PGMAllShw.h revision 089df8ada78128cb620e6a9af2bcb5bcae7d318f
/* $Id$ */
/** @file
* VBox - Page Manager, Shadow Paging Template - All context code.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#undef SHWPT
#undef PSHWPT
#undef SHWPTE
#undef PSHWPTE
#undef SHWPD
#undef PSHWPD
#undef SHWPDE
#undef PSHWPDE
#undef SHW_PDE_PG_MASK
#undef SHW_PD_SHIFT
#undef SHW_PD_MASK
#undef SHW_PTE_PG_MASK
#undef SHW_PTE_IS_P
#undef SHW_PTE_IS_RW
#undef SHW_PTE_IS_US
#undef SHW_PTE_IS_A
#undef SHW_PTE_IS_D
#undef SHW_PTE_IS_P_RW
#undef SHW_PTE_IS_TRACK_DIRTY
#undef SHW_PTE_GET_HCPHYS
#undef SHW_PTE_GET_U
#undef SHW_PTE_LOG64
#undef SHW_PTE_SET
#undef SHW_PTE_ATOMIC_SET
#undef SHW_PTE_ATOMIC_SET2
#undef SHW_PTE_SET_RO
#undef SHW_PTE_SET_RW
#undef SHW_PT_SHIFT
#undef SHW_PT_MASK
#undef SHW_TOTAL_PD_ENTRIES
#undef SHW_PDPT_SHIFT
#undef SHW_PDPT_MASK
#undef SHW_PDPE_PG_MASK
#undef SHW_POOL_ROOT_IDX
#if PGM_SHW_TYPE == PGM_TYPE_32BIT
# define SHWPT X86PT
# define PSHWPT PX86PT
# define SHWPTE X86PTE
# define PSHWPTE PX86PTE
# define SHWPD X86PD
# define PSHWPD PX86PD
# define SHWPDE X86PDE
# define PSHWPDE PX86PDE
# define SHW_PDE_PG_MASK X86_PDE_PG_MASK
# define SHW_PD_SHIFT X86_PD_SHIFT
# define SHW_PD_MASK X86_PD_MASK
# define SHW_TOTAL_PD_ENTRIES X86_PG_ENTRIES
# define SHW_PTE_PG_MASK X86_PTE_PG_MASK
# define SHW_PTE_IS_P(Pte) ( (Pte).n.u1Present )
# define SHW_PTE_IS_RW(Pte) ( (Pte).n.u1Write )
# define SHW_PTE_IS_US(Pte) ( (Pte).n.u1User )
# define SHW_PTE_IS_A(Pte) ( (Pte).n.u1Accessed )
# define SHW_PTE_IS_D(Pte) ( (Pte).n.u1Dirty )
# define SHW_PTE_IS_P_RW(Pte) ( (Pte).n.u1Present && (Pte).n.u1Write )
# define SHW_PTE_IS_TRACK_DIRTY(Pte) ( !!((Pte).u & PGM_PTFLAGS_TRACK_DIRTY) )
# define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PG_MASK )
# define SHW_PTE_LOG64(Pte) ( (uint64_t)(Pte).u )
# define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */
# define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0)
# define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU32(&(Pte).u, (uNew)); } while (0)
# define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU32(&(Pte).u, (Pte2).u); } while (0)
# define SHW_PTE_SET_RO(Pte) do { (Pte).n.u1Write = 0; } while (0)
# define SHW_PTE_SET_RW(Pte) do { (Pte).n.u1Write = 1; } while (0)
# define SHW_PT_SHIFT X86_PT_SHIFT
# define SHW_PT_MASK X86_PT_MASK
# define SHW_POOL_ROOT_IDX PGMPOOL_IDX_PD
#elif PGM_SHW_TYPE == PGM_TYPE_EPT
# define SHWPT EPTPT
# define PSHWPT PEPTPT
# define SHWPTE EPTPTE
# define PSHWPTE PEPTPTE
# define SHWPD EPTPD
# define PSHWPD PEPTPD
# define SHWPDE EPTPDE
# define PSHWPDE PEPTPDE
# define SHW_PDE_PG_MASK EPT_PDE_PG_MASK
# define SHW_PD_SHIFT EPT_PD_SHIFT
# define SHW_PD_MASK EPT_PD_MASK
# define SHW_PTE_PG_MASK EPT_PTE_PG_MASK
# define SHW_PTE_IS_P(Pte) ( (Pte).n.u1Present ) /* Approximation, works for us. */
# define SHW_PTE_IS_RW(Pte) ( (Pte).n.u1Write )
# define SHW_PTE_IS_US(Pte) ( true )
# define SHW_PTE_IS_A(Pte) ( true )
# define SHW_PTE_IS_D(Pte) ( true )
# define SHW_PTE_IS_P_RW(Pte) ( (Pte).n.u1Present && (Pte).n.u1Write )
# define SHW_PTE_IS_TRACK_DIRTY(Pte) ( false )
# define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PG_MASK )
# define SHW_PTE_LOG64(Pte) ( (Pte).u )
# define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */
# define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0)
# define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU64(&(Pte).u, (uNew)); } while (0)
# define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).u, (Pte2).u); } while (0)
# define SHW_PTE_SET_RO(Pte) do { (Pte).n.u1Write = 0; } while (0)
# define SHW_PTE_SET_RW(Pte) do { (Pte).n.u1Write = 1; } while (0)
# define SHW_PT_SHIFT EPT_PT_SHIFT
# define SHW_PT_MASK EPT_PT_MASK
# define SHW_PDPT_SHIFT EPT_PDPT_SHIFT
# define SHW_PDPT_MASK EPT_PDPT_MASK
# define SHW_PDPE_PG_MASK EPT_PDPE_PG_MASK
# define SHW_TOTAL_PD_ENTRIES (EPT_PG_AMD64_ENTRIES*EPT_PG_AMD64_PDPE_ENTRIES)
# define SHW_POOL_ROOT_IDX PGMPOOL_IDX_NESTED_ROOT /* do not use! exception is real mode & protected mode without paging. */
#else
# define SHWPT PGMSHWPTPAE
# define PSHWPT PPGMSHWPTPAE
# define SHWPTE PGMSHWPTEPAE
# define PSHWPTE PPGMSHWPTEPAE
# define SHWPD X86PDPAE
# define PSHWPD PX86PDPAE
# define SHWPDE X86PDEPAE
# define PSHWPDE PX86PDEPAE
# define SHW_PDE_PG_MASK X86_PDE_PAE_PG_MASK_FULL
# define SHW_PD_SHIFT X86_PD_PAE_SHIFT
# define SHW_PD_MASK X86_PD_PAE_MASK
# define SHW_PTE_PG_MASK X86_PTE_PAE_PG_MASK
# define SHW_PTE_IS_P(Pte) PGMSHWPTEPAE_IS_P(Pte)
# define SHW_PTE_IS_RW(Pte) PGMSHWPTEPAE_IS_RW(Pte)
# define SHW_PTE_IS_US(Pte) PGMSHWPTEPAE_IS_US(Pte)
# define SHW_PTE_IS_A(Pte) PGMSHWPTEPAE_IS_A(Pte)
# define SHW_PTE_IS_D(Pte) PGMSHWPTEPAE_IS_D(Pte)
# define SHW_PTE_IS_P_RW(Pte) PGMSHWPTEPAE_IS_P_RW(Pte)
# define SHW_PTE_IS_TRACK_DIRTY(Pte) PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte)
# define SHW_PTE_GET_HCPHYS(Pte) PGMSHWPTEPAE_GET_HCPHYS(Pte)
# define SHW_PTE_LOG64(Pte) PGMSHWPTEPAE_GET_LOG(Pte)
# define SHW_PTE_GET_U(Pte) PGMSHWPTEPAE_GET_U(Pte) /**< Use with care. */
# define SHW_PTE_SET(Pte, uNew) PGMSHWPTEPAE_SET(Pte, uNew)
# define SHW_PTE_ATOMIC_SET(Pte, uNew) PGMSHWPTEPAE_ATOMIC_SET(Pte, uNew)
# define SHW_PTE_ATOMIC_SET2(Pte, Pte2) PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2)
# define SHW_PTE_SET_RO(Pte) PGMSHWPTEPAE_SET_RO(Pte)
# define SHW_PTE_SET_RW(Pte) PGMSHWPTEPAE_SET_RW(Pte)
# define SHW_PT_SHIFT X86_PT_PAE_SHIFT
# define SHW_PT_MASK X86_PT_PAE_MASK
# if PGM_SHW_TYPE == PGM_TYPE_AMD64
# define SHW_PDPT_SHIFT X86_PDPT_SHIFT
# define SHW_PDPT_MASK X86_PDPT_MASK_AMD64
# define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK
# define SHW_TOTAL_PD_ENTRIES (X86_PG_AMD64_ENTRIES * X86_PG_AMD64_PDPE_ENTRIES)
# define SHW_POOL_ROOT_IDX PGMPOOL_IDX_AMD64_CR3
# else /* 32 bits PAE mode */
# define SHW_PDPT_SHIFT X86_PDPT_SHIFT
# define SHW_PDPT_MASK X86_PDPT_MASK_PAE
# define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK
# define SHW_TOTAL_PD_ENTRIES (X86_PG_PAE_ENTRIES * X86_PG_PAE_PDPE_ENTRIES)
# define SHW_POOL_ROOT_IDX PGMPOOL_IDX_PDPT
# endif
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
RT_C_DECLS_BEGIN
PGM_SHW_DECL(int, GetPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys);
PGM_SHW_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags);
RT_C_DECLS_END
/**
* Gets effective page information (from the VMM page directory).
*
* @returns VBox status.
* @param pVCpu The VMCPU handle.
* @param GCPtr Guest Context virtual address of the page.
* @param pfFlags Where to store the flags. These are X86_PTE_*.
* @param pHCPhys Where to store the HC physical address of the page.
* This is page aligned.
* @remark You should use PGMMapGetPage() for pages in a mapping.
*/
PGM_SHW_DECL(int, GetPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
{
#if PGM_SHW_TYPE == PGM_TYPE_NESTED
return VERR_PAGE_TABLE_NOT_PRESENT;
#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
PVM pVM = pVCpu->CTX_SUFF(pVM);
Assert(PGMIsLockOwner(pVM));
/*
* Get the PDE.
*/
# if PGM_SHW_TYPE == PGM_TYPE_AMD64
X86PDEPAE Pde;
/* PML4 */
X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr);
if (!Pml4e.n.u1Present)
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PDPT */
PX86PDPT pPDPT;
int rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT);
if (RT_FAILURE(rc))
return rc;
const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
X86PDPE Pdpe = pPDPT->a[iPDPT];
if (!Pdpe.n.u1Present)
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PD */
PX86PDPAE pPd;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd);
if (RT_FAILURE(rc))
return rc;
const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
Pde = pPd->a[iPd];
/* Merge accessed, write, user and no-execute bits into the PDE. */
Pde.n.u1Accessed &= Pml4e.n.u1Accessed & Pdpe.lm.u1Accessed;
Pde.n.u1Write &= Pml4e.n.u1Write & Pdpe.lm.u1Write;
Pde.n.u1User &= Pml4e.n.u1User & Pdpe.lm.u1User;
Pde.n.u1NoExecute |= Pml4e.n.u1NoExecute | Pdpe.lm.u1NoExecute;
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr);
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK);
PEPTPD pPDDst;
EPTPDE Pde;
int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst);
if (rc != VINF_SUCCESS) /** @todo this function isn't expected to return informational status codes. Check callers / fix. */
{
AssertRC(rc);
return rc;
}
Assert(pPDDst);
Pde = pPDDst->a[iPd];
# else /* PGM_TYPE_32BIT */
X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr);
# endif
if (!Pde.n.u1Present)
return VERR_PAGE_TABLE_NOT_PRESENT;
/** Deal with large pages. */
if (Pde.b.u1Size)
{
/*
* Store the results.
* RW and US flags depend on the entire page translation hierarchy - except for
* legacy PAE which has a simplified PDPE.
*/
if (pfFlags)
{
*pfFlags = (Pde.u & ~SHW_PDE_PG_MASK);
# if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) /** @todo why do we have to check the guest state here? */
if ((Pde.u & X86_PTE_PAE_NX) && CPUMIsGuestNXEnabled(pVCpu))
*pfFlags |= X86_PTE_PAE_NX;
# endif
}
if (pHCPhys)
*pHCPhys = (Pde.u & SHW_PDE_PG_MASK) + (GCPtr & (RT_BIT(SHW_PD_SHIFT) - 1) & X86_PAGE_4K_BASE_MASK);
return VINF_SUCCESS;
}
/*
* Get PT entry.
*/
PSHWPT pPT;
if (!(Pde.u & PGM_PDFLAGS_MAPPING))
{
int rc2 = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT);
if (RT_FAILURE(rc2))
return rc2;
}
else /* mapping: */
{
# if PGM_SHW_TYPE == PGM_TYPE_AMD64 \
|| PGM_SHW_TYPE == PGM_TYPE_EPT
AssertFailed(); /* can't happen */
# else
Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
PPGMMAPPING pMap = pgmGetMapping(pVM, (RTGCPTR)GCPtr);
AssertMsgReturn(pMap, ("GCPtr=%RGv\n", GCPtr), VERR_INTERNAL_ERROR);
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
pPT = pMap->aPTs[(GCPtr - pMap->GCPtr) >> X86_PD_SHIFT].CTX_SUFF(pPT);
# else /* PAE */
pPT = pMap->aPTs[(GCPtr - pMap->GCPtr) >> X86_PD_SHIFT].CTX_SUFF(paPaePTs);
# endif
# endif
}
const unsigned iPt = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK;
SHWPTE Pte = pPT->a[iPt];
if (!SHW_PTE_IS_P(Pte))
return VERR_PAGE_NOT_PRESENT;
/*
* Store the results.
* RW and US flags depend on the entire page translation hierarchy - except for
* legacy PAE which has a simplified PDPE.
*/
if (pfFlags)
{
*pfFlags = (SHW_PTE_GET_U(Pte) & ~SHW_PTE_PG_MASK)
& ((Pde.u & (X86_PTE_RW | X86_PTE_US)) | ~(uint64_t)(X86_PTE_RW | X86_PTE_US));
# if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) /** @todo why do we have to check the guest state here? */
/* The NX bit is determined by a bitwise OR between the PT and PD */
if (((SHW_PTE_GET_U(Pte) | Pde.u) & X86_PTE_PAE_NX) && CPUMIsGuestNXEnabled(pVCpu))
*pfFlags |= X86_PTE_PAE_NX;
# endif
}
if (pHCPhys)
*pHCPhys = SHW_PTE_GET_HCPHYS(Pte);
return VINF_SUCCESS;
#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
}
/**
* Modify page flags for a range of pages in the shadow context.
*
* The existing flags are ANDed with the fMask and ORed with the fFlags.
*
* @returns VBox status code.
* @param pVCpu The VMCPU handle.
* @param GCPtr Virtual address of the first page in the range. Page aligned!
* @param cb Size (in bytes) of the range to apply the modification to. Page aligned!
* @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
* @param fMask The AND mask - page flags X86_PTE_*.
* Be extremely CAREFUL with ~'ing values because they can be 32-bit!
* @param fOpFlags A combination of the PGM_MK_PK_XXX flags.
* @remark You must use PGMMapModifyPage() for pages in a mapping.
*/
PGM_SHW_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)
{
# if PGM_SHW_TYPE == PGM_TYPE_NESTED
return VERR_PAGE_TABLE_NOT_PRESENT;
# else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
PVM pVM = pVCpu->CTX_SUFF(pVM);
int rc;
Assert(PGMIsLockOwner(pVM));
/*
* Walk page tables and pages till we're done.
*/
for (;;)
{
/*
* Get the PDE.
*/
# if PGM_SHW_TYPE == PGM_TYPE_AMD64
X86PDEPAE Pde;
/* PML4 */
X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr);
if (!Pml4e.n.u1Present)
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PDPT */
PX86PDPT pPDPT;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT);
if (RT_FAILURE(rc))
return rc;
const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
X86PDPE Pdpe = pPDPT->a[iPDPT];
if (!Pdpe.n.u1Present)
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PD */
PX86PDPAE pPd;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd);
if (RT_FAILURE(rc))
return rc;
const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
Pde = pPd->a[iPd];
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr);
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK);
PEPTPD pPDDst;
EPTPDE Pde;
rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst);
if (rc != VINF_SUCCESS)
{
AssertRC(rc);
return rc;
}
Assert(pPDDst);
Pde = pPDDst->a[iPd];
# else /* PGM_TYPE_32BIT */
X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr);
# endif
if (!Pde.n.u1Present)
return VERR_PAGE_TABLE_NOT_PRESENT;
AssertFatal(!Pde.b.u1Size);
/*
* Map the page table.
*/
PSHWPT pPT;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT);
if (RT_FAILURE(rc))
return rc;
unsigned iPTE = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK;
while (iPTE < RT_ELEMENTS(pPT->a))
{
if (SHW_PTE_IS_P(pPT->a[iPTE]))
{
SHWPTE const OrgPte = pPT->a[iPTE];
SHWPTE NewPte;
SHW_PTE_SET(NewPte, (SHW_PTE_GET_U(OrgPte) & (fMask | SHW_PTE_PG_MASK)) | (fFlags & ~SHW_PTE_PG_MASK));
if (!SHW_PTE_IS_P(NewPte))
{
/** @todo Some CSAM code path might end up here and upset
* the page pool. */
AssertFailed();
}
else if ( SHW_PTE_IS_RW(NewPte)
&& !SHW_PTE_IS_RW(OrgPte)
&& !(fOpFlags & PGM_MK_PG_IS_MMIO2) )
{
/** @todo Optimize \#PF handling by caching data. We can
* then use this when PGM_MK_PG_IS_WRITE_FAULT is
* set instead of resolving the guest physical
* address yet again. */
RTGCPHYS GCPhys;
uint64_t fGstPte;
rc = PGMGstGetPage(pVCpu, GCPtr, &fGstPte, &GCPhys);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
Assert(fGstPte & X86_PTE_RW);
PPGMPAGE pPage = pgmPhysGetPage(&pVCpu->CTX_SUFF(pVM)->pgm.s, GCPhys);
Assert(pPage);
if (pPage)
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
AssertRCReturn(rc, rc);
Log(("%s: pgmPhysPageMakeWritable on %RGv / %RGp %R[pgmpage]\n", __PRETTY_FUNCTION__, GCPtr, GCPhys, pPage));
}
}
}
SHW_PTE_ATOMIC_SET2(pPT->a[iPTE], NewPte);
# if PGM_SHW_TYPE == PGM_TYPE_EPT
HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)GCPtr);
# else
PGM_INVL_PG_ALL_VCPU(pVM, GCPtr);
# endif
}
/* next page */
cb -= PAGE_SIZE;
if (!cb)
return VINF_SUCCESS;
GCPtr += PAGE_SIZE;
iPTE++;
}
}
# endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
}