GMMR0.cpp revision 8cc04088667e646aa1fb2f303c2b56236b924360
/* $Id$ */
/** @file
* GMM - Global Memory Manager.
*/
/*
* Copyright (C) 2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/** @page pg_gmm GMM - The Global Memory Manager
*
* As the name indicates, this component is responsible for global memory
* management. Currently only guest RAM is allocated from the GMM, but this
* may change to include shadow page tables and other bits later.
*
* Guest RAM is managed as individual pages, but allocated from the host OS
* in chunks for reasons of portability / efficiency. To minimize the memory
* footprint all tracking structure must be as small as possible without
* unnecessary performance penalties.
*
* The allocation chunks has fixed sized, the size defined at compile time
* by the #GMM_CHUNK_SIZE \#define.
*
* Each chunk is given an unquie ID. Each page also has a unique ID. The
* relation ship between the two IDs is:
* @code
* GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / PAGE_SIZE);
* idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage;
* @endcode
* Where iPage is the index of the page within the chunk. This ID scheme
* permits for efficient chunk and page lookup, but it relies on the chunk size
* to be set at compile time. The chunks are organized in an AVL tree with their
* IDs being the keys.
*
* The physical address of each page in an allocation chunk is maintained by
* the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no
* need to duplicate this information (it'll cost 8-bytes per page if we did).
*
* So what do we need to track per page? Most importantly we need to know
* which state the page is in:
* - Private - Allocated for (eventually) backing one particular VM page.
* - Shared - Readonly page that is used by one or more VMs and treated
* as COW by PGM.
* - Free - Not used by anyone.
*
* For the page replacement operations (sharing, defragmenting and freeing)
* to be somewhat efficient, private pages needs to be associated with a
* particular page in a particular VM.
*
* Tracking the usage of shared pages is impractical and expensive, so we'll
* settle for a reference counting system instead.
*
* Free pages will be chained on LIFOs
*
* On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit
* systems a 32-bit bitfield will have to suffice because of address space
* limitations. The #GMMPAGE structure shows the details.
*
*
* @section sec_gmm_alloc_strat Page Allocation Strategy
*
* The strategy for allocating pages has to take fragmentation and shared
* pages into account, or we may end up with with 2000 chunks with only
* a few pages in each. Shared pages cannot easily be reallocated because
* of the inaccurate usage accounting (see above). Private pages can be
* reallocated by a defragmentation thread in the same manner that sharing
* is done.
*
* The first approach is to manage the free pages in two sets depending on
* whether they are mainly for the allocation of shared or private pages.
* In the initial implementation there will be almost no possibility for
* mixing shared and private pages in the same chunk (only if we're really
* stressed on memory), but when we implement forking of VMs and have to
* deal with lots of COW pages it'll start getting kind of interesting.
*
* The sets are lists of chunks with approximately the same number of
* free pages. Say the chunk size is 1MB, meaning 256 pages, and a set
* consists of 16 lists. So, the first list will contain the chunks with
* 1-7 free pages, the second covers 8-15, and so on. The chunks will be
* moved between the lists as pages are freed up or allocated.
*
*
* @section sec_gmm_costs Costs
*
* The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ
* entails. In addition there is the chunk cost of approximately
* (sizeof(RT0MEMOBJ) + sizof(CHUNK)) / 2^CHUNK_SHIFT bytes per page.
*
* On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows
* and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page.
* The cost on Linux is identical, but here it's because of sizeof(struct page *).
*
*
* @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms
*
* In legacy mode the page source is locked user pages and not
* #RTR0MemObjAllocPhysNC, this means that a page can only be allocated
* by the VM that locked it. We will make no attempt at implementing
* page sharing on these systems, just do enough to make it all work.
*
*
* @subsection sub_gmm_locking Serializing
*
* One simple fast mutex will be employed in the initial implementation, not
* two as metioned in @ref subsec_pgmPhys_Serializing.
*
* @see @ref subsec_pgmPhys_Serializing
*
*
* @section sec_gmm_overcommit Memory Over-Commitment Management
*
* The GVM will have to do the system wide memory over-commitment
* management. My current ideas are:
* - Per VM oc policy that indicates how much to initially commit
* to it and what to do in a out-of-memory situation.
* - Prevent overtaxing the host.
*
* There are some challenges here, the main ones are configurability and
* security. Should we for instance permit anyone to request 100% memory
* commitment? Who should be allowed to do runtime adjustments of the
* config. And how to prevent these settings from being lost when the last
* VM process exits? The solution is probably to have an optional root
* daemon the will keep VMMR0.r0 in memory and enable the security measures.
*
*
*
* @section sec_gmm_numa NUMA
*
* NUMA considerations will be designed and implemented a bit later.
*
* The preliminary guesses is that we will have to try allocate memory as
* close as possible to the CPUs the VM is executed on (EMT and additional CPU
* threads). Which means it's mostly about allocation and sharing policies.
* Both the scheduler and allocator interface will to supply some NUMA info
* and we'll need to have a way to calc access costs.
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_GMM
#include <VBox/gmm.h>
#include "GMMR0Internal.h"
#include <VBox/gvm.h>
#include <VBox/log.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/avl.h>
#include <iprt/mem.h>
#include <iprt/memobj.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** Pointer to set of free chunks. */
typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET;
/** Pointer to a GMM allocation chunk. */
typedef struct GMMCHUNK *PGMMCHUNK;
/**
* The per-page tracking structure employed by the GMM.
*
* On 32-bit hosts we'll some trickery is necessary to compress all
* the information into 32-bits. When the fSharedFree member is set,
* the 30th bit decides whether it's a free page or not.
*
* Because of the different layout on 32-bit and 64-bit hosts, macros
* are used to get and set some of the data.
*/
typedef union GMMPAGE
{
#if HC_ARCH_BITS == 64
/** Unsigned integer view. */
uint64_t u;
/** The common view. */
struct GMMPAGECOMMON
{
uint32_t uStuff1 : 32;
uint32_t uStuff2 : 30;
/** The page state. */
uint32_t u2State : 2;
} Common;
/** The view of a private page. */
struct GMMPAGEPRIVATE
{
/** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */
uint32_t pfn;
/** The GVM handle. (64K VMs) */
uint32_t hGVM : 16;
/** Reserved. */
uint32_t u16Reserved : 14;
/** The page state. */
uint32_t u2State : 2;
} Private;
/** The view of a shared page. */
struct GMMPAGESHARED
{
/** The reference count. */
uint32_t cRefs;
/** Reserved. Checksum or something? Two hGVMs for forking? */
uint32_t u30Reserved : 30;
/** The page state. */
uint32_t u2State : 2;
} Shared;
/** The view of a free page. */
struct GMMPAGEFREE
{
/** The index of the next page in the free list. UINT16_MAX is NIL. */
uint16_t iNext;
/** Reserved. Checksum or something? */
uint16_t u16Reserved0;
/** Reserved. Checksum or something? */
uint32_t u30Reserved1 : 30;
/** The page state. */
uint32_t u2State : 2;
} Free;
#else /* 32-bit */
/** Unsigned integer view. */
uint32_t u;
/** The common view. */
struct GMMPAGECOMMON
{
uint32_t uStuff : 30;
/** The page state. */
uint32_t u2State : 2;
} Common;
/** The view of a private page. */
struct GMMPAGEPRIVATE
{
/** The guest page frame number. (Max addressable: 2 ^ 36) */
uint32_t pfn : 24;
/** The GVM handle. (127 VMs) */
uint32_t hGVM : 7;
/** The top page state bit, MBZ. */
uint32_t fZero : 1;
} Private;
/** The view of a shared page. */
struct GMMPAGESHARED
{
/** The reference count. */
uint32_t cRefs : 30;
/** The page state. */
uint32_t u2State : 2;
} Shared;
/** The view of a free page. */
struct GMMPAGEFREE
{
/** The index of the next page in the free list. UINT16_MAX is NIL. */
uint32_t iNext : 16;
/** Reserved. Checksum or something? */
uint32_t u14Reserved : 14;
/** The page state. */
uint32_t u2State : 2;
} Free;
#endif
} GMMPAGE;
AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR));
/** Pointer to a GMMPAGE. */
typedef GMMPAGE *PGMMPAGE;
/** @name The Page States.
* @{ */
/** A private page. */
#define GMM_PAGE_STATE_PRIVATE 0
/** A private page - alternative value used on the 32-bit implemenation.
* This will never be used on 64-bit hosts. */
#define GMM_PAGE_STATE_PRIVATE_32 1
/** A shared page. */
#define GMM_PAGE_STATE_SHARED 2
/** A free page. */
#define GMM_PAGE_STATE_FREE 3
/** @} */
/** @def GMM_PAGE_IS_PRIVATE
*
* @returns true if private, false if not.
* @param pPage The GMM page.
*/
#if HC_ARCH_BITS == 64
# define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE )
#else
# define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Private.fZero == 0 )
#endif
/** @def GMM_PAGE_IS_SHARED
*
* @returns true if shared, false if not.
* @param pPage The GMM page.
*/
#define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED )
/** @def GMM_PAGE_IS_FREE
*
* @returns true if free, false if not.
* @param pPage The GMM page.
*/
#define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE )
/** @def GMM_PAGE_PFN_LAST
* The last valid guest pfn range.
* @remark Some of the values outside the range has special meaning,
* see GMM_PAGE_PFN_UNSHAREABLE.
*/
#if HC_ARCH_BITS == 64
# define GMM_PAGE_PFN_LAST UINT32_C(0xfffffff0)
#else
# define GMM_PAGE_PFN_LAST UINT32_C(0x00fffff0)
#endif
AssertCompile(GMM_PAGE_PFN_LAST == (GMM_GCPHYS_LAST >> PAGE_SHIFT));
/** @def GMM_PAGE_PFN_UNSHAREABLE
* Indicates that this page isn't used for normal guest memory and thus isn't shareable.
*/
#if HC_ARCH_BITS == 64
# define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1)
#else
# define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0x00fffff1)
#endif
AssertCompile(GMM_PAGE_PFN_UNSHAREABLE == (GMM_GCPHYS_UNSHAREABLE >> PAGE_SHIFT));
/**
* A GMM allocation chunk ring-3 mapping record.
*
* This should really be associated with a session and not a VM, but
* it's simpler to associated with a VM and cleanup with the VM object
* is destroyed.
*/
typedef struct GMMCHUNKMAP
{
/** The mapping object. */
RTR0MEMOBJ MapObj;
/** The VM owning the mapping. */
PGVM pGVM;
} GMMCHUNKMAP;
/** Pointer to a GMM allocation chunk mapping. */
typedef struct GMMCHUNKMAP *PGMMCHUNKMAP;
/**
* A GMM allocation chunk.
*/
typedef struct GMMCHUNK
{
/** The AVL node core.
* The Key is the chunk ID. */
AVLU32NODECORE Core;
/** The memory object.
* Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on
* what the host can dish up with. */
RTR0MEMOBJ MemObj;
/** Pointer to the next chunk in the free list. */
PGMMCHUNK pFreeNext;
/** Pointer to the previous chunk in the free list. */
PGMMCHUNK pFreePrev;
/** Pointer to the free set this chunk belongs to. NULL for
* chunks with no free pages. */
PGMMCHUNKFREESET pSet;
/** Pointer to an array of mappings. */
PGMMCHUNKMAP paMappings;
/** The number of mappings. */
uint16_t cMappings;
/** The head of the list of free pages. UINT16_MAX is the NIL value. */
uint16_t iFreeHead;
/** The number of free pages. */
uint16_t cFree;
/** The GVM handle of the VM that first allocated pages from this chunk, this
* is used as a preference when there are several chunks to choose from.
* When in legacy mode this isn't a preference any longer. */
uint16_t hGVM;
/** The number of private pages. */
uint16_t cPrivate;
/** The number of shared pages. */
uint16_t cShared;
#if HC_ARCH_BITS == 64
/** Reserved for later. */
uint16_t au16Reserved[2];
#endif
/** The pages. */
GMMPAGE aPages[GMM_CHUNK_SIZE >> PAGE_SHIFT];
} GMMCHUNK;
/**
* An allocation chunk TLB entry.
*/
typedef struct GMMCHUNKTLBE
{
/** The chunk id. */
uint32_t idChunk;
/** Pointer to the chunk. */
PGMMCHUNK pChunk;
} GMMCHUNKTLBE;
/** Pointer to an allocation chunk TLB entry. */
typedef GMMCHUNKTLBE *PGMMCHUNKTLBE;
/** The number of entries tin the allocation chunk TLB. */
#define GMM_CHUNKTLB_ENTRIES 32
/** Gets the TLB entry index for the given Chunk ID. */
#define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) )
/**
* An allocation chunk TLB.
*/
typedef struct GMMCHUNKTLB
{
/** The TLB entries. */
GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES];
} GMMCHUNKTLB;
/** Pointer to an allocation chunk TLB. */
typedef GMMCHUNKTLB *PGMMCHUNKTLB;
/** The number of lists in set. */
#define GMM_CHUNK_FREE_SET_LISTS 16
/** The GMMCHUNK::cFree shift count. */
#define GMM_CHUNK_FREE_SET_SHIFT 4
/** The GMMCHUNK::cFree mask for use when considering relinking a chunk. */
#define GMM_CHUNK_FREE_SET_MASK 15
/**
* A set of free chunks.
*/
typedef struct GMMCHUNKFREESET
{
/** The number of free pages in the set. */
uint64_t cPages;
/** */
PGMMCHUNK apLists[GMM_CHUNK_FREE_SET_LISTS];
} GMMCHUNKFREESET;
/**
* The GMM instance data.
*/
typedef struct GMM
{
/** Magic / eye catcher. GMM_MAGIC */
uint32_t u32Magic;
/** The fast mutex protecting the GMM.
* More fine grained locking can be implemented later if necessary. */
RTSEMFASTMUTEX Mtx;
/** The chunk tree. */
PAVLU32NODECORE pChunks;
/** The chunk TLB. */
GMMCHUNKTLB ChunkTLB;
/** The private free set. */
GMMCHUNKFREESET Private;
/** The shared free set. */
GMMCHUNKFREESET Shared;
/** The maximum number of pages we're allowed to allocate.
* @gcfgm 64-bit GMM/MaxPages Direct.
* @gcfgm 32-bit GMM/PctPages Relative to the number of host pages. */
uint64_t cMaxPages;
/** The number of pages that has been reserved.
* The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */
uint64_t cReservedPages;
/** The number of pages that we have over-committed in reservations. */
uint64_t cOverCommittedPages;
/** The number of actually allocated (committed if you like) pages. */
uint64_t cAllocatedPages;
/** The number of pages that are shared. A subset of cAllocatedPages. */
uint64_t cSharedPages;
/** The number of pages that are shared that has been left behind by
* VMs not doing proper cleanups. */
uint64_t cLeftBehindSharedPages;
/** The number of allocation chunks.
* (The number of pages we've allocated from the host can be derived from this.) */
uint32_t cChunks;
/** The number of current ballooned pages. */
uint64_t cBalloonedPages;
/** The legacy mode indicator.
* This is determined at initialization time. */
bool fLegacyMode;
/** The number of registered VMs. */
uint16_t cRegisteredVMs;
/** The previous allocated Chunk ID.
* Used as a hint to avoid scanning the whole bitmap. */
uint32_t idChunkPrev;
/** Chunk ID allocation bitmap.
* Bits of allocated IDs are set, free ones are cleared.
* The NIL id (0) is marked allocated. */
uint32_t bmChunkId[(GMM_CHUNKID_LAST + 32) >> 10];
} GMM;
/** Pointer to the GMM instance. */
typedef GMM *PGMM;
/** The value of GMM::u32Magic (Katsuhiro Otomo). */
#define GMM_MAGIC 0x19540414
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** Pointer to the GMM instance data. */
static PGMM g_pGMM = NULL;
/** Macro for obtaining and validating the g_pGMM pointer.
* On failure it will return from the invoking function with the specified return value.
*
* @param pGMM The name of the pGMM variable.
* @param rc The return value on failure. Use VERR_INTERNAL_ERROR for
* VBox status codes.
*/
#define GMM_GET_VALID_INSTANCE(pGMM, rc) \
do { \
(pGMM) = g_pGMM; \
AssertPtrReturn((pGMM), (rc)); \
AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \
} while (0)
/** Macro for obtaining and validating the g_pGMM pointer, void function variant.
* On failure it will return from the invoking function.
*
* @param pGMM The name of the pGMM variable.
*/
#define GMM_GET_VALID_INSTANCE_VOID(pGMM) \
do { \
(pGMM) = g_pGMM; \
AssertPtrReturnVoid((pGMM)); \
AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \
} while (0)
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM);
static DECLCALLBACK(int) gmmR0CleanupVMScanChunk(PAVLU32NODECORE pNode, void *pvGMM);
/*static*/ DECLCALLBACK(int) gmmR0CleanupVMDestroyChunk(PAVLU32NODECORE pNode, void *pvGVM);
DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet);
DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk);
static void gmmR0FreeChunk(PGMM pGMM, PGMMCHUNK pChunk);
static void gmmR0FreeSharedPage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage);
/**
* Initializes the GMM component.
*
* This is called when the VMMR0.r0 module is loaded and protected by the
* loader semaphore.
*
* @returns VBox status code.
*/
GMMR0DECL(int) GMMR0Init(void)
{
LogFlow(("GMMInit:\n"));
/*
* Allocate the instance data and the lock(s).
*/
PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM));
if (!pGMM)
return VERR_NO_MEMORY;
pGMM->u32Magic = GMM_MAGIC;
for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++)
pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID;
ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID);
int rc = RTSemFastMutexCreate(&pGMM->Mtx);
if (RT_SUCCESS(rc))
{
/*
* Check and see if RTR0MemObjAllocPhysNC works.
*/
#if 0 /* later, see #3170. */
RTR0MEMOBJ MemObj;
rc = RTR0MemObjAllocPhysNC(&MemObj, _64K, NIL_RTHCPHYS);
if (RT_SUCCESS(rc))
{
rc = RTR0MemObjFree(MemObj, true);
AssertRC(rc);
}
else if (rc == VERR_NOT_SUPPORTED)
pGMM->fLegacyMode = true;
else
SUPR0Printf("GMMR0Init: RTR0MemObjAllocPhysNC(,64K,Any) -> %d!\n", rc);
#else
pGMM->fLegacyMode = true;
#endif
/*
* Query system page count and guess a reasonable cMaxPages value.
*/
pGMM->cMaxPages = UINT32_MAX; /** @todo IPRT function for query ram size and such. */
g_pGMM = pGMM;
LogFlow(("GMMInit: pGMM=%p fLegacy=%RTbool\n", pGMM, pGMM->fLegacyMode));
return VINF_SUCCESS;
}
RTMemFree(pGMM);
SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc);
return rc;
}
/**
* Terminates the GMM component.
*/
GMMR0DECL(void) GMMR0Term(void)
{
LogFlow(("GMMTerm:\n"));
/*
* Take care / be paranoid...
*/
PGMM pGMM = g_pGMM;
if (!VALID_PTR(pGMM))
return;
if (pGMM->u32Magic != GMM_MAGIC)
{
SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic);
return;
}
/*
* Undo what init did and free all the resources we've acquired.
*/
/* Destroy the fundamentals. */
g_pGMM = NULL;
pGMM->u32Magic++;
RTSemFastMutexDestroy(pGMM->Mtx);
pGMM->Mtx = NIL_RTSEMFASTMUTEX;
/* free any chunks still hanging around. */
RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM);
/* finally the instance data itself. */
RTMemFree(pGMM);
LogFlow(("GMMTerm: done\n"));
}
/**
* RTAvlU32Destroy callback.
*
* @returns 0
* @param pNode The node to destroy.
* @param pvGMM The GMM handle.
*/
static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM)
{
PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT))
SUPR0Printf("GMMR0Term: %p/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk,
pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappings);
int rc = RTR0MemObjFree(pChunk->MemObj, true /* fFreeMappings */);
if (RT_FAILURE(rc))
{
SUPR0Printf("GMMR0Term: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk,
pChunk->Core.Key, pChunk->MemObj, rc, pChunk->cMappings);
AssertRC(rc);
}
pChunk->MemObj = NIL_RTR0MEMOBJ;
RTMemFree(pChunk->paMappings);
pChunk->paMappings = NULL;
RTMemFree(pChunk);
NOREF(pvGMM);
return 0;
}
/**
* Initializes the per-VM data for the GMM.
*
* This is called from within the GVMM lock (from GVMMR0CreateVM)
* and should only initialize the data members so GMMR0CleanupVM
* can deal with them. We reserve no memory or anything here,
* that's done later in GMMR0InitVM.
*
* @param pGVM Pointer to the Global VM structure.
*/
GMMR0DECL(void) GMMR0InitPerVMData(PGVM pGVM)
{
AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding));
AssertRelease(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding));
pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID;
pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID;
pGVM->gmm.s.fMayAllocate = false;
}
/**
* Cleans up when a VM is terminating.
*
* @param pGVM Pointer to the Global VM structure.
*/
GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM)
{
LogFlow(("GMMR0CleanupVM: pGVM=%p:{.pVM=%p, .hSelf=%#x}\n", pGVM, pGVM->pVM, pGVM->hSelf));
PGMM pGMM;
GMM_GET_VALID_INSTANCE_VOID(pGMM);
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
/*
* The policy is 'INVALID' until the initial reservation
* request has been serviced.
*/
if ( pGVM->gmm.s.enmPolicy > GMMOCPOLICY_INVALID
|| pGVM->gmm.s.enmPolicy < GMMOCPOLICY_END)
{
/*
* If it's the last VM around, we can skip walking all the chunk looking
* for the pages owned by this VM and instead flush the whole shebang.
*
* This takes care of the eventuality that a VM has left shared page
* references behind (shouldn't happen of course, but you never know).
*/
Assert(pGMM->cRegisteredVMs);
pGMM->cRegisteredVMs--;
#if 0 /* disabled so it won't hide bugs. */
if (!pGMM->cRegisteredVMs)
{
RTAvlU32Destroy(&pGMM->pChunks, gmmR0CleanupVMDestroyChunk, pGMM);
for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++)
{
pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID;
pGMM->ChunkTLB.aEntries[i].pChunk = NULL;
}
memset(&pGMM->Private, 0, sizeof(pGMM->Private));
memset(&pGMM->Shared, 0, sizeof(pGMM->Shared));
memset(&pGMM->bmChunkId[0], 0, sizeof(pGMM->bmChunkId));
ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID);
pGMM->cReservedPages = 0;
pGMM->cOverCommittedPages = 0;
pGMM->cAllocatedPages = 0;
pGMM->cSharedPages = 0;
pGMM->cLeftBehindSharedPages = 0;
pGMM->cChunks = 0;
pGMM->cBalloonedPages = 0;
}
else
#endif
{
/*
* Walk the entire pool looking for pages that belongs to this VM
* and left over mappings. (This'll only catch private pages, shared
* pages will be 'left behind'.)
*/
uint64_t cPrivatePages = pGVM->gmm.s.cPrivatePages; /* save */
RTAvlU32DoWithAll(&pGMM->pChunks, true /* fFromLeft */, gmmR0CleanupVMScanChunk, pGVM);
if (pGVM->gmm.s.cPrivatePages)
SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.cPrivatePages);
pGMM->cAllocatedPages -= cPrivatePages;
/* free empty chunks. */
if (cPrivatePages)
{
PGMMCHUNK pCur = pGMM->Private.apLists[RT_ELEMENTS(pGMM->Private.apLists) - 1];
while (pCur)
{
PGMMCHUNK pNext = pCur->pFreeNext;
if ( pCur->cFree == GMM_CHUNK_NUM_PAGES
&& (!pGMM->fLegacyMode || pCur->hGVM == pGVM->hSelf))
gmmR0FreeChunk(pGMM, pCur);
pCur = pNext;
}
}
/* account for shared pages that weren't freed. */
if (pGVM->gmm.s.cSharedPages)
{
Assert(pGMM->cSharedPages >= pGVM->gmm.s.cSharedPages);
SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.cSharedPages);
pGMM->cLeftBehindSharedPages += pGVM->gmm.s.cSharedPages;
}
/*
* Update the over-commitment management statistics.
*/
pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages
+ pGVM->gmm.s.Reserved.cFixedPages
+ pGVM->gmm.s.Reserved.cShadowPages;
switch (pGVM->gmm.s.enmPolicy)
{
case GMMOCPOLICY_NO_OC:
break;
default:
/** @todo Update GMM->cOverCommittedPages */
break;
}
}
}
/* zap the GVM data. */
pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID;
pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID;
pGVM->gmm.s.fMayAllocate = false;
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0CleanupVM: returns\n"));
}
/**
* RTAvlU32DoWithAll callback.
*
* @returns 0
* @param pNode The node to search.
* @param pvGVM Pointer to the shared VM structure.
*/
static DECLCALLBACK(int) gmmR0CleanupVMScanChunk(PAVLU32NODECORE pNode, void *pvGVM)
{
PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
PGVM pGVM = (PGVM)pvGVM;
/*
* Look for pages belonging to the VM.
* (Perform some internal checks while we're scanning.)
*/
#ifndef VBOX_STRICT
if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT))
#endif
{
unsigned cPrivate = 0;
unsigned cShared = 0;
unsigned cFree = 0;
uint16_t hGVM = pGVM->hSelf;
unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT);
while (iPage-- > 0)
if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage]))
{
if (pChunk->aPages[iPage].Private.hGVM == hGVM)
{
/*
* Free the page.
*
* The reason for not using gmmR0FreePrivatePage here is that we
* must *not* cause the chunk to be freed from under us - we're in
* a AVL tree walk here.
*/
pChunk->aPages[iPage].u = 0;
pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead;
pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
pChunk->iFreeHead = iPage;
pChunk->cPrivate--;
if ((pChunk->cFree & GMM_CHUNK_FREE_SET_MASK) == 0)
{
gmmR0UnlinkChunk(pChunk);
pChunk->cFree++;
gmmR0LinkChunk(pChunk, pChunk->cShared ? &g_pGMM->Shared : &g_pGMM->Private);
}
else
pChunk->cFree++;
pGVM->gmm.s.cPrivatePages--;
cFree++;
}
else
cPrivate++;
}
else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage]))
cFree++;
else
cShared++;
/*
* Did it add up?
*/
if (RT_UNLIKELY( pChunk->cFree != cFree
|| pChunk->cPrivate != cPrivate
|| pChunk->cShared != cShared))
{
SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %p/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n",
pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared);
pChunk->cFree = cFree;
pChunk->cPrivate = cPrivate;
pChunk->cShared = cShared;
}
}
/*
* Look for the mapping belonging to the terminating VM.
*/
for (unsigned i = 0; i < pChunk->cMappings; i++)
if (pChunk->paMappings[i].pGVM == pGVM)
{
RTR0MEMOBJ MemObj = pChunk->paMappings[i].MapObj;
pChunk->cMappings--;
if (i < pChunk->cMappings)
pChunk->paMappings[i] = pChunk->paMappings[pChunk->cMappings];
pChunk->paMappings[pChunk->cMappings].pGVM = NULL;
pChunk->paMappings[pChunk->cMappings].MapObj = NIL_RTR0MEMOBJ;
int rc = RTR0MemObjFree(MemObj, false /* fFreeMappings (NA) */);
if (RT_FAILURE(rc))
{
SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n",
pChunk, pChunk->Core.Key, i, MemObj, rc);
AssertRC(rc);
}
break;
}
/*
* If not in legacy mode, we should reset the hGVM field
* if it has our handle in it.
*/
if (pChunk->hGVM == pGVM->hSelf)
{
if (!g_pGMM->fLegacyMode)
pChunk->hGVM = NIL_GVM_HANDLE;
else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES)
{
SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: cFree=%#x - it should be 0 in legacy mode!\n",
pChunk, pChunk->Core.Key, pChunk->cFree);
AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in legacy mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree));
gmmR0UnlinkChunk(pChunk);
pChunk->cFree = GMM_CHUNK_NUM_PAGES;
gmmR0LinkChunk(pChunk, pChunk->cShared ? &g_pGMM->Shared : &g_pGMM->Private);
}
}
return 0;
}
/**
* RTAvlU32Destroy callback for GMMR0CleanupVM.
*
* @returns 0
* @param pNode The node (allocation chunk) to destroy.
* @param pvGVM Pointer to the shared VM structure.
*/
/*static*/ DECLCALLBACK(int) gmmR0CleanupVMDestroyChunk(PAVLU32NODECORE pNode, void *pvGVM)
{
PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
PGVM pGVM = (PGVM)pvGVM;
for (unsigned i = 0; i < pChunk->cMappings; i++)
{
if (pChunk->paMappings[i].pGVM != pGVM)
SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: mapping #%x: pGVM=%p exepcted %p\n", pChunk,
pChunk->Core.Key, i, pChunk->paMappings[i].pGVM, pGVM);
int rc = RTR0MemObjFree(pChunk->paMappings[i].MapObj, false /* fFreeMappings (NA) */);
if (RT_FAILURE(rc))
{
SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n", pChunk,
pChunk->Core.Key, i, pChunk->paMappings[i].MapObj, rc);
AssertRC(rc);
}
}
int rc = RTR0MemObjFree(pChunk->MemObj, true /* fFreeMappings */);
if (RT_FAILURE(rc))
{
SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk,
pChunk->Core.Key, pChunk->MemObj, rc, pChunk->cMappings);
AssertRC(rc);
}
pChunk->MemObj = NIL_RTR0MEMOBJ;
RTMemFree(pChunk->paMappings);
pChunk->paMappings = NULL;
RTMemFree(pChunk);
return 0;
}
/**
* The initial resource reservations.
*
* This will make memory reservations according to policy and priority. If there isn't
* sufficient resources available to sustain the VM this function will fail and all
* future allocations requests will fail as well.
*
* These are just the initial reservations made very very early during the VM creation
* process and will be adjusted later in the GMMR0UpdateReservation call after the
* ring-3 init has completed.
*
* @returns VBox status code.
* @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
* @retval VERR_GMM_
*
* @param pVM Pointer to the shared VM structure.
* @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
* This does not include MMIO2 and similar.
* @param cShadowPages The number of pages that may be allocated for shadow pageing structures.
* @param cFixedPages The number of pages that may be allocated for fixed objects like the
* hyper heap, MMIO2 and similar.
* @param enmPolicy The OC policy to use on this VM.
* @param enmPriority The priority in an out-of-memory situation.
*
* @thread The creator thread / EMT.
*/
GMMR0DECL(int) GMMR0InitialReservation(PVM pVM, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages,
GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority)
{
LogFlow(("GMMR0InitialReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n",
pVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority));
/*
* Validate, get basics and take the semaphore.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER);
AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER);
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
if ( !pGVM->gmm.s.Reserved.cBasePages
&& !pGVM->gmm.s.Reserved.cFixedPages
&& !pGVM->gmm.s.Reserved.cShadowPages)
{
/*
* Check if we can accomodate this.
*/
/* ... later ... */
if (RT_SUCCESS(rc))
{
/*
* Update the records.
*/
pGVM->gmm.s.Reserved.cBasePages = cBasePages;
pGVM->gmm.s.Reserved.cFixedPages = cFixedPages;
pGVM->gmm.s.Reserved.cShadowPages = cShadowPages;
pGVM->gmm.s.enmPolicy = enmPolicy;
pGVM->gmm.s.enmPriority = enmPriority;
pGVM->gmm.s.fMayAllocate = true;
pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
pGMM->cRegisteredVMs++;
}
}
else
rc = VERR_WRONG_ORDER;
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GMMR0InitialReservation.
*
* @returns see GMMR0InitialReservation.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GMMR0DECL(int) GMMR0InitialReservationReq(PVM pVM, PGMMINITIALRESERVATIONREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
return GMMR0InitialReservation(pVM, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority);
}
/**
* This updates the memory reservation with the additional MMIO2 and ROM pages.
*
* @returns VBox status code.
* @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
*
* @param pVM Pointer to the shared VM structure.
* @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
* This does not include MMIO2 and similar.
* @param cShadowPages The number of pages that may be allocated for shadow pageing structures.
* @param cFixedPages The number of pages that may be allocated for fixed objects like the
* hyper heap, MMIO2 and similar.
*
* @thread EMT.
*/
GMMR0DECL(int) GMMR0UpdateReservation(PVM pVM, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages)
{
LogFlow(("GMMR0UpdateReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n",
pVM, cBasePages, cShadowPages, cFixedPages));
/*
* Validate, get basics and take the semaphore.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
if ( pGVM->gmm.s.Reserved.cBasePages
&& pGVM->gmm.s.Reserved.cFixedPages
&& pGVM->gmm.s.Reserved.cShadowPages)
{
/*
* Check if we can accomodate this.
*/
/* ... later ... */
if (RT_SUCCESS(rc))
{
/*
* Update the records.
*/
pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages
+ pGVM->gmm.s.Reserved.cFixedPages
+ pGVM->gmm.s.Reserved.cShadowPages;
pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
pGVM->gmm.s.Reserved.cBasePages = cBasePages;
pGVM->gmm.s.Reserved.cFixedPages = cFixedPages;
pGVM->gmm.s.Reserved.cShadowPages = cShadowPages;
}
}
else
rc = VERR_WRONG_ORDER;
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GMMR0UpdateReservation.
*
* @returns see GMMR0UpdateReservation.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GMMR0DECL(int) GMMR0UpdateReservationReq(PVM pVM, PGMMUPDATERESERVATIONREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
return GMMR0UpdateReservation(pVM, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages);
}
/**
* Looks up a chunk in the tree and fill in the TLB entry for it.
*
* This is not expected to fail and will bitch if it does.
*
* @returns Pointer to the allocation chunk, NULL if not found.
* @param pGMM Pointer to the GMM instance.
* @param idChunk The ID of the chunk to find.
* @param pTlbe Pointer to the TLB entry.
*/
static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe)
{
PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk);
AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL);
pTlbe->idChunk = idChunk;
pTlbe->pChunk = pChunk;
return pChunk;
}
/**
* Finds a allocation chunk.
*
* This is not expected to fail and will bitch if it does.
*
* @returns Pointer to the allocation chunk, NULL if not found.
* @param pGMM Pointer to the GMM instance.
* @param idChunk The ID of the chunk to find.
*/
DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk)
{
/*
* Do a TLB lookup, branch if not in the TLB.
*/
PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)];
if ( pTlbe->idChunk != idChunk
|| !pTlbe->pChunk)
return gmmR0GetChunkSlow(pGMM, idChunk, pTlbe);
return pTlbe->pChunk;
}
/**
* Finds a page.
*
* This is not expected to fail and will bitch if it does.
*
* @returns Pointer to the page, NULL if not found.
* @param pGMM Pointer to the GMM instance.
* @param idPage The ID of the page to find.
*/
DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage)
{
PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
if (RT_LIKELY(pChunk))
return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK];
return NULL;
}
/**
* Unlinks the chunk from the free list it's currently on (if any).
*
* @param pChunk The allocation chunk.
*/
DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk)
{
PGMMCHUNKFREESET pSet = pChunk->pSet;
if (RT_LIKELY(pSet))
{
pSet->cPages -= pChunk->cFree;
PGMMCHUNK pPrev = pChunk->pFreePrev;
PGMMCHUNK pNext = pChunk->pFreeNext;
if (pPrev)
pPrev->pFreeNext = pNext;
else
pSet->apLists[(pChunk->cFree - 1) >> GMM_CHUNK_FREE_SET_SHIFT] = pNext;
if (pNext)
pNext->pFreePrev = pPrev;
pChunk->pSet = NULL;
pChunk->pFreeNext = NULL;
pChunk->pFreePrev = NULL;
}
else
{
Assert(!pChunk->pFreeNext);
Assert(!pChunk->pFreePrev);
Assert(!pChunk->cFree);
}
}
/**
* Links the chunk onto the appropriate free list in the specified free set.
*
* If no free entries, it's not linked into any list.
*
* @param pChunk The allocation chunk.
* @param pSet The free set.
*/
DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet)
{
Assert(!pChunk->pSet);
Assert(!pChunk->pFreeNext);
Assert(!pChunk->pFreePrev);
if (pChunk->cFree > 0)
{
pChunk->pSet = pSet;
pChunk->pFreePrev = NULL;
unsigned iList = (pChunk->cFree - 1) >> GMM_CHUNK_FREE_SET_SHIFT;
pChunk->pFreeNext = pSet->apLists[iList];
if (pChunk->pFreeNext)
pChunk->pFreeNext->pFreePrev = pChunk;
pSet->apLists[iList] = pChunk;
pSet->cPages += pChunk->cFree;
}
}
/**
* Frees a Chunk ID.
*
* @param pGMM Pointer to the GMM instance.
* @param idChunk The Chunk ID to free.
*/
static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk)
{
AssertReturnVoid(idChunk != NIL_GMM_CHUNKID);
AssertMsg(ASMBitTest(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk));
ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk);
}
/**
* Allocates a new Chunk ID.
*
* @returns The Chunk ID.
* @param pGMM Pointer to the GMM instance.
*/
static uint32_t gmmR0AllocateChunkId(PGMM pGMM)
{
AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */
AssertCompile(NIL_GMM_CHUNKID == 0);
/*
* Try the next sequential one.
*/
int32_t idChunk = ++pGMM->idChunkPrev;
#if 0 /* test the fallback first */
if ( idChunk <= GMM_CHUNKID_LAST
&& idChunk > NIL_GMM_CHUNKID
&& !ASMAtomicBitTestAndSet(&pVMM->bmChunkId[0], idChunk))
return idChunk;
#endif
/*
* Scan sequentially from the last one.
*/
if ( (uint32_t)idChunk < GMM_CHUNKID_LAST
&& idChunk > NIL_GMM_CHUNKID)
{
idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk);
if (idChunk > NIL_GMM_CHUNKID)
{
AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), NIL_GVM_HANDLE);
return pGMM->idChunkPrev = idChunk;
}
}
/*
* Ok, scan from the start.
* We're not racing anyone, so there is no need to expect failures or have restart loops.
*/
idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1);
AssertMsgReturn(idChunk > NIL_GMM_CHUNKID, ("%#x\n", idChunk), NIL_GVM_HANDLE);
AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), NIL_GVM_HANDLE);
return pGMM->idChunkPrev = idChunk;
}
/**
* Registers a new chunk of memory.
*
* This is called by both gmmR0AllocateOneChunk and GMMR0SeedChunk.
*
* @returns VBox status code.
* @param pGMM Pointer to the GMM instance.
* @param pSet Pointer to the set.
* @param MemObj The memory object for the chunk.
* @param hGVM The hGVM value. (Only used by GMMR0SeedChunk.)
*/
static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ MemObj, uint16_t hGVM)
{
int rc;
PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk));
if (pChunk)
{
/*
* Initialize it.
*/
pChunk->MemObj = MemObj;
pChunk->cFree = GMM_CHUNK_NUM_PAGES;
pChunk->hGVM = hGVM;
pChunk->iFreeHead = 0;
for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++)
{
pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
pChunk->aPages[iPage].Free.iNext = iPage + 1;
}
pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE;
pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX;
/*
* Allocate a Chunk ID and insert it into the tree.
* It doesn't cost anything to be careful here.
*/
pChunk->Core.Key = gmmR0AllocateChunkId(pGMM);
if ( pChunk->Core.Key != NIL_GMM_CHUNKID
&& pChunk->Core.Key <= GMM_CHUNKID_LAST
&& RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core))
{
pGMM->cChunks++;
gmmR0LinkChunk(pChunk, pSet);
LogFlow(("gmmR0RegisterChunk: pChunk=%p id=%#x cChunks=%d\n", pChunk, pChunk->Core.Key, pGMM->cChunks));
return VINF_SUCCESS;
}
rc = VERR_INTERNAL_ERROR;
RTMemFree(pChunk);
}
else
rc = VERR_NO_MEMORY;
return rc;
}
/**
* Allocate one new chunk and add it to the specified free set.
*
* @returns VBox status code.
* @param pGMM Pointer to the GMM instance.
* @param pSet Pointer to the set.
*/
static int gmmR0AllocateOneChunk(PGMM pGMM, PGMMCHUNKFREESET pSet)
{
/*
* Allocate the memory.
*/
RTR0MEMOBJ MemObj;
int rc = RTR0MemObjAllocPhysNC(&MemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS);
if (RT_SUCCESS(rc))
{
rc = gmmR0RegisterChunk(pGMM, pSet, MemObj, NIL_GVM_HANDLE);
if (RT_FAILURE(rc))
RTR0MemObjFree(MemObj, false /* fFreeMappings */);
}
return rc;
}
/**
* Attempts to allocate more pages until the requested amount is met.
*
* @returns VBox status code.
* @param pGMM Pointer to the GMM instance data.
* @param pSet Pointer to the free set to grow.
* @param cPages The number of pages needed.
*/
static int gmmR0AllocateMoreChunks(PGMM pGMM, PGMMCHUNKFREESET pSet, uint32_t cPages)
{
Assert(!pGMM->fLegacyMode);
/*
* Try steal free chunks from the other set first. (Only take 100% free chunks.)
*/
PGMMCHUNKFREESET pOtherSet = pSet == &pGMM->Private ? &pGMM->Shared : &pGMM->Private;
while ( pSet->cPages < cPages
&& pOtherSet->cPages >= GMM_CHUNK_NUM_PAGES)
{
PGMMCHUNK pChunk = pOtherSet->apLists[GMM_CHUNK_FREE_SET_LISTS - 1];
while (pChunk && pChunk->cFree != GMM_CHUNK_NUM_PAGES)
pChunk = pChunk->pFreeNext;
if (!pChunk)
break;
gmmR0UnlinkChunk(pChunk);
gmmR0LinkChunk(pChunk, pSet);
}
/*
* If we need still more pages, allocate new chunks.
*/
while (pSet->cPages < cPages)
{
int rc = gmmR0AllocateOneChunk(pGMM, pSet);
if (RT_FAILURE(rc))
return rc;
}
return VINF_SUCCESS;
}
/**
* Allocates one private page.
*
* Worker for gmmR0AllocatePages.
*
* @param pGMM Pointer to the GMM instance data.
* @param hGVM The GVM handle of the VM requesting memory.
* @param pChunk The chunk to allocate it from.
* @param pPageDesc The page descriptor.
*/
static void gmmR0AllocatePage(PGMM pGMM, uint32_t hGVM, PGMMCHUNK pChunk, PGMMPAGEDESC pPageDesc)
{
/* update the chunk stats. */
if (pChunk->hGVM == NIL_GVM_HANDLE)
pChunk->hGVM = hGVM;
Assert(pChunk->cFree);
pChunk->cFree--;
pChunk->cPrivate++;
/* unlink the first free page. */
const uint32_t iPage = pChunk->iFreeHead;
AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage));
PGMMPAGE pPage = &pChunk->aPages[iPage];
Assert(GMM_PAGE_IS_FREE(pPage));
pChunk->iFreeHead = pPage->Free.iNext;
Log3(("A pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x iNext=%#x\n",
pPage, iPage, (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage,
pPage->Common.u2State, pChunk->iFreeHead, pPage->Free.iNext));
/* make the page private. */
pPage->u = 0;
AssertCompile(GMM_PAGE_STATE_PRIVATE == 0);
pPage->Private.hGVM = hGVM;
AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_LAST);
AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_LAST);
if (pPageDesc->HCPhysGCPhys <= GMM_GCPHYS_LAST)
pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> PAGE_SHIFT;
else
pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */
/* update the page descriptor. */
pPageDesc->HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(pChunk->MemObj, iPage);
Assert(pPageDesc->HCPhysGCPhys != NIL_RTHCPHYS);
pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage;
pPageDesc->idSharedPage = NIL_GMM_PAGEID;
}
/**
* Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages.
*
* @returns VBox status code:
* @retval VINF_SUCCESS on success.
* @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary.
* @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
* @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
* that is we're trying to allocate more than we've reserved.
*
* @param pGMM Pointer to the GMM instance data.
* @param pGVM Pointer to the shared VM structure.
* @param cPages The number of pages to allocate.
* @param paPages Pointer to the page descriptors.
* See GMMPAGEDESC for details on what is expected on input.
* @param enmAccount The account to charge.
*/
static int gmmR0AllocatePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
{
/*
* Check allocation limits.
*/
if (RT_UNLIKELY(pGMM->cAllocatedPages + cPages > pGMM->cMaxPages))
return VERR_GMM_HIT_GLOBAL_LIMIT;
switch (enmAccount)
{
case GMMACCOUNT_BASE:
if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages + cPages > pGVM->gmm.s.Reserved.cBasePages))
{
Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
pGVM->gmm.s.Reserved.cBasePages, pGVM->gmm.s.Allocated.cBasePages, cPages));
return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
}
break;
case GMMACCOUNT_SHADOW:
if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages + cPages > pGVM->gmm.s.Reserved.cShadowPages))
{
Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
pGVM->gmm.s.Reserved.cShadowPages, pGVM->gmm.s.Allocated.cShadowPages, cPages));
return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
}
break;
case GMMACCOUNT_FIXED:
if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages + cPages > pGVM->gmm.s.Reserved.cFixedPages))
{
Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
pGVM->gmm.s.Reserved.cFixedPages, pGVM->gmm.s.Allocated.cFixedPages, cPages));
return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
}
break;
default:
AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
}
/*
* Check if we need to allocate more memory or not. In legacy mode this is
* a bit extra work but it's easier to do it upfront than bailing out later.
*/
PGMMCHUNKFREESET pSet = &pGMM->Private;
if (pSet->cPages < cPages)
{
if (pGMM->fLegacyMode)
return VERR_GMM_SEED_ME;
int rc = gmmR0AllocateMoreChunks(pGMM, pSet, cPages);
if (RT_FAILURE(rc))
return rc;
Assert(pSet->cPages >= cPages);
}
else if (pGMM->fLegacyMode)
{
uint16_t hGVM = pGVM->hSelf;
uint32_t cPagesFound = 0;
for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++)
for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext)
if (pCur->hGVM == hGVM)
{
cPagesFound += pCur->cFree;
if (cPagesFound >= cPages)
break;
}
if (cPagesFound < cPages)
return VERR_GMM_SEED_ME;
}
/*
* Pick the pages.
*/
uint16_t hGVM = pGVM->hSelf;
uint32_t iPage = 0;
for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists) && iPage < cPages; i++)
{
/* first round, pick from chunks with an affinity to the VM. */
PGMMCHUNK pCur = pSet->apLists[i];
while (pCur && iPage < cPages)
{
PGMMCHUNK pNext = pCur->pFreeNext;
if ( pCur->hGVM == hGVM
&& ( pCur->cFree <= GMM_CHUNK_NUM_PAGES
|| pGMM->fLegacyMode))
{
gmmR0UnlinkChunk(pCur);
for (; pCur->cFree && iPage < cPages; iPage++)
gmmR0AllocatePage(pGMM, hGVM, pCur, &paPages[iPage]);
gmmR0LinkChunk(pCur, pSet);
}
pCur = pNext;
}
/* second round, take all free pages in this list. */
if (!pGMM->fLegacyMode)
{
PGMMCHUNK pCur = pSet->apLists[i];
while (pCur && iPage < cPages)
{
PGMMCHUNK pNext = pCur->pFreeNext;
gmmR0UnlinkChunk(pCur);
for (; pCur->cFree && iPage < cPages; iPage++)
gmmR0AllocatePage(pGMM, hGVM, pCur, &paPages[iPage]);
gmmR0LinkChunk(pCur, pSet);
pCur = pNext;
}
}
}
/*
* Update the account.
*/
switch (enmAccount)
{
case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages += iPage; break;
case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages += iPage; break;
case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages += iPage; break;
default:
AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
}
pGVM->gmm.s.cPrivatePages += iPage;
pGMM->cAllocatedPages += iPage;
AssertMsgReturn(iPage == cPages, ("%d != %d\n", iPage, cPages), VERR_INTERNAL_ERROR);
/*
* Check if we've reached some threshold and should kick one or two VMs and tell
* them to inflate their balloons a bit more... later.
*/
return VINF_SUCCESS;
}
/**
* Updates the previous allocations and allocates more pages.
*
* The handy pages are always taken from the 'base' memory account.
* The allocated pages are not cleared and will contains random garbage.
*
* @returns VBox status code:
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_OWNER if the caller is not an EMT.
* @retval VERR_GMM_PAGE_NOT_FOUND if one of the pages to update wasn't found.
* @retval VERR_GMM_PAGE_NOT_PRIVATE if one of the pages to update wasn't a
* private page.
* @retval VERR_GMM_PAGE_NOT_SHARED if one of the pages to update wasn't a
* shared page.
* @retval VERR_GMM_NOT_PAGE_OWNER if one of the pages to be updated wasn't
* owned by the VM.
* @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary.
* @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
* @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
* that is we're trying to allocate more than we've reserved.
*
* @param pVM Pointer to the shared VM structure.
* @param cPagesToUpdate The number of pages to update (starting from the head).
* @param cPagesToAlloc The number of pages to allocate (starting from the head).
* @param paPages The array of page descriptors.
* See GMMPAGEDESC for details on what is expected on input.
* @thread EMT.
*/
GMMR0DECL(int) GMMR0AllocateHandyPages(PVM pVM, uint32_t cPagesToUpdate, uint32_t cPagesToAlloc, PGMMPAGEDESC paPages)
{
LogFlow(("GMMR0AllocateHandyPages: pVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n",
pVM, cPagesToUpdate, cPagesToAlloc, paPages));
/*
* Validate, get basics and take the semaphore.
* (This is a relatively busy path, so make predictions where possible.)
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (RT_UNLIKELY(!pGVM))
return VERR_INVALID_PARAMETER;
if (RT_UNLIKELY(pGVM->hEMT != RTThreadNativeSelf()))
return VERR_NOT_OWNER;
AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024)
|| (cPagesToAlloc && cPagesToAlloc < 1024),
("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc),
VERR_INVALID_PARAMETER);
unsigned iPage = 0;
for (; iPage < cPagesToUpdate; iPage++)
{
AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST
&& !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK))
|| paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS
|| paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE,
("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys),
VERR_INVALID_PARAMETER);
AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
/*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
/*|| paPages[iPage].idSharedPage == NIL_GMM_PAGEID*/,
("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
}
for (; iPage < cPagesToAlloc; iPage++)
{
AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER);
AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
}
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
/* No allocations before the initial reservation has been made! */
if (RT_LIKELY( pGVM->gmm.s.Reserved.cBasePages
&& pGVM->gmm.s.Reserved.cFixedPages
&& pGVM->gmm.s.Reserved.cShadowPages))
{
/*
* Perform the updates.
* Stop on the first error.
*/
for (iPage = 0; iPage < cPagesToUpdate; iPage++)
{
if (paPages[iPage].idPage != NIL_GMM_PAGEID)
{
PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage);
if (RT_LIKELY(pPage))
{
if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
{
if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
{
AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST);
if (RT_LIKELY(paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST))
pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> PAGE_SHIFT;
else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE)
pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE;
/* else: NIL_RTHCPHYS nothing */
paPages[iPage].idPage = NIL_GMM_PAGEID;
paPages[iPage].HCPhysGCPhys = NIL_RTHCPHYS;
}
else
{
Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n",
iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf));
rc = VERR_GMM_NOT_PAGE_OWNER;
break;
}
}
else
{
Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private! %.*Rhxs\n", iPage, paPages[iPage].idPage, sizeof(*pPage), pPage));
rc = VERR_GMM_PAGE_NOT_PRIVATE;
break;
}
}
else
{
Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage));
rc = VERR_GMM_PAGE_NOT_FOUND;
break;
}
}
if (paPages[iPage].idSharedPage != NIL_GMM_PAGEID)
{
PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage);
if (RT_LIKELY(pPage))
{
if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
{
AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST);
Assert(pPage->Shared.cRefs);
Assert(pGVM->gmm.s.cSharedPages);
Assert(pGVM->gmm.s.Allocated.cBasePages);
pGVM->gmm.s.cSharedPages--;
pGVM->gmm.s.Allocated.cBasePages--;
if (!--pPage->Shared.cRefs)
gmmR0FreeSharedPage(pGMM, paPages[iPage].idSharedPage, pPage);
paPages[iPage].idSharedPage = NIL_GMM_PAGEID;
}
else
{
Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage));
rc = VERR_GMM_PAGE_NOT_SHARED;
break;
}
}
else
{
Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage));
rc = VERR_GMM_PAGE_NOT_FOUND;
break;
}
}
}
/*
* Join paths with GMMR0AllocatePages for the allocation.
*/
if (RT_SUCCESS(rc))
rc = gmmR0AllocatePages(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE);
}
else
rc = VERR_WRONG_ORDER;
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc));
return rc;
}
/**
* Allocate one or more pages.
*
* This is typically used for ROMs and MMIO2 (VRAM) during VM creation.
* The allocated pages are not cleared and will contains random garbage.
*
* @returns VBox status code:
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_OWNER if the caller is not an EMT.
* @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary.
* @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
* @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
* that is we're trying to allocate more than we've reserved.
*
* @param pVM Pointer to the shared VM structure.
* @param cPages The number of pages to allocate.
* @param paPages Pointer to the page descriptors.
* See GMMPAGEDESC for details on what is expected on input.
* @param enmAccount The account to charge.
*
* @thread EMT.
*/
GMMR0DECL(int) GMMR0AllocatePages(PVM pVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
{
LogFlow(("GMMR0AllocatePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount));
/*
* Validate, get basics and take the semaphore.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
for (unsigned iPage = 0; iPage < cPages; iPage++)
{
AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS
|| paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE
|| ( enmAccount == GMMACCOUNT_BASE
&& paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST
&& !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)),
("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount),
VERR_INVALID_PARAMETER);
AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
}
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
/* No allocations before the initial reservation has been made! */
if ( pGVM->gmm.s.Reserved.cBasePages
&& pGVM->gmm.s.Reserved.cFixedPages
&& pGVM->gmm.s.Reserved.cShadowPages)
rc = gmmR0AllocatePages(pGMM, pGVM, cPages, paPages, enmAccount);
else
rc = VERR_WRONG_ORDER;
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0AllocatePages: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GMMR0AllocatePages.
*
* @returns see GMMR0AllocatePages.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GMMR0DECL(int) GMMR0AllocatePagesReq(PVM pVM, PGMMALLOCATEPAGESREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]),
("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])),
VERR_INVALID_PARAMETER);
AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]),
("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])),
VERR_INVALID_PARAMETER);
return GMMR0AllocatePages(pVM, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
}
/**
* Frees a chunk, giving it back to the host OS.
*
* @param pGMM Pointer to the GMM instance.
* @param pChunk The chunk to free.
*/
static void gmmR0FreeChunk(PGMM pGMM, PGMMCHUNK pChunk)
{
Assert(pChunk->Core.Key != NIL_GMM_CHUNKID);
/*
* If there are current mappings of the chunk, then request the
* VMs to unmap them. Reposition the chunk in the free list so
* it won't be a likely candidate for allocations.
*/
if (pChunk->cMappings)
{
/** @todo R0 -> VM request */
}
else
{
/*
* Try free the memory object.
*/
int rc = RTR0MemObjFree(pChunk->MemObj, false /* fFreeMappings */);
if (RT_SUCCESS(rc))
{
pChunk->MemObj = NIL_RTR0MEMOBJ;
/*
* Unlink it from everywhere.
*/
gmmR0UnlinkChunk(pChunk);
PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key);
Assert(pCore == &pChunk->Core); NOREF(pCore);
PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pChunk->Key)];
if (pTlbe->pChunk == pChunk)
{
pTlbe->idChunk = NIL_GMM_CHUNKID;
pTlbe->pChunk = NULL;
}
Assert(pGMM->cChunks > 0);
pGMM->cChunks--;
/*
* Free the Chunk ID and struct.
*/
gmmR0FreeChunkId(pGMM, pChunk->Core.Key);
pChunk->Core.Key = NIL_GMM_CHUNKID;
RTMemFree(pChunk->paMappings);
pChunk->paMappings = NULL;
RTMemFree(pChunk);
}
else
AssertRC(rc);
}
}
/**
* Free page worker.
*
* The caller does all the statistic decrementing, we do all the incrementing.
*
* @param pGMM Pointer to the GMM instance data.
* @param pChunk Pointer to the chunk this page belongs to.
* @param idPage The Page ID.
* @param pPage Pointer to the page.
*/
static void gmmR0FreePageWorker(PGMM pGMM, PGMMCHUNK pChunk, uint32_t idPage, PGMMPAGE pPage)
{
Log3(("F pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x\n",
pPage, pPage - &pChunk->aPages[0], idPage, pPage->Common.u2State, pChunk->iFreeHead)); NOREF(idPage);
/*
* Put the page on the free list.
*/
pPage->u = 0;
pPage->Free.u2State = GMM_PAGE_STATE_FREE;
Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX);
pPage->Free.iNext = pChunk->iFreeHead;
pChunk->iFreeHead = pPage - &pChunk->aPages[0];
/*
* Update statistics (the cShared/cPrivate stats are up to date already),
* and relink the chunk if necessary.
*/
if ((pChunk->cFree & GMM_CHUNK_FREE_SET_MASK) == 0)
{
gmmR0UnlinkChunk(pChunk);
pChunk->cFree++;
gmmR0LinkChunk(pChunk, pChunk->cShared ? &pGMM->Shared : &pGMM->Private);
}
else
{
pChunk->cFree++;
pChunk->pSet->cPages++;
/*
* If the chunk becomes empty, consider giving memory back to the host OS.
*
* The current strategy is to try give it back if there are other chunks
* in this free list, meaning if there are at least 240 free pages in this
* category. Note that since there are probably mappings of the chunk,
* it won't be freed up instantly, which probably screws up this logic
* a bit...
*/
if (RT_UNLIKELY( pChunk->cFree == GMM_CHUNK_NUM_PAGES
&& pChunk->pFreeNext
&& pChunk->pFreePrev
&& !pGMM->fLegacyMode))
gmmR0FreeChunk(pGMM, pChunk);
}
}
/**
* Frees a shared page, the page is known to exist and be valid and such.
*
* @param pGMM Pointer to the GMM instance.
* @param idPage The Page ID
* @param pPage The page structure.
*/
DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage)
{
PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
Assert(pChunk);
Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
Assert(pChunk->cShared > 0);
Assert(pGMM->cSharedPages > 0);
Assert(pGMM->cAllocatedPages > 0);
Assert(!pPage->Shared.cRefs);
pChunk->cShared--;
pGMM->cAllocatedPages--;
pGMM->cSharedPages--;
gmmR0FreePageWorker(pGMM, pChunk, idPage, pPage);
}
/**
* Frees a private page, the page is known to exist and be valid and such.
*
* @param pGMM Pointer to the GMM instance.
* @param idPage The Page ID
* @param pPage The page structure.
*/
DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage)
{
PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
Assert(pChunk);
Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
Assert(pChunk->cPrivate > 0);
Assert(pGMM->cAllocatedPages > 0);
pChunk->cPrivate--;
pGMM->cAllocatedPages--;
gmmR0FreePageWorker(pGMM, pChunk, idPage, pPage);
}
/**
* Common worker for GMMR0FreePages and GMMR0BalloonedPages.
*
* @returns VBox status code:
* @retval xxx
*
* @param pGMM Pointer to the GMM instance data.
* @param pGVM Pointer to the shared VM structure.
* @param cPages The number of pages to free.
* @param paPages Pointer to the page descriptors.
* @param enmAccount The account this relates to.
*/
static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
{
/*
* Check that the request isn't impossible wrt to the account status.
*/
switch (enmAccount)
{
case GMMACCOUNT_BASE:
if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages < cPages))
{
Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cBasePages, cPages));
return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
}
break;
case GMMACCOUNT_SHADOW:
if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages < cPages))
{
Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cShadowPages, cPages));
return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
}
break;
case GMMACCOUNT_FIXED:
if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages < cPages))
{
Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cFixedPages, cPages));
return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
}
break;
default:
AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
}
/*
* Walk the descriptors and free the pages.
*
* Statistics (except the account) are being updated as we go along,
* unlike the alloc code. Also, stop on the first error.
*/
int rc = VINF_SUCCESS;
uint32_t iPage;
for (iPage = 0; iPage < cPages; iPage++)
{
uint32_t idPage = paPages[iPage].idPage;
PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
if (RT_LIKELY(pPage))
{
if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
{
if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
{
Assert(pGVM->gmm.s.cPrivatePages);
pGVM->gmm.s.cPrivatePages--;
gmmR0FreePrivatePage(pGMM, idPage, pPage);
}
else
{
Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage,
pPage->Private.hGVM, pGVM->hEMT));
rc = VERR_GMM_NOT_PAGE_OWNER;
break;
}
}
else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
{
Assert(pGVM->gmm.s.cSharedPages);
pGVM->gmm.s.cSharedPages--;
Assert(pPage->Shared.cRefs);
if (!--pPage->Shared.cRefs)
gmmR0FreeSharedPage(pGMM, idPage, pPage);
}
else
{
Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage));
rc = VERR_GMM_PAGE_ALREADY_FREE;
break;
}
}
else
{
Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage));
rc = VERR_GMM_PAGE_NOT_FOUND;
break;
}
paPages[iPage].idPage = NIL_GMM_PAGEID;
}
/*
* Update the account.
*/
switch (enmAccount)
{
case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages -= iPage; break;
case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages -= iPage; break;
case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages -= iPage; break;
default:
AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
}
/*
* Any threshold stuff to be done here?
*/
return rc;
}
/**
* Free one or more pages.
*
* This is typically used at reset time or power off.
*
* @returns VBox status code:
* @retval xxx
*
* @param pVM Pointer to the shared VM structure.
* @param cPages The number of pages to allocate.
* @param paPages Pointer to the page descriptors containing the Page IDs for each page.
* @param enmAccount The account this relates to.
* @thread EMT.
*/
GMMR0DECL(int) GMMR0FreePages(PVM pVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
{
LogFlow(("GMMR0FreePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount));
/*
* Validate input and get the basics.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
for (unsigned iPage = 0; iPage < cPages; iPage++)
AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
/*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
/*
* Take the semaphore and call the worker function.
*/
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount);
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0FreePages: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GMMR0FreePages.
*
* @returns see GMMR0FreePages.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GMMR0DECL(int) GMMR0FreePagesReq(PVM pVM, PGMMFREEPAGESREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]),
("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])),
VERR_INVALID_PARAMETER);
AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages]),
("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages])),
VERR_INVALID_PARAMETER);
return GMMR0FreePages(pVM, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
}
/**
* Report back on a memory ballooning request.
*
* The request may or may not have been initiated by the GMM. If it was initiated
* by the GMM it is important that this function is called even if no pages was
* ballooned.
*
* Since the whole purpose of ballooning is to free up guest RAM pages, this API
* may also be given a set of related pages to be freed. These pages are assumed
* to be on the base account.
*
* @returns VBox status code:
* @retval xxx
*
* @param pVM Pointer to the shared VM structure.
* @param cBalloonedPages The number of pages that was ballooned.
* @param cPagesToFree The number of pages to be freed.
* @param paPages Pointer to the page descriptors for the pages that's to be freed.
* @param fCompleted Indicates whether the ballooning request was completed (true) or
* if there is more pages to come (false). If the ballooning was not
* not triggered by the GMM, don't set this.
* @thread EMT.
*/
GMMR0DECL(int) GMMR0BalloonedPages(PVM pVM, uint32_t cBalloonedPages, uint32_t cPagesToFree, PGMMFREEPAGEDESC paPages, bool fCompleted)
{
LogFlow(("GMMR0BalloonedPages: pVM=%p cBalloonedPages=%#x cPagestoFree=%#x paPages=%p enmAccount=%d fCompleted=%RTbool\n",
pVM, cBalloonedPages, cPagesToFree, paPages, fCompleted));
/*
* Validate input and get the basics.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
AssertMsgReturn(cBalloonedPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER);
AssertMsgReturn(cPagesToFree <= cBalloonedPages, ("%#x\n", cPagesToFree), VERR_INVALID_PARAMETER);
for (unsigned iPage = 0; iPage < cPagesToFree; iPage++)
AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
/*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
/*
* Take the sempahore and do some more validations.
*/
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
if (pGVM->gmm.s.Allocated.cBasePages >= cPagesToFree)
{
/*
* Record the ballooned memory.
*/
pGMM->cBalloonedPages += cBalloonedPages;
if (pGVM->gmm.s.cReqBalloonedPages)
{
pGVM->gmm.s.cBalloonedPages += cBalloonedPages;
pGVM->gmm.s.cReqActuallyBalloonedPages += cBalloonedPages;
if (fCompleted)
{
Log(("GMMR0BalloonedPages: +%#x - Global=%#llx; / VM: Total=%#llx Req=%#llx Actual=%#llx (completed)\n", cBalloonedPages,
pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages));
/*
* Anything we need to do here now when the request has been completed?
*/
pGVM->gmm.s.cReqBalloonedPages = 0;
}
else
Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n", cBalloonedPages,
pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages));
}
else
{
pGVM->gmm.s.cBalloonedPages += cBalloonedPages;
Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n",
cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages));
}
/*
* Any pages to free?
*/
if (cPagesToFree)
rc = gmmR0FreePages(pGMM, pGVM, cPagesToFree, paPages, GMMACCOUNT_BASE);
}
else
{
rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
}
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GMMR0BalloonedPages.
*
* @returns see GMMR0BalloonedPages.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GMMR0DECL(int) GMMR0BalloonedPagesReq(PVM pVM, PGMMBALLOONEDPAGESREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[0]),
("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[0])),
VERR_INVALID_PARAMETER);
AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[pReq->cPagesToFree]),
("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[pReq->cPagesToFree])),
VERR_INVALID_PARAMETER);
return GMMR0BalloonedPages(pVM, pReq->cBalloonedPages, pReq->cPagesToFree, &pReq->aPages[0], pReq->fCompleted);
}
/**
* Report balloon deflating.
*
* @returns VBox status code:
* @retval xxx
*
* @param pVM Pointer to the shared VM structure.
* @param cPages The number of pages that was let out of the balloon.
* @thread EMT.
*/
GMMR0DECL(int) GMMR0DeflatedBalloon(PVM pVM, uint32_t cPages)
{
LogFlow(("GMMR0DeflatedBalloon: pVM=%p cPages=%#x\n", pVM, cPages));
/*
* Validate input and get the basics.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertMsgReturn(cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
/*
* Take the sempahore and do some more validations.
*/
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
if (pGVM->gmm.s.cBalloonedPages < cPages)
{
Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.cBalloonedPages);
/*
* Record it.
*/
pGMM->cBalloonedPages -= cPages;
pGVM->gmm.s.cBalloonedPages -= cPages;
if (pGVM->gmm.s.cReqDeflatePages)
{
Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n", cPages,
pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqDeflatePages));
/*
* Anything we need to do here now when the request has been completed?
*/
pGVM->gmm.s.cReqDeflatePages = 0;
}
else
Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx\n", cPages,
pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages));
}
else
{
Log(("GMMR0DeflatedBalloon: cBalloonedPages=%#llx cPages=%#x\n", pGVM->gmm.s.cBalloonedPages, cPages));
rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH;
}
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc));
return rc;
}
/**
* Unmaps a chunk previously mapped into the address space of the current process.
*
* @returns VBox status code.
* @param pGMM Pointer to the GMM instance data.
* @param pGVM Pointer to the Global VM structure.
* @param pChunk Pointer to the chunk to be unmapped.
*/
static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
{
if (!pGMM->fLegacyMode)
{
/*
* Find the mapping and try unmapping it.
*/
for (uint32_t i = 0; i < pChunk->cMappings; i++)
{
Assert(pChunk->paMappings[i].pGVM && pChunk->paMappings[i].MapObj != NIL_RTR0MEMOBJ);
if (pChunk->paMappings[i].pGVM == pGVM)
{
/* unmap */
int rc = RTR0MemObjFree(pChunk->paMappings[i].MapObj, false /* fFreeMappings (NA) */);
if (RT_SUCCESS(rc))
{
/* update the record. */
pChunk->cMappings--;
if (i < pChunk->cMappings)
pChunk->paMappings[i] = pChunk->paMappings[pChunk->cMappings];
pChunk->paMappings[pChunk->cMappings].MapObj = NIL_RTR0MEMOBJ;
pChunk->paMappings[pChunk->cMappings].pGVM = NULL;
}
return rc;
}
}
}
else if (pChunk->hGVM == pGVM->hSelf)
return VINF_SUCCESS;
Log(("gmmR0MapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf));
return VERR_GMM_CHUNK_NOT_MAPPED;
}
/**
* Maps a chunk into the user address space of the current process.
*
* @returns VBox status code.
* @param pGMM Pointer to the GMM instance data.
* @param pGVM Pointer to the Global VM structure.
* @param pChunk Pointer to the chunk to be mapped.
* @param ppvR3 Where to store the ring-3 address of the mapping.
* In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be
* contain the address of the existing mapping.
*/
static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3)
{
/*
* If we're in legacy mode this is simple.
*/
if (pGMM->fLegacyMode)
{
if (pChunk->hGVM != pGVM->hSelf)
{
Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3));
return VERR_GMM_CHUNK_NOT_FOUND;
}
*ppvR3 = RTR0MemObjAddressR3(pChunk->MemObj);
return VINF_SUCCESS;
}
/*
* Check to see if the chunk is already mapped.
*/
for (uint32_t i = 0; i < pChunk->cMappings; i++)
{
Assert(pChunk->paMappings[i].pGVM && pChunk->paMappings[i].MapObj != NIL_RTR0MEMOBJ);
if (pChunk->paMappings[i].pGVM == pGVM)
{
*ppvR3 = RTR0MemObjAddressR3(pChunk->paMappings[i].MapObj);
Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3));
return VERR_GMM_CHUNK_ALREADY_MAPPED;
}
}
/*
* Do the mapping.
*/
RTR0MEMOBJ MapObj;
int rc = RTR0MemObjMapUser(&MapObj, pChunk->MemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
/* reallocate the array? */
if ((pChunk->cMappings & 1 /*7*/) == 0)
{
void *pvMappings = RTMemRealloc(pChunk->paMappings, (pChunk->cMappings + 2 /*8*/) * sizeof(pChunk->paMappings[0]));
if (RT_UNLIKELY(pvMappings))
{
rc = RTR0MemObjFree(MapObj, false /* fFreeMappings (NA) */);
AssertRC(rc);
return VERR_NO_MEMORY;
}
pChunk->paMappings = (PGMMCHUNKMAP)pvMappings;
}
/* insert new entry */
pChunk->paMappings[pChunk->cMappings].MapObj = MapObj;
pChunk->paMappings[pChunk->cMappings].pGVM = pGVM;
pChunk->cMappings++;
*ppvR3 = RTR0MemObjAddressR3(MapObj);
}
return rc;
}
/**
* Map a chunk and/or unmap another chunk.
*
* The mapping and unmapping applies to the current process.
*
* This API does two things because it saves a kernel call per mapping when
* when the ring-3 mapping cache is full.
*
* @returns VBox status code.
* @param pVM The VM.
* @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map.
* @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap.
* @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map.
* @thread EMT
*/
GMMR0DECL(int) GMMR0MapUnmapChunk(PVM pVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3)
{
LogFlow(("GMMR0MapUnmapChunk: pVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n",
pVM, idChunkMap, idChunkUnmap, ppvR3));
/*
* Validate input and get the basics.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertCompile(NIL_GMM_CHUNKID == 0);
AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER);
AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER);
if ( idChunkMap == NIL_GMM_CHUNKID
&& idChunkUnmap == NIL_GMM_CHUNKID)
return VERR_INVALID_PARAMETER;
if (idChunkMap != NIL_GMM_CHUNKID)
{
AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
*ppvR3 = NIL_RTR3PTR;
}
/*
* Take the semaphore and do the work.
*
* The unmapping is done last since it's easier to undo a mapping than
* undoing an unmapping. The ring-3 mapping cache cannot not be so big
* that it pushes the user virtual address space to within a chunk of
* it it's limits, so, no problem here.
*/
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
PGMMCHUNK pMap = NULL;
if (idChunkMap != NIL_GVM_HANDLE)
{
pMap = gmmR0GetChunk(pGMM, idChunkMap);
if (RT_LIKELY(pMap))
rc = gmmR0MapChunk(pGMM, pGVM, pMap, ppvR3);
else
{
Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap));
rc = VERR_GMM_CHUNK_NOT_FOUND;
}
}
if ( idChunkUnmap != NIL_GMM_CHUNKID
&& RT_SUCCESS(rc))
{
PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap);
if (RT_LIKELY(pUnmap))
rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap);
else
{
Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap));
rc = VERR_GMM_CHUNK_NOT_FOUND;
}
if (RT_FAILURE(rc) && pMap)
gmmR0UnmapChunk(pGMM, pGVM, pMap);
}
RTSemFastMutexRelease(pGMM->Mtx);
LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc));
return rc;
}
/**
* VMMR0 request wrapper for GMMR0MapUnmapChunk.
*
* @returns see GMMR0MapUnmapChunk.
* @param pVM Pointer to the shared VM structure.
* @param pReq The request packet.
*/
GMMR0DECL(int) GMMR0MapUnmapChunkReq(PVM pVM, PGMMMAPUNMAPCHUNKREQ pReq)
{
/*
* Validate input and pass it on.
*/
AssertPtrReturn(pVM, VERR_INVALID_POINTER);
AssertPtrReturn(pReq, VERR_INVALID_POINTER);
AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
return GMMR0MapUnmapChunk(pVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3);
}
/**
* Legacy mode API for supplying pages.
*
* The specified user address points to a allocation chunk sized block that
* will be locked down and used by the GMM when the GM asks for pages.
*
* @returns VBox status code.
* @param pVM The VM.
* @param pvR3 Pointer to the chunk size memory block to lock down.
*/
GMMR0DECL(int) GMMR0SeedChunk(PVM pVM, RTR3PTR pvR3)
{
/*
* Validate input and get the basics.
*/
PGMM pGMM;
GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
PGVM pGVM = GVMMR0ByVM(pVM);
if (!pGVM)
return VERR_INVALID_PARAMETER;
if (pGVM->hEMT != RTThreadNativeSelf())
return VERR_NOT_OWNER;
AssertPtrReturn(pvR3, VERR_INVALID_POINTER);
AssertReturn(!(PAGE_OFFSET_MASK & pvR3), VERR_INVALID_POINTER);
if (!pGMM->fLegacyMode)
{
Log(("GMMR0SeedChunk: not in legacy mode!\n"));
return VERR_NOT_SUPPORTED;
}
/*
* Lock the memory before taking the semaphore.
*/
RTR0MEMOBJ MemObj;
int rc = RTR0MemObjLockUser(&MemObj, pvR3, GMM_CHUNK_SIZE, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
/*
* Take the semaphore and add a new chunk with our hGVM.
*/
int rc = RTSemFastMutexRequest(pGMM->Mtx);
AssertRC(rc);
rc = gmmR0RegisterChunk(pGMM, &pGMM->Private, MemObj, pGVM->hSelf);
RTSemFastMutexRelease(pGMM->Mtx);
if (RT_FAILURE(rc))
RTR0MemObjFree(MemObj, false /* fFreeMappings */);
}
LogFlow(("GMMR0SeedChunk: rc=%d (pvR3=%p)\n", rc, pvR3));
return rc;
}