CPUMR0.cpp revision 3e1882e43bb5d92d9ee734aaffb2c37827f6f062
/* $Id$ */
/** @file
* CPUM - Host Context Ring 0.
*/
/*
* Copyright (C) 2006-2011 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_CPUM
#include <VBox/vmm/cpum.h>
#include "CPUMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <VBox/vmm/hwaccm.h>
#include <iprt/assert.h>
#include <iprt/asm-amd64-x86.h>
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
# include <iprt/mem.h>
# include <iprt/memobj.h>
# include <VBox/apic.h>
#endif
#include <iprt/x86.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
/**
* Local APIC mappings.
*/
typedef struct CPUMHOSTLAPIC
{
/** Indicates that the entry is in use and have valid data. */
bool fEnabled;
/** Has APIC_REG_LVT_THMR. Not used. */
uint32_t fHasThermal;
/** The physical address of the APIC registers. */
RTHCPHYS PhysBase;
/** The memory object entering the physical address. */
RTR0MEMOBJ hMemObj;
/** The mapping object for hMemObj. */
RTR0MEMOBJ hMapObj;
/** The mapping address APIC registers.
* @remarks Different CPUs may use the same physical address to map their
* APICs, so this pointer is only valid when on the CPU owning the
* APIC. */
void *pv;
} CPUMHOSTLAPIC;
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
static CPUMHOSTLAPIC g_aLApics[RTCPUSET_MAX_CPUS];
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
static int cpumR0MapLocalApics(void);
static void cpumR0UnmapLocalApics(void);
#endif
/**
* Does the Ring-0 CPU initialization once during module load.
* XXX Host-CPU hot-plugging?
*/
VMMR0DECL(int) CPUMR0ModuleInit(void)
{
int rc = VINF_SUCCESS;
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
rc = cpumR0MapLocalApics();
#endif
return rc;
}
/**
* Terminate the module.
*/
VMMR0DECL(int) CPUMR0ModuleTerm(void)
{
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
cpumR0UnmapLocalApics();
#endif
return VINF_SUCCESS;
}
/**
* Does Ring-0 CPUM initialization.
*
* This is mainly to check that the Host CPU mode is compatible
* with VBox.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR0DECL(int) CPUMR0Init(PVM pVM)
{
LogFlow(("CPUMR0Init: %p\n", pVM));
/*
* Check CR0 & CR4 flags.
*/
uint32_t u32CR0 = ASMGetCR0();
if ((u32CR0 & (X86_CR0_PE | X86_CR0_PG)) != (X86_CR0_PE | X86_CR0_PG)) /* a bit paranoid perhaps.. */
{
Log(("CPUMR0Init: PE or PG not set. cr0=%#x\n", u32CR0));
return VERR_UNSUPPORTED_CPU_MODE;
}
/*
* Check for sysenter and syscall usage.
*/
if (ASMHasCpuId())
{
/*
* SYSENTER/SYSEXIT
*
* Intel docs claim you should test both the flag and family, model &
* stepping because some Pentium Pro CPUs have the SEP cpuid flag set,
* but don't support it. AMD CPUs may support this feature in legacy
* mode, they've banned it from long mode. Since we switch to 32-bit
* mode when entering raw-mode context the feature would become
* accessible again on AMD CPUs, so we have to check regardless of
* host bitness.
*/
uint32_t u32CpuVersion;
uint32_t u32Dummy;
uint32_t fFeatures;
ASMCpuId(1, &u32CpuVersion, &u32Dummy, &u32Dummy, &fFeatures);
uint32_t u32Family = u32CpuVersion >> 8;
uint32_t u32Model = (u32CpuVersion >> 4) & 0xF;
uint32_t u32Stepping = u32CpuVersion & 0xF;
if ( (fFeatures & X86_CPUID_FEATURE_EDX_SEP)
&& ( u32Family != 6 /* (> pentium pro) */
|| u32Model >= 3
|| u32Stepping >= 3
|| !ASMIsIntelCpu())
)
{
/*
* Read the MSR and see if it's in use or not.
*/
uint32_t u32 = ASMRdMsr_Low(MSR_IA32_SYSENTER_CS);
if (u32)
{
pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSENTER;
Log(("CPUMR0Init: host uses sysenter cs=%08x%08x\n", ASMRdMsr_High(MSR_IA32_SYSENTER_CS), u32));
}
}
/*
* SYSCALL/SYSRET
*
* This feature is indicated by the SEP bit returned in EDX by CPUID
* function 0x80000001. Intel CPUs only supports this feature in
* long mode. Since we're not running 64-bit guests in raw-mode there
* are no issues with 32-bit intel hosts.
*/
uint32_t cExt = 0;
ASMCpuId(0x80000000, &cExt, &u32Dummy, &u32Dummy, &u32Dummy);
if ( cExt >= 0x80000001
&& cExt <= 0x8000ffff)
{
uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_SEP)
{
#ifdef RT_ARCH_X86
# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
# else
if (!ASMIsIntelCpu())
# endif
#endif
{
uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
if (fEfer & MSR_K6_EFER_SCE)
{
pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSCALL;
Log(("CPUMR0Init: host uses syscall\n"));
}
}
}
}
}
/*
* Check if debug registers are armed.
* This ASSUMES that DR7.GD is not set, or that it's handled transparently!
*/
uint32_t u32DR7 = ASMGetDR7();
if (u32DR7 & X86_DR7_ENABLED_MASK)
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST;
Log(("CPUMR0Init: host uses debug registers (dr7=%x)\n", u32DR7));
}
return VINF_SUCCESS;
}
/**
* Lazily sync in the FPU/XMM state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0DECL(int) CPUMR0LoadGuestFPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(pVM->cpum.s.CPUFeatures.edx.u1FXSR);
Assert(ASMGetCR4() & X86_CR4_OSFSXR);
/* If the FPU state has already been loaded, then it's a guest trap. */
if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU)
{
Assert( ((pCtx->cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
|| ((pCtx->cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)));
return VINF_EM_RAW_GUEST_TRAP;
}
/*
* There are two basic actions:
* 1. Save host fpu and restore guest fpu.
* 2. Generate guest trap.
*
* When entering the hypervisor we'll always enable MP (for proper wait
* trapping) and TS (for intercepting all fpu/mmx/sse stuff). The EM flag
* is taken from the guest OS in order to get proper SSE handling.
*
*
* Actions taken depending on the guest CR0 flags:
*
* 3 2 1
* TS | EM | MP | FPUInstr | WAIT :: VMM Action
* ------------------------------------------------------------------------
* 0 | 0 | 0 | Exec | Exec :: Clear TS & MP, Save HC, Load GC.
* 0 | 0 | 1 | Exec | Exec :: Clear TS, Save HC, Load GC.
* 0 | 1 | 0 | #NM | Exec :: Clear TS & MP, Save HC, Load GC.
* 0 | 1 | 1 | #NM | Exec :: Clear TS, Save HC, Load GC.
* 1 | 0 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already cleared.)
* 1 | 0 | 1 | #NM | #NM :: Go to guest taking trap there.
* 1 | 1 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already set.)
* 1 | 1 | 1 | #NM | #NM :: Go to guest taking trap there.
*/
switch (pCtx->cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
{
case X86_CR0_MP | X86_CR0_TS:
case X86_CR0_MP | X86_CR0_EM | X86_CR0_TS:
return VINF_EM_RAW_GUEST_TRAP;
default:
break;
}
#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (CPUMIsGuestInLongModeEx(pCtx))
{
Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
/* Save the host state and record the fact (CPUM_USED_FPU | CPUM_USED_FPU_SINCE_REM). */
cpumR0SaveHostFPUState(&pVCpu->cpum.s);
/* Restore the state on entry as we need to be in 64 bits mode to access the full state. */
pVCpu->cpum.s.fUseFlags |= CPUM_SYNC_FPU_STATE;
}
else
#endif
{
#ifndef CPUM_CAN_HANDLE_NM_TRAPS_IN_KERNEL_MODE
# if defined(VBOX_WITH_HYBRID_32BIT_KERNEL) || defined(VBOX_WITH_KERNEL_USING_XMM) /** @todo remove the #else here and move cpumHandleLazyFPUAsm back to VMMGC after branching out 3.0!!. */
Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_MANUAL_XMM_RESTORE));
/** @todo Move the FFXR handling down into
* cpumR0SaveHostRestoreguestFPUState to optimize the
* VBOX_WITH_KERNEL_USING_XMM handling. */
/* Clear MSR_K6_EFER_FFXSR or else we'll be unable to save/restore the XMM state with fxsave/fxrstor. */
uint64_t SavedEFER = 0;
if (pVM->cpum.s.CPUFeaturesExt.edx & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
{
SavedEFER = ASMRdMsr(MSR_K6_EFER);
if (SavedEFER & MSR_K6_EFER_FFXSR)
{
ASMWrMsr(MSR_K6_EFER, SavedEFER & ~MSR_K6_EFER_FFXSR);
pVCpu->cpum.s.fUseFlags |= CPUM_MANUAL_XMM_RESTORE;
}
}
/* Do the job and record that we've switched FPU state. */
cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
/* Restore EFER. */
if (pVCpu->cpum.s.fUseFlags & CPUM_MANUAL_XMM_RESTORE)
ASMWrMsr(MSR_K6_EFER, SavedEFER);
# else
uint64_t oldMsrEFERHost = 0;
uint32_t oldCR0 = ASMGetCR0();
/* Clear MSR_K6_EFER_FFXSR or else we'll be unable to save/restore the XMM state with fxsave/fxrstor. */
if (pVM->cpum.s.CPUFeaturesExt.edx & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
{
/** @todo Do we really need to read this every time?? The host could change this on the fly though.
* bird: what about starting by skipping the ASMWrMsr below if we didn't
* change anything? Ditto for the stuff in CPUMR0SaveGuestFPU. */
oldMsrEFERHost = ASMRdMsr(MSR_K6_EFER);
if (oldMsrEFERHost & MSR_K6_EFER_FFXSR)
{
ASMWrMsr(MSR_K6_EFER, oldMsrEFERHost & ~MSR_K6_EFER_FFXSR);
pVCpu->cpum.s.fUseFlags |= CPUM_MANUAL_XMM_RESTORE;
}
}
/* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
int rc = CPUMHandleLazyFPU(pVCpu);
AssertRC(rc);
Assert(CPUMIsGuestFPUStateActive(pVCpu));
/* Restore EFER MSR */
if (pVCpu->cpum.s.fUseFlags & CPUM_MANUAL_XMM_RESTORE)
ASMWrMsr(MSR_K6_EFER, oldMsrEFERHost);
/* CPUMHandleLazyFPU could have changed CR0; restore it. */
ASMSetCR0(oldCR0);
# endif
#else /* CPUM_CAN_HANDLE_NM_TRAPS_IN_KERNEL_MODE */
/*
* Save the FPU control word and MXCSR, so we can restore the state properly afterwards.
* We don't want the guest to be able to trigger floating point/SSE exceptions on the host.
*/
pVCpu->cpum.s.Host.fpu.FCW = CPUMGetFCW();
if (pVM->cpum.s.CPUFeatures.edx.u1SSE)
pVCpu->cpum.s.Host.fpu.MXCSR = CPUMGetMXCSR();
cpumR0LoadFPU(pCtx);
/*
* The MSR_K6_EFER_FFXSR feature is AMD only so far, but check the cpuid just in case Intel adds it in the future.
*
* MSR_K6_EFER_FFXSR changes the behaviour of fxsave and fxrstore: the XMM state isn't saved/restored
*/
if (pVM->cpum.s.CPUFeaturesExt.edx & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
{
/** @todo Do we really need to read this every time?? The host could change this on the fly though. */
uint64_t msrEFERHost = ASMRdMsr(MSR_K6_EFER);
if (msrEFERHost & MSR_K6_EFER_FFXSR)
{
/* fxrstor doesn't restore the XMM state! */
cpumR0LoadXMM(pCtx);
pVCpu->cpum.s.fUseFlags |= CPUM_MANUAL_XMM_RESTORE;
}
}
#endif /* CPUM_CAN_HANDLE_NM_TRAPS_IN_KERNEL_MODE */
}
Assert((pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU | CPUM_USED_FPU_SINCE_REM)) == (CPUM_USED_FPU | CPUM_USED_FPU_SINCE_REM));
return VINF_SUCCESS;
}
/**
* Save guest FPU/XMM state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
*/
VMMR0DECL(int) CPUMR0SaveGuestFPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
Assert(pVM->cpum.s.CPUFeatures.edx.u1FXSR);
Assert(ASMGetCR4() & X86_CR4_OSFSXR);
AssertReturn((pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU), VINF_SUCCESS);
NOREF(pCtx);
#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (CPUMIsGuestInLongModeEx(pCtx))
{
if (!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE))
{
HWACCMR0SaveFPUState(pVM, pVCpu, pCtx);
cpumR0RestoreHostFPUState(&pVCpu->cpum.s);
}
/* else nothing to do; we didn't perform a world switch */
}
else
#endif
{
#ifndef CPUM_CAN_HANDLE_NM_TRAPS_IN_KERNEL_MODE
# ifdef VBOX_WITH_KERNEL_USING_XMM
/*
* We've already saved the XMM registers in the assembly wrapper, so
* we have to save them before saving the entire FPU state and put them
* back afterwards.
*/
/** @todo This could be skipped if MSR_K6_EFER_FFXSR is set, but
* I'm not able to test such an optimization tonight.
* We could just all this in assembly. */
uint128_t aGuestXmmRegs[16];
memcpy(&aGuestXmmRegs[0], &pVCpu->cpum.s.Guest.fpu.aXMM[0], sizeof(aGuestXmmRegs));
# endif
/* Clear MSR_K6_EFER_FFXSR or else we'll be unable to save/restore the XMM state with fxsave/fxrstor. */
uint64_t oldMsrEFERHost = 0;
if (pVCpu->cpum.s.fUseFlags & CPUM_MANUAL_XMM_RESTORE)
{
oldMsrEFERHost = ASMRdMsr(MSR_K6_EFER);
ASMWrMsr(MSR_K6_EFER, oldMsrEFERHost & ~MSR_K6_EFER_FFXSR);
}
cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
/* Restore EFER MSR */
if (pVCpu->cpum.s.fUseFlags & CPUM_MANUAL_XMM_RESTORE)
ASMWrMsr(MSR_K6_EFER, oldMsrEFERHost | MSR_K6_EFER_FFXSR);
# ifdef VBOX_WITH_KERNEL_USING_XMM
memcpy(&pVCpu->cpum.s.Guest.fpu.aXMM[0], &aGuestXmmRegs[0], sizeof(aGuestXmmRegs));
# endif
#else /* CPUM_CAN_HANDLE_NM_TRAPS_IN_KERNEL_MODE */
# ifdef VBOX_WITH_KERNEL_USING_XMM
# error "Fix all the NM_TRAPS_IN_KERNEL_MODE code path. I'm not going to fix unused code now."
# endif
cpumR0SaveFPU(pCtx);
if (pVCpu->cpum.s.fUseFlags & CPUM_MANUAL_XMM_RESTORE)
{
/* fxsave doesn't save the XMM state! */
cpumR0SaveXMM(pCtx);
}
/*
* Restore the original FPU control word and MXCSR.
* We don't want the guest to be able to trigger floating point/SSE exceptions on the host.
*/
cpumR0SetFCW(pVCpu->cpum.s.Host.fpu.FCW);
if (pVM->cpum.s.CPUFeatures.edx.u1SSE)
cpumR0SetMXCSR(pVCpu->cpum.s.Host.fpu.MXCSR);
#endif /* CPUM_CAN_HANDLE_NM_TRAPS_IN_KERNEL_MODE */
}
pVCpu->cpum.s.fUseFlags &= ~(CPUM_USED_FPU | CPUM_SYNC_FPU_STATE | CPUM_MANUAL_XMM_RESTORE);
return VINF_SUCCESS;
}
/**
* Save guest debug state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
* @param fDR6 Whether to include DR6 or not.
*/
VMMR0DECL(int) CPUMR0SaveGuestDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, bool fDR6)
{
Assert(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS);
/* Save the guest's debug state. The caller is responsible for DR7. */
#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (CPUMIsGuestInLongModeEx(pCtx))
{
if (!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_STATE))
{
uint64_t dr6 = pCtx->dr[6];
HWACCMR0SaveDebugState(pVM, pVCpu, pCtx);
if (!fDR6) /* dr6 was already up-to-date */
pCtx->dr[6] = dr6;
}
}
else
#endif
{
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
cpumR0SaveDRx(&pCtx->dr[0]);
#else
pCtx->dr[0] = ASMGetDR0();
pCtx->dr[1] = ASMGetDR1();
pCtx->dr[2] = ASMGetDR2();
pCtx->dr[3] = ASMGetDR3();
#endif
if (fDR6)
pCtx->dr[6] = ASMGetDR6();
}
/*
* Restore the host's debug state. DR0-3, DR6 and only then DR7!
* DR7 contains 0x400 right now.
*/
CPUMR0LoadHostDebugState(pVM, pVCpu);
Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS));
return VINF_SUCCESS;
}
/**
* Lazily sync in the debug state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
* @param fDR6 Whether to include DR6 or not.
*/
VMMR0DECL(int) CPUMR0LoadGuestDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, bool fDR6)
{
/* Save the host state. */
CPUMR0SaveHostDebugState(pVM, pVCpu);
Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
/* Activate the guest state DR0-3; DR7 is left to the caller. */
#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (CPUMIsGuestInLongModeEx(pCtx))
{
/* Restore the state on entry as we need to be in 64 bits mode to access the full state. */
pVCpu->cpum.s.fUseFlags |= CPUM_SYNC_DEBUG_STATE;
}
else
#endif
{
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
cpumR0LoadDRx(&pCtx->dr[0]);
#else
ASMSetDR0(pCtx->dr[0]);
ASMSetDR1(pCtx->dr[1]);
ASMSetDR2(pCtx->dr[2]);
ASMSetDR3(pCtx->dr[3]);
#endif
if (fDR6)
ASMSetDR6(pCtx->dr[6]);
}
pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS;
return VINF_SUCCESS;
}
/**
* Save the host debug state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR0DECL(int) CPUMR0SaveHostDebugState(PVM pVM, PVMCPU pVCpu)
{
NOREF(pVM);
/* Save the host state. */
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
AssertCompile((uintptr_t)&pVCpu->cpum.s.Host.dr3 - (uintptr_t)&pVCpu->cpum.s.Host.dr0 == sizeof(uint64_t) * 3);
cpumR0SaveDRx(&pVCpu->cpum.s.Host.dr0);
#else
pVCpu->cpum.s.Host.dr0 = ASMGetDR0();
pVCpu->cpum.s.Host.dr1 = ASMGetDR1();
pVCpu->cpum.s.Host.dr2 = ASMGetDR2();
pVCpu->cpum.s.Host.dr3 = ASMGetDR3();
#endif
pVCpu->cpum.s.Host.dr6 = ASMGetDR6();
/** @todo dr7 might already have been changed to 0x400; don't care right now as it's harmless. */
pVCpu->cpum.s.Host.dr7 = ASMGetDR7();
/* Make sure DR7 is harmless or else we could trigger breakpoints when restoring dr0-3 (!) */
ASMSetDR7(X86_DR7_INIT_VAL);
return VINF_SUCCESS;
}
/**
* Load the host debug state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
*/
VMMR0DECL(int) CPUMR0LoadHostDebugState(PVM pVM, PVMCPU pVCpu)
{
Assert(pVCpu->cpum.s.fUseFlags & (CPUM_USE_DEBUG_REGS | CPUM_USE_DEBUG_REGS_HYPER));
NOREF(pVM);
/*
* Restore the host's debug state. DR0-3, DR6 and only then DR7!
* DR7 contains 0x400 right now.
*/
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
AssertCompile((uintptr_t)&pVCpu->cpum.s.Host.dr3 - (uintptr_t)&pVCpu->cpum.s.Host.dr0 == sizeof(uint64_t) * 3);
cpumR0LoadDRx(&pVCpu->cpum.s.Host.dr0);
#else
ASMSetDR0(pVCpu->cpum.s.Host.dr0);
ASMSetDR1(pVCpu->cpum.s.Host.dr1);
ASMSetDR2(pVCpu->cpum.s.Host.dr2);
ASMSetDR3(pVCpu->cpum.s.Host.dr3);
#endif
ASMSetDR6(pVCpu->cpum.s.Host.dr6);
ASMSetDR7(pVCpu->cpum.s.Host.dr7);
pVCpu->cpum.s.fUseFlags &= ~(CPUM_USE_DEBUG_REGS | CPUM_USE_DEBUG_REGS_HYPER);
return VINF_SUCCESS;
}
/**
* Lazily sync in the hypervisor debug state
*
* @returns VBox status code.
* @param pVM Pointer to the VM.
* @param pVCpu Pointer to the VMCPU.
* @param pCtx Pointer to the guest CPU context.
* @param fDR6 Whether to include DR6 or not.
*/
VMMR0DECL(int) CPUMR0LoadHyperDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, bool fDR6)
{
NOREF(pCtx);
/* Save the host state. */
CPUMR0SaveHostDebugState(pVM, pVCpu);
Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
/* Activate the guest state DR0-3; DR7 is left to the caller. */
#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
if (CPUMIsGuestInLongModeEx(pCtx))
{
AssertFailed();
return VERR_NOT_IMPLEMENTED;
}
else
#endif
{
#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
AssertFailed();
return VERR_NOT_IMPLEMENTED;
#else
ASMSetDR0(CPUMGetHyperDR0(pVCpu));
ASMSetDR1(CPUMGetHyperDR1(pVCpu));
ASMSetDR2(CPUMGetHyperDR2(pVCpu));
ASMSetDR3(CPUMGetHyperDR3(pVCpu));
#endif
if (fDR6)
ASMSetDR6(CPUMGetHyperDR6(pVCpu));
}
pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
/**
* Worker for cpumR0MapLocalApics. Check each CPU for a present Local APIC.
* Play safe and treat each CPU separate.
*/
static DECLCALLBACK(void) cpumR0MapLocalApicWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
NOREF(pvUser1); NOREF(pvUser2);
int iCpu = RTMpCpuIdToSetIndex(idCpu);
AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
uint32_t u32MaxIdx, u32EBX, u32ECX, u32EDX;
ASMCpuId(0, &u32MaxIdx, &u32EBX, &u32ECX, &u32EDX);
if ( ( ( u32EBX == X86_CPUID_VENDOR_INTEL_EBX
&& u32ECX == X86_CPUID_VENDOR_INTEL_ECX
&& u32EDX == X86_CPUID_VENDOR_INTEL_EDX)
|| ( u32EBX == X86_CPUID_VENDOR_AMD_EBX
&& u32ECX == X86_CPUID_VENDOR_AMD_ECX
&& u32EDX == X86_CPUID_VENDOR_AMD_EDX))
&& u32MaxIdx >= 1)
{
ASMCpuId(1, &u32MaxIdx, &u32EBX, &u32ECX, &u32EDX);
if ( (u32EDX & X86_CPUID_FEATURE_EDX_APIC)
&& (u32EDX & X86_CPUID_FEATURE_EDX_MSR))
{
uint64_t u64ApicBase = ASMRdMsr(MSR_IA32_APICBASE);
uint64_t u64Mask = UINT64_C(0x0000000ffffff000);
/* see Intel Manual: Local APIC Status and Location: MAXPHYADDR default is bit 36 */
uint32_t u32MaxExtIdx;
ASMCpuId(0x80000000, &u32MaxExtIdx, &u32EBX, &u32ECX, &u32EDX);
if ( u32MaxExtIdx >= UINT32_C(0x80000008)
&& u32MaxExtIdx < UINT32_C(0x8000ffff))
{
uint32_t u32PhysBits;
ASMCpuId(0x80000008, &u32PhysBits, &u32EBX, &u32ECX, &u32EDX);
u32PhysBits &= 0xff;
u64Mask = ((UINT64_C(1) << u32PhysBits) - 1) & UINT64_C(0xfffffffffffff000);
}
uint64_t const u64PhysBase = u64ApicBase & u64Mask;
g_aLApics[iCpu].PhysBase = (RTHCPHYS)u64PhysBase;
g_aLApics[iCpu].fEnabled = g_aLApics[iCpu].PhysBase == u64PhysBase;
}
}
}
/**
* Map the MMIO page of each local APIC in the system.
*/
static int cpumR0MapLocalApics(void)
{
/*
* Check that we'll always stay within the array bounds.
*/
if (RTMpGetArraySize() > RT_ELEMENTS(g_aLApics))
{
LogRel(("CPUM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aLApics)));
return VERR_TOO_MANY_CPUS;
}
/*
* Create mappings for all online CPUs we think have APICs.
*/
/** @todo r=bird: This code is not adequately handling CPUs that are
* offline or unplugged at init time and later bought into action. */
int rc = RTMpOnAll(cpumR0MapLocalApicWorker, NULL, NULL);
for (unsigned iCpu = 0; RT_SUCCESS(rc) && iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
{
if (g_aLApics[iCpu].fEnabled)
{
rc = RTR0MemObjEnterPhys(&g_aLApics[iCpu].hMemObj, g_aLApics[iCpu].PhysBase,
PAGE_SIZE, RTMEM_CACHE_POLICY_MMIO);
if (RT_SUCCESS(rc))
{
rc = RTR0MemObjMapKernel(&g_aLApics[iCpu].hMapObj, g_aLApics[iCpu].hMemObj, (void *)-1,
PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
if (RT_SUCCESS(rc))
{
void *pvApicBase = RTR0MemObjAddress(g_aLApics[iCpu].hMapObj);
/*
* 0x0X 82489 external APIC
* 0x1X Local APIC
* 0x2X..0xFF reserved
*/
/** @todo r=bird: The local APIC is usually at the same address for all CPUs,
* and therefore inaccessible by the other CPUs. */
uint32_t ApicVersion = ApicRegRead(pvApicBase, APIC_REG_VERSION);
if ((APIC_REG_VERSION_GET_VER(ApicVersion) & 0xF0) == 0x10)
{
g_aLApics[iCpu].fHasThermal = APIC_REG_VERSION_GET_MAX_LVT(ApicVersion) >= 5;
g_aLApics[iCpu].pv = pvApicBase;
Log(("CPUM: APIC %02u at %RGp (mapped at %p) - ver %#x, lint0=%#x lint1=%#x pc=%#x thmr=%#x\n",
iCpu, g_aLApics[iCpu].PhysBase, g_aLApics[iCpu].pv, ApicVersion,
ApicRegRead(pvApicBase, APIC_REG_LVT_LINT0),
ApicRegRead(pvApicBase, APIC_REG_LVT_LINT1),
ApicRegRead(pvApicBase, APIC_REG_LVT_PC),
ApicRegRead(pvApicBase, APIC_REG_LVT_THMR)
));
continue;
}
RTR0MemObjFree(g_aLApics[iCpu].hMapObj, true /* fFreeMappings */);
}
RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
}
g_aLApics[iCpu].fEnabled = false;
}
}
if (RT_FAILURE(rc))
{
cpumR0UnmapLocalApics();
return rc;
}
return VINF_SUCCESS;
}
/**
* Unmap the Local APIC of all host CPUs.
*/
static void cpumR0UnmapLocalApics(void)
{
for (unsigned iCpu = RT_ELEMENTS(g_aLApics); iCpu-- > 0;)
{
if (g_aLApics[iCpu].pv)
{
RTR0MemObjFree(g_aLApics[iCpu].hMapObj, true /* fFreeMappings */);
RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
g_aLApics[iCpu].hMapObj = NIL_RTR0MEMOBJ;
g_aLApics[iCpu].hMemObj = NIL_RTR0MEMOBJ;
g_aLApics[iCpu].fEnabled = false;
g_aLApics[iCpu].pv = NULL;
}
}
}
/**
* Write the Local APIC mapping address of the current host CPU to CPUM to be
* able to access the APIC registers in the raw mode switcher for disabling/
* re-enabling the NMI. Must be called with disabled preemption or disabled
* interrupts!
*
* @param pVM Pointer to the VM.
* @param idHostCpu The ID of the current host CPU.
*/
VMMR0DECL(void) CPUMR0SetLApic(PVM pVM, RTCPUID idHostCpu)
{
pVM->cpum.s.pvApicBase = g_aLApics[RTMpCpuIdToSetIndex(idHostCpu)].pv;
}
#endif /* VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI */