HMR0.cpp revision c58f1213e628a545081c70e26c6b67a841cff880
/* $Id$ */
/** @file
* Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_HM
#include <VBox/vmm/hm.h>
#include <VBox/vmm/pgm.h>
#include "HMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/hm_vmx.h>
#include <VBox/vmm/hm_svm.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/cpuset.h>
#include <iprt/mem.h>
#include <iprt/memobj.h>
#include <iprt/once.h>
#include <iprt/param.h>
#include <iprt/power.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include <iprt/x86.h>
#include "HWVMXR0.h"
#include "HWSVMR0.h"
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* This is used to manage the status code of a RTMpOnAll in HM.
*/
typedef struct HMR0FIRSTRC
{
/** The status code. */
int32_t volatile rc;
/** The ID of the CPU reporting the first failure. */
RTCPUID volatile idCpu;
} HMR0FIRSTRC;
/** Pointer to a first return code structure. */
typedef HMR0FIRSTRC *PHMR0FIRSTRC;
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/**
* Global data.
*/
static struct
{
/** Per CPU globals. */
HMGLOBLCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
/** @name Ring-0 method table for AMD-V and VT-x specific operations.
* @{ */
DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu));
DECLR0CALLBACKMEMBER(int, pfnLeaveSession,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu));
DECLR0CALLBACKMEMBER(int, pfnLoadGuestState,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
bool fEnabledByHost));
DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM));
DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM));
DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM));
/** @} */
/** Maximum ASID allowed. */
uint32_t uMaxAsid;
/** VT-x data. */
struct
{
/** Set to by us to indicate VMX is supported by the CPU. */
bool fSupported;
/** Whether we're using SUPR0EnableVTx or not. */
bool fUsingSUPR0EnableVTx;
/** Whether we're using the preemption timer or not. */
bool fUsePreemptTimer;
/** The shift mask employed by the VMX-Preemption timer. */
uint8_t cPreemptTimerShift;
/** Host CR4 value (set by ring-0 VMX init) */
uint64_t hostCR4;
/** Host EFER value (set by ring-0 VMX init) */
uint64_t hostEFER;
/** VMX MSR values */
struct
{
uint64_t feature_ctrl;
uint64_t vmx_basic_info;
VMX_CAPABILITY vmx_pin_ctls;
VMX_CAPABILITY vmx_proc_ctls;
VMX_CAPABILITY vmx_proc_ctls2;
VMX_CAPABILITY vmx_exit;
VMX_CAPABILITY vmx_entry;
uint64_t vmx_misc;
uint64_t vmx_cr0_fixed0;
uint64_t vmx_cr0_fixed1;
uint64_t vmx_cr4_fixed0;
uint64_t vmx_cr4_fixed1;
uint64_t vmx_vmcs_enum;
uint64_t vmx_ept_vpid_caps;
} msr;
/* Last instruction error */
uint32_t ulLastInstrError;
} vmx;
/** AMD-V information. */
struct
{
/* HWCR MSR (for diagnostics) */
uint64_t msrHwcr;
/** SVM revision. */
uint32_t u32Rev;
/** SVM feature bits from cpuid 0x8000000a */
uint32_t u32Features;
/** Set by us to indicate SVM is supported by the CPU. */
bool fSupported;
} svm;
/** Saved error from detection */
int32_t lLastError;
struct
{
uint32_t u32AMDFeatureECX;
uint32_t u32AMDFeatureEDX;
} cpuid;
/** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
* enabled and disabled each time it's used to execute guest code. */
bool fGlobalInit;
/** Indicates whether the host is suspending or not. We'll refuse a few
* actions when the host is being suspended to speed up the suspending and
* avoid trouble. */
volatile bool fSuspended;
/** Whether we've already initialized all CPUs.
* @remarks We could check the EnableAllCpusOnce state, but this is
* simpler and hopefully easier to understand. */
bool fEnabled;
/** Serialize initialization in HMR0EnableAllCpus. */
RTONCE EnableAllCpusOnce;
} g_HvmR0;
/**
* Initializes a first return code structure.
*
* @param pFirstRc The structure to init.
*/
static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
{
pFirstRc->rc = VINF_SUCCESS;
pFirstRc->idCpu = NIL_RTCPUID;
}
/**
* Try set the status code (success ignored).
*
* @param pFirstRc The first return code structure.
* @param rc The status code.
*/
static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
{
if ( RT_FAILURE(rc)
&& ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
pFirstRc->idCpu = RTMpCpuId();
}
/**
* Get the status code of a first return code structure.
*
* @returns The status code; VINF_SUCCESS or error status, no informational or
* warning errors.
* @param pFirstRc The first return code structure.
*/
static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
{
return pFirstRc->rc;
}
#ifdef VBOX_STRICT
/**
* Get the CPU ID on which the failure status code was reported.
*
* @returns The CPU ID, NIL_RTCPUID if no failure was reported.
* @param pFirstRc The first return code structure.
*/
static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
{
return pFirstRc->idCpu;
}
#endif /* VBOX_STRICT */
/** @name Dummy callback handlers.
* @{ */
static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
{
NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
bool fEnabledBySystem)
{
NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
{
NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
{
NOREF(pVM);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
{
NOREF(pVM);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
{
NOREF(pVM);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
{
NOREF(pVM); NOREF(pVCpu);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
return VINF_SUCCESS;
}
/** @} */
/**
* Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
* Down at the Rate Specified" erratum.
*
* Errata names and related steppings:
* - BA86 - D0.
* - AAX65 - C2.
* - AAU65 - C2, K0.
* - AAO95 - B1.
* - AAT59 - C2.
* - AAK139 - D0.
* - AAM126 - C0, C1, D0.
* - AAN92 - B1.
* - AAJ124 - C0, D0.
*
* - AAP86 - B1.
*
* Steppings: B1, C0, C1, C2, D0, K0.
*
* @returns true if subject to it, false if not.
*/
static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
{
uint32_t u = ASMCpuId_EAX(1);
u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
|| u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
|| u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
|| u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
|| u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
|| u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
|| u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
|| u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
|| u == UINT32_C(0x000106A0) /*?321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
|| u == UINT32_C(0x000106A1) /*?321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
|| u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
|| u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
|| u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
|| u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
)
return true;
return false;
}
/**
* Intel specific initialization code.
*
* @returns VBox status code (will only fail if out of memory).
*/
static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
{
/*
* Check that all the required VT-x features are present.
* We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
*/
if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
&& (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
&& (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
)
{
/** @todo move this into a separate function. */
g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
/*
* First try use native kernel API for controlling VT-x.
* (This is only supported by some Mac OS X kernels atm.)
*/
int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
if (RT_SUCCESS(rc))
{
g_HvmR0.vmx.fSupported = true;
rc = SUPR0EnableVTx(false /* fEnable */);
AssertLogRelRC(rc);
}
}
else
{
/* We need to check if VT-x has been properly initialized on all
CPUs. Some BIOSes do a lousy job. */
HMR0FIRSTRC FirstRc;
hmR0FirstRcInit(&FirstRc);
g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
if (RT_SUCCESS(g_HvmR0.lLastError))
g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
}
if (RT_SUCCESS(g_HvmR0.lLastError))
{
/* Reread in case we've changed it. */
g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
if ( (g_HvmR0.vmx.msr.feature_ctrl & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
== (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
{
/*
* Read all relevant MSR.
*/
g_HvmR0.vmx.msr.vmx_basic_info = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
g_HvmR0.vmx.msr.vmx_pin_ctls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
g_HvmR0.vmx.msr.vmx_proc_ctls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
g_HvmR0.vmx.msr.vmx_exit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
g_HvmR0.vmx.msr.vmx_entry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
g_HvmR0.vmx.msr.vmx_misc = ASMRdMsr(MSR_IA32_VMX_MISC);
g_HvmR0.vmx.msr.vmx_cr0_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
g_HvmR0.vmx.msr.vmx_cr0_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
g_HvmR0.vmx.msr.vmx_cr4_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
g_HvmR0.vmx.msr.vmx_cr4_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
g_HvmR0.vmx.msr.vmx_vmcs_enum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
g_HvmR0.vmx.hostCR4 = ASMGetCR4();
g_HvmR0.vmx.hostEFER = ASMRdMsr(MSR_K6_EFER);
/* VPID 16 bits ASID. */
g_HvmR0.uMaxAsid = 0x10000; /* exclusive */
if (g_HvmR0.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
{
g_HvmR0.vmx.msr.vmx_proc_ctls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
if ( g_HvmR0.vmx.msr.vmx_proc_ctls2.n.allowed1
& (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
{
g_HvmR0.vmx.msr.vmx_ept_vpid_caps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
}
}
if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
/*
* Enter root mode
*/
RTR0MEMOBJ hScatchMemObj;
rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
if (RT_FAILURE(rc))
{
LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,true) -> %Rrc\n", rc));
return rc;
}
void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
ASMMemZeroPage(pvScatchPage);
/* Set revision dword at the beginning of the structure. */
*(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.msr.vmx_basic_info);
/* Make sure we don't get rescheduled to another cpu during this probe. */
RTCCUINTREG fFlags = ASMIntDisableFlags();
/*
* Check CR4.VMXE
*/
g_HvmR0.vmx.hostCR4 = ASMGetCR4();
if (!(g_HvmR0.vmx.hostCR4 & X86_CR4_VMXE))
{
/* In theory this bit could be cleared behind our back. Which would cause
#UD faults when we try to execute the VMX instructions... */
ASMSetCR4(g_HvmR0.vmx.hostCR4 | X86_CR4_VMXE);
}
/* Enter VMX Root Mode */
rc = VMXEnable(HCPhysScratchPage);
if (RT_SUCCESS(rc))
{
g_HvmR0.vmx.fSupported = true;
VMXDisable();
}
else
{
/*
* KVM leaves the CPU in VMX root mode. Not only is this not allowed,
* it will crash the host when we enter raw mode, because:
*
* (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
* this bit), and
* (b) turning off paging causes a #GP (unavoidable when switching
* from long to 32 bits mode or 32 bits to PAE).
*
* They should fix their code, but until they do we simply refuse to run.
*/
g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
}
/* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
if it wasn't so before (some software could incorrectly
think it's in VMX mode). */
ASMSetCR4(g_HvmR0.vmx.hostCR4);
ASMSetFlags(fFlags);
RTR0MemObjFree(hScatchMemObj, false);
}
}
else
{
AssertFailed(); /* can't hit this case anymore */
g_HvmR0.lLastError = VERR_VMX_ILLEGAL_FEATURE_CONTROL_MSR;
}
if (g_HvmR0.vmx.fSupported)
{
/*
* Install the VT-x methods.
*/
g_HvmR0.pfnEnterSession = VMXR0Enter;
g_HvmR0.pfnLeaveSession = VMXR0Leave;
g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
g_HvmR0.pfnLoadGuestState = VMXR0LoadGuestState;
g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
g_HvmR0.pfnInitVM = VMXR0InitVM;
g_HvmR0.pfnTermVM = VMXR0TermVM;
g_HvmR0.pfnSetupVM = VMXR0SetupVM;
/*
* Check for the VMX-Preemption Timer and adjust for the * "VMX-Preemption
* Timer Does Not Count Down at the Rate Specified" erratum.
*/
if ( g_HvmR0.vmx.msr.vmx_pin_ctls.n.allowed1
& VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER)
{
g_HvmR0.vmx.fUsePreemptTimer = true;
g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.msr.vmx_misc);
if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
}
}
}
#ifdef LOG_ENABLED
else
SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
#endif
}
else
g_HvmR0.lLastError = VERR_VMX_NO_VMX;
return VINF_SUCCESS;
}
/**
* AMD-specific initialization code.
*/
static void hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
{
/*
* Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
* We also assume all SVM-enabled CPUs support fxsave/fxrstor.
*/
if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
&& (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
&& (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
&& ASMIsValidExtRange(uMaxExtLeaf)
&& uMaxExtLeaf >= 0x8000000a
)
{
g_HvmR0.pfnEnterSession = SVMR0Enter;
g_HvmR0.pfnLeaveSession = SVMR0Leave;
g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
g_HvmR0.pfnLoadGuestState = SVMR0LoadGuestState;
g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
g_HvmR0.pfnInitVM = SVMR0InitVM;
g_HvmR0.pfnTermVM = SVMR0TermVM;
g_HvmR0.pfnSetupVM = SVMR0SetupVM;
/* Query AMD features. */
uint32_t u32Dummy;
ASMCpuId(0x8000000a, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxAsid, &u32Dummy, &g_HvmR0.svm.u32Features);
/*
* We need to check if AMD-V has been properly initialized on all CPUs.
* Some BIOSes might do a poor job.
*/
HMR0FIRSTRC FirstRc;
hmR0FirstRcInit(&FirstRc);
int rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
AssertRC(rc);
if (RT_SUCCESS(rc))
rc = hmR0FirstRcGetStatus(&FirstRc);
#ifndef DEBUG_bird
AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
#endif
if (RT_SUCCESS(rc))
{
/* Read the HWCR MSR for diagnostics. */
g_HvmR0.svm.msrHwcr = ASMRdMsr(MSR_K8_HWCR);
g_HvmR0.svm.fSupported = true;
}
else
g_HvmR0.lLastError = rc;
}
else
g_HvmR0.lLastError = VERR_SVM_NO_SVM;
}
/**
* Does global Ring-0 HM initialization (at module init).
*
* @returns VBox status code.
*/
VMMR0_INT_DECL(int) HMR0Init(void)
{
/*
* Initialize the globals.
*/
g_HvmR0.fEnabled = false;
static RTONCE s_OnceInit = RTONCE_INITIALIZER;
g_HvmR0.EnableAllCpusOnce = s_OnceInit;
for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
/* Fill in all callbacks with placeholders. */
g_HvmR0.pfnEnterSession = hmR0DummyEnter;
g_HvmR0.pfnLeaveSession = hmR0DummyLeave;
g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
g_HvmR0.pfnLoadGuestState = hmR0DummyLoadGuestState;
g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
g_HvmR0.pfnInitVM = hmR0DummyInitVM;
g_HvmR0.pfnTermVM = hmR0DummyTermVM;
g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
/* Default is global VT-x/AMD-V init. */
g_HvmR0.fGlobalInit = true;
/*
* Make sure aCpuInfo is big enough for all the CPUs on this system.
*/
if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
{
LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
return VERR_TOO_MANY_CPUS;
}
/*
* Check for VT-x and AMD-V capabilities.
*/
int rc;
if (ASMHasCpuId())
{
/* Standard features. */
uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
if (ASMIsValidStdRange(uMaxLeaf))
{
uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
/* Query AMD features. */
uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
if (ASMIsValidExtRange(uMaxExtLeaf))
ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
&g_HvmR0.cpuid.u32AMDFeatureECX,
&g_HvmR0.cpuid.u32AMDFeatureEDX);
else
g_HvmR0.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureEDX = 0;
/* Go to CPU specific initialization code. */
if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
|| ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
{
rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
if (RT_FAILURE(rc))
return rc;
}
else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
else
g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
}
else
g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
}
else
g_HvmR0.lLastError = VERR_HM_NO_CPUID;
/*
* Register notification callbacks that we can use to disable/enable CPUs
* when brought offline/online or suspending/resuming.
*/
if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
AssertRC(rc);
rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
AssertRC(rc);
}
/* We return success here because module init shall not fail if HM
fails to initialize. */
return VINF_SUCCESS;
}
/**
* Does global Ring-0 HM termination (at module termination).
*
* @returns VBox status code.
*/
VMMR0_INT_DECL(int) HMR0Term(void)
{
int rc;
if ( g_HvmR0.vmx.fSupported
&& g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
/*
* Simple if the host OS manages VT-x.
*/
Assert(g_HvmR0.fGlobalInit);
rc = SUPR0EnableVTx(false /* fEnable */);
for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
{
g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
}
}
else
{
Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
/* Doesn't really matter if this fails. */
rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
}
else
rc = VINF_SUCCESS;
/*
* Disable VT-x/AMD-V on all CPUs if we enabled it before.
*/
if (g_HvmR0.fGlobalInit)
{
HMR0FIRSTRC FirstRc;
hmR0FirstRcInit(&FirstRc);
rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc);
Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
if (RT_SUCCESS(rc))
{
rc = hmR0FirstRcGetStatus(&FirstRc);
AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
}
}
/*
* Free the per-cpu pages used for VT-x and AMD-V.
*/
for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
{
if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
}
}
}
return rc;
}
/**
* Worker function used by hmR0PowerCallback and HMR0Init to initalize
* VT-x on a CPU.
*
* @param idCpu The identifier for the CPU the function is called on.
* @param pvUser1 Pointer to the first RC structure.
* @param pvUser2 Ignored.
*/
static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
NOREF(pvUser2);
/*
* Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
* Once the lock bit is set, this MSR can no longer be modified.
*/
uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
if ( !(fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
|| ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
== MSR_IA32_FEATURE_CONTROL_VMXON ) /* Some BIOSes forget to set the locked bit. */
)
{
/* MSR is not yet locked; we can change it ourselves here. */
ASMWrMsr(MSR_IA32_FEATURE_CONTROL,
g_HvmR0.vmx.msr.feature_ctrl | MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK);
fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
}
int rc;
if ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
== (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
rc = VINF_SUCCESS;
else
rc = VERR_VMX_MSR_LOCKED_OR_DISABLED;
hmR0FirstRcSetStatus(pFirstRc, rc);
}
/**
* Worker function used by hmR0PowerCallback and HMR0Init to initalize
* VT-x / AMD-V on a CPU.
*
* @param idCpu The identifier for the CPU the function is called on.
* @param pvUser1 Pointer to the first RC structure.
* @param pvUser2 Ignored.
*/
static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
NOREF(pvUser2);
/* Check if SVM is disabled. */
int rc;
uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR);
if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
{
/* Turn on SVM in the EFER MSR. */
uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
if (fEfer & MSR_K6_EFER_SVME)
rc = VERR_SVM_IN_USE;
else
{
ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
/* Paranoia. */
fEfer = ASMRdMsr(MSR_K6_EFER);
if (fEfer & MSR_K6_EFER_SVME)
{
/* Restore previous value. */
ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
rc = VINF_SUCCESS;
}
else
rc = VERR_SVM_ILLEGAL_EFER_MSR;
}
}
else
rc = VERR_SVM_DISABLED;
hmR0FirstRcSetStatus(pFirstRc, rc);
}
/**
* Disable VT-x or AMD-V on the current CPU
*
* @returns VBox status code.
* @param pVM Pointer to the VM (can be 0).
* @param idCpu The identifier for the CPU the function is called on.
*/
static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
{
PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
Assert(!pCpu->fConfigured);
Assert(!g_HvmR0.fGlobalInit || ASMAtomicReadBool(&pCpu->fInUse) == false);
pCpu->idCpu = idCpu;
pCpu->uCurrentAsid = 0; /* we'll aways increment this the first time (host uses ASID 0) */
/* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
int rc;
if (g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, NULL, NIL_RTHCPHYS, true);
else
{
AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false);
}
AssertRC(rc);
if (RT_SUCCESS(rc))
pCpu->fConfigured = true;
return rc;
}
/**
* Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
* is to be called on the target cpus.
*
* @param idCpu The identifier for the CPU the function is called on.
* @param pvUser1 The 1st user argument.
* @param pvUser2 The 2nd user argument.
*/
static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PVM pVM = (PVM)pvUser1; /* can be NULL! */
PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
AssertReturnVoid(g_HvmR0.fGlobalInit);
hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
}
/**
* RTOnce callback employed by HMR0EnableAllCpus.
*
* @returns VBox status code.
* @param pvUser Pointer to the VM.
* @param pvUserIgnore NULL, ignored.
*/
static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
{
PVM pVM = (PVM)pvUser;
/*
* Indicate that we've initialized.
*
* Note! There is a potential race between this function and the suspend
* notification. Kind of unlikely though, so ignored for now.
*/
AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
/*
* The global init variable is set by the first VM.
*/
g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
{
Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
g_HvmR0.aCpuInfo[i].fConfigured = false;
g_HvmR0.aCpuInfo[i].cTlbFlushes = 0;
}
int rc;
if ( g_HvmR0.vmx.fSupported
&& g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
/*
* Global VT-x initialization API (only darwin for now).
*/
rc = SUPR0EnableVTx(true /* fEnable */);
if (RT_SUCCESS(rc))
/* If the host provides a VT-x init API, then we'll rely on that for global init. */
g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
else
AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
}
else
{
/*
* We're doing the job ourselves.
*/
/* Allocate one page per cpu for the global vt-x and amd-v pages */
for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
{
Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
{
rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */);
AssertLogRelRCReturn(rc, rc);
void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
ASMMemZeroPage(pvR0);
}
}
rc = VINF_SUCCESS;
}
if (RT_SUCCESS(rc) && g_HvmR0.fGlobalInit)
{
/* First time, so initialize each cpu/core. */
HMR0FIRSTRC FirstRc;
hmR0FirstRcInit(&FirstRc);
rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
if (RT_SUCCESS(rc))
rc = hmR0FirstRcGetStatus(&FirstRc);
AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
}
return rc;
}
/**
* Sets up HM on all cpus.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
{
/* Make sure we don't touch hm after we've disabled hm in
preparation of a suspend. */
if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
return VERR_HM_SUSPEND_PENDING;
return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
}
/**
* Disable VT-x or AMD-V on the current CPU.
*
* @returns VBox status code.
* @param idCpu The identifier for the CPU the function is called on.
*/
static int hmR0DisableCpu(RTCPUID idCpu)
{
PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
Assert(!g_HvmR0.fGlobalInit || ASMAtomicReadBool(&pCpu->fInUse) == false);
Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
int rc;
if (pCpu->fConfigured)
{
void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
if (idCpu == RTMpCpuId())
{
rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
AssertRC(rc);
}
else
{
pCpu->fIgnoreAMDVInUseError = true;
rc = VINF_SUCCESS;
}
pCpu->fConfigured = false;
}
else
rc = VINF_SUCCESS; /* nothing to do */
pCpu->uCurrentAsid = 0;
return rc;
}
/**
* Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
* is to be called on the target cpus.
*
* @param idCpu The identifier for the CPU the function is called on.
* @param pvUser1 The 1st user argument.
* @param pvUser2 The 2nd user argument.
*/
static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
AssertReturnVoid(g_HvmR0.fGlobalInit);
hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
}
/**
* Callback function invoked when a cpu goes online or offline.
*
* @param enmEvent The Mp event.
* @param idCpu The identifier for the CPU the function is called on.
* @param pvData Opaque data (PVM pointer).
*/
static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
{
NOREF(pvData);
/*
* We only care about uninitializing a CPU that is going offline. When a
* CPU comes online, the initialization is done lazily in HMR0Enter().
*/
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
switch (enmEvent)
{
case RTMPEVENT_OFFLINE:
{
int rc = hmR0DisableCpu(idCpu);
AssertRC(rc);
break;
}
default:
break;
}
}
/**
* Called whenever a system power state change occurs.
*
* @param enmEvent The Power event.
* @param pvUser User argument.
*/
static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
{
NOREF(pvUser);
Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
#ifdef LOG_ENABLED
if (enmEvent == RTPOWEREVENT_SUSPEND)
SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
else
SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
#endif
if (enmEvent == RTPOWEREVENT_SUSPEND)
ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
if (g_HvmR0.fEnabled)
{
int rc;
HMR0FIRSTRC FirstRc;
hmR0FirstRcInit(&FirstRc);
if (enmEvent == RTPOWEREVENT_SUSPEND)
{
if (g_HvmR0.fGlobalInit)
{
/* Turn off VT-x or AMD-V on all CPUs. */
rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc);
Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
}
/* else nothing to do here for the local init case */
}
else
{
/* Reinit the CPUs from scratch as the suspend state might have
messed with the MSRs. (lousy BIOSes as usual) */
if (g_HvmR0.vmx.fSupported)
rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
else
rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
if (RT_SUCCESS(rc))
rc = hmR0FirstRcGetStatus(&FirstRc);
#ifdef LOG_ENABLED
if (RT_FAILURE(rc))
SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
#endif
if (g_HvmR0.fGlobalInit)
{
/* Turn VT-x or AMD-V back on on all CPUs. */
rc = RTMpOnAll(hmR0EnableCpuCallback, NULL, &FirstRc /* output ignored */);
Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
}
/* else nothing to do here for the local init case */
}
}
if (enmEvent == RTPOWEREVENT_RESUME)
ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
}
/**
* Does Ring-0 per VM HM initialization.
*
* This will copy HM global into the VM structure and call the CPU specific
* init routine which will allocate resources for each virtual CPU and such.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
{
AssertReturn(pVM, VERR_INVALID_PARAMETER);
#ifdef LOG_ENABLED
SUPR0Printf("HMR0InitVM: %p\n", pVM);
#endif
/* Make sure we don't touch hm after we've disabled hm in preparation of a suspend. */
if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
return VERR_HM_SUSPEND_PENDING;
/*
* Copy globals to the VM structure.
*/
pVM->hm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
pVM->hm.s.svm.fSupported = g_HvmR0.svm.fSupported;
pVM->hm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer;
pVM->hm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
pVM->hm.s.vmx.msr.feature_ctrl = g_HvmR0.vmx.msr.feature_ctrl;
pVM->hm.s.vmx.hostCR4 = g_HvmR0.vmx.hostCR4;
pVM->hm.s.vmx.hostEFER = g_HvmR0.vmx.hostEFER;
pVM->hm.s.vmx.msr.vmx_basic_info = g_HvmR0.vmx.msr.vmx_basic_info;
pVM->hm.s.vmx.msr.vmx_pin_ctls = g_HvmR0.vmx.msr.vmx_pin_ctls;
pVM->hm.s.vmx.msr.vmx_proc_ctls = g_HvmR0.vmx.msr.vmx_proc_ctls;
pVM->hm.s.vmx.msr.vmx_proc_ctls2 = g_HvmR0.vmx.msr.vmx_proc_ctls2;
pVM->hm.s.vmx.msr.vmx_exit = g_HvmR0.vmx.msr.vmx_exit;
pVM->hm.s.vmx.msr.vmx_entry = g_HvmR0.vmx.msr.vmx_entry;
pVM->hm.s.vmx.msr.vmx_misc = g_HvmR0.vmx.msr.vmx_misc;
pVM->hm.s.vmx.msr.vmx_cr0_fixed0 = g_HvmR0.vmx.msr.vmx_cr0_fixed0;
pVM->hm.s.vmx.msr.vmx_cr0_fixed1 = g_HvmR0.vmx.msr.vmx_cr0_fixed1;
pVM->hm.s.vmx.msr.vmx_cr4_fixed0 = g_HvmR0.vmx.msr.vmx_cr4_fixed0;
pVM->hm.s.vmx.msr.vmx_cr4_fixed1 = g_HvmR0.vmx.msr.vmx_cr4_fixed1;
pVM->hm.s.vmx.msr.vmx_vmcs_enum = g_HvmR0.vmx.msr.vmx_vmcs_enum;
pVM->hm.s.vmx.msr.vmx_ept_vpid_caps = g_HvmR0.vmx.msr.vmx_ept_vpid_caps;
pVM->hm.s.svm.msrHwcr = g_HvmR0.svm.msrHwcr;
pVM->hm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
pVM->hm.s.svm.u32Features = g_HvmR0.svm.u32Features;
pVM->hm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
pVM->hm.s.lLastError = g_HvmR0.lLastError;
pVM->hm.s.uMaxAsid = g_HvmR0.uMaxAsid;
if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
{
pVM->hm.s.cMaxResumeLoops = 1024;
#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
if (RTThreadPreemptIsPendingTrusty())
pVM->hm.s.cMaxResumeLoops = 8192;
#endif
}
/*
* Initialize some per CPU fields.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
/* Invalidate the last cpu we were running on. */
pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
/* We'll aways increment this the first time (host uses ASID 0) */
pVCpu->hm.s.uCurrentAsid = 0;
}
/*
* Call the hardware specific initialization method.
*
* Note! The fInUse handling here isn't correct as we can we can be
* rescheduled to a different cpu, but the fInUse case is mostly for
* debugging... Disabling preemption isn't an option when allocating
* memory, so we'll let it slip for now.
*/
RTCCUINTREG fFlags = ASMIntDisableFlags();
PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
ASMAtomicWriteBool(&pCpu->fInUse, true);
ASMSetFlags(fFlags);
int rc = g_HvmR0.pfnInitVM(pVM);
ASMAtomicWriteBool(&pCpu->fInUse, false);
return rc;
}
/**
* Does Ring-0 per VM HM termination.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
{
Log(("HMR0TermVM: %p\n", pVM));
AssertReturn(pVM, VERR_INVALID_PARAMETER);
/* Make sure we don't touch hm after we've disabled hm in preparation
of a suspend. */
/** @todo r=bird: This cannot be right, the termination functions are
* just freeing memory and resetting pVM/pVCpu members...
* ==> memory leak. */
AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
/*
* Call the hardware specific method.
*
* Note! Not correct as we can be rescheduled to a different cpu, but the
* fInUse case is mostly for debugging.
*/
RTCCUINTREG fFlags = ASMIntDisableFlags();
PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
ASMAtomicWriteBool(&pCpu->fInUse, true);
ASMSetFlags(fFlags);
int rc = g_HvmR0.pfnTermVM(pVM);
ASMAtomicWriteBool(&pCpu->fInUse, false);
return rc;
}
/**
* Sets up a VT-x or AMD-V session.
*
* This is mostly about setting up the hardware VM state.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
{
Log(("HMR0SetupVM: %p\n", pVM));
AssertReturn(pVM, VERR_INVALID_PARAMETER);
/* Make sure we don't touch hm after we've disabled hm in
preparation of a suspend. */
AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
/*
* Call the hardware specific setup VM method. This requires the CPU to be
* enabled for AMD-V/VT-x and preemption to be prevented.
*/
RTCCUINTREG fFlags = ASMIntDisableFlags();
RTCPUID idCpu = RTMpCpuId();
PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
ASMAtomicWriteBool(&pCpu->fInUse, true);
/* On first entry we'll sync everything. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
pVM->aCpus[i].hm.s.fContextUseFlags = HM_CHANGED_ALL;
/* Enable VT-x or AMD-V if local init is required. */
int rc;
if (!g_HvmR0.fGlobalInit)
{
rc = hmR0EnableCpu(pVM, idCpu);
AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc);
}
/* Setup VT-x or AMD-V. */
rc = g_HvmR0.pfnSetupVM(pVM);
/* Disable VT-x or AMD-V if local init was done before. */
if (!g_HvmR0.fGlobalInit)
{
int rc2 = hmR0DisableCpu(idCpu);
AssertRC(rc2);
}
ASMAtomicWriteBool(&pCpu->fInUse, false);
ASMSetFlags(fFlags);
return rc;
}
/**
* Enters the VT-x or AMD-V session.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*
* @remarks This is called with preemption disabled.
*/
VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
{
RTCPUID idCpu = RTMpCpuId();
PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
/* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
ASMAtomicWriteBool(&pCpu->fInUse, true);
AssertMsg(pVCpu->hm.s.idEnteredCpu == NIL_RTCPUID, ("%d", (int)pVCpu->hm.s.idEnteredCpu));
pVCpu->hm.s.idEnteredCpu = idCpu;
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
/* Always load the guest's FPU/XMM state on-demand. */
CPUMDeactivateGuestFPUState(pVCpu);
/* Always load the guest's debug state on-demand. */
CPUMDeactivateGuestDebugState(pVCpu);
/* Always reload the host context and the guest's CR0 register. (!!!!) */
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0 | HM_CHANGED_HOST_CONTEXT;
/* Setup the register and mask according to the current execution mode. */
if (pCtx->msrEFER & MSR_K6_EFER_LMA)
pVM->hm.s.u64RegisterMask = UINT64_C(0xFFFFFFFFFFFFFFFF);
else
pVM->hm.s.u64RegisterMask = UINT64_C(0xFFFFFFFF);
/* Enable VT-x or AMD-V if local init is required, or enable if it's a
freshly onlined CPU. */
int rc;
if ( !pCpu->fConfigured
|| !g_HvmR0.fGlobalInit)
{
rc = hmR0EnableCpu(pVM, idCpu);
AssertRCReturn(rc, rc);
}
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
#endif
rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
AssertRC(rc);
/* We must save the host context here (VT-x) as we might be rescheduled on
a different cpu after a long jump back to ring 3. */
rc |= g_HvmR0.pfnSaveHostState(pVM, pVCpu);
AssertRC(rc);
rc |= g_HvmR0.pfnLoadGuestState(pVM, pVCpu, pCtx);
AssertRC(rc);
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
if (fStartedSet)
PGMRZDynMapReleaseAutoSet(pVCpu);
#endif
/* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
and ring-3 calls. */
if (RT_FAILURE(rc))
pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
return rc;
}
/**
* Leaves the VT-x or AMD-V session.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*
* @remarks Called with preemption disabled just like HMR0Enter, our
* counterpart.
*/
VMMR0_INT_DECL(int) HMR0Leave(PVM pVM, PVMCPU pVCpu)
{
int rc;
RTCPUID idCpu = RTMpCpuId();
PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
/** @todo r=bird: This can't be entirely right? */
AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
/*
* Save the guest FPU and XMM state if necessary.
*
* Note! It's rather tricky with longjmps done by e.g. Log statements or
* the page fault handler. We must restore the host FPU here to make
* absolutely sure we don't leave the guest FPU state active or trash
* somebody else's FPU state.
*/
if (CPUMIsGuestFPUStateActive(pVCpu))
{
Log2(("CPUMR0SaveGuestFPU\n"));
CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
Assert(!CPUMIsGuestFPUStateActive(pVCpu));
}
rc = g_HvmR0.pfnLeaveSession(pVM, pVCpu, pCtx);
/* We don't pass on invlpg information to the recompiler for nested paging
guests, so we must make sure the recompiler flushes its TLB the next
time it executes code. */
if ( pVM->hm.s.fNestedPaging
&& CPUMIsGuestInPagedProtectedModeEx(pCtx))
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
/* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
and ring-3 calls. */
AssertMsgStmt( pVCpu->hm.s.idEnteredCpu == idCpu
|| RT_FAILURE_NP(rc),
("Owner is %u, I'm %u", pVCpu->hm.s.idEnteredCpu, idCpu),
rc = VERR_HM_WRONG_CPU_1);
pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
/*
* Disable VT-x or AMD-V if local init was done before.
*/
if (!g_HvmR0.fGlobalInit)
{
rc = hmR0DisableCpu(idCpu);
AssertRC(rc);
/* Reset these to force a TLB flush for the next entry. (-> EXPENSIVE) */
pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
pVCpu->hm.s.uCurrentAsid = 0;
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
}
ASMAtomicWriteBool(&pCpu->fInUse, false);
return rc;
}
/**
* Runs guest code in a hardware accelerated VM.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*
* @remarks Called with preemption disabled and after first having called
* HMR0Enter.
*/
VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
{
#ifdef VBOX_STRICT
PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
Assert(pCpu->fConfigured);
AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
Assert(ASMAtomicReadBool(&pCpu->fInUse) == true);
#endif
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
PGMRZDynMapStartAutoSet(pVCpu);
#endif
int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
PGMRZDynMapReleaseAutoSet(pVCpu);
#endif
return rc;
}
#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
/**
* Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
if (pVM->hm.s.vmx.fSupported)
return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnSaveGuestFPU64, 0, NULL);
return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnSaveGuestFPU64, 0, NULL);
}
/**
* Save guest debug state (64 bits guest mode & 32 bits host only)
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
if (pVM->hm.s.vmx.fSupported)
return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnSaveGuestDebug64, 0, NULL);
return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnSaveGuestDebug64, 0, NULL);
}
/**
* Test the 32->64 bits switcher.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
*/
VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
{
PVMCPU pVCpu = &pVM->aCpus[0];
PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
uint32_t aParam[5] = {0, 1, 2, 3, 4};
int rc;
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
if (pVM->hm.s.vmx.fSupported)
rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnTest64, 5, &aParam[0]);
else
rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnTest64, 5, &aParam[0]);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
return rc;
}
#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
/**
* Returns suspend status of the host.
*
* @returns Suspend pending or not.
*/
VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
{
return ASMAtomicReadBool(&g_HvmR0.fSuspended);
}
/**
* Returns the cpu structure for the current cpu.
* Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
*
* @returns The cpu structure pointer.
*/
VMMR0DECL(PHMGLOBLCPUINFO) HMR0GetCurrentCpu(void)
{
RTCPUID idCpu = RTMpCpuId();
Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
return &g_HvmR0.aCpuInfo[idCpu];
}
/**
* Returns the cpu structure for the current cpu.
* Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
*
* @returns The cpu structure pointer.
* @param idCpu id of the VCPU.
*/
VMMR0DECL(PHMGLOBLCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
{
Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
return &g_HvmR0.aCpuInfo[idCpu];
}
/**
* Save a pending IO read.
*
* @param pVCpu Pointer to the VMCPU.
* @param GCPtrRip Address of IO instruction.
* @param GCPtrRipNext Address of the next instruction.
* @param uPort Port address.
* @param uAndVal AND mask for saving the result in eax.
* @param cbSize Read size.
*/
VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
unsigned uPort, unsigned uAndVal, unsigned cbSize)
{
pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
return;
}
/**
* Save a pending IO write.
*
* @param pVCpu Pointer to the VMCPU.
* @param GCPtrRIP Address of IO instruction.
* @param uPort Port address.
* @param uAndVal AND mask for fetching the result from eax.
* @param cbSize Read size.
*/
VMMR0_INT_DECL(void) HMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
unsigned uPort, unsigned uAndVal, unsigned cbSize)
{
pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_WRITE;
pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
return;
}
/**
* Raw-mode switcher hook - disable VT-x if it's active *and* the current
* switcher turns off paging.
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param enmSwitcher The switcher we're about to use.
* @param pfVTxDisabled Where to store whether VT-x was disabled or not.
*/
VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
{
Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
*pfVTxDisabled = false;
/* No such issues with AMD-V */
if (!g_HvmR0.vmx.fSupported)
return VINF_SUCCESS;
/* Check if the swithcing we're up to is safe. */
switch (enmSwitcher)
{
case VMMSWITCHER_32_TO_32:
case VMMSWITCHER_PAE_TO_PAE:
return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
case VMMSWITCHER_32_TO_PAE:
case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
case VMMSWITCHER_AMD64_TO_32:
case VMMSWITCHER_AMD64_TO_PAE:
break; /* unsafe switchers */
default:
AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
}
/* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
regardless of whether we're currently using VT-x or not. */
if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
{
*pfVTxDisabled = SUPR0SuspendVTxOnCpu();
return VINF_SUCCESS;
}
/** @todo Check if this code is presumtive wrt other VT-x users on the
* system... */
/* Nothing to do if we haven't enabled VT-x. */
if (!g_HvmR0.fEnabled)
return VINF_SUCCESS;
/* Local init implies the CPU is currently not in VMX root mode. */
if (!g_HvmR0.fGlobalInit)
return VINF_SUCCESS;
/* Ok, disable VT-x. */
PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
*pfVTxDisabled = true;
void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
}
/**
* Raw-mode switcher hook - re-enable VT-x if was active *and* the current
* switcher turned off paging.
*
* @param pVM Pointer to the VM.
* @param fVTxDisabled Whether VT-x was disabled or not.
*/
VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
{
Assert(!(ASMGetFlags() & X86_EFL_IF));
if (!fVTxDisabled)
return; /* nothing to do */
Assert(g_HvmR0.vmx.fSupported);
if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
SUPR0ResumeVTxOnCpu(fVTxDisabled);
else
{
Assert(g_HvmR0.fEnabled);
Assert(g_HvmR0.fGlobalInit);
PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ);
void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false);
}
}
#ifdef VBOX_STRICT
/**
* Dumps a descriptor.
*
* @param pDesc Descriptor to dump.
* @param Sel Selector number.
* @param pszMsg Message to prepend the log entry with.
*/
VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
{
/*
* Make variable description string.
*/
static struct
{
unsigned cch;
const char *psz;
} const s_aTypes[32] =
{
# define STRENTRY(str) { sizeof(str) - 1, str }
/* system */
# if HC_ARCH_BITS == 64
STRENTRY("Reserved0 "), /* 0x00 */
STRENTRY("Reserved1 "), /* 0x01 */
STRENTRY("LDT "), /* 0x02 */
STRENTRY("Reserved3 "), /* 0x03 */
STRENTRY("Reserved4 "), /* 0x04 */
STRENTRY("Reserved5 "), /* 0x05 */
STRENTRY("Reserved6 "), /* 0x06 */
STRENTRY("Reserved7 "), /* 0x07 */
STRENTRY("Reserved8 "), /* 0x08 */
STRENTRY("TSS64Avail "), /* 0x09 */
STRENTRY("ReservedA "), /* 0x0a */
STRENTRY("TSS64Busy "), /* 0x0b */
STRENTRY("Call64 "), /* 0x0c */
STRENTRY("ReservedD "), /* 0x0d */
STRENTRY("Int64 "), /* 0x0e */
STRENTRY("Trap64 "), /* 0x0f */
# else
STRENTRY("Reserved0 "), /* 0x00 */
STRENTRY("TSS16Avail "), /* 0x01 */
STRENTRY("LDT "), /* 0x02 */
STRENTRY("TSS16Busy "), /* 0x03 */
STRENTRY("Call16 "), /* 0x04 */
STRENTRY("Task "), /* 0x05 */
STRENTRY("Int16 "), /* 0x06 */
STRENTRY("Trap16 "), /* 0x07 */
STRENTRY("Reserved8 "), /* 0x08 */
STRENTRY("TSS32Avail "), /* 0x09 */
STRENTRY("ReservedA "), /* 0x0a */
STRENTRY("TSS32Busy "), /* 0x0b */
STRENTRY("Call32 "), /* 0x0c */
STRENTRY("ReservedD "), /* 0x0d */
STRENTRY("Int32 "), /* 0x0e */
STRENTRY("Trap32 "), /* 0x0f */
# endif
/* non system */
STRENTRY("DataRO "), /* 0x10 */
STRENTRY("DataRO Accessed "), /* 0x11 */
STRENTRY("DataRW "), /* 0x12 */
STRENTRY("DataRW Accessed "), /* 0x13 */
STRENTRY("DataDownRO "), /* 0x14 */
STRENTRY("DataDownRO Accessed "), /* 0x15 */
STRENTRY("DataDownRW "), /* 0x16 */
STRENTRY("DataDownRW Accessed "), /* 0x17 */
STRENTRY("CodeEO "), /* 0x18 */
STRENTRY("CodeEO Accessed "), /* 0x19 */
STRENTRY("CodeER "), /* 0x1a */
STRENTRY("CodeER Accessed "), /* 0x1b */
STRENTRY("CodeConfEO "), /* 0x1c */
STRENTRY("CodeConfEO Accessed "), /* 0x1d */
STRENTRY("CodeConfER "), /* 0x1e */
STRENTRY("CodeConfER Accessed ") /* 0x1f */
# undef SYSENTRY
};
# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
char szMsg[128];
char *psz = &szMsg[0];
unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
psz += s_aTypes[i].cch;
if (pDesc->Gen.u1Present)
ADD_STR(psz, "Present ");
else
ADD_STR(psz, "Not-Present ");
# if HC_ARCH_BITS == 64
if (pDesc->Gen.u1Long)
ADD_STR(psz, "64-bit ");
else
ADD_STR(psz, "Comp ");
# else
if (pDesc->Gen.u1Granularity)
ADD_STR(psz, "Page ");
if (pDesc->Gen.u1DefBig)
ADD_STR(psz, "32-bit ");
else
ADD_STR(psz, "16-bit ");
# endif
# undef ADD_STR
*psz = '\0';
/*
* Limit and Base and format the output.
*/
uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
# if HC_ARCH_BITS == 64
uint64_t u32Base = X86DESC64_BASE(pDesc);
Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
# else
uint32_t u32Base = X86DESC_BASE(pDesc);
Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
# endif
}
/**
* Formats a full register dump.
*
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the CPU context.
*/
VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
NOREF(pVM);
/*
* Format the flags.
*/
static struct
{
const char *pszSet; const char *pszClear; uint32_t fFlag;
} const s_aFlags[] =
{
{ "vip",NULL, X86_EFL_VIP },
{ "vif",NULL, X86_EFL_VIF },
{ "ac", NULL, X86_EFL_AC },
{ "vm", NULL, X86_EFL_VM },
{ "rf", NULL, X86_EFL_RF },
{ "nt", NULL, X86_EFL_NT },
{ "ov", "nv", X86_EFL_OF },
{ "dn", "up", X86_EFL_DF },
{ "ei", "di", X86_EFL_IF },
{ "tf", NULL, X86_EFL_TF },
{ "nt", "pl", X86_EFL_SF },
{ "nz", "zr", X86_EFL_ZF },
{ "ac", "na", X86_EFL_AF },
{ "po", "pe", X86_EFL_PF },
{ "cy", "nc", X86_EFL_CF },
};
char szEFlags[80];
char *psz = szEFlags;
uint32_t efl = pCtx->eflags.u32;
for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
{
const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
if (pszAdd)
{
strcpy(psz, pszAdd);
psz += strlen(pszAdd);
*psz++ = ' ';
}
}
psz[-1] = '\0';
/*
* Format the registers.
*/
if (CPUMIsGuestIn64BitCode(pVCpu))
{
Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
"rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
"r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
"r14=%016RX64 r15=%016RX64\n"
"rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
"cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
"dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
"dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
"gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
"ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
,
pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
pCtx->r14, pCtx->r15,
pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
}
else
Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
"eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
"cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
"ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
"es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
"fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
"gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
"ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
"gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
"ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
,
pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
Log(("FPU:\n"
"FCW=%04x FSW=%04x FTW=%02x\n"
"FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
"FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
,
pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW,
pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1,
pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2,
pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK));
Log(("MSR:\n"
"EFER =%016RX64\n"
"PAT =%016RX64\n"
"STAR =%016RX64\n"
"CSTAR =%016RX64\n"
"LSTAR =%016RX64\n"
"SFMASK =%016RX64\n"
"KERNELGSBASE =%016RX64\n",
pCtx->msrEFER,
pCtx->msrPAT,
pCtx->msrSTAR,
pCtx->msrCSTAR,
pCtx->msrLSTAR,
pCtx->msrSFMASK,
pCtx->msrKERNELGSBASE));
}
#endif /* VBOX_STRICT */