TMAllVirtual.cpp revision 5d1fc7f6c660e826d7f81c580fbf4278dd44c6bd
/* $Id$ */
/** @file
* TM - Timeout Manager, Virtual Time, All Contexts.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_TM
#include <VBox/tm.h>
#ifdef IN_RING3
# include <VBox/rem.h>
# include <iprt/thread.h>
#endif
#include "TMInternal.h"
#include <VBox/vm.h>
#include <VBox/vmm.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <VBox/sup.h>
#include <iprt/time.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
/**
* Helper function that's used by the assembly routines when something goes bust.
*
* @param pData Pointer to the data structure.
* @param u64NanoTS The calculated nano ts.
* @param u64DeltaPrev The delta relative to the previously returned timestamp.
* @param u64PrevNanoTS The previously returned timestamp (as it was read it).
*/
DECLEXPORT(void) tmVirtualNanoTSBad(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS)
{
//PVM pVM = (PVM)((uint8_t *)pData - RT_OFFSETOF(VM, CTXALLSUFF(s.tm.VirtualGetRawData)));
pData->cBadPrev++;
if ((int64_t)u64DeltaPrev < 0)
LogRel(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64\n",
u64DeltaPrev, u64PrevNanoTS, u64NanoTS));
else
Log(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 (debugging?)\n",
u64DeltaPrev, u64PrevNanoTS, u64NanoTS));
}
/**
* Called the first time somebody asks for the time or when the GIP
* is mapped/unmapped.
*
* This should never ever happen.
*/
DECLEXPORT(uint64_t) tmVirtualNanoTSRediscover(PRTTIMENANOTSDATA pData)
{
//PVM pVM = (PVM)((uint8_t *)pData - RT_OFFSETOF(VM, CTXALLSUFF(s.tm.VirtualGetRawData)));
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
AssertFatalMsgFailed(("pGip=%p u32Magic=%#x\n", pGip, VALID_PTR(pGip) ? pGip->u32Magic : 0));
}
#if 1
/**
* Wrapper around the IPRT GIP time methods.
*/
DECLINLINE(uint64_t) tmVirtualGetRawNanoTS(PVM pVM)
{
#ifdef IN_RING3
return CTXALLSUFF(pVM->tm.s.pfnVirtualGetRaw)(&CTXALLSUFF(pVM->tm.s.VirtualGetRawData));
# else /* !IN_RING3 */
uint32_t cPrevSteps = pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps;
uint64_t u64 = pVM->tm.s.CTX_SUFF(pfnVirtualGetRaw)(&pVM->tm.s.CTX_SUFF(VirtualGetRawData));
if (cPrevSteps != pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps)
VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
return u64;
# endif /* !IN_RING3 */
}
#else
/**
* This is (mostly) the same as rtTimeNanoTSInternal() except
* for the two globals which live in TM.
*
* @returns Nanosecond timestamp.
* @param pVM The VM handle.
*/
static uint64_t tmVirtualGetRawNanoTS(PVM pVM)
{
uint64_t u64Delta;
uint32_t u32NanoTSFactor0;
uint64_t u64TSC;
uint64_t u64NanoTS;
uint32_t u32UpdateIntervalTSC;
uint64_t u64PrevNanoTS;
/*
* Read the GIP data and the previous value.
*/
for (;;)
{
uint32_t u32TransactionId;
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
#ifdef IN_RING3
if (RT_UNLIKELY(!pGip || pGip->u32Magic != SUPGLOBALINFOPAGE_MAGIC))
return RTTimeSystemNanoTS();
#endif
if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
{
u32TransactionId = pGip->aCPUs[0].u32TransactionId;
#ifdef RT_OS_L4
Assert((u32TransactionId & 1) == 0);
#endif
u32UpdateIntervalTSC = pGip->aCPUs[0].u32UpdateIntervalTSC;
u64NanoTS = pGip->aCPUs[0].u64NanoTS;
u64TSC = pGip->aCPUs[0].u64TSC;
u32NanoTSFactor0 = pGip->u32UpdateIntervalNS;
u64Delta = ASMReadTSC();
u64PrevNanoTS = ASMAtomicReadU64(&pVM->tm.s.u64VirtualRawPrev);
if (RT_UNLIKELY( pGip->aCPUs[0].u32TransactionId != u32TransactionId
|| (u32TransactionId & 1)))
continue;
}
else
{
/* SUPGIPMODE_ASYNC_TSC */
PSUPGIPCPU pGipCpu;
uint8_t u8ApicId = ASMGetApicId();
if (RT_LIKELY(u8ApicId < RT_ELEMENTS(pGip->aCPUs)))
pGipCpu = &pGip->aCPUs[u8ApicId];
else
{
AssertMsgFailed(("%x\n", u8ApicId));
pGipCpu = &pGip->aCPUs[0];
}
u32TransactionId = pGipCpu->u32TransactionId;
#ifdef RT_OS_L4
Assert((u32TransactionId & 1) == 0);
#endif
u32UpdateIntervalTSC = pGipCpu->u32UpdateIntervalTSC;
u64NanoTS = pGipCpu->u64NanoTS;
u64TSC = pGipCpu->u64TSC;
u32NanoTSFactor0 = pGip->u32UpdateIntervalNS;
u64Delta = ASMReadTSC();
u64PrevNanoTS = ASMAtomicReadU64(&pVM->tm.s.u64VirtualRawPrev);
#ifdef IN_RC
Assert(!(ASMGetFlags() & X86_EFL_IF));
#else
if (RT_UNLIKELY(u8ApicId != ASMGetApicId()))
continue;
if (RT_UNLIKELY( pGipCpu->u32TransactionId != u32TransactionId
|| (u32TransactionId & 1)))
continue;
#endif
}
break;
}
/*
* Calc NanoTS delta.
*/
u64Delta -= u64TSC;
if (u64Delta > u32UpdateIntervalTSC)
{
/*
* We've expired the interval, cap it. If we're here for the 2nd
* time without any GIP update inbetween, the checks against
* pVM->tm.s.u64VirtualRawPrev below will force 1ns stepping.
*/
u64Delta = u32UpdateIntervalTSC;
}
#if !defined(_MSC_VER) || defined(RT_ARCH_AMD64) /* GCC makes very pretty code from these two inline calls, while MSC cannot. */
u64Delta = ASMMult2xU32RetU64((uint32_t)u64Delta, u32NanoTSFactor0);
u64Delta = ASMDivU64ByU32RetU32(u64Delta, u32UpdateIntervalTSC);
#else
__asm
{
mov eax, dword ptr [u64Delta]
mul dword ptr [u32NanoTSFactor0]
div dword ptr [u32UpdateIntervalTSC]
mov dword ptr [u64Delta], eax
xor edx, edx
mov dword ptr [u64Delta + 4], edx
}
#endif
/*
* Calculate the time and compare it with the previously returned value.
*
* Since this function is called *very* frequently when the VM is running
* and then mostly on EMT, we can restrict the valid range of the delta
* (-1s to 2*GipUpdates) and simplify/optimize the default path.
*/
u64NanoTS += u64Delta;
uint64_t u64DeltaPrev = u64NanoTS - u64PrevNanoTS;
if (RT_LIKELY(u64DeltaPrev < 1000000000 /* 1s */))
/* frequent - less than 1s since last call. */;
else if ( (int64_t)u64DeltaPrev < 0
&& (int64_t)u64DeltaPrev + u32NanoTSFactor0 * 2 > 0)
{
/* occasional - u64NanoTS is in the 'past' relative to previous returns. */
ASMAtomicIncU32(&pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps);
u64NanoTS = u64PrevNanoTS + 1;
#ifndef IN_RING3
VM_FF_SET(pVM, VM_FF_TO_R3); /* S10 hack */
#endif
}
else if (u64PrevNanoTS)
{
/* Something has gone bust, if negative offset it's real bad. */
ASMAtomicIncU32(&pVM->tm.s.CTX_SUFF(VirtualGetRawData).cBadPrev);
if ((int64_t)u64DeltaPrev < 0)
LogRel(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 u64Delta=%#RX64\n",
u64DeltaPrev, u64PrevNanoTS, u64NanoTS, u64Delta));
else
Log(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 u64Delta=%#RX64 (debugging?)\n",
u64DeltaPrev, u64PrevNanoTS, u64NanoTS, u64Delta));
#ifdef DEBUG_bird
/** @todo there are some hickups during boot and reset that can cause 2-5 seconds delays. Investigate... */
AssertMsg(u64PrevNanoTS > UINT64_C(100000000000) /* 100s */,
("u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 u64Delta=%#RX64\n",
u64DeltaPrev, u64PrevNanoTS, u64NanoTS, u64Delta));
#endif
}
/* else: We're resuming (see TMVirtualResume). */
if (RT_LIKELY(ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualRawPrev, u64NanoTS, u64PrevNanoTS)))
return u64NanoTS;
/*
* Attempt updating the previous value, provided we're still ahead of it.
*
* There is no point in recalculating u64NanoTS because we got preemted or if
* we raced somebody while the GIP was updated, since these are events
* that might occure at any point in the return path as well.
*/
for (int cTries = 50;;)
{
u64PrevNanoTS = ASMAtomicReadU64(&pVM->tm.s.u64VirtualRawPrev);
if (u64PrevNanoTS >= u64NanoTS)
break;
if (ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualRawPrev, u64NanoTS, u64PrevNanoTS))
break;
AssertBreak(--cTries <= 0);
if (cTries < 25 && !VM_IS_EMT(pVM)) /* give up early */
break;
}
return u64NanoTS;
}
#endif
/**
* Get the time when we're not running at 100%
*
* @returns The timestamp.
* @param pVM The VM handle.
*/
static uint64_t tmVirtualGetRawNonNormal(PVM pVM)
{
/*
* Recalculate the RTTimeNanoTS() value for the period where
* warp drive has been enabled.
*/
uint64_t u64 = tmVirtualGetRawNanoTS(pVM);
u64 -= pVM->tm.s.u64VirtualWarpDriveStart;
u64 *= pVM->tm.s.u32VirtualWarpDrivePercentage;
u64 /= 100;
u64 += pVM->tm.s.u64VirtualWarpDriveStart;
/*
* Now we apply the virtual time offset.
* (Which is the negated tmVirtualGetRawNanoTS() value for when the virtual
* machine started if it had been running continuously without any suspends.)
*/
u64 -= pVM->tm.s.u64VirtualOffset;
return u64;
}
/**
* Get the raw virtual time.
*
* @returns The current time stamp.
* @param pVM The VM handle.
*/
DECLINLINE(uint64_t) tmVirtualGetRaw(PVM pVM)
{
if (RT_LIKELY(!pVM->tm.s.fVirtualWarpDrive))
return tmVirtualGetRawNanoTS(pVM) - pVM->tm.s.u64VirtualOffset;
return tmVirtualGetRawNonNormal(pVM);
}
/**
* Inlined version of tmVirtualGetEx.
*/
DECLINLINE(uint64_t) tmVirtualGet(PVM pVM, bool fCheckTimers)
{
uint64_t u64;
if (RT_LIKELY(pVM->tm.s.cVirtualTicking))
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGet);
u64 = tmVirtualGetRaw(pVM);
/*
* Use the chance to check for expired timers.
*/
if (fCheckTimers)
{
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
&& !pVM->tm.s.fRunningQueues
&& ( pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64
|| ( pVM->tm.s.fVirtualSyncTicking
&& pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64 - pVM->tm.s.offVirtualSync
)
)
&& !pVM->tm.s.fRunningQueues
)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGetSetFF);
Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER)));
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
#ifdef IN_RING3
REMR3NotifyTimerPending(pVM, pVCpuDst);
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
#endif
}
}
}
else
u64 = pVM->tm.s.u64Virtual;
return u64;
}
/**
* Gets the current TMCLOCK_VIRTUAL time
*
* @returns The timestamp.
* @param pVM VM handle.
*
* @remark While the flow of time will never go backwards, the speed of the
* progress varies due to inaccurate RTTimeNanoTS and TSC. The latter can be
* influenced by power saving (SpeedStep, PowerNow!), while the former
* makes use of TSC and kernel timers.
*/
VMM_INT_DECL(uint64_t) TMVirtualGet(PVM pVM)
{
return tmVirtualGet(pVM, true /* check timers */);
}
/**
* Gets the current TMCLOCK_VIRTUAL time without checking
* timers or anything.
*
* Meaning, this has no side effect on FFs like TMVirtualGet may have.
*
* @returns The timestamp.
* @param pVM VM handle.
*
* @remarks See TMVirtualGet.
*/
VMM_INT_DECL(uint64_t) TMVirtualGetNoCheck(PVM pVM)
{
return tmVirtualGet(pVM, false /*fCheckTimers*/);
}
/**
* tmVirtualSyncGetLocked worker for handling catch-up when owning the lock.
*
* @returns The timestamp.
* @param pVM VM handle.
* @param u64 raw virtual time.
* @param off offVirtualSync.
*/
DECLINLINE(uint64_t) tmVirtualSyncGetHandleCatchUpLocked(PVM pVM, uint64_t u64, uint64_t off)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
/*
* Don't make updates until we've check the timer qeueue.
*/
bool fUpdatePrev = true;
bool fUpdateOff = true;
bool fStop = false;
const uint64_t u64Prev = pVM->tm.s.u64VirtualSyncCatchUpPrev;
uint64_t u64Delta = u64 - u64Prev;
if (RT_LIKELY(!(u64Delta >> 32)))
{
uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
{
off -= u64Sub;
Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [vsghcul]\n", u64 - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
}
else
{
/* we've completely caught up. */
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
off = pVM->tm.s.offVirtualSyncGivenUp;
fStop = true;
Log4(("TM: %'RU64/0: caught up [vsghcul]\n", u64));
}
}
else
{
/* More than 4 seconds since last time (or negative), ignore it. */
fUpdateOff = false;
fUpdatePrev = !(u64Delta & RT_BIT_64(63));
Log(("TMVirtualGetSync: u64Delta=%RX64\n", u64Delta));
}
/*
* Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
* approach is to never pass the head timer. So, when we do stop the clock and
* set the timer pending flag.
*/
u64 -= off;
uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
if (u64 < u64Expire)
{
if (fUpdateOff)
ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
if (fStop)
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
if (fUpdatePrev)
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64);
tmVirtualSyncUnlock(pVM);
}
else
{
u64 = u64Expire;
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER)));
Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsghcul]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
tmVirtualSyncUnlock(pVM);
#ifdef IN_RING3
REMR3NotifyTimerPending(pVM, pVCpuDst);
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
#endif
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
}
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
Log6(("tmVirtualSyncGetHandleCatchUpLocked -> %'RU64\n", u64));
return u64;
}
/**
* tmVirtualSyncGetEx worker for when we get the lock.
*
* @returns timesamp.
* @param pVM The VM handle.
* @param u64 The virtual clock timestamp.
*/
DECLINLINE(uint64_t) tmVirtualSyncGetLocked(PVM pVM, uint64_t u64)
{
/*
* Not ticking?
*/
if (!pVM->tm.s.fVirtualSyncTicking)
{
u64 = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
tmVirtualSyncUnlock(pVM);
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
Log6(("tmVirtualSyncGetLocked -> %'RU64 [stopped]\n", u64));
return u64;
}
/*
* Handle catch up in a separate function.
*/
uint64_t off = ASMAtomicUoReadU64(&pVM->tm.s.offVirtualSync);
if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
return tmVirtualSyncGetHandleCatchUpLocked(pVM, u64, off);
/*
* Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
* approach is to never pass the head timer. So, when we do stop the clock and
* set the timer pending flag.
*/
u64 -= off;
uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
if (u64 < u64Expire)
tmVirtualSyncUnlock(pVM);
else
{
u64 = u64Expire;
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, !!VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER)));
Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsgl]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
tmVirtualSyncUnlock(pVM);
#ifdef IN_RING3
REMR3NotifyTimerPending(pVM, pVCpuDst);
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
#endif
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
}
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
Log6(("tmVirtualSyncGetLocked -> %'RU64\n", u64));
return u64;
}
/**
* Gets the current TMCLOCK_VIRTUAL_SYNC time.
*
* @returns The timestamp.
* @param pVM VM handle.
* @param fCheckTimers Check timers or not
* @thread EMT.
*/
DECLINLINE(uint64_t) tmVirtualSyncGetEx(PVM pVM, bool fCheckTimers)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGet);
if (!pVM->tm.s.fVirtualSyncTicking)
return pVM->tm.s.u64VirtualSync;
/*
* Query the virtual clock and do the usual expired timer check.
*/
Assert(pVM->tm.s.cVirtualTicking);
uint64_t u64 = tmVirtualGetRaw(pVM);
if (fCheckTimers)
{
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
&& pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64)
{
Log5(("TMAllVirtual(%u): FF: 0 -> 1\n", __LINE__));
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
#ifdef IN_RING3
REMR3NotifyTimerPending(pVM, pVCpuDst);
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo |VMNOTIFYFF_FLAGS_POKE*/);
#endif
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
}
}
/*
* When the clock is ticking, not doing catch ups and not running into an
* expired time, we can get away without locking. Try this first.
*/
uint64_t off;
if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking))
{
if (!ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
{
off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
if (RT_LIKELY( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)
&& !ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp)
&& off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync)))
{
off = u64 - off;
if (off < ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire))
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless);
Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless]\n", off));
return off;
}
}
}
}
else
{
off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync);
if (RT_LIKELY(!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)))
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless);
Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless/stopped]\n", off));
return off;
}
}
/*
* Read the offset and adjust if we're playing catch-up.
*
* The catch-up adjusting work by us decrementing the offset by a percentage of
* the time elapsed since the previous TMVirtualGetSync call.
*
* It's possible to get a very long or even negative interval between two read
* for the following reasons:
* - Someone might have suspended the process execution, frequently the case when
* debugging the process.
* - We might be on a different CPU which TSC isn't quite in sync with the
* other CPUs in the system.
* - Another thread is racing us and we might have been preemnted while inside
* this function.
*
* Assuming nano second virtual time, we can simply ignore any intervals which has
* any of the upper 32 bits set.
*/
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
int cOuterTries = 42;
for (;; cOuterTries--)
{
/* Try grab the lock, things get simpler when owning the lock. */
int rcLock = tmVirtualSyncTryLock(pVM);
if (RT_SUCCESS_NP(rcLock))
return tmVirtualSyncGetLocked(pVM, u64);
/* Re-check the ticking flag. */
if (!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking))
{
off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync);
if ( ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)
&& cOuterTries > 0)
continue;
Log6(("tmVirtualSyncGetEx -> %'RU64 [stopped]\n", off));
return off;
}
off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
{
/* No changes allowed, try get a consistent set of parameters. */
uint64_t const u64Prev = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev);
uint64_t const offGivenUp = ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp);
uint32_t const u32Pct = ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage);
if ( ( u64Prev == ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev)
&& offGivenUp == ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp)
&& u32Pct == ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage)
&& ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|| cOuterTries <= 0)
{
uint64_t u64Delta = u64 - u64Prev;
if (RT_LIKELY(!(u64Delta >> 32)))
{
uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, u32Pct, 100);
if (off > u64Sub + offGivenUp)
{
off -= u64Sub;
Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [NoLock]\n", u64 - off, pVM->tm.s.offVirtualSync - offGivenUp, u64Sub));
}
else
{
/* we've completely caught up. */
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
off = offGivenUp;
Log4(("TM: %'RU64/0: caught up [NoLock]\n", u64));
}
}
else
/* More than 4 seconds since last time (or negative), ignore it. */
Log(("TMVirtualGetSync: u64Delta=%RX64 (NoLock)\n", u64Delta));
/* Check that we're still running and in catch up. */
if ( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)
&& ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
break;
if (cOuterTries <= 0)
break; /* enough */
}
}
else if ( off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync)
&& !ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
break; /* Got an consistent offset */
else if (cOuterTries <= 0)
break; /* enough */
}
if (cOuterTries <= 0)
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetELoop);
/*
* Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
* approach is to never pass the head timer. So, when we do stop the clock and
* set the timer pending flag.
*/
u64 -= off;
uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
if (u64 >= u64Expire)
{
PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
if (!VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
{
Log5(("TMAllVirtual(%u): FF: %d -> 1 (NoLock)\n", __LINE__, VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER)));
VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC); /* Hmm? */
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
#ifdef IN_RING3
REMR3NotifyTimerPending(pVM, pVCpuDst);
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
#endif
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
}
else
Log4(("TM: %'RU64/-%'8RU64: exp tmr [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
}
Log6(("tmVirtualSyncGetEx -> %'RU64\n", u64));
return u64;
}
/**
* Gets the current TMCLOCK_VIRTUAL_SYNC time.
*
* @returns The timestamp.
* @param pVM VM handle.
* @thread EMT.
* @remarks May set the timer and virtual sync FFs.
*/
VMM_INT_DECL(uint64_t) TMVirtualSyncGet(PVM pVM)
{
return tmVirtualSyncGetEx(pVM, true /* check timers */);
}
/**
* Gets the current TMCLOCK_VIRTUAL_SYNC time without checking timers running on
* TMCLOCK_VIRTUAL.
*
* @returns The timestamp.
* @param pVM VM handle.
* @thread EMT.
* @remarks May set the timer and virtual sync FFs.
*/
VMM_INT_DECL(uint64_t) TMVirtualSyncGetNoCheck(PVM pVM)
{
return tmVirtualSyncGetEx(pVM, false /* check timers */);
}
/**
* Gets the current TMCLOCK_VIRTUAL_SYNC time.
*
* @returns The timestamp.
* @param pVM VM handle.
* @param fCheckTimers Check timers on the virtual clock or not.
* @thread EMT.
* @remarks May set the timer and virtual sync FFs.
*/
VMM_INT_DECL(uint64_t) TMVirtualSyncGetEx(PVM pVM, bool fCheckTimers)
{
return tmVirtualSyncGetEx(pVM, fCheckTimers);
}
/**
* Gets the current lag of the synchronous virtual clock (relative to the virtual clock).
*
* @return The current lag.
* @param pVM VM handle.
*/
VMM_INT_DECL(uint64_t) TMVirtualSyncGetLag(PVM pVM)
{
return pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp;
}
/**
* Get the current catch-up percent.
*
* @return The current catch0up percent. 0 means running at the same speed as the virtual clock.
* @param pVM VM handle.
*/
VMM_INT_DECL(uint32_t) TMVirtualSyncGetCatchUpPct(PVM pVM)
{
if (pVM->tm.s.fVirtualSyncCatchUp)
return pVM->tm.s.u32VirtualSyncCatchUpPercentage;
return 0;
}
/**
* Gets the current TMCLOCK_VIRTUAL frequency.
*
* @returns The freqency.
* @param pVM VM handle.
*/
VMM_INT_DECL(uint64_t) TMVirtualGetFreq(PVM pVM)
{
return TMCLOCK_FREQ_VIRTUAL;
}
/**
* Worker for TMR3PauseClocks.
*
* @returns VINF_SUCCESS or VERR_INTERNAL_ERROR (asserted).
* @param pVM The VM handle.
*/
int tmVirtualPauseLocked(PVM pVM)
{
uint32_t c = ASMAtomicDecU32(&pVM->tm.s.cVirtualTicking);
AssertMsgReturn(c < pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_INTERNAL_ERROR);
if (c == 0)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualPause);
pVM->tm.s.u64Virtual = tmVirtualGetRaw(pVM);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
}
return VINF_SUCCESS;
}
/**
* Worker for TMR3ResumeClocks.
*
* @returns VINF_SUCCESS or VERR_INTERNAL_ERROR (asserted).
* @param pVM The VM handle.
*/
int tmVirtualResumeLocked(PVM pVM)
{
uint32_t c = ASMAtomicIncU32(&pVM->tm.s.cVirtualTicking);
AssertMsgReturn(c <= pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_INTERNAL_ERROR);
if (c == 1)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualResume);
pVM->tm.s.u64VirtualRawPrev = 0;
pVM->tm.s.u64VirtualWarpDriveStart = tmVirtualGetRawNanoTS(pVM);
pVM->tm.s.u64VirtualOffset = pVM->tm.s.u64VirtualWarpDriveStart - pVM->tm.s.u64Virtual;
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
}
return VINF_SUCCESS;
}
/**
* Converts from virtual ticks to nanoseconds.
*
* @returns nanoseconds.
* @param pVM The VM handle.
* @param u64VirtualTicks The virtual ticks to convert.
* @remark There could be rounding errors here. We just do a simple integere divide
* without any adjustments.
*/
VMM_INT_DECL(uint64_t) TMVirtualToNano(PVM pVM, uint64_t u64VirtualTicks)
{
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
return u64VirtualTicks;
}
/**
* Converts from virtual ticks to microseconds.
*
* @returns microseconds.
* @param pVM The VM handle.
* @param u64VirtualTicks The virtual ticks to convert.
* @remark There could be rounding errors here. We just do a simple integere divide
* without any adjustments.
*/
VMM_INT_DECL(uint64_t) TMVirtualToMicro(PVM pVM, uint64_t u64VirtualTicks)
{
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
return u64VirtualTicks / 1000;
}
/**
* Converts from virtual ticks to milliseconds.
*
* @returns milliseconds.
* @param pVM The VM handle.
* @param u64VirtualTicks The virtual ticks to convert.
* @remark There could be rounding errors here. We just do a simple integere divide
* without any adjustments.
*/
VMM_INT_DECL(uint64_t) TMVirtualToMilli(PVM pVM, uint64_t u64VirtualTicks)
{
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
return u64VirtualTicks / 1000000;
}
/**
* Converts from nanoseconds to virtual ticks.
*
* @returns virtual ticks.
* @param pVM The VM handle.
* @param u64NanoTS The nanosecond value ticks to convert.
* @remark There could be rounding and overflow errors here.
*/
VMM_INT_DECL(uint64_t) TMVirtualFromNano(PVM pVM, uint64_t u64NanoTS)
{
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
return u64NanoTS;
}
/**
* Converts from microseconds to virtual ticks.
*
* @returns virtual ticks.
* @param pVM The VM handle.
* @param u64MicroTS The microsecond value ticks to convert.
* @remark There could be rounding and overflow errors here.
*/
VMM_INT_DECL(uint64_t) TMVirtualFromMicro(PVM pVM, uint64_t u64MicroTS)
{
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
return u64MicroTS * 1000;
}
/**
* Converts from milliseconds to virtual ticks.
*
* @returns virtual ticks.
* @param pVM The VM handle.
* @param u64MilliTS The millisecond value ticks to convert.
* @remark There could be rounding and overflow errors here.
*/
VMM_INT_DECL(uint64_t) TMVirtualFromMilli(PVM pVM, uint64_t u64MilliTS)
{
AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
return u64MilliTS * 1000000;
}