HMSVMR0.cpp revision 008056b2a3d2f6408090cbf8d5df0f9a6d46a3d6
/* $Id$ */
/** @file
* HM SVM (AMD-V) - Host Context Ring-0.
*/
/*
* Copyright (C) 2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_HM
#include <iprt/asm-amd64-x86.h>
#include <iprt/thread.h>
#include "HMInternal.h"
#include <VBox/vmm/vm.h>
#include "HMSVMR0.h"
#include <VBox/vmm/pdmapi.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/iom.h>
#include <VBox/vmm/tm.h>
#ifdef DEBUG_ramshankar
# define HMSVM_SYNC_FULL_GUEST_STATE
# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
# define HMSVM_ALWAYS_TRAP_PF
# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
#endif
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#ifdef VBOX_WITH_STATISTICS
# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
if ((u64ExitCode) == SVM_EXIT_NPF) \
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
else \
STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
} while (0)
#else
# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
#endif
/** If we decide to use a function table approach this can be useful to
* switch to a "static DECLCALLBACK(int)". */
#define HMSVM_EXIT_DECL static int
/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
*
* The CPU format of the segment attribute is described in X86DESCATTRBITS
* which is 16-bits (i.e. includes 4 bits of the segment limit).
*
* The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
* only the attribute bits and nothing else). Upper 4-bits are unused.
*
* @{ */
#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
/** @} */
/** @name Macros for loading, storing segment registers to/from the VMCB.
* @{ */
#define HMSVM_LOAD_SEG_REG(REG, reg) \
do \
{ \
Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
} while (0)
#define HMSVM_SAVE_SEG_REG(REG, reg) \
do \
{ \
pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
} while (0)
/** @} */
/** @name Macro for checking and returning from the using function for
* #VMEXIT intercepts that maybe caused during delivering of another
* event in the guest. */
#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
do \
{ \
int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
return VINF_SUCCESS; \
else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
return rc; \
} while (0)
/** @} */
/**
* @name Exception bitmap mask for all contributory exceptions.
*
* Page fault is deliberately excluded here as it's conditional as to whether
* it's contributory or benign. Page faults are handled separately.
*/
#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
| RT_BIT(X86_XCPT_DE))
/** @} */
/** @name VMCB Clean Bits.
*
* These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
* AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
* memory.
*
* @{ */
/** All intercepts vectors, TSC offset, PAUSE filter counter. */
#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
/** I/O permission bitmap, MSR permission bitmap. */
#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
/** ASID. */
#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
V_INTR_VECTOR. */
#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
/** Nested Paging: Nested CR3 (nCR3), PAT. */
#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
/** Control registers (CR0, CR3, CR4, EFER). */
#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
/** Debug registers (DR6, DR7). */
#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
/** GDT, IDT limit and base. */
#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
/** Segment register: CS, SS, DS, ES limit and base. */
#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
/** CR2.*/
#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
/** Mask of all valid VMCB Clean bits. */
#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
| HMSVM_VMCB_CLEAN_IOPM_MSRPM \
| HMSVM_VMCB_CLEAN_ASID \
| HMSVM_VMCB_CLEAN_TPR \
| HMSVM_VMCB_CLEAN_NP \
| HMSVM_VMCB_CLEAN_CRX_EFER \
| HMSVM_VMCB_CLEAN_DRX \
| HMSVM_VMCB_CLEAN_DT \
| HMSVM_VMCB_CLEAN_SEG \
| HMSVM_VMCB_CLEAN_CR2 \
| HMSVM_VMCB_CLEAN_LBR \
| HMSVM_VMCB_CLEAN_AVIC)
/** @} */
/** @name SVM transient.
*
* A state structure for holding miscellaneous information across AMD-V
* VMRUN/#VMEXIT operation, restored after the transition.
*
* @{ */
typedef struct SVMTRANSIENT
{
/** The host's rflags/eflags. */
RTCCUINTREG uEFlags;
#if HC_ARCH_BITS == 32
uint32_t u32Alignment0;
#endif
/** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
uint64_t u64ExitCode;
/** The guest's TPR value used for TPR shadowing. */
uint8_t u8GuestTpr;
/** Alignment. */
uint8_t abAlignment0[7];
/** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
bool fRestoreTscAuxMsr;
/** Whether the #VMEXIT was caused by a page-fault during delivery of a
* contributary exception or a page-fault. */
bool fVectoringPF;
/** Whether the TSC offset mode needs to be updated. */
bool fUpdateTscOffsetting;
} SVMTRANSIENT, *PSVMTRANSIENT;
AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
/** @} */
/**
* MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
*/
typedef enum SVMMSREXITREAD
{
/** Reading this MSR causes a VM-exit. */
SVMMSREXIT_INTERCEPT_READ = 0xb,
/** Reading this MSR does not cause a VM-exit. */
SVMMSREXIT_PASSTHRU_READ
} SVMMSREXITREAD;
/**
* MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
*/
typedef enum SVMMSREXITWRITE
{
/** Writing to this MSR causes a VM-exit. */
SVMMSREXIT_INTERCEPT_WRITE = 0xd,
/** Writing to this MSR does not cause a VM-exit. */
SVMMSREXIT_PASSTHRU_WRITE
} SVMMSREXITWRITE;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** Ring-0 memory object for the IO bitmap. */
RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
/** Physical address of the IO bitmap. */
RTHCPHYS g_HCPhysIOBitmap = 0;
/** Virtual address of the IO bitmap. */
R0PTRTYPE(void *) g_pvIOBitmap = NULL;
/**
* Sets up and activates AMD-V on the current CPU.
*
* @returns VBox status code.
* @param pCpu Pointer to the CPU info struct.
* @param pVM Pointer to the VM (can be NULL after a resume!).
* @param pvCpuPage Pointer to the global CPU page.
* @param HCPhysCpuPage Physical address of the global CPU page.
*/
VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
{
AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
AssertReturn( HCPhysCpuPage
&& HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
/*
* We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
*/
uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
if (u64HostEfer & MSR_K6_EFER_SVME)
{
/* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
if ( pVM
&& pVM->hm.s.svm.fIgnoreInUseError)
{
pCpu->fIgnoreAMDVInUseError = true;
}
if (!pCpu->fIgnoreAMDVInUseError)
return VERR_SVM_IN_USE;
}
/* Turn on AMD-V in the EFER MSR. */
ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
/* Write the physical page address where the CPU will store the host state while executing the VM. */
ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
/*
* Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
* when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
* upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
* to flush the TLB with before using a new ASID.
*/
pCpu->fFlushAsidBeforeUse = true;
/*
* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
*/
++pCpu->cTlbFlushes;
return VINF_SUCCESS;
}
/**
* Deactivates AMD-V on the current CPU.
*
* @returns VBox status code.
* @param pCpu Pointer to the CPU info struct.
* @param pvCpuPage Pointer to the global CPU page.
* @param HCPhysCpuPage Physical address of the global CPU page.
*/
VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
{
AssertReturn( HCPhysCpuPage
&& HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
NOREF(pCpu);
/* Turn off AMD-V in the EFER MSR. */
uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
/* Invalidate host state physical address. */
ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
return VINF_SUCCESS;
}
/**
* Does global AMD-V initialization (called during module initialization).
*
* @returns VBox status code.
*/
VMMR0DECL(int) SVMR0GlobalInit(void)
{
/*
* Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
* once globally here instead of per-VM.
*/
Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
if (RT_FAILURE(rc))
return rc;
g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
/* Set all bits to intercept all IO accesses. */
ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
return VINF_SUCCESS;
}
/**
* Does global AMD-V termination (called during module termination).
*/
VMMR0DECL(void) SVMR0GlobalTerm(void)
{
if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
g_pvIOBitmap = NULL;
g_HCPhysIOBitmap = 0;
g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
}
}
/**
* Frees any allocated per-VCPU structures for a VM.
*
* @param pVM Pointer to the VM.
*/
DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
{
for (uint32_t i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
AssertPtr(pVCpu);
if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
pVCpu->hm.s.svm.pvVmcbHost = 0;
pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
}
if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
pVCpu->hm.s.svm.pvVmcb = 0;
pVCpu->hm.s.svm.HCPhysVmcb = 0;
pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
}
if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
pVCpu->hm.s.svm.pvMsrBitmap = 0;
pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
}
}
}
/**
* Does per-VM AMD-V initialization.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0DECL(int) SVMR0InitVM(PVM pVM)
{
int rc = VERR_INTERNAL_ERROR_5;
/*
* Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
*/
uint32_t u32Family;
uint32_t u32Model;
uint32_t u32Stepping;
if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
{
Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
pVM->hm.s.svm.fAlwaysFlushTLB = true;
}
/*
* Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
}
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
/*
* Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
* FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
*/
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
if (RT_FAILURE(rc))
goto failure_cleanup;
pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
/*
* Allocate one page for the guest-state VMCB.
*/
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
if (RT_FAILURE(rc))
goto failure_cleanup;
pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
/*
* Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
* SVM to not require one.
*/
rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
if (RT_FAILURE(rc))
goto failure_cleanup;
pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
/* Set all bits to intercept all MSR accesses (changed later on). */
ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
}
return VINF_SUCCESS;
failure_cleanup:
hmR0SvmFreeStructs(pVM);
return rc;
}
/**
* Does per-VM AMD-V termination.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0DECL(int) SVMR0TermVM(PVM pVM)
{
hmR0SvmFreeStructs(pVM);
return VINF_SUCCESS;
}
/**
* Sets the permission bits for the specified MSR in the MSRPM.
*
* @param pVCpu Pointer to the VMCPU.
* @param uMsr The MSR for which the access permissions are being set.
* @param enmRead MSR read permissions.
* @param enmWrite MSR write permissions.
*/
static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
{
unsigned ulBit;
uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
/*
* Layout:
* Byte offset MSR range
* 0x000 - 0x7ff 0x00000000 - 0x00001fff
* 0x800 - 0xfff 0xc0000000 - 0xc0001fff
* 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
* 0x1800 - 0x1fff Reserved
*/
if (uMsr <= 0x00001FFF)
{
/* Pentium-compatible MSRs. */
ulBit = uMsr * 2;
}
else if ( uMsr >= 0xC0000000
&& uMsr <= 0xC0001FFF)
{
/* AMD Sixth Generation x86 Processor MSRs. */
ulBit = (uMsr - 0xC0000000) * 2;
pbMsrBitmap += 0x800;
}
else if ( uMsr >= 0xC0010000
&& uMsr <= 0xC0011FFF)
{
/* AMD Seventh and Eighth Generation Processor MSRs. */
ulBit = (uMsr - 0xC0001000) * 2;
pbMsrBitmap += 0x1000;
}
else
{
AssertFailed();
return;
}
Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
if (enmRead == SVMMSREXIT_INTERCEPT_READ)
ASMBitSet(pbMsrBitmap, ulBit);
else
ASMBitClear(pbMsrBitmap, ulBit);
if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
ASMBitSet(pbMsrBitmap, ulBit + 1);
else
ASMBitClear(pbMsrBitmap, ulBit + 1);
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
}
/**
* Sets up AMD-V for the specified VM.
* This function is only called once per-VM during initalization.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
{
int rc = VINF_SUCCESS;
AssertReturn(pVM, VERR_INVALID_PARAMETER);
Assert(pVM->hm.s.svm.fSupported);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
/* Trap exceptions unconditionally (debug purposes). */
#ifdef HMSVM_ALWAYS_TRAP_PF
pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
#endif
#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
/* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
pVmcb->ctrl.u32InterceptException |= 0
| RT_BIT(X86_XCPT_BP)
| RT_BIT(X86_XCPT_DB)
| RT_BIT(X86_XCPT_DE)
| RT_BIT(X86_XCPT_NM)
| RT_BIT(X86_XCPT_UD)
| RT_BIT(X86_XCPT_NP)
| RT_BIT(X86_XCPT_SS)
| RT_BIT(X86_XCPT_GP)
| RT_BIT(X86_XCPT_PF)
| RT_BIT(X86_XCPT_MF)
;
#endif
/* Set up unconditional intercepts and conditions. */
pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
| SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
| SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
| SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
| SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
/* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
/* CR0, CR4 writes must be intercepted for the same reasons as above. */
pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
/* Intercept all DRx reads and writes by default. Changed later on. */
pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
/* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
/* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
/* Set IO and MSR bitmap permission bitmap physical addresses. */
pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
/* No LBR virtualization. */
pVmcb->ctrl.u64LBRVirt = 0;
/* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
pVmcb->ctrl.u64VmcbCleanBits = 0;
/* The host ASID MBZ, for the guest start with 1. */
pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
/*
* Setup the PAT MSR (applicable for Nested Paging only).
* The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
* so choose type 6 for all PAT slots.
*/
pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
/* Without Nested Paging, we need additionally intercepts. */
if (!pVM->hm.s.fNestedPaging)
{
/* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
/* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
| SVM_CTRL1_INTERCEPT_TASK_SWITCH;
/* Page faults must be intercepted to implement shadow paging. */
pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
}
#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
#endif
/*
* The following MSRs are saved/restored automatically during the world-switch.
* Don't intercept guest read/write accesses to these MSRs.
*/
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
}
return rc;
}
/**
* Invalidates a guest page by guest virtual address.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param GCVirt Guest virtual address of the page to invalidate.
*/
VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
{
AssertReturn(pVM, VERR_INVALID_PARAMETER);
Assert(pVM->hm.s.svm.fSupported);
bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
/* Skip it if a TLB flush is already pending. */
if (!fFlushPending)
{
Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
#if HC_ARCH_BITS == 32
/* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
if (CPUMIsGuestInLongMode(pVCpu))
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
else
#endif
{
SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
}
}
return VINF_SUCCESS;
}
/**
* Flushes the appropriate tagged-TLB entries.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
/*
* Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
* This can happen both for start & resume due to long jumps back to ring-3.
* If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
* so we cannot reuse the ASIDs without flushing.
*/
bool fNewAsid = false;
if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|| pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
pVCpu->hm.s.fForceTLBFlush = true;
fNewAsid = true;
}
/* Set TLB flush state as checked until we return from the world switch. */
ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
/* Check for explicit TLB shootdowns. */
if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
{
pVCpu->hm.s.fForceTLBFlush = true;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
}
pVCpu->hm.s.idLastCpu = pCpu->idCpu;
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
if (pVM->hm.s.svm.fAlwaysFlushTLB)
{
/*
* This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
*/
pCpu->uCurrentAsid = 1;
pVCpu->hm.s.uCurrentAsid = 1;
pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
}
else if (pVCpu->hm.s.fForceTLBFlush)
{
if (fNewAsid)
{
++pCpu->uCurrentAsid;
bool fHitASIDLimit = false;
if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
{
pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
fHitASIDLimit = true;
if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
{
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
pCpu->fFlushAsidBeforeUse = true;
}
else
{
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
pCpu->fFlushAsidBeforeUse = false;
}
}
if ( !fHitASIDLimit
&& pCpu->fFlushAsidBeforeUse)
{
if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
else
{
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
pCpu->fFlushAsidBeforeUse = false;
}
}
pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
}
else
{
if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
else
pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
}
pVCpu->hm.s.fForceTLBFlush = false;
}
else
{
/** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
* not be executed. See hmQueueInvlPage() where it is commented
* out. Support individual entry flushing someday. */
if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
{
/* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
}
}
pVCpu->hm.s.TlbShootdown.cPages = 0;
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
/* Update VMCB with the ASID. */
if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
{
pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
}
AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
#ifdef VBOX_WITH_STATISTICS
if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|| pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
}
else
{
Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
}
#endif
}
/** @name 64-bit guest on 32-bit host OS helper functions.
*
* The host CPU is still 64-bit capable but the host OS is running in 32-bit
* mode (code segment, paging). These wrappers/helpers perform the necessary
* bits for the 32->64 switcher.
*
* @{ */
#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
/**
* Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
*
* @returns VBox status code.
* @param HCPhysVmcbHost Physical address of host VMCB.
* @param HCPhysVmcb Physical address of the VMCB.
* @param pCtx Pointer to the guest-CPU context.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
{
uint32_t aParam[4];
aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
}
/**
* Executes the specified VMRUN handler in 64-bit mode.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param enmOp The operation to perform.
* @param cbParam Number of parameters.
* @param paParam Array of 32-bit parameters.
*/
VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
uint32_t *paParam)
{
AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
/* Disable interrupts. */
RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
RTCPUID idHostCpu = RTMpCpuId();
CPUMR0SetLApic(pVM, idHostCpu);
#endif
CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
CPUMSetHyperEIP(pVCpu, enmOp);
for (int i = (int)cbParam - 1; i >= 0; i--)
CPUMPushHyper(pVCpu, paParam[i]);
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
/* Call the switcher. */
int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
/* Restore interrupts. */
ASMSetFlags(uOldEFlags);
return rc;
}
#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
/** @} */
/**
* Adds an exception to the intercept exception bitmap in the VMCB and updates
* the corresponding VMCB Clean Bit.
*
* @param pVmcb Pointer to the VMCB.
* @param u32Xcpt The value of the exception (X86_XCPT_*).
*/
DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
{
if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
{
pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
}
}
/**
* Removes an exception from the intercept-exception bitmap in the VMCB and
* updates the corresponding VMCB Clean Bit.
*
* @param pVmcb Pointer to the VMCB.
* @param u32Xcpt The value of the exception (X86_XCPT_*).
*/
DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
{
#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
{
pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
}
#endif
}
/**
* Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pVmcb Pointer to the VMCB.
* @param pCtx Pointer the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
{
/*
* Guest CR0.
*/
PVM pVM = pVCpu->CTX_SUFF(pVM);
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
{
uint64_t u64GuestCR0 = pCtx->cr0;
/* Always enable caching. */
u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
/*
* When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
*/
if (!pVM->hm.s.fNestedPaging)
{
u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
}
/*
* Guest FPU bits.
*/
bool fInterceptNM = false;
bool fInterceptMF = false;
u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
if (CPUMIsGuestFPUStateActive(pVCpu))
{
/* Catch floating point exceptions if we need to report them to the guest in a different way. */
if (!(u64GuestCR0 & X86_CR0_NE))
{
Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
fInterceptMF = true;
}
}
else
{
fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
| X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
}
/*
* Update the exception intercept bitmap.
*/
if (fInterceptNM)
hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
else
hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
if (fInterceptMF)
hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
else
hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
pVmcb->guest.u64CR0 = u64GuestCR0;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
}
/*
* Guest CR2.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
{
pVmcb->guest.u64CR2 = pCtx->cr2;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
}
/*
* Guest CR3.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
{
if (pVM->hm.s.fNestedPaging)
{
PGMMODE enmShwPagingMode;
#if HC_ARCH_BITS == 32
if (CPUMIsGuestInLongModeEx(pCtx))
enmShwPagingMode = PGMMODE_AMD64_NX;
else
#endif
enmShwPagingMode = PGMGetHostMode(pVM);
pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
Assert(pVmcb->ctrl.u64NestedPagingCR3);
pVmcb->guest.u64CR3 = pCtx->cr3;
}
else
pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
}
/*
* Guest CR4.
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
{
uint64_t u64GuestCR4 = pCtx->cr4;
if (!pVM->hm.s.fNestedPaging)
{
switch (pVCpu->hm.s.enmShadowMode)
{
case PGMMODE_REAL:
case PGMMODE_PROTECTED: /* Protected mode, no paging. */
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
case PGMMODE_32_BIT: /* 32-bit paging. */
u64GuestCR4 &= ~X86_CR4_PAE;
break;
case PGMMODE_PAE: /* PAE paging. */
case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
/** Must use PAE paging as we could use physical memory > 4 GB */
u64GuestCR4 |= X86_CR4_PAE;
break;
case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
#ifdef VBOX_ENABLE_64_BITS_GUESTS
break;
#else
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
#endif
default: /* shut up gcc */
AssertFailed();
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
}
}
pVmcb->guest.u64CR4 = u64GuestCR4;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
}
return VINF_SUCCESS;
}
/**
* Loads the guest segment registers into the VMCB.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pVmcb Pointer to the VMCB.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
{
/* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
{
HMSVM_LOAD_SEG_REG(CS, cs);
HMSVM_LOAD_SEG_REG(SS, ss);
HMSVM_LOAD_SEG_REG(DS, ds);
HMSVM_LOAD_SEG_REG(ES, es);
HMSVM_LOAD_SEG_REG(FS, fs);
HMSVM_LOAD_SEG_REG(GS, gs);
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
}
/* Guest TR. */
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
{
HMSVM_LOAD_SEG_REG(TR, tr);
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
}
/* Guest LDTR. */
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
{
HMSVM_LOAD_SEG_REG(LDTR, ldtr);
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
}
/* Guest GDTR. */
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
{
pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
}
/* Guest IDTR. */
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
{
pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
}
}
/**
* Loads the guest MSRs into the VMCB.
*
* @param pVCpu Pointer to the VMCPU.
* @param pVmcb Pointer to the VMCB.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
{
/* Guest Sysenter MSRs. */
pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
/*
* Guest EFER MSR.
* AMD-V requires guest EFER.SVME to be set. Weird. .
* See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
*/
if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
{
pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
}
/* 64-bit MSRs. */
if (CPUMIsGuestInLongModeEx(pCtx))
{
pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
}
else
{
/* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
if (pCtx->msrEFER & MSR_K6_EFER_LME)
{
pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
}
}
/** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
* be writable in 32-bit mode. Clarify with AMD spec. */
pVmcb->guest.u64STAR = pCtx->msrSTAR;
pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
}
/**
* Loads the guest debug registers into the VMCB.
*
* @param pVCpu Pointer to the VMCPU.
* @param pVmcb Pointer to the VMCB.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
* @remarks Requires EFLAGS to be up-to-date in the VMCB!
*/
DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
{
if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
return;
Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
bool fInterceptDB = false;
bool fInterceptMovDRx = false;
/*
* Anyone single stepping on the host side? If so, we'll have to use the
* trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
* the VMM level like VT-x implementations does.
*/
bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
if (fStepping)
{
pVmcb->guest.u64RFlags |= X86_EFL_TF;
fInterceptDB = true;
fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
}
PVM pVM = pVCpu->CTX_SUFF(pVM);
if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
{
/*
* Use the combined guest and host DRx values found in the hypervisor
* register set because the debugger has breakpoints active or someone
* is single stepping on the host side.
*
* Note! DBGF expects a clean DR6 state before executing guest code.
*/
if (!CPUMIsHyperDebugStateActive(pVCpu))
CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
Assert(!CPUMIsGuestDebugStateActive(pVCpu));
Assert(CPUMIsHyperDebugStateActive(pVCpu));
/* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
|| pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu) )
{
pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
}
/** @todo If we cared, we could optimize to allow the guest to read registers
* with the same values. */
fInterceptDB = true;
fInterceptMovDRx = true;
Log5(("hm: Loaded hyper DRx\n"));
}
else
{
/*
* Update DR6, DR7 with the guest values if necessary.
*/
if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
|| pVmcb->guest.u64DR6 != pCtx->dr[6])
{
pVmcb->guest.u64DR7 = pCtx->dr[7];
pVmcb->guest.u64DR6 = pCtx->dr[6];
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
}
/*
* If the guest has enabled debug registers, we need to load them prior to
* executing guest code so they'll trigger at the right time.
*/
if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
{
if (!CPUMIsGuestDebugStateActive(pVCpu))
{
CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
}
Assert(!CPUMIsHyperDebugStateActive(pVCpu));
Assert(CPUMIsGuestDebugStateActive(pVCpu));
Log5(("hm: Loaded guest DRx\n"));
}
/*
* If no debugging enabled, we'll lazy load DR0-3.
*/
else if (!CPUMIsGuestDebugStateActive(pVCpu))
fInterceptMovDRx = true;
}
/*
* Set up the intercepts.
*/
if (fInterceptDB)
hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
else
hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
if (fInterceptMovDRx)
{
if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|| pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
{
pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
}
}
else
{
if ( pVmcb->ctrl.u16InterceptRdDRx
|| pVmcb->ctrl.u16InterceptWrDRx)
{
pVmcb->ctrl.u16InterceptRdDRx = 0;
pVmcb->ctrl.u16InterceptWrDRx = 0;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
}
}
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
}
/**
* Loads the guest APIC state (currently just the TPR).
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pVmcb Pointer to the VMCB.
* @param pCtx Pointer to the guest-CPU context.
*/
DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
{
if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
return VINF_SUCCESS;
bool fPendingIntr;
uint8_t u8Tpr;
int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
AssertRCReturn(rc, rc);
/** Assume that we need to trap all TPR accesses and thus need not check on
* every #VMEXIT if we should update the TPR. */
Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
pVCpu->hm.s.svm.fSyncVTpr = false;
/* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
{
pCtx->msrLSTAR = u8Tpr;
/* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
if (fPendingIntr)
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
else
{
hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
pVCpu->hm.s.svm.fSyncVTpr = true;
}
}
else
{
/* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
/* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
if (fPendingIntr)
pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
else
{
pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
pVCpu->hm.s.svm.fSyncVTpr = true;
}
pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
}
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
return rc;
}
/**
* Sets up the appropriate function to run guest code.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
{
if (CPUMIsGuestInLongModeEx(pCtx))
{
#ifndef VBOX_ENABLE_64_BITS_GUESTS
return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
#endif
Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
/* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
#else
/* 64-bit host or hybrid host. */
pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
#endif
}
else
{
/* Guest is not in long mode, use the 32-bit handler. */
pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
}
return VINF_SUCCESS;
}
/**
* Enters the AMD-V session.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCpu Pointer to the CPU info struct.
*/
VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
{
AssertPtr(pVM);
AssertPtr(pVCpu);
Assert(pVM->hm.s.svm.fSupported);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
NOREF(pCpu);
LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
/* Nothing to do here. */
return VINF_SUCCESS;
}
/**
* Leaves the AMD-V session.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*/
VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
NOREF(pVM);
NOREF(pVCpu);
NOREF(pCtx);
/* Nothing to do here. Everything is taken care of in hmR0SvmLongJmpToRing3(). */
return VINF_SUCCESS;
}
/**
* Saves the host state.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*
* @remarks No-long-jump zone!!!
*/
VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
{
NOREF(pVM);
NOREF(pVCpu);
/* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
return VINF_SUCCESS;
}
/**
* Loads the guest state into the VMCB. The CPU state will be loaded from these
* fields on every successful VM-entry.
*
* Sets up the appropriate VMRUN function to execute guest code based
* on the guest CPU mode.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pMixedCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
pVmcb->guest.u64RIP = pCtx->rip;
pVmcb->guest.u64RSP = pCtx->rsp;
pVmcb->guest.u64RFlags = pCtx->eflags.u32;
pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
pVmcb->guest.u64RAX = pCtx->rax;
/* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
/* Clear any unused and reserved bits. */
pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
| HM_CHANGED_GUEST_RSP
| HM_CHANGED_GUEST_RFLAGS
| HM_CHANGED_GUEST_SYSENTER_CS_MSR
| HM_CHANGED_GUEST_SYSENTER_EIP_MSR
| HM_CHANGED_GUEST_SYSENTER_ESP_MSR
| HM_CHANGED_SVM_RESERVED1 /* Reserved. */
| HM_CHANGED_SVM_RESERVED2
| HM_CHANGED_SVM_RESERVED3);
AssertMsg(!pVCpu->hm.s.fContextUseFlags,
("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
Log4(("Load: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
return rc;
}
/**
* Loads the guest state on the way from ring-3.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
/*
* Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
* This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
* finally executing guest code.
*/
return VINF_SUCCESS;
}
/**
* Saves the entire guest state from the VMCB into the
* guest-CPU context. Currently there is no residual state left in the CPU that
* is not updated in the VMCB.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pMixedCtx Pointer to the guest-CPU context. The data may be
* out-of-sync. Make sure to update the required fields
* before using them.
*/
static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
{
Assert(VMMRZCallRing3IsEnabled(pVCpu));
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pMixedCtx->rip = pVmcb->guest.u64RIP;
pMixedCtx->rsp = pVmcb->guest.u64RSP;
pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
pMixedCtx->rax = pVmcb->guest.u64RAX;
/*
* Guest interrupt shadow.
*/
if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
else
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
/*
* Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
*/
pMixedCtx->cr2 = pVmcb->guest.u64CR2;
/*
* Guest MSRs.
*/
pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
/*
* Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
*/
HMSVM_SAVE_SEG_REG(CS, cs);
HMSVM_SAVE_SEG_REG(SS, ss);
HMSVM_SAVE_SEG_REG(DS, ds);
HMSVM_SAVE_SEG_REG(ES, es);
HMSVM_SAVE_SEG_REG(FS, fs);
HMSVM_SAVE_SEG_REG(GS, gs);
/*
* Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
* register (yet).
*/
/** @todo SELM might need to be fixed as it too should not care about the
* granularity bit. See @bugref{6785}. */
if ( !pMixedCtx->cs.Attr.n.u1Granularity
&& pMixedCtx->cs.Attr.n.u1Present
&& pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
{
Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
pMixedCtx->cs.Attr.n.u1Granularity = 1;
}
#ifdef VBOX_STRICT
# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
|| ( pMixedCtx->reg.Attr.n.u1Granularity \
? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
: pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
HMSVM_ASSERT_SEG_GRANULARITY(cs);
HMSVM_ASSERT_SEG_GRANULARITY(ss);
HMSVM_ASSERT_SEG_GRANULARITY(ds);
HMSVM_ASSERT_SEG_GRANULARITY(es);
HMSVM_ASSERT_SEG_GRANULARITY(fs);
HMSVM_ASSERT_SEG_GRANULARITY(gs);
# undef HMSVM_ASSERT_SEL_GRANULARITY
#endif
/*
* Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
* and thus it's possible that when the CPL changes during guest execution that the SS DPL
* isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
* See AMD spec. 15.5.1 "Basic operation".
*/
Assert(!(pVmcb->guest.u8CPL & ~0x3));
pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
/*
* Guest Descriptor-Table registers.
*/
HMSVM_SAVE_SEG_REG(TR, tr);
HMSVM_SAVE_SEG_REG(LDTR, ldtr);
pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
/*
* Guest Debug registers.
*/
if (!CPUMIsHyperDebugStateActive(pVCpu))
{
pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
}
else
{
Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
}
/*
* With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
* This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
*/
if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
&& pMixedCtx->cr3 != pVmcb->guest.u64CR3)
{
CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
}
}
/**
* Does the necessary state syncing before doing a longjmp to ring-3.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param rcExit The reason for exiting to ring-3. Can be
* VINF_VMM_UNKNOWN_RING3_CALL.
*
* @remarks No-long-jmp zone!!!
*/
static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
{
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
Assert(VMMR0IsLogFlushDisabled(pVCpu));
/* Restore host FPU state if necessary and resync on next R0 reentry .*/
if (CPUMIsGuestFPUStateActive(pVCpu))
{
CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
Assert(!CPUMIsGuestFPUStateActive(pVCpu));
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
}
/*
* Restore host debug registers if necessary and resync on next R0 reentry.
*/
#ifdef VBOX_STRICT
if (CPUMIsHyperDebugStateActive(pVCpu))
{
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
}
#endif
if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
Assert(!CPUMIsHyperDebugStateActive(pVCpu));
Assert(!CPUMIsGuestDebugStateActive(pVCpu));
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
}
/**
* VMMRZCallRing3() callback wrapper which saves the guest state (or restores
* any remaining host state) before we longjump to ring-3 and possibly get
* preempted.
*
* @param pVCpu Pointer to the VMCPU.
* @param enmOperation The operation causing the ring-3 longjump.
* @param pvUser The user argument (pointer to the possibly
* out-of-date guest-CPU context).
*
* @remarks Must never be called with @a enmOperation ==
* VMMCALLRING3_VM_R0_ASSERTION.
*/
DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
{
/* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
Assert(pVCpu);
Assert(pvUser);
Assert(VMMRZCallRing3IsEnabled(pVCpu));
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
VMMRZCallRing3Disable(pVCpu);
Assert(VMMR0IsLogFlushDisabled(pVCpu));
Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser, VINF_VMM_UNKNOWN_RING3_CALL);
VMMRZCallRing3Enable(pVCpu);
}
/**
* An action requires us to go back to ring-3. This function does the necessary
* steps before we can safely return to ring-3. This is not the same as longjmps
* to ring-3, this is voluntary.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param rcExit The reason for exiting to ring-3. Can be
* VINF_VMM_UNKNOWN_RING3_CALL.
*/
static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
{
Assert(pVM);
Assert(pVCpu);
Assert(pCtx);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
{
/* We don't need to do any syncing here, we're not going to come back to execute anything again. */
return;
}
/* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
VMMRZCallRing3Disable(pVCpu);
Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
/* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
if (pVCpu->hm.s.Event.fPending)
{
hmR0SvmPendingEventToTrpmTrap(pVCpu);
Assert(!pVCpu->hm.s.Event.fPending);
}
/* Sync. the guest state. */
hmR0SvmLongJmpToRing3(pVM, pVCpu, pCtx, rcExit);
STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
| CPUM_CHANGED_LDTR
| CPUM_CHANGED_GDTR
| CPUM_CHANGED_IDTR
| CPUM_CHANGED_TR
| CPUM_CHANGED_HIDDEN_SEL_REGS);
/* On our way back from ring-3 the following needs to be done. */
/** @todo This can change with preemption hooks. */
if (rcExit == VINF_EM_RAW_INTERRUPT)
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
else
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
VMMRZCallRing3Enable(pVCpu);
}
/**
* Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
* intercepts.
*
* @param pVCpu Pointer to the VMCPU.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
{
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
{
uint64_t u64CurTSC = ASMReadTSC();
if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
{
pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
}
else
{
pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
}
}
else
{
pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
}
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
}
/**
* Sets an event as a pending event to be injected into the guest.
*
* @param pVCpu Pointer to the VMCPU.
* @param pEvent Pointer to the SVM event.
* @param GCPtrFaultAddress The fault-address (CR2) in case it's a
* page-fault.
*
* @remarks Statistics counter assumes this is a guest event being reflected to
* the guest i.e. 'StatInjectPendingReflect' is incremented always.
*/
DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
{
Assert(!pVCpu->hm.s.Event.fPending);
Assert(pEvent->n.u1Valid);
pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
pVCpu->hm.s.Event.fPending = true;
pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
}
/**
* Injects an event into the guest upon VMRUN by updating the relevant field
* in the VMCB.
*
* @param pVCpu Pointer to the VMCPU.
* @param pVmcb Pointer to the guest VMCB.
* @param pCtx Pointer to the guest-CPU context.
* @param pEvent Pointer to the event.
*
* @remarks No-long-jump zone!!!
* @remarks Requires CR0!
*/
DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
{
pVmcb->ctrl.EventInject.u = pEvent->u;
STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
}
/**
* Converts any TRPM trap into a pending HM event. This is typically used when
* entering from ring-3 (not longjmp returns).
*
* @param pVCpu Pointer to the VMCPU.
*/
static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
{
Assert(TRPMHasTrap(pVCpu));
Assert(!pVCpu->hm.s.Event.fPending);
uint8_t uVector;
TRPMEVENT enmTrpmEvent;
RTGCUINT uErrCode;
RTGCUINTPTR GCPtrFaultAddress;
uint8_t cbInstr;
int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
AssertRC(rc);
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u8Vector = uVector;
/* Refer AMD spec. 15.20 "Event Injection" for the format. */
if (enmTrpmEvent == TRPM_TRAP)
{
Event.n.u3Type = SVM_EVENT_EXCEPTION;
switch (uVector)
{
case X86_XCPT_PF:
case X86_XCPT_DF:
case X86_XCPT_TS:
case X86_XCPT_NP:
case X86_XCPT_SS:
case X86_XCPT_GP:
case X86_XCPT_AC:
{
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = uErrCode;
break;
}
}
}
else if (enmTrpmEvent == TRPM_HARDWARE_INT)
{
if (uVector == X86_XCPT_NMI)
Event.n.u3Type = SVM_EVENT_NMI;
else
Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
}
else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
else
AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
rc = TRPMResetTrap(pVCpu);
AssertRC(rc);
Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
!!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
}
/**
* Converts any pending SVM event into a TRPM trap. Typically used when leaving
* AMD-V to execute any instruction.
*
* @param pvCpu Pointer to the VMCPU.
*/
static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
{
Assert(pVCpu->hm.s.Event.fPending);
Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
SVMEVENT Event;
Event.u = pVCpu->hm.s.Event.u64IntrInfo;
uint8_t uVector = Event.n.u8Vector;
uint8_t uVectorType = Event.n.u3Type;
TRPMEVENT enmTrapType;
switch (uVectorType)
{
case SVM_EVENT_EXTERNAL_IRQ:
case SVM_EVENT_NMI:
enmTrapType = TRPM_HARDWARE_INT;
break;
case SVM_EVENT_SOFTWARE_INT:
enmTrapType = TRPM_SOFTWARE_INT;
break;
case SVM_EVENT_EXCEPTION:
enmTrapType = TRPM_TRAP;
break;
default:
AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
enmTrapType = TRPM_32BIT_HACK;
break;
}
Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
AssertRC(rc);
if (Event.n.u1ErrorCodeValid)
TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
if ( uVectorType == SVM_EVENT_EXCEPTION
&& uVector == X86_XCPT_PF)
{
TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
}
else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
{
AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
|| (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
}
pVCpu->hm.s.Event.fPending = false;
}
/**
* Gets the guest's interrupt-shadow.
*
* @returns The guest's interrupt-shadow.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
* @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
*/
DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
{
/*
* Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
* inhibit interrupts or clear any existing interrupt-inhibition.
*/
uint32_t uIntrState = 0;
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
{
if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
{
/*
* We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
* AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
}
else
uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
}
return uIntrState;
}
/**
* Sets the virtual interrupt intercept control in the VMCB which
* instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
* receive interrupts.
*
* @param pVmcb Pointer to the VMCB.
*/
DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
{
if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
{
pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
Log4(("Setting VINTR intercept\n"));
}
}
/**
* Injects any pending events into the guest if the guest is in a state to
* receive them.
*
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*/
static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(!TRPMHasTrap(pVCpu));
Log4Func(("\n"));
const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
SVMEVENT Event;
Event.u = 0;
if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
{
Event.u = pVCpu->hm.s.Event.u64IntrInfo;
Assert(Event.n.u1Valid);
bool fInject = true;
if ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
&& ( fBlockInt
|| fIntShadow))
{
fInject = false;
}
else if ( Event.n.u3Type == SVM_EVENT_NMI
&& fIntShadow)
{
fInject = false;
}
if (fInject)
{
Log4(("Injecting pending HM event.\n"));
hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
pVCpu->hm.s.Event.fPending = false;
#ifdef VBOX_WITH_STATISTICS
if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
#endif
}
else
hmR0SvmSetVirtIntrIntercept(pVmcb);
} /** @todo SMI. SMIs take priority over NMIs. */
else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
{
if (!fIntShadow)
{
Log4(("Injecting NMI\n"));
Event.n.u1Valid = 1;
Event.n.u8Vector = X86_XCPT_NMI;
Event.n.u3Type = SVM_EVENT_NMI;
hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
}
else
hmR0SvmSetVirtIntrIntercept(pVmcb);
}
else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
{
/* Check if there are guest external interrupts (PIC/APIC) pending and inject them, if the guest can receive them. */
if ( !fBlockInt
&& !fIntShadow)
{
uint8_t u8Interrupt;
int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
if (RT_SUCCESS(rc))
{
Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
Event.n.u1Valid = 1;
Event.n.u8Vector = u8Interrupt;
Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
}
else
{
/** @todo Does this actually happen? If not turn it into an assertion. */
Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
}
}
else
hmR0SvmSetVirtIntrIntercept(pVmcb);
}
/* Update the guest interrupt shadow in the VMCB. */
pVmcb->ctrl.u64IntShadow = !!fIntShadow;
}
/**
* Reports world-switch error and dumps some useful debug info.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param rcVMRun The return code from VMRUN (or
* VERR_SVM_INVALID_GUEST_STATE for invalid
* guest-state).
* @param pCtx Pointer to the guest-CPU context.
*/
static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
{
HMDumpRegs(pVM, pVCpu, pCtx);
#ifdef VBOX_STRICT
Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
#endif
}
else
Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
}
/**
* Check per-VM and per-VCPU force flag actions that require us to go back to
* ring-3 for one reason or another.
*
* @returns VBox status code (information status code included).
* @retval VINF_SUCCESS if we don't have any actions that require going back to
* ring-3.
* @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
* @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
* interrupts)
* @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
* all EMTs to be in ring-3.
* @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
* @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
* to the EM loop.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*/
static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(VMMRZCallRing3IsEnabled(pVCpu));
/* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
|| VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
| VMCPU_FF_REQUEST))
{
/* Pending PGM C3 sync. */
if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
{
int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
if (rc != VINF_SUCCESS)
{
Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
return rc;
}
}
/* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
/* -XXX- what was that about single stepping? */
if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|| VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
return rc;
}
/* Pending VM request packets, such as hardware interrupts. */
if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|| VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
{
Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
return VINF_EM_PENDING_REQUEST;
}
/* Pending PGM pool flushes. */
if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
{
Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
return VINF_PGM_POOL_FLUSH_PENDING;
}
/* Pending DMA requests. */
if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
{
Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
return VINF_EM_RAW_TO_R3;
}
}
return VINF_SUCCESS;
}
/**
* Does the preparations before executing guest code in AMD-V.
*
* This may cause longjmps to ring-3 and may even result in rescheduling to the
* recompiler. We must be cautious what we do here regarding committing
* guest-state information into the the VMCB assuming we assuredly execute the
* guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
* clearing the common-state (TRPM/forceflags), we must undo those changes so
* that the recompiler can (and should) use them when it resumes guest
* execution. Otherwise such operations must be done when we can no longer
* exit to ring-3.
*
* @returns VBox status code (informational status codes included).
* @retval VINF_SUCCESS if we can proceed with running the guest.
* @retval VINF_* scheduling changes, we have to go back to ring-3.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param pSvmTransient Pointer to the SVM transient structure.
*/
DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
/* Check force flag actions that might require us to go back to ring-3. */
int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
if (rc != VINF_SUCCESS)
return rc;
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
pSvmTransient->uEFlags = ASMIntDisableFlags();
if (RTThreadPreemptIsPending(NIL_RTTHREAD))
{
ASMSetFlags(pSvmTransient->uEFlags);
STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
/* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
return VINF_EM_RAW_INTERRUPT;
}
VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
#endif
/* Convert any pending TRPM traps to HM events for injection. */
/** @todo Optimization: move this before disabling interrupts, restore state
* using pVmcb->ctrl.EventInject.u. */
if (TRPMHasTrap(pVCpu))
hmR0SvmTrpmTrapToPendingEvent(pVCpu);
hmR0SvmInjectPendingEvent(pVCpu, pCtx);
return VINF_SUCCESS;
}
/**
* Prepares to run guest code in AMD-V and we've committed to doing so. This
* means there is no backing out to ring-3 or anywhere else at this
* point.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param pSvmTransient Pointer to the SVM transient structure.
*
* @remarks Called with preemption disabled.
* @remarks No-long-jump zone!!!
*/
DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
Assert(VMMR0IsLogFlushDisabled(pVCpu));
#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
/** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
pSvmTransient->uEFlags = ASMIntDisableFlags();
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
#endif
/*
* Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
* We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
*/
/** @todo The above assumption could be wrong. It's not documented what
* should be done wrt to the VMCB Clean Bit, but we'll find out the
* hard way. */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
#ifdef HMSVM_SYNC_FULL_GUEST_STATE
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
#endif
/* Load the guest state. */
int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
AssertRC(rc);
AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
/* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
pVmcb->ctrl.u64VmcbCleanBits = 0;
/*
* If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
* so we can update it on the way back if the guest changed the TPR.
*/
if (pVCpu->hm.s.svm.fSyncVTpr)
{
if (pVM->hm.s.fTPRPatchingActive)
pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
else
pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
}
/* Setup TSC offsetting. */
if ( pSvmTransient->fUpdateTscOffsetting
|| HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
{
hmR0SvmUpdateTscOffsetting(pVCpu);
pSvmTransient->fUpdateTscOffsetting = false;
}
/* Flush the appropriate tagged-TLB entries. */
ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
hmR0SvmFlushTaggedTlb(pVCpu);
Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
to start executing. */
/*
* Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
* RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
*
* This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
*/
pSvmTransient->fRestoreTscAuxMsr = false;
if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
&& !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
{
pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
uint64_t u64GuestTscAux = 0;
int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
AssertRC(rc2);
if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
{
ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
pSvmTransient->fRestoreTscAuxMsr = true;
}
}
}
/**
* Wrapper for running the guest code in AMD-V.
*
* @returns VBox strict status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*
* @remarks No-long-jump zone!!!
*/
DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
/*
* 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
* using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
* Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
*/
#ifdef VBOX_WITH_KERNEL_USING_XMM
return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
pVCpu->hm.s.svm.pfnVMRun);
#else
return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
#endif
}
/**
* Performs some essential restoration of state after running guest code in
* AMD-V.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pMixedCtx Pointer to the guest-CPU context. The data maybe
* out-of-sync. Make sure to update the required fields
* before using them.
* @param pSvmTransient Pointer to the SVM transient structure.
* @param rcVMRun Return code of VMRUN.
*
* @remarks Called with interrupts disabled.
* @remarks No-long-jump zone!!! This function will however re-enable longjmps
* unconditionally when it is safe to do so.
*/
DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
{
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
if (pSvmTransient->fRestoreTscAuxMsr)
ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
{
/** @todo Find a way to fix hardcoding a guestimate. */
TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
}
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
Assert(!(ASMGetFlags() & X86_EFL_IF));
ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
/* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
{
Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
return;
}
pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
{
if (pVCpu->hm.s.svm.fSyncVTpr)
{
/* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
if ( pVM->hm.s.fTPRPatchingActive
&& (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
{
int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
AssertRC(rc);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
}
else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
{
int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
AssertRC(rc);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
}
}
}
}
/**
* Runs the guest code using AMD-V.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*/
VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(VMMRZCallRing3IsEnabled(pVCpu));
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
SVMTRANSIENT SvmTransient;
SvmTransient.fUpdateTscOffsetting = true;
uint32_t cLoops = 0;
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
int rc = VERR_INTERNAL_ERROR_5;
for (;; cLoops++)
{
Assert(!HMR0SuspendPending());
AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
(unsigned)RTMpCpuId(), cLoops));
/* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
if (rc != VINF_SUCCESS)
break;
/*
* No longjmps to ring-3 from this point on!!!
* Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
* This also disables flushing of the R0-logger instance (if any).
*/
VMMRZCallRing3Disable(pVCpu);
VMMRZCallRing3RemoveNotification(pVCpu);
hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
/*
* Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
* This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
*/
hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|| SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
{
if (rc == VINF_SUCCESS)
rc = VERR_SVM_INVALID_GUEST_STATE;
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
return rc;
}
/* Handle the #VMEXIT. */
HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
if (rc != VINF_SUCCESS)
break;
else if (cLoops > pVM->hm.s.cMaxResumeLoops)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
rc = VINF_EM_RAW_INTERRUPT;
break;
}
}
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
if (rc == VERR_EM_INTERPRETER)
rc = VINF_EM_RAW_EMULATE_INSTR;
else if (rc == VINF_EM_RESET)
rc = VINF_EM_TRIPLE_FAULT;
hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
return rc;
}
/**
* Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
*
* @returns VBox status code (informational status codes included).
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param pSvmTransient Pointer to the SVM transient structure.
*/
DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
/*
* The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
* normal workloads (for some definition of "normal").
*/
uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
switch (pSvmTransient->u64ExitCode)
{
case SVM_EXIT_NPF:
return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_IOIO:
return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_RDTSC:
return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_RDTSCP:
return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_CPUID:
return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_MONITOR:
return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_MWAIT:
return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_HLT:
return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_READ_CR0:
case SVM_EXIT_READ_CR3:
case SVM_EXIT_READ_CR4:
return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_WRITE_CR0:
case SVM_EXIT_WRITE_CR3:
case SVM_EXIT_WRITE_CR4:
case SVM_EXIT_WRITE_CR8:
return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_VINTR:
return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_INTR:
case SVM_EXIT_FERR_FREEZE:
case SVM_EXIT_NMI:
return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_MSR:
return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_INVLPG:
return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_WBINVD:
return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_INVD:
return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_RDPMC:
return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
default:
{
switch (pSvmTransient->u64ExitCode)
{
case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_TASK_SWITCH:
return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_VMMCALL:
return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_SHUTDOWN:
return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
case SVM_EXIT_SMI:
case SVM_EXIT_INIT:
{
/*
* We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
* we want to know about it so log the exit code and bail.
*/
AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
return VERR_SVM_UNEXPECTED_EXIT;
}
case SVM_EXIT_INVLPGA:
case SVM_EXIT_RSM:
case SVM_EXIT_VMRUN:
case SVM_EXIT_VMLOAD:
case SVM_EXIT_VMSAVE:
case SVM_EXIT_STGI:
case SVM_EXIT_CLGI:
case SVM_EXIT_SKINIT:
return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
/* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
/* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
/* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
/* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
case SVM_EXIT_EXCEPTION_F: /* Reserved */
case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
{
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
switch (Event.n.u8Vector)
{
case X86_XCPT_DE:
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
break;
case X86_XCPT_BP:
/** Saves the wrong EIP on the stack (pointing to the int3) instead of the
* next instruction. */
/** @todo Investigate this later. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
break;
case X86_XCPT_UD:
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
break;
case X86_XCPT_NP:
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
break;
case X86_XCPT_SS:
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
break;
case X86_XCPT_GP:
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
break;
default:
AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
pVCpu->hm.s.u32HMError = Event.n.u8Vector;
return VERR_SVM_UNEXPECTED_XCPT_EXIT;
}
Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
return VINF_SUCCESS;
}
#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
default:
{
AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
pVCpu->hm.s.u32HMError = u32ExitCode;
return VERR_SVM_UNKNOWN_EXIT;
}
}
}
}
return VERR_INTERNAL_ERROR_5; /* Should never happen. */
}
#ifdef DEBUG
/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
# define HMSVM_ASSERT_PREEMPT_CPUID() \
do \
{ \
RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
} while (0)
# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
do { \
AssertPtr(pVCpu); \
AssertPtr(pCtx); \
AssertPtr(pSvmTransient); \
Assert(ASMIntAreEnabled()); \
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
if (VMMR0IsLogFlushDisabled(pVCpu)) \
HMSVM_ASSERT_PREEMPT_CPUID(); \
} while (0)
#else /* Release builds */
# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
#endif
/**
* Worker for hmR0SvmInterpretInvlpg().
*
* @return VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param pCpu Pointer to the disassembler state.
* @param pRegFrame Pointer to the register frame.
*/
static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
{
DISQPVPARAMVAL Param1;
RTGCPTR GCPtrPage;
int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
if (RT_FAILURE(rc))
return VERR_EM_INTERPRETER;
if ( Param1.type == DISQPV_TYPE_IMMEDIATE
|| Param1.type == DISQPV_TYPE_ADDRESS)
{
if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
return VERR_EM_INTERPRETER;
GCPtrPage = Param1.val.val64;
VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
rc = VBOXSTRICTRC_VAL(rc2);
}
else
{
Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
rc = VERR_EM_INTERPRETER;
}
return rc;
}
/**
* Interprets INVLPG.
*
* @returns VBox status code.
* @retval VINF_* Scheduling instructions.
* @retval VERR_EM_INTERPRETER Something we can't cope with.
* @retval VERR_* Fatal errors.
*
* @param pVM Pointer to the VM.
* @param pRegFrame Pointer to the register frame.
*
* @remarks Updates the RIP if the instruction was executed successfully.
*/
static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
{
/* Only allow 32 & 64 bit code. */
if (CPUMGetGuestCodeBits(pVCpu) != 16)
{
PDISSTATE pDis = &pVCpu->hm.s.DisState;
int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
if ( RT_SUCCESS(rc)
&& pDis->pCurInstr->uOpcode == OP_INVLPG)
{
rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
if (RT_SUCCESS(rc))
pRegFrame->rip += pDis->cbInstr;
return rc;
}
else
Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
}
return VERR_EM_INTERPRETER;
}
/**
* Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
*
* @param pVCpu Pointer to the VMCPU.
*/
DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
{
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = X86_XCPT_UD;
hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
}
/**
* Sets a debug (#DB) exception as pending-for-injection into the VM.
*
* @param pVCpu Pointer to the VMCPU.
*/
DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
{
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = X86_XCPT_DB;
hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
}
/**
* Sets a page fault (#PF) exception as pending-for-injection into the VM.
*
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param u32ErrCode The error-code for the page-fault.
* @param uFaultAddress The page fault address (CR2).
*
* @remarks This updates the guest CR2 with @a uFaultAddress!
*/
DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
{
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = X86_XCPT_PF;
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = u32ErrCode;
/* Update CR2 of the guest. */
if (pCtx->cr2 != uFaultAddress)
{
pCtx->cr2 = uFaultAddress;
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
}
hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
}
/**
* Sets a device-not-available (#NM) exception as pending-for-injection into the
* VM.
*
* @param pVCpu Pointer to the VMCPU.
*/
DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
{
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = X86_XCPT_NM;
hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
}
/**
* Sets a math-fault (#MF) exception as pending-for-injection into the VM.
*
* @param pVCpu Pointer to the VMCPU.
*/
DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
{
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = X86_XCPT_MF;
hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
}
/**
* Sets a double fault (#DF) exception as pending-for-injection into the VM.
*
* @param pVCpu Pointer to the VMCPU.
*/
DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
{
SVMEVENT Event;
Event.u = 0;
Event.n.u1Valid = 1;
Event.n.u3Type = SVM_EVENT_EXCEPTION;
Event.n.u8Vector = X86_XCPT_DF;
Event.n.u1ErrorCodeValid = 1;
Event.n.u32ErrorCode = 0;
hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
}
/**
* Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
* guests. This simply looks up the patch record at EIP and does the required.
*
* This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
* like how we want it to be (e.g. not followed by shr 4 as is usually done for
* TPR). See hmR3ReplaceTprInstr() for the details.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
*/
static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
for (;;)
{
bool fPending;
uint8_t u8Tpr;
PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
break;
switch (pPatch->enmType)
{
case HMTPRINSTR_READ:
{
int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
AssertRC(rc);
rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
AssertRC(rc);
pCtx->rip += pPatch->cbOp;
break;
}
case HMTPRINSTR_WRITE_REG:
case HMTPRINSTR_WRITE_IMM:
{
if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
{
uint32_t u32Val;
int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
AssertRC(rc);
u8Tpr = u32Val;
}
else
u8Tpr = (uint8_t)pPatch->uSrcOperand;
int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
AssertRC(rc2);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
pCtx->rip += pPatch->cbOp;
break;
}
default:
AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
pVCpu->hm.s.u32HMError = pPatch->enmType;
return VERR_SVM_UNEXPECTED_PATCH_TYPE;
}
}
return VINF_SUCCESS;
}
/**
* Determines if an exception is a contributory exception. Contributory
* exceptions are ones which can cause double-faults. Page-fault is
* intentionally not included here as it's a conditional contributory exception.
*
* @returns true if the exception is contributory, false otherwise.
* @param uVector The exception vector.
*/
DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
{
switch (uVector)
{
case X86_XCPT_GP:
case X86_XCPT_SS:
case X86_XCPT_NP:
case X86_XCPT_TS:
case X86_XCPT_DE:
return true;
default:
break;
}
return false;
}
/**
* Handle a condition that occurred while delivering an event through the guest
* IDT.
*
* @returns VBox status code (informational error codes included).
* @retval VINF_SUCCESS if we should continue handling the VM-exit.
* @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
* continue execution of the guest which will delivery the #DF.
* @retval VINF_EM_RESET if we detected a triple-fault condition.
*
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param pSvmTransient Pointer to the SVM transient structure.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
int rc = VINF_SUCCESS;
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
/* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
* that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
{
uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
typedef enum
{
SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
SVMREFLECTXCPT_NONE /* Nothing to reflect. */
} SVMREFLECTXCPT;
SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
{
if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
{
uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
#ifdef VBOX_STRICT
if ( hmR0SvmIsContributoryXcpt(uIdtVector)
&& uExitVector == X86_XCPT_PF)
{
Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
}
#endif
if ( uExitVector == X86_XCPT_PF
&& uIdtVector == X86_XCPT_PF)
{
pSvmTransient->fVectoringPF = true;
Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
}
else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
&& hmR0SvmIsContributoryXcpt(uExitVector)
&& ( hmR0SvmIsContributoryXcpt(uIdtVector)
|| uIdtVector == X86_XCPT_PF))
{
enmReflect = SVMREFLECTXCPT_DF;
Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
uIdtVector, uExitVector));
}
else if (uIdtVector == X86_XCPT_DF)
{
enmReflect = SVMREFLECTXCPT_TF;
Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
uIdtVector, uExitVector));
}
else
enmReflect = SVMREFLECTXCPT_XCPT;
}
else
{
/*
* If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
* exception to the guest after handling the VM-exit.
*/
enmReflect = SVMREFLECTXCPT_XCPT;
}
}
else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
{
/* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
enmReflect = SVMREFLECTXCPT_XCPT;
}
switch (enmReflect)
{
case SVMREFLECTXCPT_XCPT:
{
Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
/* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
!!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
break;
}
case SVMREFLECTXCPT_DF:
{
hmR0SvmSetPendingXcptDF(pVCpu);
rc = VINF_HM_DOUBLE_FAULT;
break;
}
case SVMREFLECTXCPT_TF:
{
rc = VINF_EM_RESET;
break;
}
default:
Assert(rc == VINF_SUCCESS);
break;
}
}
Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
return rc;
}
/**
* Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
* CPU, otherwise advances the RIP by @a cb bytes.
*
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest-CPU context.
* @param cb RIP increment value in bytes.
*
* @remarks Use this function only from #VMEXIT's where the NRIP value is valid
* when NRIP_SAVE is supported by the CPU!
*/
DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
{
if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
{
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pCtx->rip = pVmcb->ctrl.u64NextRIP;
}
else
pCtx->rip += cb;
}
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
/** @name VM-exit handlers.
* @{
*/
/**
* #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
* signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
*/
HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
/*
* AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
* fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
* interrupt it is until the host actually take the interrupt.
*
* Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
* AMD Phenom 9850 Quad-Core on Windows 64-bit host).
*/
return VINF_EM_RAW_INTERRUPT;
}
/**
* #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
hmR0SvmUpdateRip(pVCpu, pCtx, 2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
hmR0SvmUpdateRip(pVCpu, pCtx, 2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
PVM pVM = pVCpu->CTX_SUFF(pVM);
int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (RT_LIKELY(rc == VINF_SUCCESS))
hmR0SvmUpdateRip(pVCpu, pCtx, 2);
else
{
AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
rc = VERR_EM_INTERPRETER;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
return rc;
}
/**
* #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
PVM pVM = pVCpu->CTX_SUFF(pVM);
int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (RT_LIKELY(rc == VINF_SUCCESS))
{
hmR0SvmUpdateRip(pVCpu, pCtx, 2);
pSvmTransient->fUpdateTscOffsetting = true;
}
else
{
AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
rc = VERR_EM_INTERPRETER;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
return rc;
}
/**
* #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
if (RT_LIKELY(rc == VINF_SUCCESS))
{
hmR0SvmUpdateRip(pVCpu, pCtx, 3);
pSvmTransient->fUpdateTscOffsetting = true;
}
else
{
AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
rc = VERR_EM_INTERPRETER;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
return rc;
}
/**
* #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
if (RT_LIKELY(rc == VINF_SUCCESS))
hmR0SvmUpdateRip(pVCpu, pCtx, 2);
else
{
AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
rc = VERR_EM_INTERPRETER;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
return rc;
}
/**
* #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
PVM pVM = pVCpu->CTX_SUFF(pVM);
Assert(!pVM->hm.s.fNestedPaging);
/** @todo Decode Assist. */
int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
return rc;
}
/**
* #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
hmR0SvmUpdateRip(pVCpu, pCtx, 1);
int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
return rc;
}
/**
* #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
if (RT_LIKELY(rc == VINF_SUCCESS))
hmR0SvmUpdateRip(pVCpu, pCtx, 3);
else
{
AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
rc = VERR_EM_INTERPRETER;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
return rc;
}
/**
* #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
int rc = VBOXSTRICTRC_VAL(rc2);
if ( rc == VINF_EM_HALT
|| rc == VINF_SUCCESS)
{
hmR0SvmUpdateRip(pVCpu, pCtx, 3);
if ( rc == VINF_EM_HALT
&& EMShouldContinueAfterHalt(pVCpu, pCtx))
{
rc = VINF_SUCCESS;
}
}
else
{
AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
rc = VERR_EM_INTERPRETER;
}
AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
return rc;
}
/**
* #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
* Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
return VINF_EM_RESET;
}
/**
* #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
/** @todo Decode Assist. */
VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
int rc = VBOXSTRICTRC_VAL(rc2);
AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
return rc;
}
/**
* #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
/** @todo Decode Assist. */
VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
int rc = VBOXSTRICTRC_VAL(rc2);
if (rc == VINF_SUCCESS)
{
/* RIP has been updated by EMInterpretInstruction(). */
Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
{
case 0: /* CR0. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
break;
case 3: /* CR3. */
Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
break;
case 4: /* CR4. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
break;
case 8: /* CR8 (TPR). */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
break;
default:
AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
break;
}
}
else
Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
return rc;
}
/**
* #VMEXIT handler for instructions that result in a #UD exception delivered to
* the guest.
*/
HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
hmR0SvmSetPendingXcptUD(pVCpu);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
PVM pVM = pVCpu->CTX_SUFF(pVM);
int rc;
if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
/* Handle TPR patching; intercepted LSTAR write. */
if ( pVM->hm.s.fTPRPatchingActive
&& pCtx->ecx == MSR_K8_LSTAR)
{
if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
{
/* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
AssertRC(rc2);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
}
hmR0SvmUpdateRip(pVCpu, pCtx, 2);
return VINF_SUCCESS;
}
if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
{
rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (RT_LIKELY(rc == VINF_SUCCESS))
pCtx->rip = pVmcb->ctrl.u64NextRIP;
else
AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
}
else
{
VBOXSTRICTRC rcStrict = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
rc = VBOXSTRICTRC_VAL(rcStrict);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
/* RIP updated by EMInterpretInstruction(). */
}
/* If this is an X2APIC WRMSR access, update the APIC state as well. */
if ( pCtx->ecx >= MSR_IA32_X2APIC_START
&& pCtx->ecx <= MSR_IA32_X2APIC_END)
{
/* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
* virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
EMInterpretWrmsr() changes it. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
}
else if (pCtx->ecx == MSR_K6_EFER)
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
else if (pCtx->ecx == MSR_IA32_TSC)
pSvmTransient->fUpdateTscOffsetting = true;
}
else
{
/* MSR Read access. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
{
rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
if (RT_LIKELY(rc == VINF_SUCCESS))
pCtx->rip = pVmcb->ctrl.u64NextRIP;
else
AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
}
else
{
VBOXSTRICTRC rcStrict = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
rc = VBOXSTRICTRC_VAL(rcStrict);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
/* RIP updated by EMInterpretInstruction(). */
}
}
/* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
return rc;
}
/**
* #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
/* We should -not- get this VM-exit if the guest is debugging. */
AssertMsgReturn(!CPUMIsGuestDebugStateActive(pVCpu),
("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx),
VERR_SVM_UNEXPECTED_EXIT);
/*
* Lazy DR0-3 loading?
*/
if (!CPUMIsHyperDebugStateActive(pVCpu))
{
Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
/* Don't intercept DRx read and writes. */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pVmcb->ctrl.u16InterceptRdDRx = 0;
pVmcb->ctrl.u16InterceptWrDRx = 0;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
/* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
Assert(CPUMIsGuestDebugStateActive(pVCpu));
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
return VINF_SUCCESS;
}
/*
* Interpret the read/writing of DRx.
*/
/** @todo Decode assist. */
VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
Log5(("hmR0SvmExitReadDRx: Emulatined DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
if (RT_LIKELY(rc == VINF_SUCCESS))
{
/* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
/** @todo CPUM should set this flag! */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
}
else
Assert(rc == VERR_EM_INTERPRETER);
return VBOXSTRICTRC_TODO(rc);
}
/**
* #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
/* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
return rc;
}
/**
* #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
/* I/O operation lookup arrays. */
static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
the result (in AL/AX/EAX). */
Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
PVM pVM = pVCpu->CTX_SUFF(pVM);
/* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
SVMIOIOEXIT IoExitInfo;
IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
uint32_t uIOSize = s_aIOSize[uIOWidth];
uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
if (RT_UNLIKELY(!uIOSize))
{
AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
return VERR_EM_INTERPRETER;
}
int rc;
if (IoExitInfo.n.u1STR)
{
/* INS/OUTS - I/O String instruction. */
PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
/** @todo Huh? why can't we use the segment prefix information given by AMD-V
* in EXITINFO1? Investigate once this thing is up and running. */
rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
if (rc == VINF_SUCCESS)
{
if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
{
VBOXSTRICTRC rc2 = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
(DISCPUMODE)pDis->uAddrMode, uIOSize);
rc = VBOXSTRICTRC_VAL(rc2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
}
else
{
VBOXSTRICTRC rc2 = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
(DISCPUMODE)pDis->uAddrMode, uIOSize);
rc = VBOXSTRICTRC_VAL(rc2);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
}
}
else
rc = VINF_EM_RAW_EMULATE_INSTR;
}
else
{
/* IN/OUT - I/O instruction. */
Assert(!IoExitInfo.n.u1REP);
if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
{
VBOXSTRICTRC rc2 = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
rc = VBOXSTRICTRC_VAL(rc2);
if (rc == VINF_IOM_R3_IOPORT_WRITE)
HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
}
else
{
uint32_t u32Val = 0;
VBOXSTRICTRC rc2 = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, uIOSize);
rc = VBOXSTRICTRC_VAL(rc2);
if (IOM_SUCCESS(rc))
{
/* Save result of I/O IN instr. in AL/AX/EAX. */
pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
}
else if (rc == VINF_IOM_R3_IOPORT_READ)
HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
}
}
if (IOM_SUCCESS(rc))
{
/* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
if (RT_LIKELY(rc == VINF_SUCCESS))
{
/* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
/** @todo This is inefficient and wrong according to intel and amd specs
* (regardless of which is correct). See the same code in the VT-x case.
* write testcase and refactor the code to use a mostly shared
* implementation after the initial DR7/CR4 checks. */
if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
{
/* I/O breakpoint length, in bytes. */
static uint32_t const s_aIOBPLen[4] = { 1, 2, 0, 4 };
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
for (unsigned i = 0; i < 4; i++)
{
unsigned uBPLen = s_aIOBPLen[X86_DR7_GET_LEN(pCtx->dr[7], i)];
if ( IoExitInfo.n.u16Port >= pCtx->dr[i]
&& IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen
&& (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
&& (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
{
Assert(CPUMIsGuestDebugStateActive(pVCpu));
/* Clear all breakpoint status flags and set the one we just hit. */
pCtx->dr[6] &= ~(X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3);
pCtx->dr[6] |= (uint64_t)RT_BIT(i);
/*
* Note: AMD64 Architecture Programmer's Manual 13.1:
* Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
* by software after the contents have been read.
*/
pVmcb->guest.u64DR6 = pCtx->dr[6];
/* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
pCtx->dr[7] &= ~X86_DR7_GD;
/* Paranoia. */
pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
pCtx->dr[7] |= 0x400; /* MB1. */
pVmcb->guest.u64DR7 = pCtx->dr[7];
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
/* Inject the debug exception. */
hmR0SvmSetPendingXcptDB(pVCpu);
break;
}
}
}
}
}
#ifdef VBOX_STRICT
if (rc == VINF_IOM_R3_IOPORT_READ)
Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
else if (rc == VINF_IOM_R3_IOPORT_WRITE)
Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
else
{
AssertMsg( RT_FAILURE(rc)
|| rc == VINF_SUCCESS
|| rc == VINF_EM_RAW_EMULATE_INSTR
|| rc == VINF_EM_RAW_GUEST_TRAP
|| rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
}
#endif
return rc;
}
/**
* #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
* #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
PVM pVM = pVCpu->CTX_SUFF(pVM);
Assert(pVM->hm.s.fNestedPaging);
HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
/* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
#ifdef VBOX_HM_WITH_GUEST_PATCHING
/* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
if ( pVM->hm.s.fTRPPatchingAllowed
&& (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
&& ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
|| (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
&& !CPUMGetGuestCPL(pVCpu)
&& !CPUMIsGuestInLongModeEx(pCtx)
&& pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
{
RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
GCPhysApicBase &= PAGE_BASE_GC_MASK;
if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
{
/* Only attempt to patch the instruction once. */
PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
return VINF_EM_HM_PATCH_TPR_INSTR;
}
}
#endif
/*
* Determine the nested paging mode.
*/
PGMMODE enmNestedPagingMode;
#if HC_ARCH_BITS == 32
if (CPUMIsGuestInLongModeEx(pCtx))
enmNestedPagingMode = PGMMODE_AMD64_NX;
else
#endif
enmNestedPagingMode = PGMGetHostMode(pVM);
/*
* MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
*/
int rc;
Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
{
VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
u32ErrCode);
rc = VBOXSTRICTRC_VAL(rc2);
/*
* If we succeed, resume guest execution.
* If we fail in interpreting the instruction because we couldn't get the guest physical address
* of the page containing the instruction via the guest's page tables (we would invalidate the guest page
* in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
* weird case. See @bugref{6043}.
*/
if ( rc == VINF_SUCCESS
|| rc == VERR_PAGE_TABLE_NOT_PRESENT
|| rc == VERR_PAGE_NOT_PRESENT)
{
/* Successfully handled MMIO operation. */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
rc = VINF_SUCCESS;
}
return rc;
}
TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
TRPMResetTrap(pVCpu);
Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
/*
* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
*/
if ( rc == VINF_SUCCESS
|| rc == VERR_PAGE_TABLE_NOT_PRESENT
|| rc == VERR_PAGE_NOT_PRESENT)
{
/* We've successfully synced our shadow page tables. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
rc = VINF_SUCCESS;
}
return rc;
}
/**
* #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
/* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
/* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
#endif
/* Check if this task-switch occurred while delivery an event through the guest IDT. */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
&& pVCpu->hm.s.Event.fPending)
{
/*
* AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
* injected the event during VM-entry. Software interrupts and exceptions will be regenerated
* when the recompiler restarts the instruction.
*/
SVMEVENT Event;
Event.u = pVCpu->hm.s.Event.u64IntrInfo;
if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
|| Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
{
pVCpu->hm.s.Event.fPending = false;
}
else
Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
}
/** @todo Emulate task switch someday, currently just going back to ring-3 for
* emulation. */
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
return VERR_EM_INTERPRETER;
}
/**
* #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
hmR0SvmSetPendingXcptUD(pVCpu);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
* #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
/* See AMD spec. 15.12.15 "#PF (Page Fault)". */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
PVM pVM = pVCpu->CTX_SUFF(pVM);
#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
if (pVM->hm.s.fNestedPaging)
{
pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
if (!pSvmTransient->fVectoringPF)
{
/* A genuine guest #PF, reflect it to the guest. */
hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
uFaultAddress, u32ErrCode));
}
else
{
/* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
hmR0SvmSetPendingXcptDF(pVCpu);
Log4(("Pending #DF due to vectoring #PF. NP\n"));
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
return VINF_SUCCESS;
}
#endif
Assert(!pVM->hm.s.fNestedPaging);
#ifdef VBOX_HM_WITH_GUEST_PATCHING
/* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
if ( pVM->hm.s.fTRPPatchingAllowed
&& (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
&& !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
&& !CPUMGetGuestCPL(pVCpu)
&& !CPUMIsGuestInLongModeEx(pCtx)
&& pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
{
RTGCPHYS GCPhysApicBase;
GCPhysApicBase = pCtx->msrApicBase;
GCPhysApicBase &= PAGE_BASE_GC_MASK;
/* Check if the page at the fault-address is the APIC base. */
RTGCPHYS GCPhysPage;
int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
if ( rc2 == VINF_SUCCESS
&& GCPhysPage == GCPhysApicBase)
{
/* Only attempt to patch the instruction once. */
PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
if (!pPatch)
return VINF_EM_HM_PATCH_TPR_INSTR;
}
}
#endif
Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
pCtx->rip, u32ErrCode, pCtx->cr3));
TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
Log4(("#PF rc=%Rrc\n", rc));
if (rc == VINF_SUCCESS)
{
/* Successfully synced shadow pages tables or emulated an MMIO instruction. */
TRPMResetTrap(pVCpu);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
return rc;
}
else if (rc == VINF_EM_RAW_GUEST_TRAP)
{
pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
if (!pSvmTransient->fVectoringPF)
{
/* It's a guest page fault and needs to be reflected to the guest. */
u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
TRPMResetTrap(pVCpu);
hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
}
else
{
/* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
TRPMResetTrap(pVCpu);
hmR0SvmSetPendingXcptDF(pVCpu);
Log4(("#PF: Pending #DF due to vectoring #PF\n"));
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
return VINF_SUCCESS;
}
TRPMResetTrap(pVCpu);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
return rc;
}
/**
* #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
* Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
Assert(!CPUMIsGuestFPUStateActive(pVCpu));
#endif
/* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
if (rc == VINF_SUCCESS)
{
Assert(CPUMIsGuestFPUStateActive(pVCpu));
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
return VINF_SUCCESS;
}
/* Forward #NM to the guest. */
Assert(rc == VINF_EM_RAW_GUEST_TRAP);
hmR0SvmSetPendingXcptNM(pVCpu);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
* Conditional #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
if (!(pCtx->cr0 & X86_CR0_NE))
{
/* Old-style FPU error reporting needs some extra work. */
/** @todo don't fall back to the recompiler, but do it manually. */
return VERR_EM_INTERPRETER;
}
hmR0SvmSetPendingXcptMF(pVCpu);
return VINF_SUCCESS;
}
/**
* #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
* #VMEXIT.
*/
HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
{
HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
/* If we set the trap flag above, we have to clear it. */
/** @todo HM should remember what it does and possibly do this elsewhere! */
if (pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu))
pCtx->eflags.Bits.u1TF = 0;
/* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
PVM pVM = pVCpu->CTX_SUFF(pVM);
int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6);
if (rc == VINF_EM_RAW_GUEST_TRAP)
{
Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
if (CPUMIsHyperDebugStateActive(pVCpu))
CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
/* Reflect the exception back to the guest. */
hmR0SvmSetPendingXcptDB(pVCpu);
rc = VINF_SUCCESS;
}
/*
* Update DR6.
*/
if (CPUMIsHyperDebugStateActive(pVCpu))
{
Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
}
else
{
AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
}
return rc;
}
/** @} */