GVMMR0.cpp revision 6eac83229fa73f9b2a93fdca1ceade0ad71a895c
/* $Id$ */
/** @file
* GVMM - Global VM Manager.
*/
/*
* Copyright (C) 2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/** @page pg_gvmm GVMM - The Global VM Manager
*
* The Global VM Manager lives in ring-0. It's main function at the moment
* is to manage a list of all running VMs, keep a ring-0 only structure (GVM)
* for each of them, and assign them unique identifiers (so GMM can track
* page owners). The idea for the future is to add an idle priority kernel
* thread that can take care of tasks like page sharing.
*
* The GVMM will create a ring-0 object for each VM when it's registered,
* this is both for session cleanup purposes and for having a point where
* it's possible to implement usage polices later (in SUPR0ObjRegister).
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_GVMM
#include <VBox/gvmm.h>
#include <VBox/gmm.h>
#include "GVMMR0Internal.h"
#include <VBox/gvm.h>
#include <VBox/vm.h>
#include <VBox/vmm.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/alloc.h>
#include <iprt/semaphore.h>
#include <iprt/time.h>
#include <VBox/log.h>
#include <iprt/thread.h>
#include <iprt/process.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include <iprt/assert.h>
#include <iprt/mem.h>
#include <iprt/memobj.h>
#include <iprt/mp.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Global VM handle.
*/
typedef struct GVMHANDLE
{
/** The index of the next handle in the list (free or used). (0 is nil.) */
uint16_t volatile iNext;
/** Our own index / handle value. */
uint16_t iSelf;
/** The pointer to the ring-0 only (aka global) VM structure. */
PGVM pGVM;
/** The ring-0 mapping of the shared VM instance data. */
PVM pVM;
/** The virtual machine object. */
void *pvObj;
/** The session this VM is associated with. */
PSUPDRVSESSION pSession;
/** The ring-0 handle of the EMT0 thread.
* This is used for ownership checks as well as looking up a VM handle by thread
* at times like assertions. */
RTNATIVETHREAD hEMT0;
/** The process ID of the handle owner.
* This is used for access checks. */
RTPROCESS ProcId;
} GVMHANDLE;
/** Pointer to a global VM handle. */
typedef GVMHANDLE *PGVMHANDLE;
/** Number of GVM handles (including the NIL handle). */
#if HC_ARCH_BITS == 64
# define GVMM_MAX_HANDLES 1024
#else
# define GVMM_MAX_HANDLES 128
#endif
/**
* The GVMM instance data.
*/
typedef struct GVMM
{
/** Eyecatcher / magic. */
uint32_t u32Magic;
/** The index of the head of the free handle chain. (0 is nil.) */
uint16_t volatile iFreeHead;
/** The index of the head of the active handle chain. (0 is nil.) */
uint16_t volatile iUsedHead;
/** The number of VMs. */
uint16_t volatile cVMs;
// /** The number of halted EMT threads. */
// uint16_t volatile cHaltedEMTs;
/** The lock used to serialize VM creation, destruction and associated events that
* isn't performance critical. Owners may acquire the list lock. */
RTSEMFASTMUTEX CreateDestroyLock;
/** The lock used to serialize used list updates and accesses.
* This indirectly includes scheduling since the scheduler will have to walk the
* used list to examin running VMs. Owners may not acquire any other locks. */
RTSEMFASTMUTEX UsedLock;
/** The handle array.
* The size of this array defines the maximum number of currently running VMs.
* The first entry is unused as it represents the NIL handle. */
GVMHANDLE aHandles[GVMM_MAX_HANDLES];
/** @gcfgm{/GVMM/cVMsMeansCompany, 32-bit, 0, UINT32_MAX, 1}
* The number of VMs that means we no longer consider ourselves alone on a CPU/Core.
*/
uint32_t cVMsMeansCompany;
/** @gcfgm{/GVMM/MinSleepAlone,32-bit, 0, 100000000, 750000, ns}
* The minimum sleep time for when we're alone, in nano seconds.
*/
uint32_t nsMinSleepAlone;
/** @gcfgm{/GVMM/MinSleepCompany,32-bit,0, 100000000, 15000, ns}
* The minimum sleep time for when we've got company, in nano seconds.
*/
uint32_t nsMinSleepCompany;
/** @gcfgm{/GVMM/EarlyWakeUp1, 32-bit, 0, 100000000, 25000, ns}
* The limit for the first round of early wakeups, given in nano seconds.
*/
uint32_t nsEarlyWakeUp1;
/** @gcfgm{/GVMM/EarlyWakeUp2, 32-bit, 0, 100000000, 50000, ns}
* The limit for the second round of early wakeups, given in nano seconds.
*/
uint32_t nsEarlyWakeUp2;
} GVMM;
/** Pointer to the GVMM instance data. */
typedef GVMM *PGVMM;
/** The GVMM::u32Magic value (Charlie Haden). */
#define GVMM_MAGIC 0x19370806
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** Pointer to the GVMM instance data.
* (Just my general dislike for global variables.) */
static PGVMM g_pGVMM = NULL;
/** Macro for obtaining and validating the g_pGVMM pointer.
* On failure it will return from the invoking function with the specified return value.
*
* @param pGVMM The name of the pGVMM variable.
* @param rc The return value on failure. Use VERR_INTERNAL_ERROR for
* VBox status codes.
*/
#define GVMM_GET_VALID_INSTANCE(pGVMM, rc) \
do { \
(pGVMM) = g_pGVMM;\
AssertPtrReturn((pGVMM), (rc)); \
AssertMsgReturn((pGVMM)->u32Magic == GVMM_MAGIC, ("%p - %#x\n", (pGVMM), (pGVMM)->u32Magic), (rc)); \
} while (0)
/** Macro for obtaining and validating the g_pGVMM pointer, void function variant.
* On failure it will return from the invoking function.
*
* @param pGVMM The name of the pGVMM variable.
*/
#define GVMM_GET_VALID_INSTANCE_VOID(pGVMM) \
do { \
(pGVMM) = g_pGVMM;\
AssertPtrReturnVoid((pGVMM)); \
AssertMsgReturnVoid((pGVMM)->u32Magic == GVMM_MAGIC, ("%p - %#x\n", (pGVMM), (pGVMM)->u32Magic)); \
} while (0)
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void gvmmR0InitPerVMData(PGVM pGVM);
static DECLCALLBACK(void) gvmmR0HandleObjDestructor(void *pvObj, void *pvGVMM, void *pvHandle);
static int gvmmR0ByVM(PVM pVM, PGVM *ppGVM, PGVMM *ppGVMM, bool fTakeUsedLock);
static int gvmmR0ByVMAndEMT(PVM pVM, VMCPUID idCpu, PGVM *ppGVM, PGVMM *ppGVMM);
/**
* Initializes the GVMM.
*
* This is called while owninng the loader sempahore (see supdrvIOCtl_LdrLoad()).
*
* @returns VBox status code.
*/
GVMMR0DECL(int) GVMMR0Init(void)
{
LogFlow(("GVMMR0Init:\n"));
/*
* Allocate and initialize the instance data.
*/
PGVMM pGVMM = (PGVMM)RTMemAllocZ(sizeof(*pGVMM));
if (!pGVMM)
return VERR_NO_MEMORY;
int rc = RTSemFastMutexCreate(&pGVMM->CreateDestroyLock);
if (RT_SUCCESS(rc))
{
rc = RTSemFastMutexCreate(&pGVMM->UsedLock);
if (RT_SUCCESS(rc))
{
pGVMM->u32Magic = GVMM_MAGIC;
pGVMM->iUsedHead = 0;
pGVMM->iFreeHead = 1;
/* the nil handle */
pGVMM->aHandles[0].iSelf = 0;
pGVMM->aHandles[0].iNext = 0;
/* the tail */
unsigned i = RT_ELEMENTS(pGVMM->aHandles) - 1;
pGVMM->aHandles[i].iSelf = i;
pGVMM->aHandles[i].iNext = 0; /* nil */
/* the rest */
while (i-- > 1)
{
pGVMM->aHandles[i].iSelf = i;
pGVMM->aHandles[i].iNext = i + 1;
}
/* The default configuration values. */
pGVMM->cVMsMeansCompany = 1; /** @todo should be adjusted to relative to the cpu count or something... */
pGVMM->nsMinSleepAlone = 750000 /* ns (0.750 ms) */; /** @todo this should be adjusted to be 75% (or something) of the scheduler granularity... */
pGVMM->nsMinSleepCompany = 15000 /* ns (0.015 ms) */;
pGVMM->nsEarlyWakeUp1 = 25000 /* ns (0.025 ms) */;
pGVMM->nsEarlyWakeUp2 = 50000 /* ns (0.050 ms) */;
g_pGVMM = pGVMM;
LogFlow(("GVMMR0Init: pGVMM=%p\n", pGVMM));
return VINF_SUCCESS;
}
RTSemFastMutexDestroy(pGVMM->CreateDestroyLock);
}
RTMemFree(pGVMM);
return rc;
}
/**
* Terminates the GVM.
*
* This is called while owning the loader semaphore (see supdrvLdrFree()).
* And unless something is wrong, there should be absolutely no VMs
* registered at this point.
*/
GVMMR0DECL(void) GVMMR0Term(void)
{
LogFlow(("GVMMR0Term:\n"));
PGVMM pGVMM = g_pGVMM;
g_pGVMM = NULL;
if (RT_UNLIKELY(!VALID_PTR(pGVMM)))
{
SUPR0Printf("GVMMR0Term: pGVMM=%p\n", pGVMM);
return;
}
pGVMM->u32Magic++;
RTSemFastMutexDestroy(pGVMM->UsedLock);
pGVMM->UsedLock = NIL_RTSEMFASTMUTEX;
RTSemFastMutexDestroy(pGVMM->CreateDestroyLock);
pGVMM->CreateDestroyLock = NIL_RTSEMFASTMUTEX;
pGVMM->iFreeHead = 0;
if (pGVMM->iUsedHead)
{
SUPR0Printf("GVMMR0Term: iUsedHead=%#x! (cVMs=%#x)\n", pGVMM->iUsedHead, pGVMM->cVMs);
pGVMM->iUsedHead = 0;
}
RTMemFree(pGVMM);
}
/**
* A quick hack for setting global config values.
*
* @returns VBox status code.
*
* @param pSession The session handle. Used for authentication.
* @param pszName The variable name.
* @param u64Value The new value.
*/
GVMMR0DECL(int) GVMMR0SetConfig(PSUPDRVSESSION pSession, const char *pszName, uint64_t u64Value)
{
/*
* Validate input.
*/
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
AssertPtrReturn(pSession, VERR_INVALID_HANDLE);
AssertPtrReturn(pszName, VERR_INVALID_POINTER);
/*
* String switch time!
*/
if (strncmp(pszName, "/GVMM/", sizeof("/GVMM/") - 1))
return VERR_CFGM_VALUE_NOT_FOUND; /* borrow status codes from CFGM... */
int rc = VINF_SUCCESS;
pszName += sizeof("/GVMM/") - 1;
if (!strcmp(pszName, "cVMsMeansCompany"))
{
if (u64Value <= UINT32_MAX)
pGVMM->cVMsMeansCompany = u64Value;
else
rc = VERR_OUT_OF_RANGE;
}
else if (!strcmp(pszName, "MinSleepAlone"))
{
if (u64Value <= 100000000)
pGVMM->nsMinSleepAlone = u64Value;
else
rc = VERR_OUT_OF_RANGE;
}
else if (!strcmp(pszName, "MinSleepCompany"))
{
if (u64Value <= 100000000)
pGVMM->nsMinSleepCompany = u64Value;
else
rc = VERR_OUT_OF_RANGE;
}
else if (!strcmp(pszName, "EarlyWakeUp1"))
{
if (u64Value <= 100000000)
pGVMM->nsEarlyWakeUp1 = u64Value;
else
rc = VERR_OUT_OF_RANGE;
}
else if (!strcmp(pszName, "EarlyWakeUp2"))
{
if (u64Value <= 100000000)
pGVMM->nsEarlyWakeUp2 = u64Value;
else
rc = VERR_OUT_OF_RANGE;
}
else
rc = VERR_CFGM_VALUE_NOT_FOUND;
return rc;
}
/**
* A quick hack for getting global config values.
*
* @returns VBox status code.
*
* @param pSession The session handle. Used for authentication.
* @param pszName The variable name.
* @param u64Value The new value.
*/
GVMMR0DECL(int) GVMMR0QueryConfig(PSUPDRVSESSION pSession, const char *pszName, uint64_t *pu64Value)
{
/*
* Validate input.
*/
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
AssertPtrReturn(pSession, VERR_INVALID_HANDLE);
AssertPtrReturn(pszName, VERR_INVALID_POINTER);
AssertPtrReturn(pu64Value, VERR_INVALID_POINTER);
/*
* String switch time!
*/
if (strncmp(pszName, "/GVMM/", sizeof("/GVMM/") - 1))
return VERR_CFGM_VALUE_NOT_FOUND; /* borrow status codes from CFGM... */
int rc = VINF_SUCCESS;
pszName += sizeof("/GVMM/") - 1;
if (!strcmp(pszName, "cVMsMeansCompany"))
*pu64Value = pGVMM->cVMsMeansCompany;
else if (!strcmp(pszName, "MinSleepAlone"))
*pu64Value = pGVMM->nsMinSleepAlone;
else if (!strcmp(pszName, "MinSleepCompany"))
*pu64Value = pGVMM->nsMinSleepCompany;
else if (!strcmp(pszName, "EarlyWakeUp1"))
*pu64Value = pGVMM->nsEarlyWakeUp1;
else if (!strcmp(pszName, "EarlyWakeUp2"))
*pu64Value = pGVMM->nsEarlyWakeUp2;
else
rc = VERR_CFGM_VALUE_NOT_FOUND;
return rc;
}
/**
* Try acquire the 'used' lock.
*
* @returns IPRT status code, see RTSemFastMutexRequest.
* @param pGVMM The GVMM instance data.
*/
DECLINLINE(int) gvmmR0UsedLock(PGVMM pGVMM)
{
LogFlow(("++gvmmR0UsedLock(%p)\n", pGVMM));
int rc = RTSemFastMutexRequest(pGVMM->UsedLock);
LogFlow(("gvmmR0UsedLock(%p)->%Rrc\n", pGVMM, rc));
return rc;
}
/**
* Release the 'used' lock.
*
* @returns IPRT status code, see RTSemFastMutexRelease.
* @param pGVMM The GVMM instance data.
*/
DECLINLINE(int) gvmmR0UsedUnlock(PGVMM pGVMM)
{
LogFlow(("--gvmmR0UsedUnlock(%p)\n", pGVMM));
int rc = RTSemFastMutexRelease(pGVMM->UsedLock);
AssertRC(rc);
return rc;
}
/**
* Try acquire the 'create & destroy' lock.
*
* @returns IPRT status code, see RTSemFastMutexRequest.
* @param pGVMM The GVMM instance data.
*/
DECLINLINE(int) gvmmR0CreateDestroyLock(PGVMM pGVMM)
{
LogFlow(("++gvmmR0CreateDestroyLock(%p)\n", pGVMM));
int rc = RTSemFastMutexRequest(pGVMM->CreateDestroyLock);
LogFlow(("gvmmR0CreateDestroyLock(%p)->%Rrc\n", pGVMM, rc));
return rc;
}
/**
* Release the 'create & destroy' lock.
*
* @returns IPRT status code, see RTSemFastMutexRequest.
* @param pGVMM The GVMM instance data.
*/
DECLINLINE(int) gvmmR0CreateDestroyUnlock(PGVMM pGVMM)
{
LogFlow(("--gvmmR0CreateDestroyUnlock(%p)\n", pGVMM));
int rc = RTSemFastMutexRelease(pGVMM->CreateDestroyLock);
AssertRC(rc);
return rc;
}
/**
* Request wrapper for the GVMMR0CreateVM API.
*
* @returns VBox status code.
* @param pReq The request buffer.
*/
GVMMR0DECL(int) GVMMR0CreateVMReq(PGVMMCREATEVMREQ pReq)
{
/*
* Validate the request.
*/
if (!VALID_PTR(pReq))
return VERR_INVALID_POINTER;
if (pReq->Hdr.cbReq != sizeof(*pReq))
return VERR_INVALID_PARAMETER;
if (!VALID_PTR(pReq->pSession))
return VERR_INVALID_POINTER;
/*
* Execute it.
*/
PVM pVM;
pReq->pVMR0 = NULL;
pReq->pVMR3 = NIL_RTR3PTR;
int rc = GVMMR0CreateVM(pReq->pSession, pReq->cCpus, &pVM);
if (RT_SUCCESS(rc))
{
pReq->pVMR0 = pVM;
pReq->pVMR3 = pVM->pVMR3;
}
return rc;
}
/**
* Allocates the VM structure and registers it with GVM.
*
* The caller will become the VM owner and there by the EMT.
*
* @returns VBox status code.
* @param pSession The support driver session.
* @param cCpus Number of virtual CPUs for the new VM.
* @param ppVM Where to store the pointer to the VM structure.
*
* @thread EMT.
*/
GVMMR0DECL(int) GVMMR0CreateVM(PSUPDRVSESSION pSession, uint32_t cCpus, PVM *ppVM)
{
LogFlow(("GVMMR0CreateVM: pSession=%p\n", pSession));
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
AssertPtrReturn(ppVM, VERR_INVALID_POINTER);
*ppVM = NULL;
if ( cCpus == 0
|| cCpus > VMM_MAX_CPU_COUNT)
return VERR_INVALID_PARAMETER;
RTNATIVETHREAD hEMT0 = RTThreadNativeSelf();
AssertReturn(hEMT0 != NIL_RTNATIVETHREAD, VERR_INTERNAL_ERROR);
RTNATIVETHREAD ProcId = RTProcSelf();
AssertReturn(ProcId != NIL_RTPROCESS, VERR_INTERNAL_ERROR);
/*
* The whole allocation process is protected by the lock.
*/
int rc = gvmmR0CreateDestroyLock(pGVMM);
AssertRCReturn(rc, rc);
/*
* Allocate a handle first so we don't waste resources unnecessarily.
*/
uint16_t iHandle = pGVMM->iFreeHead;
if (iHandle)
{
PGVMHANDLE pHandle = &pGVMM->aHandles[iHandle];
/* consistency checks, a bit paranoid as always. */
if ( !pHandle->pVM
&& !pHandle->pGVM
&& !pHandle->pvObj
&& pHandle->iSelf == iHandle)
{
pHandle->pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_VM, gvmmR0HandleObjDestructor, pGVMM, pHandle);
if (pHandle->pvObj)
{
/*
* Move the handle from the free to used list and perform permission checks.
*/
rc = gvmmR0UsedLock(pGVMM);
AssertRC(rc);
pGVMM->iFreeHead = pHandle->iNext;
pHandle->iNext = pGVMM->iUsedHead;
pGVMM->iUsedHead = iHandle;
pGVMM->cVMs++;
pHandle->pVM = NULL;
pHandle->pGVM = NULL;
pHandle->pSession = pSession;
pHandle->hEMT0 = NIL_RTNATIVETHREAD;
pHandle->ProcId = NIL_RTPROCESS;
gvmmR0UsedUnlock(pGVMM);
rc = SUPR0ObjVerifyAccess(pHandle->pvObj, pSession, NULL);
if (RT_SUCCESS(rc))
{
/*
* Allocate the global VM structure (GVM) and initialize it.
*/
PGVM pGVM = (PGVM)RTMemAllocZ(RT_UOFFSETOF(GVM, aCpus[cCpus]));
if (pGVM)
{
pGVM->u32Magic = GVM_MAGIC;
pGVM->hSelf = iHandle;
pGVM->pVM = NULL;
pGVM->cCpus = cCpus;
gvmmR0InitPerVMData(pGVM);
GMMR0InitPerVMData(pGVM);
/*
* Allocate the shared VM structure and associated page array.
*/
const uint32_t cbVM = RT_UOFFSETOF(VM, aCpus[cCpus]);
const uint32_t cPages = RT_ALIGN_32(cbVM, PAGE_SIZE) >> PAGE_SHIFT;
rc = RTR0MemObjAllocLow(&pGVM->gvmm.s.VMMemObj, cPages << PAGE_SHIFT, false /* fExecutable */);
if (RT_SUCCESS(rc))
{
PVM pVM = (PVM)RTR0MemObjAddress(pGVM->gvmm.s.VMMemObj); AssertPtr(pVM);
memset(pVM, 0, cPages << PAGE_SHIFT);
pVM->enmVMState = VMSTATE_CREATING;
pVM->pVMR0 = pVM;
pVM->pSession = pSession;
pVM->hSelf = iHandle;
pVM->cbSelf = cbVM;
pVM->cCPUs = cCpus;
pVM->offVMCPU = RT_UOFFSETOF(VM, aCpus);
rc = RTR0MemObjAllocPage(&pGVM->gvmm.s.VMPagesMemObj, cPages * sizeof(SUPPAGE), false /* fExecutable */);
if (RT_SUCCESS(rc))
{
PSUPPAGE paPages = (PSUPPAGE)RTR0MemObjAddress(pGVM->gvmm.s.VMPagesMemObj); AssertPtr(paPages);
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
paPages[iPage].uReserved = 0;
paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pGVM->gvmm.s.VMMemObj, iPage);
Assert(paPages[iPage].Phys != NIL_RTHCPHYS);
}
/*
* Map them into ring-3.
*/
rc = RTR0MemObjMapUser(&pGVM->gvmm.s.VMMapObj, pGVM->gvmm.s.VMMemObj, (RTR3PTR)-1, 0,
RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
pVM->pVMR3 = RTR0MemObjAddressR3(pGVM->gvmm.s.VMMapObj);
AssertPtr((void *)pVM->pVMR3);
/* Initialize all the VM pointers. */
for (uint32_t i = 0; i < cCpus; i++)
{
pVM->aCpus[i].pVMR0 = pVM;
pVM->aCpus[i].pVMR3 = pVM->pVMR3;
}
rc = RTR0MemObjMapUser(&pGVM->gvmm.s.VMPagesMapObj, pGVM->gvmm.s.VMPagesMemObj, (RTR3PTR)-1, 0,
RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
pVM->paVMPagesR3 = RTR0MemObjAddressR3(pGVM->gvmm.s.VMPagesMapObj);
AssertPtr((void *)pVM->paVMPagesR3);
/* complete the handle - take the UsedLock sem just to be careful. */
rc = gvmmR0UsedLock(pGVMM);
AssertRC(rc);
pHandle->pVM = pVM;
pHandle->pGVM = pGVM;
pHandle->hEMT0 = hEMT0;
pHandle->ProcId = ProcId;
pGVM->pVM = pVM;
pGVM->aCpus[0].hEMT = hEMT0;
gvmmR0UsedUnlock(pGVMM);
gvmmR0CreateDestroyUnlock(pGVMM);
*ppVM = pVM;
Log(("GVMMR0CreateVM: pVM=%p pVMR3=%p pGVM=%p hGVM=%d\n", pVM, pVM->pVMR3, pGVM, iHandle));
return VINF_SUCCESS;
}
RTR0MemObjFree(pGVM->gvmm.s.VMMapObj, false /* fFreeMappings */);
pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
}
RTR0MemObjFree(pGVM->gvmm.s.VMPagesMemObj, false /* fFreeMappings */);
pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
}
RTR0MemObjFree(pGVM->gvmm.s.VMMemObj, false /* fFreeMappings */);
pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
}
}
}
/* else: The user wasn't permitted to create this VM. */
/*
* The handle will be freed by gvmmR0HandleObjDestructor as we release the
* object reference here. A little extra mess because of non-recursive lock.
*/
void *pvObj = pHandle->pvObj;
pHandle->pvObj = NULL;
gvmmR0CreateDestroyUnlock(pGVMM);
SUPR0ObjRelease(pvObj, pSession);
SUPR0Printf("GVMMR0CreateVM: failed, rc=%d\n", rc);
return rc;
}
rc = VERR_NO_MEMORY;
}
else
rc = VERR_INTERNAL_ERROR;
}
else
rc = VERR_GVM_TOO_MANY_VMS;
gvmmR0CreateDestroyUnlock(pGVMM);
return rc;
}
/**
* Initializes the per VM data belonging to GVMM.
*
* @param pGVM Pointer to the global VM structure.
*/
static void gvmmR0InitPerVMData(PGVM pGVM)
{
AssertCompile(RT_SIZEOFMEMB(GVM,gvmm.s) <= RT_SIZEOFMEMB(GVM,gvmm.padding));
AssertCompile(RT_SIZEOFMEMB(GVMCPU,gvmm.s) <= RT_SIZEOFMEMB(GVMCPU,gvmm.padding));
pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
pGVM->gvmm.s.VMPagesMapObj = NIL_RTR0MEMOBJ;
pGVM->gvmm.s.fDoneVMMR0Init = false;
pGVM->gvmm.s.fDoneVMMR0Term = false;
for (VMCPUID i = 0; i < pGVM->cCpus; i++)
{
pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
pGVM->aCpus[i].hEMT = NIL_RTNATIVETHREAD;
}
}
/**
* Does the VM initialization.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
*/
GVMMR0DECL(int) GVMMR0InitVM(PVM pVM)
{
LogFlow(("GVMMR0InitVM: pVM=%p\n", pVM));
/*
* Validate the VM structure, state and handle.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVMAndEMT(pVM, 0 /* idCpu */, &pGVM, &pGVMM);
if (RT_SUCCESS(rc))
{
if ( !pGVM->gvmm.s.fDoneVMMR0Init
&& pGVM->aCpus[0].gvmm.s.HaltEventMulti == NIL_RTSEMEVENTMULTI)
{
for (VMCPUID i = 0; i < pGVM->cCpus; i++)
{
rc = RTSemEventMultiCreate(&pGVM->aCpus[i].gvmm.s.HaltEventMulti);
if (RT_FAILURE(rc))
{
pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
break;
}
}
}
else
rc = VERR_WRONG_ORDER;
}
LogFlow(("GVMMR0InitVM: returns %Rrc\n", rc));
return rc;
}
/**
* Indicates that we're done with the ring-0 initialization
* of the VM.
*
* @param pVM Pointer to the shared VM structure.
* @thread EMT(0)
*/
GVMMR0DECL(void) GVMMR0DoneInitVM(PVM pVM)
{
/* Validate the VM structure, state and handle. */
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVMAndEMT(pVM, 0 /* idCpu */, &pGVM, &pGVMM);
AssertRCReturnVoid(rc);
/* Set the indicator. */
pGVM->gvmm.s.fDoneVMMR0Init = true;
}
/**
* Indicates that we're doing the ring-0 termination of the VM.
*
* @returns true if termination hasn't been done already, false if it has.
* @param pVM Pointer to the shared VM structure.
* @param pGVM Pointer to the global VM structure. Optional.
* @thread EMT(0)
*/
GVMMR0DECL(bool) GVMMR0DoingTermVM(PVM pVM, PGVM pGVM)
{
/* Validate the VM structure, state and handle. */
AssertPtrNullReturn(pGVM, false);
AssertReturn(!pGVM || pGVM->u32Magic == GVM_MAGIC, false);
if (!pGVM)
{
PGVMM pGVMM;
int rc = gvmmR0ByVMAndEMT(pVM, 0 /* idCpu */, &pGVM, &pGVMM);
AssertRCReturn(rc, false);
}
/* Set the indicator. */
if (pGVM->gvmm.s.fDoneVMMR0Term)
return false;
pGVM->gvmm.s.fDoneVMMR0Term = true;
return true;
}
/**
* Destroys the VM, freeing all associated resources (the ring-0 ones anyway).
*
* This is call from the vmR3DestroyFinalBit and from a error path in VMR3Create,
* and the caller is not the EMT thread, unfortunately. For security reasons, it
* would've been nice if the caller was actually the EMT thread or that we somehow
* could've associated the calling thread with the VM up front.
*
* @returns VBox status code.
* @param pVM Where to store the pointer to the VM structure.
*
* @thread EMT(0) if it's associated with the VM, otherwise any thread.
*/
GVMMR0DECL(int) GVMMR0DestroyVM(PVM pVM)
{
LogFlow(("GVMMR0DestroyVM: pVM=%p\n", pVM));
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
/*
* Validate the VM structure, state and caller.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertReturn(!((uintptr_t)pVM & PAGE_OFFSET_MASK), VERR_INVALID_POINTER);
AssertMsgReturn(pVM->enmVMState >= VMSTATE_CREATING && pVM->enmVMState <= VMSTATE_TERMINATED, ("%d\n", pVM->enmVMState), VERR_WRONG_ORDER);
uint32_t hGVM = pVM->hSelf;
AssertReturn(hGVM != NIL_GVM_HANDLE, VERR_INVALID_HANDLE);
AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_HANDLE);
PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
AssertReturn(pHandle->pVM == pVM, VERR_NOT_OWNER);
RTPROCESS ProcId = RTProcSelf();
RTNATIVETHREAD hSelf = RTThreadNativeSelf();
AssertReturn( ( pHandle->hEMT0 == hSelf
&& pHandle->ProcId == ProcId)
|| pHandle->hEMT0 == NIL_RTNATIVETHREAD, VERR_NOT_OWNER);
/*
* Lookup the handle and destroy the object.
* Since the lock isn't recursive and we'll have to leave it before dereferencing the
* object, we take some precautions against racing callers just in case...
*/
int rc = gvmmR0CreateDestroyLock(pGVMM);
AssertRC(rc);
/* be careful here because we might theoretically be racing someone else cleaning up. */
if ( pHandle->pVM == pVM
&& ( ( pHandle->hEMT0 == hSelf
&& pHandle->ProcId == ProcId)
|| pHandle->hEMT0 == NIL_RTNATIVETHREAD)
&& VALID_PTR(pHandle->pvObj)
&& VALID_PTR(pHandle->pSession)
&& VALID_PTR(pHandle->pGVM)
&& pHandle->pGVM->u32Magic == GVM_MAGIC)
{
void *pvObj = pHandle->pvObj;
pHandle->pvObj = NULL;
gvmmR0CreateDestroyUnlock(pGVMM);
SUPR0ObjRelease(pvObj, pHandle->pSession);
}
else
{
SUPR0Printf("GVMMR0DestroyVM: pHandle=%p:{.pVM=%p, .hEMT0=%p, .ProcId=%u, .pvObj=%p} pVM=%p hSelf=%p\n",
pHandle, pHandle->pVM, pHandle->hEMT0, pHandle->ProcId, pHandle->pvObj, pVM, hSelf);
gvmmR0CreateDestroyUnlock(pGVMM);
rc = VERR_INTERNAL_ERROR;
}
return rc;
}
/**
* Performs VM cleanup task as part of object destruction.
*
* @param pGVM The GVM pointer.
*/
static void gvmmR0CleanupVM(PGVM pGVM)
{
if ( pGVM->gvmm.s.fDoneVMMR0Init
&& !pGVM->gvmm.s.fDoneVMMR0Term)
{
if ( pGVM->gvmm.s.VMMemObj != NIL_RTR0MEMOBJ
&& RTR0MemObjAddress(pGVM->gvmm.s.VMMemObj) == pGVM->pVM)
{
LogFlow(("gvmmR0CleanupVM: Calling VMMR0TermVM\n"));
VMMR0TermVM(pGVM->pVM, pGVM);
}
else
AssertMsgFailed(("gvmmR0CleanupVM: VMMemObj=%p pVM=%p\n", pGVM->gvmm.s.VMMemObj, pGVM->pVM));
}
GMMR0CleanupVM(pGVM);
}
/**
* Handle destructor.
*
* @param pvGVMM The GVM instance pointer.
* @param pvHandle The handle pointer.
*/
static DECLCALLBACK(void) gvmmR0HandleObjDestructor(void *pvObj, void *pvGVMM, void *pvHandle)
{
LogFlow(("gvmmR0HandleObjDestructor: %p %p %p\n", pvObj, pvGVMM, pvHandle));
/*
* Some quick, paranoid, input validation.
*/
PGVMHANDLE pHandle = (PGVMHANDLE)pvHandle;
AssertPtr(pHandle);
PGVMM pGVMM = (PGVMM)pvGVMM;
Assert(pGVMM == g_pGVMM);
const uint16_t iHandle = pHandle - &pGVMM->aHandles[0];
if ( !iHandle
|| iHandle >= RT_ELEMENTS(pGVMM->aHandles)
|| iHandle != pHandle->iSelf)
{
SUPR0Printf("GVM: handle %d is out of range or corrupt (iSelf=%d)!\n", iHandle, pHandle->iSelf);
return;
}
int rc = gvmmR0CreateDestroyLock(pGVMM);
AssertRC(rc);
rc = gvmmR0UsedLock(pGVMM);
AssertRC(rc);
/*
* This is a tad slow but a doubly linked list is too much hazzle.
*/
if (RT_UNLIKELY(pHandle->iNext >= RT_ELEMENTS(pGVMM->aHandles)))
{
SUPR0Printf("GVM: used list index %d is out of range!\n", pHandle->iNext);
gvmmR0UsedUnlock(pGVMM);
gvmmR0CreateDestroyUnlock(pGVMM);
return;
}
if (pGVMM->iUsedHead == iHandle)
pGVMM->iUsedHead = pHandle->iNext;
else
{
uint16_t iPrev = pGVMM->iUsedHead;
int c = RT_ELEMENTS(pGVMM->aHandles) + 2;
while (iPrev)
{
if (RT_UNLIKELY(iPrev >= RT_ELEMENTS(pGVMM->aHandles)))
{
SUPR0Printf("GVM: used list index %d is out of range!\n");
gvmmR0UsedUnlock(pGVMM);
gvmmR0CreateDestroyUnlock(pGVMM);
return;
}
if (RT_UNLIKELY(c-- <= 0))
{
iPrev = 0;
break;
}
if (pGVMM->aHandles[iPrev].iNext == iHandle)
break;
iPrev = pGVMM->aHandles[iPrev].iNext;
}
if (!iPrev)
{
SUPR0Printf("GVM: can't find the handle previous previous of %d!\n", pHandle->iSelf);
gvmmR0UsedUnlock(pGVMM);
gvmmR0CreateDestroyUnlock(pGVMM);
return;
}
Assert(pGVMM->aHandles[iPrev].iNext == iHandle);
pGVMM->aHandles[iPrev].iNext = pHandle->iNext;
}
pHandle->iNext = 0;
pGVMM->cVMs--;
gvmmR0UsedUnlock(pGVMM);
/*
* Do the global cleanup round.
*/
PGVM pGVM = pHandle->pGVM;
if ( VALID_PTR(pGVM)
&& pGVM->u32Magic == GVM_MAGIC)
{
gvmmR0CleanupVM(pGVM);
/*
* Do the GVMM cleanup - must be done last.
*/
/* The VM and VM pages mappings/allocations. */
if (pGVM->gvmm.s.VMPagesMapObj != NIL_RTR0MEMOBJ)
{
rc = RTR0MemObjFree(pGVM->gvmm.s.VMPagesMapObj, false /* fFreeMappings */); AssertRC(rc);
pGVM->gvmm.s.VMPagesMapObj = NIL_RTR0MEMOBJ;
}
if (pGVM->gvmm.s.VMMapObj != NIL_RTR0MEMOBJ)
{
rc = RTR0MemObjFree(pGVM->gvmm.s.VMMapObj, false /* fFreeMappings */); AssertRC(rc);
pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
}
if (pGVM->gvmm.s.VMPagesMemObj != NIL_RTR0MEMOBJ)
{
rc = RTR0MemObjFree(pGVM->gvmm.s.VMPagesMemObj, false /* fFreeMappings */); AssertRC(rc);
pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
}
if (pGVM->gvmm.s.VMMemObj != NIL_RTR0MEMOBJ)
{
rc = RTR0MemObjFree(pGVM->gvmm.s.VMMemObj, false /* fFreeMappings */); AssertRC(rc);
pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
}
for (VMCPUID i = 0; i < pGVM->cCpus; i++)
{
if (pGVM->aCpus[i].gvmm.s.HaltEventMulti != NIL_RTSEMEVENTMULTI)
{
rc = RTSemEventMultiDestroy(pGVM->aCpus[i].gvmm.s.HaltEventMulti); AssertRC(rc);
pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
}
}
/* the GVM structure itself. */
pGVM->u32Magic |= UINT32_C(0x80000000);
RTMemFree(pGVM);
}
/* else: GVMMR0CreateVM cleanup. */
/*
* Free the handle.
* Reacquire the UsedLock here to since we're updating handle fields.
*/
rc = gvmmR0UsedLock(pGVMM);
AssertRC(rc);
pHandle->iNext = pGVMM->iFreeHead;
pGVMM->iFreeHead = iHandle;
ASMAtomicXchgPtr((void * volatile *)&pHandle->pGVM, NULL);
ASMAtomicXchgPtr((void * volatile *)&pHandle->pVM, NULL);
ASMAtomicXchgPtr((void * volatile *)&pHandle->pvObj, NULL);
ASMAtomicXchgPtr((void * volatile *)&pHandle->pSession, NULL);
ASMAtomicXchgSize(&pHandle->hEMT0, NIL_RTNATIVETHREAD);
ASMAtomicXchgSize(&pHandle->ProcId, NIL_RTPROCESS);
gvmmR0UsedUnlock(pGVMM);
gvmmR0CreateDestroyUnlock(pGVMM);
LogFlow(("gvmmR0HandleObjDestructor: returns\n"));
}
/**
* Registers the calling thread as the EMT of a Virtual CPU.
*
* Note that VCPU 0 is automatically registered during VM creation.
*
* @returns VBox status code
* @param pVM The shared VM structure (the ring-0 mapping).
* @param idCpu VCPU id.
*/
GVMMR0DECL(int) GVMMR0RegisterVCpu(PVM pVM, VMCPUID idCpu)
{
AssertReturn(idCpu != 0, VERR_NOT_OWNER);
/*
* Validate the VM structure, state and handle.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, false /* fTakeUsedLock */);
if (RT_FAILURE(rc))
return rc;
AssertReturn(idCpu < pVM->cCPUs, VERR_INVALID_CPU_ID);
AssertReturn(pGVM->aCpus[idCpu].hEMT == NIL_RTNATIVETHREAD, VERR_ACCESS_DENIED);
pGVM->aCpus[idCpu].hEMT = RTThreadNativeSelf();
return VINF_SUCCESS;
}
/**
* Lookup a GVM structure by its handle.
*
* @returns The GVM pointer on success, NULL on failure.
* @param hGVM The global VM handle. Asserts on bad handle.
*/
GVMMR0DECL(PGVM) GVMMR0ByHandle(uint32_t hGVM)
{
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, NULL);
/*
* Validate.
*/
AssertReturn(hGVM != NIL_GVM_HANDLE, NULL);
AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), NULL);
/*
* Look it up.
*/
PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
AssertPtrReturn(pHandle->pVM, NULL);
AssertPtrReturn(pHandle->pvObj, NULL);
PGVM pGVM = pHandle->pGVM;
AssertPtrReturn(pGVM, NULL);
AssertReturn(pGVM->pVM == pHandle->pVM, NULL);
return pHandle->pGVM;
}
/**
* Lookup a GVM structure by the shared VM structure.
*
* The calling thread must be in the same process as the VM. All current lookups
* are by threads inside the same process, so this will not be an issue.
*
* @returns VBox status code.
* @param pVM The shared VM structure (the ring-0 mapping).
* @param ppGVM Where to store the GVM pointer.
* @param ppGVMM Where to store the pointer to the GVMM instance data.
* @param fTakeUsedLock Whether to take the used lock or not.
* Be very careful if not taking the lock as it's possible that
* the VM will disappear then.
*
* @remark This will not assert on an invalid pVM but try return sliently.
*/
static int gvmmR0ByVM(PVM pVM, PGVM *ppGVM, PGVMM *ppGVMM, bool fTakeUsedLock)
{
RTPROCESS ProcId = RTProcSelf();
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
/*
* Validate.
*/
if (RT_UNLIKELY( !VALID_PTR(pVM)
|| ((uintptr_t)pVM & PAGE_OFFSET_MASK)))
return VERR_INVALID_POINTER;
if (RT_UNLIKELY( pVM->enmVMState < VMSTATE_CREATING
|| pVM->enmVMState >= VMSTATE_TERMINATED))
return VERR_INVALID_POINTER;
uint16_t hGVM = pVM->hSelf;
if (RT_UNLIKELY( hGVM == NIL_GVM_HANDLE
|| hGVM >= RT_ELEMENTS(pGVMM->aHandles)))
return VERR_INVALID_HANDLE;
/*
* Look it up.
*/
PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
PGVM pGVM;
if (fTakeUsedLock)
{
int rc = gvmmR0UsedLock(pGVMM);
AssertRCReturn(rc, rc);
pGVM = pHandle->pGVM;
if (RT_UNLIKELY( pHandle->pVM != pVM
|| pHandle->ProcId != ProcId
|| !VALID_PTR(pHandle->pvObj)
|| !VALID_PTR(pGVM)
|| pGVM->pVM != pVM))
{
gvmmR0UsedUnlock(pGVMM);
return VERR_INVALID_HANDLE;
}
}
else
{
if (RT_UNLIKELY(pHandle->pVM != pVM))
return VERR_INVALID_HANDLE;
if (RT_UNLIKELY(pHandle->ProcId != ProcId))
return VERR_INVALID_HANDLE;
if (RT_UNLIKELY(!VALID_PTR(pHandle->pvObj)))
return VERR_INVALID_HANDLE;
pGVM = pHandle->pGVM;
if (RT_UNLIKELY(!VALID_PTR(pGVM)))
return VERR_INVALID_HANDLE;
if (RT_UNLIKELY(pGVM->pVM != pVM))
return VERR_INVALID_HANDLE;
}
*ppGVM = pGVM;
*ppGVMM = pGVMM;
return VINF_SUCCESS;
}
/**
* Lookup a GVM structure by the shared VM structure.
*
* @returns The GVM pointer on success, NULL on failure.
* @param pVM The shared VM structure (the ring-0 mapping).
*
* @remark This will not take the 'used'-lock because it doesn't do
* nesting and this function will be used from under the lock.
*/
GVMMR0DECL(PGVM) GVMMR0ByVM(PVM pVM)
{
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, false /* fTakeUsedLock */);
if (RT_SUCCESS(rc))
return pGVM;
AssertRC(rc);
return NULL;
}
/**
* Lookup a GVM structure by the shared VM structure and ensuring that the
* caller is an EMT thread.
*
* @returns VBox status code.
* @param pVM The shared VM structure (the ring-0 mapping).
* @param idCpu The Virtual CPU ID of the calling EMT.
* @param ppGVM Where to store the GVM pointer.
* @param ppGVMM Where to store the pointer to the GVMM instance data.
* @thread EMT
*
* @remark This will assert in all failure paths.
*/
static int gvmmR0ByVMAndEMT(PVM pVM, VMCPUID idCpu, PGVM *ppGVM, PGVMM *ppGVMM)
{
PGVMM pGVMM;
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
/*
* Validate.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertReturn(!((uintptr_t)pVM & PAGE_OFFSET_MASK), VERR_INVALID_POINTER);
uint16_t hGVM = pVM->hSelf;
AssertReturn(hGVM != NIL_GVM_HANDLE, VERR_INVALID_HANDLE);
AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_HANDLE);
/*
* Look it up.
*/
PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
AssertReturn(pHandle->pVM == pVM, VERR_NOT_OWNER);
RTPROCESS ProcId = RTProcSelf();
AssertReturn(pHandle->ProcId == ProcId, VERR_NOT_OWNER);
AssertPtrReturn(pHandle->pvObj, VERR_INTERNAL_ERROR);
PGVM pGVM = pHandle->pGVM;
AssertPtrReturn(pGVM, VERR_INTERNAL_ERROR);
AssertReturn(pGVM->pVM == pVM, VERR_INTERNAL_ERROR);
RTNATIVETHREAD hAllegedEMT = RTThreadNativeSelf();
AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
AssertReturn(pGVM->aCpus[idCpu].hEMT == hAllegedEMT, VERR_INTERNAL_ERROR);
*ppGVM = pGVM;
*ppGVMM = pGVMM;
return VINF_SUCCESS;
}
/**
* Lookup a GVM structure by the shared VM structure
* and ensuring that the caller is the EMT thread.
*
* @returns VBox status code.
* @param pVM The shared VM structure (the ring-0 mapping).
* @param idCpu The Virtual CPU ID of the calling EMT.
* @param ppGVM Where to store the GVM pointer.
* @thread EMT
*/
GVMMR0DECL(int) GVMMR0ByVMAndEMT(PVM pVM, VMCPUID idCpu, PGVM *ppGVM)
{
AssertPtrReturn(ppGVM, VERR_INVALID_POINTER);
PGVMM pGVMM;
return gvmmR0ByVMAndEMT(pVM, idCpu, ppGVM, &pGVMM);
}
/**
* Lookup a VM by its global handle.
*
* @returns The VM handle on success, NULL on failure.
* @param hGVM The global VM handle. Asserts on bad handle.
*/
GVMMR0DECL(PVM) GVMMR0GetVMByHandle(uint32_t hGVM)
{
PGVM pGVM = GVMMR0ByHandle(hGVM);
return pGVM ? pGVM->pVM : NULL;
}
/**
* Looks up the VM belonging to the specified EMT thread.
*
* This is used by the assertion machinery in VMMR0.cpp to avoid causing
* unnecessary kernel panics when the EMT thread hits an assertion. The
* call may or not be an EMT thread.
*
* @returns The VM handle on success, NULL on failure.
* @param hEMT The native thread handle of the EMT.
* NIL_RTNATIVETHREAD means the current thread
*/
GVMMR0DECL(PVM) GVMMR0GetVMByEMT(RTNATIVETHREAD hEMT)
{
/*
* No Assertions here as we're usually called in a AssertMsgN or
* RTAssert* context.
*/
PGVMM pGVMM = g_pGVMM;
if ( !VALID_PTR(pGVMM)
|| pGVMM->u32Magic != GVMM_MAGIC)
return NULL;
if (hEMT == NIL_RTNATIVETHREAD)
hEMT = RTThreadNativeSelf();
RTPROCESS ProcId = RTProcSelf();
/*
* Search the handles in a linear fashion as we don't dare to take the lock (assert).
*/
for (unsigned i = 1; i < RT_ELEMENTS(pGVMM->aHandles); i++)
{
if ( pGVMM->aHandles[i].iSelf == i
&& pGVMM->aHandles[i].ProcId == ProcId
&& VALID_PTR(pGVMM->aHandles[i].pvObj)
&& VALID_PTR(pGVMM->aHandles[i].pVM)
&& VALID_PTR(pGVMM->aHandles[i].pGVM))
{
if (pGVMM->aHandles[i].hEMT0 == hEMT)
return pGVMM->aHandles[i].pVM;
/* This is fearly safe with the current process per VM approach. */
PGVM pGVM = pGVMM->aHandles[i].pGVM;
VMCPUID const cCpus = pGVM->cCpus;
if ( cCpus < 1
|| cCpus > VMM_MAX_CPU_COUNT)
continue;
for (VMCPUID idCpu = 1; idCpu < cCpus; idCpu++)
if (pGVM->aCpus[idCpu].hEMT == hEMT)
return pGVMM->aHandles[i].pVM;
}
}
return NULL;
}
/**
* This is will wake up expired and soon-to-be expired VMs.
*
* @returns Number of VMs that has been woken up.
* @param pGVMM Pointer to the GVMM instance data.
* @param u64Now The current time.
*/
static unsigned gvmmR0SchedDoWakeUps(PGVMM pGVMM, uint64_t u64Now)
{
/** @todo Rewrite this algorithm. See performance defect XYZ. */
/*
* The first pass will wake up VMs which have actually expired
* and look for VMs that should be woken up in the 2nd and 3rd passes.
*/
unsigned cWoken = 0;
unsigned cHalted = 0;
unsigned cTodo2nd = 0;
unsigned cTodo3rd = 0;
for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
i = pGVMM->aHandles[i].iNext)
{
PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
if ( VALID_PTR(pCurGVM)
&& pCurGVM->u32Magic == GVM_MAGIC)
{
for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
{
PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
uint64_t u64 = pCurGVCpu->gvmm.s.u64HaltExpire;
if (u64)
{
if (u64 <= u64Now)
{
if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
{
int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
AssertRC(rc);
cWoken++;
}
}
else
{
cHalted++;
if (u64 <= u64Now + pGVMM->nsEarlyWakeUp1)
cTodo2nd++;
else if (u64 <= u64Now + pGVMM->nsEarlyWakeUp2)
cTodo3rd++;
}
}
}
}
AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
}
if (cTodo2nd)
{
for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
i = pGVMM->aHandles[i].iNext)
{
PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
if ( VALID_PTR(pCurGVM)
&& pCurGVM->u32Magic == GVM_MAGIC)
{
for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
{
PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
if ( pCurGVCpu->gvmm.s.u64HaltExpire
&& pCurGVCpu->gvmm.s.u64HaltExpire <= u64Now + pGVMM->nsEarlyWakeUp1)
{
if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
{
int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
AssertRC(rc);
cWoken++;
}
}
}
}
AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
}
}
if (cTodo3rd)
{
for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
i = pGVMM->aHandles[i].iNext)
{
PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
if ( VALID_PTR(pCurGVM)
&& pCurGVM->u32Magic == GVM_MAGIC)
{
for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
{
PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
if ( pCurGVCpu->gvmm.s.u64HaltExpire
&& pCurGVCpu->gvmm.s.u64HaltExpire <= u64Now + pGVMM->nsEarlyWakeUp2)
{
if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
{
int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
AssertRC(rc);
cWoken++;
}
}
}
}
AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
}
}
return cWoken;
}
/**
* Halt the EMT thread.
*
* @returns VINF_SUCCESS normal wakeup (timeout or kicked by other thread).
* VERR_INTERRUPTED if a signal was scheduled for the thread.
* @param pVM Pointer to the shared VM structure.
* @param idCpu The Virtual CPU ID of the calling EMT.
* @param u64ExpireGipTime The time for the sleep to expire expressed as GIP time.
* @thread EMT(idCpu).
*/
GVMMR0DECL(int) GVMMR0SchedHalt(PVM pVM, VMCPUID idCpu, uint64_t u64ExpireGipTime)
{
LogFlow(("GVMMR0SchedHalt: pVM=%p\n", pVM));
/*
* Validate the VM structure, state and handle.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVMAndEMT(pVM, idCpu, &pGVM, &pGVMM);
if (RT_FAILURE(rc))
return rc;
pGVM->gvmm.s.StatsSched.cHaltCalls++;
PGVMCPU pCurGVCpu = &pGVM->aCpus[idCpu];
Assert(!pCurGVCpu->gvmm.s.u64HaltExpire);
/*
* Take the UsedList semaphore, get the current time
* and check if anyone needs waking up.
* Interrupts must NOT be disabled at this point because we ask for GIP time!
*/
rc = gvmmR0UsedLock(pGVMM);
AssertRC(rc);
pCurGVCpu->gvmm.s.iCpuEmt = ASMGetApicId();
Assert(ASMGetFlags() & X86_EFL_IF);
const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
pGVM->gvmm.s.StatsSched.cHaltWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
/*
* Go to sleep if we must...
*/
if ( u64Now < u64ExpireGipTime
&& u64ExpireGipTime - u64Now > (pGVMM->cVMs > pGVMM->cVMsMeansCompany
? pGVMM->nsMinSleepCompany
: pGVMM->nsMinSleepAlone))
{
pGVM->gvmm.s.StatsSched.cHaltBlocking++;
ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, u64ExpireGipTime);
gvmmR0UsedUnlock(pGVMM);
uint32_t cMillies = (u64ExpireGipTime - u64Now) / 1000000;
rc = RTSemEventMultiWaitNoResume(pCurGVCpu->gvmm.s.HaltEventMulti, cMillies ? cMillies : 1);
ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0);
if (rc == VERR_TIMEOUT)
{
pGVM->gvmm.s.StatsSched.cHaltTimeouts++;
rc = VINF_SUCCESS;
}
}
else
{
pGVM->gvmm.s.StatsSched.cHaltNotBlocking++;
gvmmR0UsedUnlock(pGVMM);
}
/* Make sure false wake up calls (gvmmR0SchedDoWakeUps) cause us to spin. */
RTSemEventMultiReset(pCurGVCpu->gvmm.s.HaltEventMulti);
return rc;
}
/**
* Worker for GVMMR0SchedWakeUp and GVMMR0SchedWakeUpAndPokeCpus that wakes up
* the a sleeping EMT.
*
* @retval VINF_SUCCESS if successfully woken up.
* @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
*
* @param pGVM The global (ring-0) VM structure.
* @param pGVCpu The global (ring-0) VCPU structure.
*/
DECLINLINE(int) gvmmR0SchedWakeUpOne(PGVM pGVM, PGVMCPU pGVCpu)
{
pGVM->gvmm.s.StatsSched.cWakeUpCalls++;
/*
* Signal the semaphore regardless of whether it's current blocked on it.
*
* The reason for this is that there is absolutely no way we can be 100%
* certain that it isn't *about* go to go to sleep on it and just got
* delayed a bit en route. So, we will always signal the semaphore when
* the it is flagged as halted in the VMM.
*/
/** @todo we can optimize some of that by means of the pVCpu->enmState now. */
int rc;
if (pGVCpu->gvmm.s.u64HaltExpire)
{
rc = VINF_SUCCESS;
ASMAtomicXchgU64(&pGVCpu->gvmm.s.u64HaltExpire, 0);
}
else
{
rc = VINF_GVM_NOT_BLOCKED;
pGVM->gvmm.s.StatsSched.cWakeUpNotHalted++;
}
int rc2 = RTSemEventMultiSignal(pGVCpu->gvmm.s.HaltEventMulti);
AssertRC(rc2);
return rc;
}
/**
* Wakes up the halted EMT thread so it can service a pending request.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if successfully woken up.
* @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
*
* @param pVM Pointer to the shared VM structure.
* @param idCpu The Virtual CPU ID of the EMT to wake up.
* @thread Any but EMT.
*/
GVMMR0DECL(int) GVMMR0SchedWakeUp(PVM pVM, VMCPUID idCpu)
{
/*
* Validate input and take the UsedLock.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /* fTakeUsedLock */);
if (RT_SUCCESS(rc))
{
if (idCpu < pGVM->cCpus)
{
/*
* Do the actual job.
*/
rc = gvmmR0SchedWakeUpOne(pGVM, &pGVM->aCpus[idCpu]);
/*
* While we're here, do a round of scheduling.
*/
Assert(ASMGetFlags() & X86_EFL_IF);
const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
pGVM->gvmm.s.StatsSched.cWakeUpWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
}
else
rc = VERR_INVALID_CPU_ID;
int rc2 = gvmmR0UsedUnlock(pGVMM);
AssertRC(rc2);
}
LogFlow(("GVMMR0SchedWakeUp: returns %Rrc\n", rc));
return rc;
}
/**
* Worker common to GVMMR0SchedPoke and GVMMR0SchedWakeUpAndPokeCpus that pokes
* the Virtual CPU if it's still busy executing guest code.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if poked successfully.
* @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
*
* @param pGVM The global (ring-0) VM structure.
* @param pVCpu The Virtual CPU handle.
*/
DECLINLINE(int) gvmmR0SchedPokeOne(PGVM pGVM, PVMCPU pVCpu)
{
pGVM->gvmm.s.StatsSched.cPokeCalls++;
RTCPUID idHostCpu = pVCpu->idHostCpu;
if ( idHostCpu == NIL_RTCPUID
|| VMCPU_GET_STATE(pVCpu) != VMCPUSTATE_STARTED_EXEC)
{
pGVM->gvmm.s.StatsSched.cPokeNotBusy++;
return VINF_GVM_NOT_BUSY_IN_GC;
}
RTMpPokeCpu(idHostCpu);
return VINF_SUCCESS;
}
/**
* Pokes an EMT if it's still busy running guest code.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if poked successfully.
* @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
*
* @param pVM Pointer to the shared VM structure.
* @param idCpu The ID of the virtual CPU to poke.
*/
GVMMR0DECL(int) GVMMR0SchedPoke(PVM pVM, VMCPUID idCpu)
{
/*
* Validate input and take the UsedLock.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /* fTakeUsedLock */);
if (RT_SUCCESS(rc))
{
if (idCpu < pGVM->cCpus)
rc = gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
else
rc = VERR_INVALID_CPU_ID;
int rc2 = gvmmR0UsedUnlock(pGVMM);
AssertRC(rc2);
}
LogFlow(("GVMMR0SchedWakeUpAndPokeCpus: returns %Rrc\n", rc));
return rc;
}
/**
* Wakes up a set of halted EMT threads so they can service pending request.
*
* @returns VBox status code, no informational stuff.
*
* @param pVM Pointer to the shared VM structure.
* @param pSleepSet The set of sleepers to wake up.
* @param pPokeSet The set of CPUs to poke.
*/
GVMMR0DECL(int) GVMMR0SchedWakeUpAndPokeCpus(PVM pVM, PCVMCPUSET pSleepSet, PCVMCPUSET pPokeSet)
{
AssertPtrReturn(pSleepSet, VERR_INVALID_POINTER);
AssertPtrReturn(pPokeSet, VERR_INVALID_POINTER);
RTNATIVETHREAD hSelf = RTThreadNativeSelf();
/*
* Validate input and take the UsedLock.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /* fTakeUsedLock */);
if (RT_SUCCESS(rc))
{
rc = VINF_SUCCESS;
VMCPUID idCpu = pGVM->cCpus;
while (idCpu-- > 0)
{
/* Don't try poke or wake up ourselves. */
if (pGVM->aCpus[idCpu].hEMT == hSelf)
continue;
/* just ignore errors for now. */
if (VMCPUSET_IS_PRESENT(pSleepSet, idCpu))
gvmmR0SchedWakeUpOne(pGVM, &pGVM->aCpus[idCpu]);
else if (VMCPUSET_IS_PRESENT(pPokeSet, idCpu))
gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
}
int rc2 = gvmmR0UsedUnlock(pGVMM);
AssertRC(rc2);
}
LogFlow(("GVMMR0SchedWakeUpAndPokeCpus: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GVMMR0SchedWakeUpAndPokeCpus.
*
* @returns see GVMMR0SchedWakeUpAndPokeCpus.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GVMMR0DECL(int) GVMMR0SchedWakeUpAndPokeCpusReq(PVM pVM, PGVMMSCHEDWAKEUPANDPOKECPUSREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
return GVMMR0SchedWakeUpAndPokeCpus(pVM, &pReq->SleepSet, &pReq->PokeSet);
}
/**
* Poll the schedule to see if someone else should get a chance to run.
*
* This is a bit hackish and will not work too well if the machine is
* under heavy load from non-VM processes.
*
* @returns VINF_SUCCESS if not yielded.
* VINF_GVM_YIELDED if an attempt to switch to a different VM task was made.
* @param pVM Pointer to the shared VM structure.
* @param idCpu The Virtual CPU ID of the calling EMT.
* @param u64ExpireGipTime The time for the sleep to expire expressed as GIP time.
* @param fYield Whether to yield or not.
* This is for when we're spinning in the halt loop.
* @thread EMT(idCpu).
*/
GVMMR0DECL(int) GVMMR0SchedPoll(PVM pVM, VMCPUID idCpu, bool fYield)
{
/*
* Validate input.
*/
PGVM pGVM;
PGVMM pGVMM;
int rc = gvmmR0ByVMAndEMT(pVM, idCpu, &pGVM, &pGVMM);
if (RT_SUCCESS(rc))
{
rc = gvmmR0UsedLock(pGVMM);
AssertRC(rc);
pGVM->gvmm.s.StatsSched.cPollCalls++;
Assert(ASMGetFlags() & X86_EFL_IF);
const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
if (!fYield)
pGVM->gvmm.s.StatsSched.cPollWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
else
{
/** @todo implement this... */
rc = VERR_NOT_IMPLEMENTED;
}
gvmmR0UsedUnlock(pGVMM);
}
LogFlow(("GVMMR0SchedWakeUp: returns %Rrc\n", rc));
return rc;
}
/**
* Retrieves the GVMM statistics visible to the caller.
*
* @returns VBox status code.
*
* @param pStats Where to put the statistics.
* @param pSession The current session.
* @param pVM The VM to obtain statistics for. Optional.
*/
GVMMR0DECL(int) GVMMR0QueryStatistics(PGVMMSTATS pStats, PSUPDRVSESSION pSession, PVM pVM)
{
LogFlow(("GVMMR0QueryStatistics: pStats=%p pSession=%p pVM=%p\n", pStats, pSession, pVM));
/*
* Validate input.
*/
AssertPtrReturn(pSession, VERR_INVALID_POINTER);
AssertPtrReturn(pStats, VERR_INVALID_POINTER);
pStats->cVMs = 0; /* (crash before taking the sem...) */
/*
* Take the lock and get the VM statistics.
*/
PGVMM pGVMM;
if (pVM)
{
PGVM pGVM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /*fTakeUsedLock*/);
if (RT_FAILURE(rc))
return rc;
pStats->SchedVM = pGVM->gvmm.s.StatsSched;
}
else
{
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
memset(&pStats->SchedVM, 0, sizeof(pStats->SchedVM));
int rc = gvmmR0UsedLock(pGVMM);
AssertRCReturn(rc, rc);
}
/*
* Enumerate the VMs and add the ones visibile to the statistics.
*/
pStats->cVMs = 0;
memset(&pStats->SchedSum, 0, sizeof(pStats->SchedSum));
for (unsigned i = pGVMM->iUsedHead;
i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
i = pGVMM->aHandles[i].iNext)
{
PGVM pGVM = pGVMM->aHandles[i].pGVM;
void *pvObj = pGVMM->aHandles[i].pvObj;
if ( VALID_PTR(pvObj)
&& VALID_PTR(pGVM)
&& pGVM->u32Magic == GVM_MAGIC
&& RT_SUCCESS(SUPR0ObjVerifyAccess(pvObj, pSession, NULL)))
{
pStats->cVMs++;
pStats->SchedSum.cHaltCalls += pGVM->gvmm.s.StatsSched.cHaltCalls;
pStats->SchedSum.cHaltBlocking += pGVM->gvmm.s.StatsSched.cHaltBlocking;
pStats->SchedSum.cHaltTimeouts += pGVM->gvmm.s.StatsSched.cHaltTimeouts;
pStats->SchedSum.cHaltNotBlocking += pGVM->gvmm.s.StatsSched.cHaltNotBlocking;
pStats->SchedSum.cHaltWakeUps += pGVM->gvmm.s.StatsSched.cHaltWakeUps;
pStats->SchedSum.cWakeUpCalls += pGVM->gvmm.s.StatsSched.cWakeUpCalls;
pStats->SchedSum.cWakeUpNotHalted += pGVM->gvmm.s.StatsSched.cWakeUpNotHalted;
pStats->SchedSum.cWakeUpWakeUps += pGVM->gvmm.s.StatsSched.cWakeUpWakeUps;
pStats->SchedSum.cPokeCalls += pGVM->gvmm.s.StatsSched.cPokeCalls;
pStats->SchedSum.cPokeNotBusy += pGVM->gvmm.s.StatsSched.cPokeNotBusy;
pStats->SchedSum.cPollCalls += pGVM->gvmm.s.StatsSched.cPollCalls;
pStats->SchedSum.cPollHalts += pGVM->gvmm.s.StatsSched.cPollHalts;
pStats->SchedSum.cPollWakeUps += pGVM->gvmm.s.StatsSched.cPollWakeUps;
}
}
gvmmR0UsedUnlock(pGVMM);
return VINF_SUCCESS;
}
/**
* VMMR0 request wrapper for GVMMR0QueryStatistics.
*
* @returns see GVMMR0QueryStatistics.
* @param pVM Pointer to the shared VM structure. Optional.
* @param pReq The request packet.
*/
GVMMR0DECL(int) GVMMR0QueryStatisticsReq(PVM pVM, PGVMMQUERYSTATISTICSSREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
return GVMMR0QueryStatistics(&pReq->Stats, pReq->pSession, pVM);
}
/**
* Resets the specified GVMM statistics.
*
* @returns VBox status code.
*
* @param pStats Which statistics to reset, that is, non-zero fields indicates which to reset.
* @param pSession The current session.
* @param pVM The VM to reset statistics for. Optional.
*/
GVMMR0DECL(int) GVMMR0ResetStatistics(PCGVMMSTATS pStats, PSUPDRVSESSION pSession, PVM pVM)
{
LogFlow(("GVMMR0ResetStatistics: pStats=%p pSession=%p pVM=%p\n", pStats, pSession, pVM));
/*
* Validate input.
*/
AssertPtrReturn(pSession, VERR_INVALID_POINTER);
AssertPtrReturn(pStats, VERR_INVALID_POINTER);
/*
* Take the lock and get the VM statistics.
*/
PGVMM pGVMM;
if (pVM)
{
PGVM pGVM;
int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /*fTakeUsedLock*/);
if (RT_FAILURE(rc))
return rc;
# define MAYBE_RESET_FIELD(field) \
do { if (pStats->SchedVM. field ) { pGVM->gvmm.s.StatsSched. field = 0; } } while (0)
MAYBE_RESET_FIELD(cHaltCalls);
MAYBE_RESET_FIELD(cHaltBlocking);
MAYBE_RESET_FIELD(cHaltTimeouts);
MAYBE_RESET_FIELD(cHaltNotBlocking);
MAYBE_RESET_FIELD(cHaltWakeUps);
MAYBE_RESET_FIELD(cWakeUpCalls);
MAYBE_RESET_FIELD(cWakeUpNotHalted);
MAYBE_RESET_FIELD(cWakeUpWakeUps);
MAYBE_RESET_FIELD(cPokeCalls);
MAYBE_RESET_FIELD(cPokeNotBusy);
MAYBE_RESET_FIELD(cPollCalls);
MAYBE_RESET_FIELD(cPollHalts);
MAYBE_RESET_FIELD(cPollWakeUps);
# undef MAYBE_RESET_FIELD
}
else
{
GVMM_GET_VALID_INSTANCE(pGVMM, VERR_INTERNAL_ERROR);
int rc = gvmmR0UsedLock(pGVMM);
AssertRCReturn(rc, rc);
}
/*
* Enumerate the VMs and add the ones visibile to the statistics.
*/
if (ASMMemIsAll8(&pStats->SchedSum, sizeof(pStats->SchedSum), 0))
{
for (unsigned i = pGVMM->iUsedHead;
i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
i = pGVMM->aHandles[i].iNext)
{
PGVM pGVM = pGVMM->aHandles[i].pGVM;
void *pvObj = pGVMM->aHandles[i].pvObj;
if ( VALID_PTR(pvObj)
&& VALID_PTR(pGVM)
&& pGVM->u32Magic == GVM_MAGIC
&& RT_SUCCESS(SUPR0ObjVerifyAccess(pvObj, pSession, NULL)))
{
# define MAYBE_RESET_FIELD(field) \
do { if (pStats->SchedSum. field ) { pGVM->gvmm.s.StatsSched. field = 0; } } while (0)
MAYBE_RESET_FIELD(cHaltCalls);
MAYBE_RESET_FIELD(cHaltBlocking);
MAYBE_RESET_FIELD(cHaltTimeouts);
MAYBE_RESET_FIELD(cHaltNotBlocking);
MAYBE_RESET_FIELD(cHaltWakeUps);
MAYBE_RESET_FIELD(cWakeUpCalls);
MAYBE_RESET_FIELD(cWakeUpNotHalted);
MAYBE_RESET_FIELD(cWakeUpWakeUps);
MAYBE_RESET_FIELD(cPokeCalls);
MAYBE_RESET_FIELD(cPokeNotBusy);
MAYBE_RESET_FIELD(cPollCalls);
MAYBE_RESET_FIELD(cPollHalts);
MAYBE_RESET_FIELD(cPollWakeUps);
# undef MAYBE_RESET_FIELD
}
}
}
gvmmR0UsedUnlock(pGVMM);
return VINF_SUCCESS;
}
/**
* VMMR0 request wrapper for GVMMR0ResetStatistics.
*
* @returns see GVMMR0ResetStatistics.
* @param pVM Pointer to the shared VM structure. Optional.
* @param pReq The request packet.
*/
GVMMR0DECL(int) GVMMR0ResetStatisticsReq(PVM pVM, PGVMMRESETSTATISTICSSREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
return GVMMR0ResetStatistics(&pReq->Stats, pReq->pSession, pVM);
}