked until we return from the world switch. */
ASMAtomicWriteU8(&pVCpu->hwaccm.s.fCheckedTLBFlush, true);
/* Check for tlb shootdown flushes. */
if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
pVCpu->hwaccm.s.fForceTLBFlush = true;
/* Make sure we flush the TLB when required. Switch ASID to achieve the
same thing, but without actually flushing the whole TLB (which is
expensive). */
if ( pVCpu->hwaccm.s.fForceTLBFlush
&& !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
{
if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
|| pCpu->fFlushTLB)
{
pCpu->fFlushTLB = false;
pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
pCpu->cTLBFlushes++;
}
else
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
}
else
{
Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
/* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
if ( !pVM->hwaccm.s.svm.fAlwaysFlushTLB
&& VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
{
/* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTlbShootdown);
for (unsigned i=0;i<pVCpu->hwaccm.s.TlbShootdown.cPages;i++)
SVMR0InvlpgA(pVCpu->hwaccm.s.TlbShootdown.aPages[i], pVMCB->ctrl.TLBCtrl.n.u32ASID);
}
}
pVCpu->hwaccm.s.TlbShootdown.cPages = 0;
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
#ifdef VBOX_WITH_STATISTICS
if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
else
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
#endif
/* In case we execute a goto ResumeExecution later on. */
pVCpu->hwaccm.s.fResumeVM = true;
pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVCpu->hwaccm.s.svm.pMSRBitmapPhys);
Assert(pVMCB->ctrl.u64LBRVirt == 0);
#ifdef VBOX_STRICT
Assert(idCpuCheck == RTMpCpuId());
#endif
TMNotifyStartOfExecution(pVCpu);
#ifdef VBOX_WITH_KERNEL_USING_XMM
hwaccmR0SVMRunWrapXMM(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu, pVCpu->hwaccm.s.svm.pfnVMRun);
#else
pVCpu->hwaccm.s.svm.pfnVMRun(pVCpu->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
#endif
ASMAtomicWriteU8(&pVCpu->hwaccm.s.fCheckedTLBFlush, false);
ASMAtomicIncU32(&pVCpu->hwaccm.s.cWorldSwitchExit);
/* Possibly the last TSC value seen by the guest (too high) (only when we're in tsc offset mode). */
if (!(pVMCB->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVMCB->ctrl.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
TMNotifyEndOfExecution(pVCpu);
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatInGC, &pVCpu->hwaccm.s.StatExit1, x);
ASMSetFlags(uOldEFlags);
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
uOldEFlags = ~(RTCCUINTREG)0;
#endif
/*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*/
/* Reason for the VM exit */
exitCode = pVMCB->ctrl.u64ExitCode;
if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */
{
HWACCMDumpRegs(pVM, pVCpu, pCtx);
#ifdef DEBUG
Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
#endif
rc = VERR_SVM_UNABLE_TO_START_VM;
VMMR0LogFlushEnable(pVCpu);
goto end;
}
/* Let's first sync back eip, esp, and eflags. */
pCtx->rip = pVMCB->guest.u64RIP;
pCtx->rsp = pVMCB->guest.u64RSP;
pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
/* eax is saved/restore across the vmrun instruction */
pCtx->rax = pVMCB->guest.u64RAX;
/* Save all the MSRs that can be changed by the guest without causing a world switch. (fs & gs base are saved with SVM_READ_SELREG) */
pCtx->msrSTAR = pVMCB->guest.u64STAR; /* legacy syscall eip, cs & ss */
pCtx->msrLSTAR = pVMCB->guest.u64LSTAR; /* 64 bits mode syscall rip */
pCtx->msrCSTAR = pVMCB->guest.u64CSTAR; /* compatibility mode syscall rip */
pCtx->msrSFMASK = pVMCB->guest.u64SFMASK; /* syscall flag mask */
pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
/* Can be updated behind our back in the nested paging case. */
pCtx->cr2 = pVMCB->guest.u64CR2;
/* Guest CPU context: ES, CS, SS, DS, FS, GS. */
SVM_READ_SELREG(SS, ss);
SVM_READ_SELREG(CS, cs);
SVM_READ_SELREG(DS, ds);
SVM_READ_SELREG(ES, es);
SVM_READ_SELREG(FS, fs);
SVM_READ_SELREG(GS, gs);
/* Correct the hidden CS granularity flag. Haven't seen it being wrong in
any other register (yet). */
if ( !pCtx->csHid.Attr.n.u1Granularity
&& pCtx->csHid.Attr.n.u1Present
&& pCtx->csHid.u32Limit > UINT32_C(0xfffff))
{
Assert((pCtx->csHid.u32Limit & 0xfff) == 0xfff);
pCtx->csHid.Attr.n.u1Granularity = 1;
}
#define SVM_ASSERT_SEL_GRANULARITY(reg) \
AssertMsg( !pCtx->reg##Hid.Attr.n.u1Present \
|| ( pCtx->reg##Hid.Attr.n.u1Granularity \
? (pCtx->reg##Hid.u32Limit & 0xfff) == 0xfff \
: pCtx->reg##Hid.u32Limit <= 0xfffff), \
("%#x %#x %#llx\n", pCtx->reg##Hid.u32Limit, pCtx->reg##Hid.Attr.u, pCtx->reg##Hid.u64Base))
SVM_ASSERT_SEL_GRANULARITY(ss);
SVM_ASSERT_SEL_GRANULARITY(cs);
SVM_ASSERT_SEL_GRANULARITY(ds);
SVM_ASSERT_SEL_GRANULARITY(es);
SVM_ASSERT_SEL_GRANULARITY(fs);
SVM_ASSERT_SEL_GRANULARITY(gs);
#undef SVM_ASSERT_SEL_GRANULARITY
/* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
SVM_READ_SELREG(LDTR, ldtr);
SVM_READ_SELREG(TR, tr);
pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
/* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
/* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
if ( pVM->hwaccm.s.fNestedPaging
&& pCtx->cr3 != pVMCB->guest.u64CR3)
{
CPUMSetGuestCR3(pVCpu, pVMCB->guest.u64CR3);
PGMUpdateCR3(pVCpu, pVMCB->guest.u64CR3);
}
/* Note! NOW IT'S SAFE FOR LOGGING! */
VMMR0LogFlushEnable(pVCpu);
/* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
{
Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
}
else
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
Log2(("exitCode = %x\n", exitCode));
/* Sync back DR6 as it could have been changed by hitting breakpoints. */
pCtx->dr[6] = pVMCB->guest.u64DR6;
/* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
pCtx->dr[7] = pVMCB->guest.u64DR7;
/* Check if an injected event was interrupted prematurely. */
pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
&& pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
{
Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
#ifdef LOG_ENABLED
SVM_EVENT Event;
Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
if ( exitCode == SVM_EXIT_EXCEPTION_E
&& Event.n.u8Vector == 0xE)
{
Log(("Double fault!\n"));
}
#endif
pVCpu->hwaccm.s.Event.fPending = true;
/* Error code present? (redundant) */
if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
else
pVCpu->hwaccm.s.Event.errCode = 0;
}
#ifdef VBOX_WITH_STATISTICS
if (exitCode == SVM_EXIT_NPF)
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
else
STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
#endif
/* Sync back the TPR if it was changed. */
if (fSyncTPR)
{
if (pVM->hwaccm.s.fTPRPatchingActive)
{
if ((pCtx->msrLSTAR & 0xff) != u8LastTPR)
{
/* Our patch code uses LSTAR for TPR caching. */
rc2 = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff);
AssertRC(rc2);
}
}
else
{
if ((u8LastTPR >> 4) != pVMCB->ctrl.IntCtrl.n.u8VTPR)
{
rc2 = PDMApicSetTPR(pVCpu, pVMCB->ctrl.IntCtrl.n.u8VTPR << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
AssertRC(rc2);
}
}
}
STAM_PROFILE_ADV_STOP_START(&pVCpu->hwaccm.s.StatExit1, &pVCpu->hwaccm.s.StatExit2, x);
/* Deal with the reason of the VM-exit. */
switch (exitCode)
{
case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
{
/* Pending trap. */
SVM_EVENT Event;
uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
Log2(("Hardware/software interrupt %d\n", vector));
switch (vector)
{
case X86_XCPT_DB:
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
/* Note that we don't support guest and host-initiated debugging at the same time. */
Assert(DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu));
rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
if (rc == VINF_EM_RAW_GUEST_TRAP)
{
Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
/* Reinject the exception. */
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_DB;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
/* Return to ring 3 to deal with the debug exit code. */
Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
break;
}
case X86_XCPT_NM:
{
Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
/** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
/* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
if (rc == VINF_SUCCESS)
{
Assert(CPUMIsGuestFPUStateActive(pVCpu));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
/* Continue execution. */
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
goto ResumeExecution;
}
Log(("Forward #NM fault to the guest\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_NM;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
case X86_XCPT_PF: /* Page fault */
{
uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
#ifdef DEBUG
if (pVM->hwaccm.s.fNestedPaging)
{ /* A genuine pagefault.
* Forward the trap to the guest by injecting the exception and resuming execution.
*/
Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
/* Now we must update CR2. */
pCtx->cr2 = uFaultAddress;
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_PF;
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = errCode;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
#endif
Assert(!pVM->hwaccm.s.fNestedPaging);
#ifdef VBOX_HWACCM_WITH_GUEST_PATCHING
/* Shortcut for APIC TPR reads and writes; 32 bits guests only */
if ( pVM->hwaccm.s.fTRPPatchingAllowed
&& (uFaultAddress & 0xfff) == 0x080
&& !(errCode & X86_TRAP_PF_P) /* not present */
&& CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)) == 0
&& !CPUMIsGuestInLongModeEx(pCtx)
&& pVM->hwaccm.s.cPatches < RT_ELEMENTS(pVM->hwaccm.s.aPatches))
{
RTGCPHYS GCPhysApicBase, GCPhys;
PDMApicGetBase(pVM, &GCPhysApicBase); /* @todo cache this */
GCPhysApicBase &= PAGE_BASE_GC_MASK;
rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys);
if ( rc == VINF_SUCCESS
&& GCPhys == GCPhysApicBase)
{
/* Only attempt to patch the instruction once. */
PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
{
rc = VINF_EM_HWACCM_PATCH_TPR_INSTR;
break;
}
}
}
#endif
Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
/* Exit qualification contains the linear address of the page fault. */
TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
TRPMSetErrorCode(pVCpu, errCode);
TRPMSetFaultAddress(pVCpu, uFaultAddress);
/* Forward it to our trap handler first, in case our shadow pages are out of sync. */
rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
if (rc == VINF_SUCCESS)
{ /* We've successfully synced our shadow pages, so let's just continue execution. */
Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
TRPMResetTrap(pVCpu);
goto ResumeExecution;
}
else
if (rc == VINF_EM_RAW_GUEST_TRAP)
{ /* A genuine pagefault.
* Forward the trap to the guest by injecting the exception and resuming execution.
*/
Log2(("Forward page fault to the guest\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
/* The error code might have been changed. */
errCode = TRPMGetErrorCode(pVCpu);
TRPMResetTrap(pVCpu);
/* Now we must update CR2. */
pCtx->cr2 = uFaultAddress;
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_PF;
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = errCode;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
#ifdef VBOX_STRICT
if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
LogFlow(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
#endif
/* Need to go back to the recompiler to emulate the instruction. */
TRPMResetTrap(pVCpu);
break;
}
case X86_XCPT_MF: /* Floating point exception. */
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
if (!(pCtx->cr0 & X86_CR0_NE))
{
/* old style FPU error reporting needs some extra work. */
/** @todo don't fall back to the recompiler, but do it manually. */
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_MF;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
#ifdef VBOX_STRICT
case X86_XCPT_BP: /* Breakpoint. */
case X86_XCPT_GP: /* General protection failure exception.*/
case X86_XCPT_UD: /* Unknown opcode exception. */
case X86_XCPT_DE: /* Divide error. */
case X86_XCPT_SS: /* Stack segment exception. */
case X86_XCPT_NP: /* Segment not present exception. */
{
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u1Valid = 1;
Event.n.u8Vector = vector;
switch(vector)
{
case X86_XCPT_GP:
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
break;
case X86_XCPT_BP:
/** Saves the wrong EIP on the stack (pointing to the int3 instead of the next instruction. */
break;
case X86_XCPT_DE:
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
break;
case X86_XCPT_UD:
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
break;
case X86_XCPT_SS:
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
break;
case X86_XCPT_NP:
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
break;
}
Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->esi));
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
#endif
default:
AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
rc = VERR_EM_INTERNAL_ERROR;
break;
} /* switch (vector) */
break;
}
case SVM_EXIT_NPF:
{
/* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
RTGCPHYS GCPhysFault = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
PGMMODE enmShwPagingMode;
Assert(pVM->hwaccm.s.fNestedPaging);
LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
#ifdef VBOX_HWACCM_WITH_GUEST_PATCHING
/* Shortcut for APIC TPR reads and writes; 32 bits guests only */
if ( pVM->hwaccm.s.fTRPPatchingAllowed
&& (GCPhysFault & PAGE_OFFSET_MASK) == 0x080
&& ( !(errCode & X86_TRAP_PF_P) /* not present */
|| (errCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD) /* mmio optimization */)
&& CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)) == 0
&& !CPUMIsGuestInLongModeEx(pCtx)
&& pVM->hwaccm.s.cPatches < RT_ELEMENTS(pVM->hwaccm.s.aPatches))
{
RTGCPHYS GCPhysApicBase;
PDMApicGetBase(pVM, &GCPhysApicBase); /* @todo cache this */
GCPhysApicBase &= PAGE_BASE_GC_MASK;
if (GCPhysFault == GCPhysApicBase + 0x80)
{
/* Only attempt to patch the instruction once. */
PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
{
rc = VINF_EM_HWACCM_PATCH_TPR_INSTR;
break;
}
}
}
#endif
/* Handle the pagefault trap for the nested shadow table. */
#if HC_ARCH_BITS == 32 /** @todo shadow this in a variable. */
if (CPUMIsGuestInLongModeEx(pCtx))
enmShwPagingMode = PGMMODE_AMD64_NX;
else
#endif
enmShwPagingMode = PGMGetHostMode(pVM);
/* MMIO optimization */
Assert((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
if ((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
{
rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmShwPagingMode, CPUMCTX2CORE(pCtx), GCPhysFault, errCode);
if (rc == VINF_SUCCESS)
{
Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
goto ResumeExecution;
}
Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip));
break;
}
/* Exit qualification contains the linear address of the page fault. */
TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
TRPMSetErrorCode(pVCpu, errCode);
TRPMSetFaultAddress(pVCpu, GCPhysFault);
rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), GCPhysFault);
Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
if (rc == VINF_SUCCESS)
{ /* We've successfully synced our shadow pages, so let's just continue execution. */
Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
TRPMResetTrap(pVCpu);
goto ResumeExecution;
}
#ifdef VBOX_STRICT
if (rc != VINF_EM_RAW_EMULATE_INSTR)
LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", VBOXSTRICTRC_VAL(rc)));
#endif
/* Need to go back to the recompiler to emulate the instruction. */
TRPMResetTrap(pVCpu);
break;
}
case SVM_EXIT_VINTR:
/* A virtual interrupt is about to be delivered, which means IF=1. */
Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
goto ResumeExecution;
case SVM_EXIT_FERR_FREEZE:
case SVM_EXIT_INTR:
case SVM_EXIT_NMI:
case SVM_EXIT_SMI:
case SVM_EXIT_INIT:
/* External interrupt; leave to allow it to be dispatched again. */
rc = VINF_EM_RAW_INTERRUPT;
break;
case SVM_EXIT_WBINVD:
case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
/* Skip instruction and continue directly. */
pCtx->rip += 2; /* Note! hardcoded opcode size! */
/* Continue execution.*/
goto ResumeExecution;
case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
{
Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += 2; /* Note! hardcoded opcode size! */
goto ResumeExecution;
}
AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
{
Log2(("SVM: Rdtsc\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += 2; /* Note! hardcoded opcode size! */
goto ResumeExecution;
}
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
{
Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdpmc);
rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += 2; /* Note! hardcoded opcode size! */
goto ResumeExecution;
}
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
{
Log2(("SVM: Rdtscp\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += 3; /* Note! hardcoded opcode size! */
goto ResumeExecution;
}
AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
{
Log2(("SVM: invlpg\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
Assert(!pVM->hwaccm.s.fNestedPaging);
/* Truly a pita. Why can't SVM give the same information as VT-x? */
rc = svmR0InterpretInvpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
if (rc == VINF_SUCCESS)
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
goto ResumeExecution; /* eip already updated */
}
break;
}
case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
{
uint32_t cbSize;
Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
switch (exitCode - SVM_EXIT_WRITE_CR0)
{
case 0:
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
break;
case 2:
break;
case 3:
Assert(!pVM->hwaccm.s.fNestedPaging);
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
break;
case 4:
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
break;
case 8:
break;
default:
AssertFailed();
}
if (rc == VINF_SUCCESS)
{
/* EIP has been updated already. */
/* Only resume if successful. */
goto ResumeExecution;
}
Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
break;
}
case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
{
uint32_t cbSize;
Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
if (rc == VINF_SUCCESS)
{
/* EIP has been updated already. */
/* Only resume if successful. */
goto ResumeExecution;
}
Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
break;
}
case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
{
uint32_t cbSize;
Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
if ( !DBGFIsStepping(pVCpu)
&& !CPUMIsHyperDebugStateActive(pVCpu))
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
/* Disable drx move intercepts. */
pVMCB->ctrl.u16InterceptRdDRx = 0;
pVMCB->ctrl.u16InterceptWrDRx = 0;
/* Save the host and load the guest debug state. */
rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
AssertRC(rc2);
goto ResumeExecution;
}
rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
if (rc == VINF_SUCCESS)
{
/* EIP has been updated already. */
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
/* Only resume if successful. */
goto ResumeExecution;
}
Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
break;
}
case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
{
uint32_t cbSize;
Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
if (!DBGFIsStepping(pVCpu))
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
/* Disable drx move intercepts. */
pVMCB->ctrl.u16InterceptRdDRx = 0;
pVMCB->ctrl.u16InterceptWrDRx = 0;
/* Save the host and load the guest debug state. */
rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
AssertRC(rc2);
goto ResumeExecution;
}
rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
if (rc == VINF_SUCCESS)
{
/* EIP has been updated already. */
/* Only resume if successful. */
goto ResumeExecution;
}
Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
break;
}
/* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
case SVM_EXIT_IOIO: /* I/O instruction. */
{
SVM_IOIO_EXIT IoExitInfo;
uint32_t uIOSize, uAndVal;
IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
/** @todo could use a lookup table here */
if (IoExitInfo.n.u1OP8)
{
uIOSize = 1;
uAndVal = 0xff;
}
else
if (IoExitInfo.n.u1OP16)
{
uIOSize = 2;
uAndVal = 0xffff;
}
else
if (IoExitInfo.n.u1OP32)
{
uIOSize = 4;
uAndVal = 0xffffffff;
}
else
{
AssertFailed(); /* should be fatal. */
rc = VINF_EM_RAW_EMULATE_INSTR;
break;
}
if (IoExitInfo.n.u1STR)
{
/* ins/outs */
PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
/* Disassemble manually to deal with segment prefixes. */
rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), pDis, NULL);
if (rc == VINF_SUCCESS)
{
if (IoExitInfo.n.u1Type == 0)
{
Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->prefix, uIOSize);
}
else
{
Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->prefix, uIOSize);
}
}
else
rc = VINF_EM_RAW_EMULATE_INSTR;
}
else
{
/* normal in/out */
Assert(!IoExitInfo.n.u1REP);
if (IoExitInfo.n.u1Type == 0)
{
Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
if (rc == VINF_IOM_HC_IOPORT_WRITE)
HWACCMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
}
else
{
uint32_t u32Val = 0;
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
if (IOM_SUCCESS(rc))
{
/* Write back to the EAX register. */
pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
}
else
if (rc == VINF_IOM_HC_IOPORT_READ)
HWACCMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVMCB->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
}
}
/*
* Handled the I/O return codes.
* (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
*/
if (IOM_SUCCESS(rc))
{
/* Update EIP and continue execution. */
pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
if (RT_LIKELY(rc == VINF_SUCCESS))
{
/* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
{
/* IO operation lookup arrays. */
static uint32_t const aIOSize[4] = {1, 2, 0, 4};
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
for (unsigned i=0;i<4;i++)
{
unsigned uBPLen = aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
&& (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
&& (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
{
SVM_EVENT Event;
Assert(CPUMIsGuestDebugStateActive(pVCpu));
/* Clear all breakpoint status flags and set the one we just hit. */
pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
pCtx->dr[6] |= (uint64_t)RT_BIT(i);
/* Note: AMD64 Architecture Programmer's Manual 13.1:
* Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
* the contents have been read.
*/
pVMCB->guest.u64DR6 = pCtx->dr[6];
/* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
pCtx->dr[7] &= ~X86_DR7_GD;
/* Paranoia. */
pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
pCtx->dr[7] |= 0x400; /* must be one */
pVMCB->guest.u64DR7 = pCtx->dr[7];
/* Inject the exception. */
Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_DB;
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
}
}
goto ResumeExecution;
}
Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, VBOXSTRICTRC_VAL(rc)));
break;
}
#ifdef VBOX_STRICT
if (rc == VINF_IOM_HC_IOPORT_READ)
Assert(IoExitInfo.n.u1Type != 0);
else if (rc == VINF_IOM_HC_IOPORT_WRITE)
Assert(IoExitInfo.n.u1Type == 0);
else
AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
#endif
Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
break;
}
case SVM_EXIT_HLT:
/** Check if external interrupts are pending; if so, don't switch back. */
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitHlt);
pCtx->rip++; /* skip hlt */
if (EMShouldContinueAfterHalt(pVCpu, pCtx))
goto ResumeExecution;
rc = VINF_EM_HALT;
break;
case SVM_EXIT_MWAIT_UNCOND:
Log2(("SVM: mwait\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMwait);
rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if ( rc == VINF_EM_HALT
|| rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
/** Check if external interrupts are pending; if so, don't switch back. */
if ( rc == VINF_SUCCESS
|| ( rc == VINF_EM_HALT
&& EMShouldContinueAfterHalt(pVCpu, pCtx))
)
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
break;
case SVM_EXIT_MONITOR:
{
Log2(("SVM: monitor\n"));
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMonitor);
rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (rc == VINF_SUCCESS)
{
/* Update EIP and continue execution. */
pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
break;
}
case SVM_EXIT_VMMCALL:
rc = svmR0EmulateTprVMMCall(pVM, pVCpu, pCtx);
if (rc == VINF_SUCCESS)
{
goto ResumeExecution; /* rip already updated. */
}
/* no break */
case SVM_EXIT_RSM:
case SVM_EXIT_INVLPGA:
case SVM_EXIT_VMRUN:
case SVM_EXIT_VMLOAD:
case SVM_EXIT_VMSAVE:
case SVM_EXIT_STGI:
case SVM_EXIT_CLGI:
case SVM_EXIT_SKINIT:
{
/* Unsupported instructions. */
SVM_EVENT Event;
Event.au64[0] = 0;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_UD;
Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
SVMR0InjectEvent(pVCpu, pVMCB, pCtx, &Event);
goto ResumeExecution;
}
/* Emulate in ring 3. */
case SVM_EXIT_MSR:
{
uint32_t cbSize;
/* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
if ( pVM->hwaccm.s.fTPRPatchingActive
&& pCtx->ecx == MSR_K8_LSTAR
&& pVMCB->ctrl.u64ExitInfo1 == 1 /* wrmsr */)
{
if ((pCtx->eax & 0xff) != u8LastTPR)
{
Log(("SVM: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
/* Our patch code uses LSTAR for TPR caching. */
rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
AssertRC(rc2);
}
/* Skip the instruction and continue. */
pCtx->rip += 2; /* wrmsr = [0F 30] */
/* Only resume if successful. */
goto ResumeExecution;
}
/* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
STAM_COUNTER_INC((pVMCB->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hwaccm.s.StatExitRdmsr : &pVCpu->hwaccm.s.StatExitWrmsr);
Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
if (rc == VINF_SUCCESS)
{
/* EIP has been updated already. */
/* Only resume if successful. */
goto ResumeExecution;
}
AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", VBOXSTRICTRC_VAL(rc)));
break;
}
case SVM_EXIT_TASK_SWITCH: /* too complicated to emulate, so fall back to the recompiler*/
Log(("SVM_EXIT_TASK_SWITCH: exit2=%RX64\n", pVMCB->ctrl.u64ExitInfo2));
if ( !(pVMCB->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
&& pVCpu->hwaccm.s.Event.fPending)
{
SVM_EVENT Event;
Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
/* Caused by an injected interrupt. */
pVCpu->hwaccm.s.Event.fPending = false;
switch (Event.n.u3Type)
{
case SVM_EVENT_EXTERNAL_IRQ:
case SVM_EVENT_NMI:
Log(("SVM_EXIT_TASK_SWITCH: reassert trap %d\n", Event.n.u8Vector));
Assert(!Event.n.u1ErrorCodeValid);
rc2 = TRPMAssertTrap(pVCpu, Event.n.u8Vector, TRPM_HARDWARE_INT);
AssertRC(rc2);
break;
default:
/* Exceptions and software interrupts can just be restarted. */
break;
}
}
rc = VERR_EM_INTERPRETER;
break;
case SVM_EXIT_PAUSE:
case SVM_EXIT_MWAIT_ARMED:
rc = VERR_EM_INTERPRETER;
break;
case SVM_EXIT_SHUTDOWN:
rc = VINF_EM_RESET; /* Triple fault equals a reset. */
break;
case SVM_EXIT_IDTR_READ:
case SVM_EXIT_GDTR_READ:
case SVM_EXIT_LDTR_READ:
case SVM_EXIT_TR_READ:
case SVM_EXIT_IDTR_WRITE:
case SVM_EXIT_GDTR_WRITE:
case SVM_EXIT_LDTR_WRITE:
case SVM_EXIT_TR_WRITE:
case SVM_EXIT_CR0_SEL_WRITE:
default:
/* Unexpected exit codes. */
rc = VERR_EM_INTERNAL_ERROR;
AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
break;
}
end:
/* We now going back to ring-3, so clear the action flag. */
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
/* Signal changes for the recompiler. */
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
/* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
if (exitCode == SVM_EXIT_INTR)
{
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
/* On the next entry we'll only sync the host context. */
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
}
else
{
/* On the next entry we'll sync everything. */
/** @todo we can do better than this */
/* Not in the VINF_PGM_CHANGE_MODE though! */
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
}
/* translate into a less severe return code */
if (rc == VERR_EM_INTERPRETER)
rc = VINF_EM_RAW_EMULATE_INSTR;
/* Just set the correct state here instead of trying to catch every goto above. */
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/* Restore interrupts if we exitted after disabling them. */
if (uOldEFlags != ~(RTCCUINTREG)0)
ASMSetFlags(uOldEFlags);
#endif
STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, x);
STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
return VBOXSTRICTRC_TODO(rc);
}
/**
* Emulate simple mov tpr instruction
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param pCtx CPU context
*/
static int svmR0EmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
int rc;
LogFlow(("Emulated VMMCall TPR access replacement at %RGv\n", pCtx->rip));
while (true)
{
bool fPending;
uint8_t u8Tpr;
PHWACCMTPRPATCH pPatch = (PHWACCMTPRPATCH)RTAvloU32Get(&pVM->hwaccm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
break;
switch(pPatch->enmType)
{
case HWACCMTPRINSTR_READ:
/* TPR caching in CR8 */
rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending);
AssertRC(rc);
rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
AssertRC(rc);
LogFlow(("Emulated read successfully\n"));
pCtx->rip += pPatch->cbOp;
break;
case HWACCMTPRINSTR_WRITE_REG:
case HWACCMTPRINSTR_WRITE_IMM:
/* Fetch the new TPR value */
if (pPatch->enmType == HWACCMTPRINSTR_WRITE_REG)
{
uint32_t val;
rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &val);
AssertRC(rc);
u8Tpr = val;
}
else
u8Tpr = (uint8_t)pPatch->uSrcOperand;
rc = PDMApicSetTPR(pVCpu, u8Tpr);
AssertRC(rc);
LogFlow(("Emulated write successfully\n"));
pCtx->rip += pPatch->cbOp;
break;
default:
AssertMsgFailedReturn(("Unexpected type %d\n", pPatch->enmType), VERR_INTERNAL_ERROR);
}
}
return VINF_SUCCESS;
}
/**
* Enters the AMD-V session
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param pCpu CPU info struct
*/
VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
{
Assert(pVM->hwaccm.s.svm.fSupported);
LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
pVCpu->hwaccm.s.fResumeVM = false;
/* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
return VINF_SUCCESS;
}
/**
* Leaves the AMD-V session
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param pCtx CPU context
*/
VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
Assert(pVM->hwaccm.s.svm.fSupported);
#ifdef DEBUG
if (CPUMIsHyperDebugStateActive(pVCpu))
{
CPUMR0LoadHostDebugState(pVM, pVCpu);
}
else
#endif
/* Save the guest debug state if necessary. */
if (CPUMIsGuestDebugStateActive(pVCpu))
{
CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
/* Intercept all DRx reads and writes again. Changed later on. */
pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
/* Resync the debug registers the next time. */
pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
}
else
Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
return VINF_SUCCESS;
}
static int svmR0InterpretInvlPg(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
{
OP_PARAMVAL param1;
RTGCPTR addr;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
if(RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
switch(param1.type)
{
case PARMTYPE_IMMEDIATE:
case PARMTYPE_ADDRESS:
if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
return VERR_EM_INTERPRETER;
addr = param1.val.val64;
break;
default:
return VERR_EM_INTERPRETER;
}
/** @todo is addr always a flat linear address or ds based
* (in absence of segment override prefixes)????
*/
rc = PGMInvalidatePage(pVCpu, addr);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
AssertRC(rc);
return rc;
}
/**
* Interprets INVLPG
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM The VM handle.
* @param pRegFrame The register frame.
* @param ASID Tagged TLB id for the guest
*
* Updates the EIP if an instruction was executed successfully.
*/
static int svmR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
{
/*
* Only allow 32 & 64 bits code.
*/
DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
if (enmMode != CPUMODE_16BIT)
{
RTGCPTR pbCode;
int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
&pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
if (RT_SUCCESS(rc))
{
uint32_t cbOp;
PDISCPUSTATE pDis = &pVCpu->hwaccm.s.DisState;
pDis->mode = enmMode;
rc = EMInterpretDisasOneEx(pVM, pVCpu, pbCode, pRegFrame, pDis, &cbOp);
Assert(RT_FAILURE(rc) || pDis->pCurInstr->opcode == OP_INVLPG);
if (RT_SUCCESS(rc) && pDis->pCurInstr->opcode == OP_INVLPG)
{
Assert(cbOp == pDis->opsize);
rc = svmR0InterpretInvlPg(pVCpu, pDis, pRegFrame, uASID);
if (RT_SUCCESS(rc))
pRegFrame->rip += cbOp; /* Move on to the next instruction. */
return rc;
}
}
}
return VERR_EM_INTERPRETER;
}
/**
* Invalidates a guest page
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param GCVirt Page to invalidate
*/
VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
{
bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
/* Skip it if a TLB flush is already pending. */
if (!fFlushPending)
{
SVM_VMCB *pVMCB;
Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
AssertReturn(pVM, VERR_INVALID_PARAMETER);
Assert(pVM->hwaccm.s.svm.fSupported);
pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
#if HC_ARCH_BITS == 32
/* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
if (CPUMIsGuestInLongMode(pVCpu))
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
else
#endif
SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
}
return VINF_SUCCESS;
}
#if 0 /* obsolete, but left here for clarification. */
/**
* Invalidates a guest page by physical address
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VM CPU to operate on.
* @param GCPhys Page to invalidate
*/
VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
{
Assert(pVM->hwaccm.s.fNestedPaging);
/* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
return VINF_SUCCESS;
}
#endif
#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
/**
* Prepares for and executes VMRUN (64 bits guests from a 32 bits hosts).
*
* @returns VBox status code.
* @param pVMCBHostPhys Physical address of host VMCB.
* @param pVMCBPhys Physical address of the VMCB.
* @param pCtx Guest context.
* @param pVM The VM to operate on.
* @param pVCpu The VMCPU to operate on.
*/
DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
{
uint32_t aParam[4];
aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
}
/**
* Executes the specified handler in 64 mode
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param pVCpu The VMCPU to operate on.
* @param pCtx Guest context
* @param pfnHandler RC handler
* @param cbParam Number of parameters
* @param paParam Array of 32 bits parameters
*/
VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
{
int rc;
RTHCUINTREG uOldEFlags;
Assert(pfnHandler);
/* Disable interrupts. */
uOldEFlags = ASMIntDisableFlags();
CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
CPUMSetHyperEIP(pVCpu, pfnHandler);
for (int i=(int)cbParam-1;i>=0;i--)
CPUMPushHyper(pVCpu, paParam[i]);
STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
/* Call switcher. */
rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
ASMSetFlags(uOldEFlags);
return rc;
}
#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */