PGMAllPool.cpp revision 19ec3aeb41eef3f3c5fd02d2412f01811ef6fcf8
/* $Id$ */
/** @file
* PGM Shadow Page Pool.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_POOL
#include <VBox/pgm.h>
#include <VBox/mm.h>
#include <VBox/em.h>
#include <VBox/cpum.h>
#ifdef IN_GC
# include <VBox/patm.h>
#endif
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/disopcode.h>
#include <VBox/log.h>
#include <VBox/err.h>
#include <iprt/asm.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
__BEGIN_DECLS
static void pgmPoolFlushAllInt(PPGMPOOL pPool);
#ifdef PGMPOOL_WITH_USER_TRACKING
DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
#endif
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
#endif
#ifdef PGMPOOL_WITH_CACHE
static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable);
#endif
#ifdef PGMPOOL_WITH_MONITORING
static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
#endif
#ifndef IN_RING3
DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
#endif
__END_DECLS
/**
* Checks if the specified page pool kind is for a 4MB or 2MB guest page.
*
* @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
* @param enmKind The page kind.
*/
DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
{
switch (enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
return true;
default:
return false;
}
}
#ifdef IN_GC
/**
* Maps a pool page into the current context.
*
* @returns Pointer to the mapping.
* @param pVM The VM handle.
* @param pPage The page to map.
*/
void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage)
{
/* general pages. */
if (pPage->idx >= PGMPOOL_IDX_FIRST)
{
Assert(pPage->idx < pVM->pgm.s.pPoolGC->cCurPages);
void *pv;
int rc = PGMGCDynMapHCPage(pVM, pPage->Core.Key, &pv);
AssertReleaseRC(rc);
return pv;
}
/* special pages. */
switch (pPage->idx)
{
case PGMPOOL_IDX_PD:
return pVM->pgm.s.pGC32BitPD;
case PGMPOOL_IDX_PAE_PD:
return pVM->pgm.s.apGCPaePDs[0];
case PGMPOOL_IDX_PDPTR:
return pVM->pgm.s.pGCPaePDPTR;
case PGMPOOL_IDX_PML4:
return pVM->pgm.s.pGCPaePML4;
default:
AssertReleaseMsgFailed(("Invalid index %d\n", pPage->idx));
return NULL;
}
}
#endif /* IN_GC */
#ifdef PGMPOOL_WITH_MONITORING
/**
* Determin the size of a write instruction.
* @returns number of bytes written.
* @param pDis The disassembler state.
*/
static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
{
/*
* This is very crude and possibly wrong for some opcodes,
* but since it's not really supposed to be called we can
* probably live with that.
*/
return DISGetParamSize(pDis, &pDis->param1);
}
/**
* Flushes a chain of pages sharing the same access monitor.
*
* @returns VBox status code suitable for scheduling.
* @param pPool The pool.
* @param pPage A page in the chain.
*/
int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Find the list head.
*/
uint16_t idx = pPage->idx;
if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
{
while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
{
idx = pPage->iMonitoredPrev;
Assert(idx != pPage->idx);
pPage = &pPool->aPages[idx];
}
}
/*
* Itereate the list flushing each shadow page.
*/
int rc = VINF_SUCCESS;
for (;;)
{
idx = pPage->iMonitoredNext;
Assert(idx != pPage->idx);
if (pPage->idx >= PGMPOOL_IDX_FIRST)
{
int rc2 = pgmPoolFlushPage(pPool, pPage);
if (rc2 == VERR_PGM_POOL_CLEARED && rc == VINF_SUCCESS)
rc = VINF_PGM_SYNC_CR3;
}
/* next */
if (idx == NIL_PGMPOOL_IDX)
break;
pPage = &pPool->aPages[idx];
}
return rc;
}
/**
* Wrapper for getting the current context pointer to the entry being modified.
*
* @returns Pointer to the current context mapping of the entry.
* @param pPool The pool.
* @param pvFault The fault virtual address.
* @param GCPhysFault The fault physical address.
* @param cbEntry The entry size.
*/
#ifdef IN_RING3
DECLINLINE(const void *) pgmPoolMonitorGCPtr2CCPtr(PPGMPOOL pPool, RTHCPTR pvFault, RTGCPHYS GCPhysFault, const unsigned cbEntry)
#else
DECLINLINE(const void *) pgmPoolMonitorGCPtr2CCPtr(PPGMPOOL pPool, RTGCPTR pvFault, RTGCPHYS GCPhysFault, const unsigned cbEntry)
#endif
{
#ifdef IN_GC
return (RTGCPTR)((RTGCUINTPTR)pvFault & ~(RTGCUINTPTR)(cbEntry - 1));
#elif defined(IN_RING0)
void *pvRet;
int rc = pgmRamGCPhys2HCPtr(&pPool->pVMHC->pgm.s, GCPhysFault & ~(RTGCPHYS)(cbEntry - 1), &pvRet);
AssertFatalRCSuccess(rc);
return pvRet;
#elif defined(IN_RING3)
return (RTHCPTR)((uintptr_t)pvFault & ~(RTHCUINTPTR)(cbEntry - 1));
#else
# error "huh?"
#endif
}
/**
* Process shadow entries before they are changed by the guest.
*
* For PT entries we will clear them. For PD entries, we'll simply check
* for mapping conflicts and set the SyncCR3 FF if found.
*
* @param pPool The pool.
* @param pPage The head page.
* @param GCPhysFault The guest physical fault address.
* @param uAddress In R0 and GC this is the guest context fault address (flat).
* In R3 this is the host context 'fault' address.
* @param pCpu The disassembler state for figuring out the write size.
* This need not be specified if the caller knows we won't do cross entry accesses.
*/
#ifdef IN_RING3
void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu)
#else
void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu)
#endif
{
Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
for (;;)
{
union
{
void *pv;
PX86PT pPT;
PX86PTPAE pPTPae;
PX86PD pPD;
PX86PDPAE pPDPae;
} uShw;
uShw.pv = PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage);
switch (pPage->enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
{
const unsigned iShw = off / sizeof(X86PTE);
if (uShw.pPT->a[iShw].n.u1Present)
{
# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
PCX86PTE pGstPte = (PCX86PTE)pgmPoolMonitorGCPtr2CCPtr(pPool, pvAddress, GCPhysFault, sizeof(*pGstPte));
Log4(("pgmPoolMonitorChainChanging 32_32: deref %VHp GCPhys %VGp\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, pGstPte->u & X86_PTE_PG_MASK));
pgmPoolTracDerefGCPhysHint(pPool, pPage,
uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
pGstPte->u & X86_PTE_PG_MASK);
# endif
uShw.pPT->a[iShw].u = 0;
}
break;
}
/* page/2 sized */
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
{
const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
if (uShw.pPTPae->a[iShw].n.u1Present)
{
# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
PCX86PTE pGstPte = (PCX86PTE)pgmPoolMonitorGCPtr2CCPtr(pPool, pvAddress, GCPhysFault, sizeof(*pGstPte));
Log4(("pgmPoolMonitorChainChanging pae_32: deref %VHp GCPhys %VGp\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, pGstPte->u & X86_PTE_PG_MASK));
pgmPoolTracDerefGCPhysHint(pPool, pPage,
uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
pGstPte->u & X86_PTE_PG_MASK);
# endif
uShw.pPTPae->a[iShw].u = 0;
}
}
break;
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
{
const unsigned iShw = off / sizeof(X86PTPAE);
if (uShw.pPTPae->a[iShw].n.u1Present)
{
# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
PCX86PTE pGstPte = (PCX86PTE)pgmPoolMonitorGCPtr2CCPtr(pPool, pvAddress, GCPhysFault, sizeof(*pGstPte));
Log4(("pgmPoolMonitorChainChanging pae_32: deref %VHp GCPhys %VGp\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, pGstPte->u & X86_PTE_PAE_PG_MASK));
pgmPoolTracDerefGCPhysHint(pPool, pPage,
uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
pGstPte->u & X86_PTE_PAE_PG_MASK);
# endif
uShw.pPTPae->a[iShw].u = 0;
}
break;
}
case PGMPOOLKIND_ROOT_32BIT_PD:
{
const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
{
Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s));
VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3);
LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
}
/* paranoia / a bit assumptive. */
else if ( pCpu
&& (off & 4)
&& (off & 4) + pgmPoolDisasWriteSize(pCpu) > 4)
{
const unsigned iShw2 = (off + pgmPoolDisasWriteSize(pCpu) - 1) / sizeof(X86PTE);
if ( iShw2 != iShw
&& iShw2 < ELEMENTS(uShw.pPD->a)
&& uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
{
Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s));
VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3);
LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
}
}
#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
if ( uShw.pPD->a[iShw].n.u1Present
&& !VM_FF_ISSET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3))
{
LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
# ifdef IN_GC /* TLB load - we're pushing things a bit... */
ASMProbeReadByte(pvAddress);
# endif
pgmPoolFree(pPool->CTXSUFF(pVM), uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
uShw.pPD->a[iShw].u = 0;
}
#endif
break;
}
case PGMPOOLKIND_ROOT_PAE_PD:
{
unsigned iShw = (off / sizeof(X86PTE)) * 2; // ASSUMING 32-bit guest paging!
for (unsigned i = 0; i < 2; i++, iShw++)
{
if ((uShw.pPDPae->a[iShw].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
{
Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s));
VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3);
LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
}
/* paranoia / a bit assumptive. */
else if ( pCpu
&& (off & 4)
&& (off & 4) + pgmPoolDisasWriteSize(pCpu) > 4)
{
const unsigned iShw2 = iShw + 2;
if ( iShw2 < ELEMENTS(uShw.pPDPae->a)
&& (uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
{
Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s));
VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3);
LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
}
}
#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
if ( uShw.pPDPae->a[iShw].n.u1Present
&& !VM_FF_ISSET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3))
{
LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
# ifdef IN_GC /* TLB load - we're pushing things a bit... */
ASMProbeReadByte(pvAddress);
# endif
pgmPoolFree(pPool->CTXSUFF(pVM), uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
uShw.pPDPae->a[iShw].u = 0;
}
#endif
}
break;
}
default:
AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
}
/* next */
if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
return;
pPage = &pPool->aPages[pPage->iMonitoredNext];
}
}
# ifndef IN_RING3
/**
* Checks if a access could be a fork operation in progress.
*
* Meaning, that the guest is setuping up the parent process for Copy-On-Write.
*
* @returns true if it's likly that we're forking, otherwise false.
* @param pPool The pool.
* @param pCpu The disassembled instruction.
* @param offFault The access offset.
*/
DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
{
/*
* i386 linux is using btr to clear X86_PTE_RW.
* The functions involved are (2.6.16 source inspection):
* clear_bit
* ptep_set_wrprotect
* copy_one_pte
* copy_pte_range
* copy_pmd_range
* copy_pud_range
* copy_page_range
* dup_mmap
* dup_mm
* copy_mm
* copy_process
* do_fork
*/
if ( pCpu->pCurInstr->opcode == OP_BTR
&& !(offFault & 4)
/** @todo Validate that the bit index is X86_PTE_RW. */
)
{
STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,Fork));
return true;
}
return false;
}
/**
* Determin whether the page is likely to have been reused.
*
* @returns true if we consider the page as being reused for a different purpose.
* @returns false if we consider it to still be a paging page.
* @param pPage The page in question.
* @param pCpu The disassembly info for the faulting insturction.
* @param pvFault The fault address.
*
* @remark The REP prefix check is left to the caller because of STOSD/W.
*/
DECLINLINE(bool) pgmPoolMonitorIsReused(PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu, RTGCPTR pvFault)
{
switch (pCpu->pCurInstr->opcode)
{
case OP_PUSH:
Log4(("pgmPoolMonitorIsReused: PUSH\n"));
return true;
case OP_PUSHF:
Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
return true;
case OP_PUSHA:
Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
return true;
case OP_FXSAVE:
Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
return true;
case OP_MOVNTI: /* solaris - block_zero_no_xmm */
Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
return true;
case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
return true;
}
if ( (pCpu->param1.flags & USE_REG_GEN32)
&& (pCpu->param1.base.reg_gen32 == USE_REG_ESP))
{
Log4(("pgmPoolMonitorIsReused: ESP\n"));
return true;
}
//if (pPage->fCR3Mix)
// return false;
return false;
}
/**
* Flushes the page being accessed.
*
* @returns VBox status code suitable for scheduling.
* @param pVM The VM handle.
* @param pPool The pool.
* @param pPage The pool page (head).
* @param pCpu The disassembly of the write instruction.
* @param pRegFrame The trap register frame.
* @param GCPhysFault The fault address as guest physical address.
* @param pvFault The fault address.
*/
static int pgmPoolAccessHandlerFlush(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
{
/*
* First, do the flushing.
*/
int rc = pgmPoolMonitorChainFlush(pPool, pPage);
/*
* Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
*/
uint32_t cbWritten;
int rc2 = EMInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, &cbWritten);
if (VBOX_SUCCESS(rc2))
pRegFrame->eip += pCpu->opsize;
else if (rc2 == VERR_EM_INTERPRETER)
{
#ifdef IN_GC
if (PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip))
{
LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
rc = VINF_SUCCESS;
STAM_COUNTER_INC(&pPool->StatMonitorGCIntrFailPatch2);
}
else
#endif
{
rc = VINF_EM_RAW_EMULATE_INSTR;
STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,EmulateInstr));
}
}
else
rc = rc2;
/* See use in pgmPoolAccessHandlerSimple(). */
PGM_INVL_GUEST_TLBS();
LogFlow(("pgmPoolAccessHandlerPT: returns %Vrc (flushed)\n", rc));
return rc;
}
/**
* Handles the STOSD write accesses.
*
* @returns VBox status code suitable for scheduling.
* @param pVM The VM handle.
* @param pPool The pool.
* @param pPage The pool page (head).
* @param pCpu The disassembly of the write instruction.
* @param pRegFrame The trap register frame.
* @param GCPhysFault The fault address as guest physical address.
* @param pvFault The fault address.
*/
DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
{
/*
* Increment the modification counter and insert it into the list
* of modified pages the first time.
*/
if (!pPage->cModifications++)
pgmPoolMonitorModifiedInsert(pPool, pPage);
/*
* Execute REP STOSD.
*
* This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
* write situation, meaning that it's safe to write here.
*/
#ifdef IN_GC
uint32_t *pu32 = (uint32_t *)pvFault;
#else
RTGCPTR pu32 = pvFault;
#endif
while (pRegFrame->ecx)
{
pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, pu32, NULL);
#ifdef IN_GC
*pu32++ = pRegFrame->eax;
#else
PGMPhysWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
pu32 += 4;
#endif
GCPhysFault += 4;
pRegFrame->edi += 4;
pRegFrame->ecx--;
}
pRegFrame->eip += pCpu->opsize;
/* See use in pgmPoolAccessHandlerSimple(). */
PGM_INVL_GUEST_TLBS();
LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
return VINF_SUCCESS;
}
/**
* Handles the simple write accesses.
*
* @returns VBox status code suitable for scheduling.
* @param pVM The VM handle.
* @param pPool The pool.
* @param pPage The pool page (head).
* @param pCpu The disassembly of the write instruction.
* @param pRegFrame The trap register frame.
* @param GCPhysFault The fault address as guest physical address.
* @param pvFault The fault address.
*/
DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
{
/*
* Increment the modification counter and insert it into the list
* of modified pages the first time.
*/
if (!pPage->cModifications++)
pgmPoolMonitorModifiedInsert(pPool, pPage);
/*
* Clear all the pages. ASSUMES that pvFault is readable.
*/
pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, pvFault, pCpu);
/*
* Interpret the instruction.
*/
uint32_t cb;
int rc = EMInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, &cb);
if (VBOX_SUCCESS(rc))
pRegFrame->eip += pCpu->opsize;
else if (rc == VERR_EM_INTERPRETER)
{
# ifdef IN_GC
if (PATMIsPatchGCAddr(pVM, (RTGCPTR)(RTGCUINTPTR)pCpu->opaddr))
{
/* We're not able to handle this in ring-3, so fix the interpreter! */
/** @note Should be fine. There's no need to flush the whole thing. */
#ifndef DEBUG_sandervl
AssertMsgFailed(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv - opcode=%d\n",
pRegFrame->cs, (RTGCPTR)pRegFrame->eip, pCpu->pCurInstr->opcode));
#endif
STAM_COUNTER_INC(&pPool->StatMonitorGCIntrFailPatch1);
rc = pgmPoolMonitorChainFlush(pPool, pPage);
}
else
# endif
{
rc = VINF_EM_RAW_EMULATE_INSTR;
STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,EmulateInstr));
}
}
/*
* Quick hack, with logging enabled we're getting stale
* code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
* Flushing here is BAD and expensive, I think EMInterpretDisasOne will
* have to be fixed to support this. But that'll have to wait till next week.
*
* An alternative is to keep track of the changed PTEs together with the
* GCPhys from the guest PT. This may proove expensive though.
*
* At the moment, it's VITAL that it's done AFTER the instruction interpreting
* because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
*/
PGM_INVL_GUEST_TLBS();
LogFlow(("pgmPoolAccessHandlerSimple: returns %Vrc cb=%d\n", rc, cb));
return rc;
}
/**
* \#PF Handler callback for PT write accesses.
*
* @returns VBox status code (appropriate for GC return).
* @param pVM VM Handle.
* @param uErrorCode CPU Error code.
* @param pRegFrame Trap register frame.
* NULL on DMA and other non CPU access.
* @param pvFault The fault address (cr2).
* @param GCPhysFault The GC physical address corresponding to pvFault.
* @param pvUser User argument.
*/
DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
{
STAM_PROFILE_START(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), a);
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
LogFlow(("pgmPoolAccessHandler: pvFault=%p pPage=%p:{.idx=%d} GCPhysFault=%VGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
/*
* We should ALWAYS have the list head as user parameter. This
* is because we use that page to record the changes.
*/
Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
/*
* Disassemble the faulting instruction.
*/
DISCPUSTATE Cpu;
int rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, NULL);
AssertRCReturn(rc, rc);
/*
* Check if it's worth dealing with.
*/
bool fReused = false;
if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
|| pPage->fCR3Mix)
&& !(fReused = pgmPoolMonitorIsReused(pPage, &Cpu, pvFault))
&& !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
{
/*
* Simple instructions, no REP prefix.
*/
if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
{
rc = pgmPoolAccessHandlerSimple(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), &pPool->CTXMID(StatMonitor,Handled), a);
return rc;
}
/*
* Windows is frequently doing small memset() operations (netio test 4k+).
* We have to deal with these or we'll kill the cache and performance.
*/
if ( Cpu.pCurInstr->opcode == OP_STOSWD
&& CPUMGetGuestCPL(pVM, pRegFrame) == 0
&& pRegFrame->ecx <= 0x20
&& pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
&& !((uintptr_t)pvFault & 3)
&& (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
&& Cpu.mode == CPUMODE_32BIT
&& Cpu.opmode == CPUMODE_32BIT
&& Cpu.addrmode == CPUMODE_32BIT
&& Cpu.prefix == PREFIX_REP
&& !pRegFrame->eflags.Bits.u1DF
)
{
rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), &pPool->CTXMID(StatMonitor,RepStosd), a);
return rc;
}
/* REP prefix, don't bother. */
STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,RepPrefix));
Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x eip=%#x opcode=%d prefix=%#x\n",
pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, pRegFrame->eip, Cpu.pCurInstr->opcode, Cpu.prefix));
}
/*
* Not worth it, so flush it.
*
* If we considered it to be reused, don't to back to ring-3
* to emulate failed instructions since we usually cannot
* interpret then. This may be a bit risky, in which case
* the reuse detection must be fixed.
*/
rc = pgmPoolAccessHandlerFlush(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
rc = VINF_SUCCESS;
STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), &pPool->CTXMID(StatMonitor,FlushPage), a);
return rc;
}
# endif /* !IN_RING3 */
#endif /* PGMPOOL_WITH_MONITORING */
#ifdef PGMPOOL_WITH_CACHE
/**
* Inserts a page into the GCPhys hash table.
*
* @param pPool The pool.
* @param pPage The page.
*/
DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
pPage->iNext = pPool->aiHash[iHash];
pPool->aiHash[iHash] = pPage->idx;
}
/**
* Removes a page from the GCPhys hash table.
*
* @param pPool The pool.
* @param pPage The page.
*/
DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
if (pPool->aiHash[iHash] == pPage->idx)
pPool->aiHash[iHash] = pPage->iNext;
else
{
uint16_t iPrev = pPool->aiHash[iHash];
for (;;)
{
const int16_t i = pPool->aPages[iPrev].iNext;
if (i == pPage->idx)
{
pPool->aPages[iPrev].iNext = pPage->iNext;
break;
}
if (i == NIL_PGMPOOL_IDX)
{
AssertReleaseMsgFailed(("GCPhys=%VGp idx=%#x\n", pPage->GCPhys, pPage->idx));
break;
}
iPrev = i;
}
}
pPage->iNext = NIL_PGMPOOL_IDX;
}
/**
* Frees up one cache page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_POOL_CLEARED if the deregistration of a physical handler will cause a light weight pool flush.
* @param pPool The pool.
* @param iUser The user index.
*/
static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
{
Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
/*
* Select one page from the tail of the age list.
*/
uint16_t iToFree = pPool->iAgeTail;
if (iToFree == iUser)
iToFree = pPool->aPages[iToFree].iAgePrev;
/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
{
uint16_t i = pPool->aPages[iToFree].iAgePrev;
for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
{
if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
continue;
iToFree = i;
break;
}
}
*/
Assert(iToFree != iUser);
AssertRelease(iToFree != NIL_PGMPOOL_IDX);
int rc = pgmPoolFlushPage(pPool, &pPool->aPages[iToFree]);
if (rc == VINF_SUCCESS)
PGM_INVL_GUEST_TLBS(); /* see PT handler. */
return rc;
}
/**
* Checks if a kind mismatch is really a page being reused
* or if it's just normal remappings.
*
* @returns true if reused and the cached page (enmKind1) should be flushed
* @returns false if not reused.
* @param enmKind1 The kind of the cached page.
* @param enmKind2 The kind of the requested page.
*/
static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
{
switch (enmKind1)
{
/*
* Never reuse them. There is no remapping in non-paging mode.
*/
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
return true;
/*
* It's perfectly fine to reuse these, except for PAE and non-paging stuff.
*/
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
switch (enmKind2)
{
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
return true;
default:
return false;
}
/*
* It's perfectly fine to reuse these, except for PAE and non-paging stuff.
*/
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
switch (enmKind2)
{
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
return true;
default:
return false;
}
/*
* These cannot be flushed, and it's common to reuse the PDs as PTs.
*/
case PGMPOOLKIND_ROOT_32BIT_PD:
case PGMPOOLKIND_ROOT_PAE_PD:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
return false;
default:
AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
}
}
/**
* Attempts to satisfy a pgmPoolAlloc request from the cache.
*
* @returns VBox status code.
* @retval VINF_PGM_CACHED_PAGE on success.
* @retval VERR_FILE_NOT_FOUND if not found.
* @param pPool The pool.
* @param GCPhys The GC physical address of the page we're gonna shadow.
* @param enmKind The kind of mapping.
* @param iUser The shadow page pool index of the user table.
* @param iUserTable The index into the user table (shadowed).
* @param ppPage Where to store the pointer to the page.
*/
static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage)
{
/*
* Look up the GCPhys in the hash.
*/
unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
if (i != NIL_PGMPOOL_IDX)
{
do
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
if (pPage->GCPhys == GCPhys)
{
if ((PGMPOOLKIND)pPage->enmKind == enmKind)
{
int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
if (VBOX_SUCCESS(rc))
{
*ppPage = pPage;
STAM_COUNTER_INC(&pPool->StatCacheHits);
return VINF_PGM_CACHED_PAGE;
}
return rc;
}
/*
* The kind is different. In some cases we should now flush the page
* as it has been reused, but in most cases this is normal remapping
* of PDs as PT or big pages using the GCPhys field in a slightly
* different way than the other kinds.
*/
if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
{
STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
pgmPoolFlushPage(pPool, pPage); /* ASSUMES that VERR_PGM_POOL_CLEARED will be returned by pgmPoolTracInsert. */
PGM_INVL_GUEST_TLBS(); /* see PT handler. */
break;
}
}
/* next */
i = pPage->iNext;
} while (i != NIL_PGMPOOL_IDX);
}
Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%d\n", GCPhys, enmKind));
STAM_COUNTER_INC(&pPool->StatCacheMisses);
return VERR_FILE_NOT_FOUND;
}
/**
* Inserts a page into the cache.
*
* @param pPool The pool.
* @param pPage The cached page.
* @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
*/
static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
{
/*
* Insert into the GCPhys hash if the page is fit for that.
*/
Assert(!pPage->fCached);
if (fCanBeCached)
{
pPage->fCached = true;
pgmPoolHashInsert(pPool, pPage);
Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%d, GCPhys=%RGp}\n",
pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, pPage->GCPhys));
STAM_COUNTER_INC(&pPool->StatCacheCacheable);
}
else
{
Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%d, GCPhys=%RGp}\n",
pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, pPage->GCPhys));
STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
}
/*
* Insert at the head of the age list.
*/
pPage->iAgePrev = NIL_PGMPOOL_IDX;
pPage->iAgeNext = pPool->iAgeHead;
if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
else
pPool->iAgeTail = pPage->idx;
pPool->iAgeHead = pPage->idx;
}
/**
* Flushes a cached page.
*
* @param pPool The pool.
* @param pPage The cached page.
*/
static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Remove the page from the hash.
*/
if (pPage->fCached)
{
pPage->fCached = false;
pgmPoolHashRemove(pPool, pPage);
}
else
Assert(pPage->iNext == NIL_PGMPOOL_IDX);
/*
* Remove it from the age list.
*/
if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
else
pPool->iAgeTail = pPage->iAgePrev;
if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
else
pPool->iAgeHead = pPage->iAgeNext;
pPage->iAgeNext = NIL_PGMPOOL_IDX;
pPage->iAgePrev = NIL_PGMPOOL_IDX;
}
#endif /* PGMPOOL_WITH_CACHE */
#ifdef PGMPOOL_WITH_MONITORING
/**
* Looks for pages sharing the monitor.
*
* @returns Pointer to the head page.
* @returns NULL if not found.
* @param pPool The Pool
* @param pNewPage The page which is going to be monitored.
*/
static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
{
#ifdef PGMPOOL_WITH_CACHE
/*
* Look up the GCPhys in the hash.
*/
RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
if (i == NIL_PGMPOOL_IDX)
return NULL;
do
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
if ( pPage->GCPhys - GCPhys < PAGE_SIZE
&& pPage != pNewPage)
{
switch (pPage->enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_32BIT_PD:
case PGMPOOLKIND_ROOT_PAE_PD:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
{
/* find the head */
while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
{
Assert(pPage->iMonitoredPrev != pPage->idx);
pPage = &pPool->aPages[pPage->iMonitoredPrev];
}
return pPage;
}
/* ignore, no monitoring. */
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
break;
default:
AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
}
}
/* next */
i = pPage->iNext;
} while (i != NIL_PGMPOOL_IDX);
#endif
return NULL;
}
/**
* Enabled write monitoring of a guest page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_POOL_CLEARED if the registration of the physical handler will cause a light weight pool flush.
* @param pPool The pool.
* @param pPage The cached page.
*/
static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Filter out the relevant kinds.
*/
switch (pPage->enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
break;
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
/* Nothing to monitor here. */
return VINF_SUCCESS;
case PGMPOOLKIND_ROOT_32BIT_PD:
case PGMPOOLKIND_ROOT_PAE_PD:
#ifdef PGMPOOL_WITH_MIXED_PT_CR3
break;
#endif
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
default:
AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
}
/*
* Install handler.
*/
int rc;
PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
if (pPageHead)
{
Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
Assert(pPageHead->iMonitoredPrev != pPage->idx);
pPage->iMonitoredPrev = pPageHead->idx;
pPage->iMonitoredNext = pPageHead->iMonitoredNext;
if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
pPageHead->iMonitoredNext = pPage->idx;
rc = VINF_SUCCESS;
}
else
{
Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
PVM pVM = pPool->CTXSUFF(pVM);
const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
pPool->pfnAccessHandlerGC, MMHyperCCToGC(pVM, pPage),
pPool->pszAccessHandler);
/** @todo we should probably deal with out-of-memory conditions here, but for now increasing
* the heap size should suffice. */
AssertFatalRC(rc);
if (pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
rc = VERR_PGM_POOL_CLEARED;
}
pPage->fMonitored = true;
return rc;
}
/**
* Disables write monitoring of a guest page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_POOL_CLEARED if the deregistration of the physical handler will cause a light weight pool flush.
* @param pPool The pool.
* @param pPage The cached page.
*/
static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Filter out the relevant kinds.
*/
switch (pPage->enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
break;
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
/* Nothing to monitor here. */
return VINF_SUCCESS;
case PGMPOOLKIND_ROOT_32BIT_PD:
case PGMPOOLKIND_ROOT_PAE_PD:
#ifdef PGMPOOL_WITH_MIXED_PT_CR3
break;
#endif
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
default:
AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
}
/*
* Remove the page from the monitored list or uninstall it if last.
*/
const PVM pVM = pPool->CTXSUFF(pVM);
int rc;
if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
|| pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
{
if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
{
PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
pNewHead->fCR3Mix = pPage->fCR3Mix;
rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
pPool->pfnAccessHandlerGC, MMHyperCCToGC(pVM, pNewHead),
pPool->pszAccessHandler);
AssertFatalRCSuccess(rc);
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
}
else
{
pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
{
pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
}
pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
rc = VINF_SUCCESS;
}
}
else
{
rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
AssertFatalRC(rc);
if (pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
rc = VERR_PGM_POOL_CLEARED;
}
pPage->fMonitored = false;
/*
* Remove it from the list of modified pages (if in it).
*/
pgmPoolMonitorModifiedRemove(pPool, pPage);
return rc;
}
#ifdef PGMPOOL_WITH_MIXED_PT_CR3
/**
* Set or clear the fCR3Mix attribute in a chain of monitored pages.
*
* @param pPool The Pool.
* @param pPage A page in the chain.
* @param fCR3Mix The new fCR3Mix value.
*/
static void pgmPoolMonitorChainChangeCR3Mix(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCR3Mix)
{
/* current */
pPage->fCR3Mix = fCR3Mix;
/* before */
int16_t idx = pPage->iMonitoredPrev;
while (idx != NIL_PGMPOOL_IDX)
{
pPool->aPages[idx].fCR3Mix = fCR3Mix;
idx = pPool->aPages[idx].iMonitoredPrev;
}
/* after */
idx = pPage->iMonitoredNext;
while (idx != NIL_PGMPOOL_IDX)
{
pPool->aPages[idx].fCR3Mix = fCR3Mix;
idx = pPool->aPages[idx].iMonitoredNext;
}
}
/**
* Installs or modifies monitoring of a CR3 page (special).
*
* We're pretending the CR3 page is shadowed by the pool so we can use the
* generic mechanisms in detecting chained monitoring. (This also gives us a
* tast of what code changes are required to really pool CR3 shadow pages.)
*
* @returns VBox status code.
* @param pPool The pool.
* @param idxRoot The CR3 (root) page index.
* @param GCPhysCR3 The (new) CR3 value.
*/
int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3)
{
Assert(idxRoot != NIL_PGMPOOL_IDX && idxRoot < PGMPOOL_IDX_FIRST);
PPGMPOOLPAGE pPage = &pPool->aPages[idxRoot];
LogFlow(("pgmPoolMonitorMonitorCR3: idxRoot=%d pPage=%p:{.GCPhys=%VGp, .fMonitored=%d} GCPhysCR3=%VGp\n",
idxRoot, pPage, pPage->GCPhys, pPage->fMonitored, GCPhysCR3));
/*
* The unlikely case where it already matches.
*/
if (pPage->GCPhys == GCPhysCR3)
{
Assert(pPage->fMonitored);
return VINF_SUCCESS;
}
/*
* Flush the current monitoring and remove it from the hash.
*/
int rc = VINF_SUCCESS;
if (pPage->fMonitored)
{
pgmPoolMonitorChainChangeCR3Mix(pPool, pPage, false);
rc = pgmPoolMonitorFlush(pPool, pPage);
if (rc == VERR_PGM_POOL_CLEARED)
rc = VINF_SUCCESS;
else
AssertFatalRC(rc);
pgmPoolHashRemove(pPool, pPage);
}
/*
* Monitor the page at the new location and insert it into the hash.
*/
pPage->GCPhys = GCPhysCR3;
int rc2 = pgmPoolMonitorInsert(pPool, pPage);
if (rc2 != VERR_PGM_POOL_CLEARED)
{
AssertFatalRC(rc2);
if (rc2 != VINF_SUCCESS && rc == VINF_SUCCESS)
rc = rc2;
}
pgmPoolHashInsert(pPool, pPage);
pgmPoolMonitorChainChangeCR3Mix(pPool, pPage, true);
return rc;
}
/**
* Removes the monitoring of a CR3 page (special).
*
* @returns VBox status code.
* @param pPool The pool.
* @param idxRoot The CR3 (root) page index.
*/
int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot)
{
Assert(idxRoot != NIL_PGMPOOL_IDX && idxRoot < PGMPOOL_IDX_FIRST);
PPGMPOOLPAGE pPage = &pPool->aPages[idxRoot];
LogFlow(("pgmPoolMonitorUnmonitorCR3: idxRoot=%d pPage=%p:{.GCPhys=%VGp, .fMonitored=%d}\n",
idxRoot, pPage, pPage->GCPhys, pPage->fMonitored));
if (!pPage->fMonitored)
return VINF_SUCCESS;
pgmPoolMonitorChainChangeCR3Mix(pPool, pPage, false);
int rc = pgmPoolMonitorFlush(pPool, pPage);
if (rc != VERR_PGM_POOL_CLEARED)
AssertFatalRC(rc);
else
rc = VINF_SUCCESS;
pgmPoolHashRemove(pPool, pPage);
Assert(!pPage->fMonitored);
pPage->GCPhys = NIL_RTGCPHYS;
return rc;
}
#endif /* PGMPOOL_WITH_MIXED_PT_CR3 */
/**
* Inserts the page into the list of modified pages.
*
* @param pPool The pool.
* @param pPage The page.
*/
void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
&& pPage->iModifiedPrev == NIL_PGMPOOL_IDX
&& pPool->iModifiedHead != pPage->idx,
("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
pPool->iModifiedHead, pPool->cModifiedPages));
pPage->iModifiedNext = pPool->iModifiedHead;
if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
pPool->iModifiedHead = pPage->idx;
pPool->cModifiedPages++;
#ifdef VBOX_WITH_STATISTICS
if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
pPool->cModifiedPagesHigh = pPool->cModifiedPages;
#endif
}
/**
* Removes the page from the list of modified pages and resets the
* moficiation counter.
*
* @param pPool The pool.
* @param pPage The page which is believed to be in the list of modified pages.
*/
static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
if (pPool->iModifiedHead == pPage->idx)
{
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
pPool->iModifiedHead = pPage->iModifiedNext;
if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
{
pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
}
pPool->cModifiedPages--;
}
else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
{
pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
{
pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
}
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPool->cModifiedPages--;
}
else
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
pPage->cModifications = 0;
}
/**
* Zaps the list of modified pages, resetting their modification counters in the process.
*
* @param pVM The VM handle.
*/
void pgmPoolMonitorModifiedClearAll(PVM pVM)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
unsigned cPages = 0; NOREF(cPages);
uint16_t idx = pPool->iModifiedHead;
pPool->iModifiedHead = NIL_PGMPOOL_IDX;
while (idx != NIL_PGMPOOL_IDX)
{
PPGMPOOLPAGE pPage = &pPool->aPages[idx];
idx = pPage->iModifiedNext;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
Assert(++cPages);
}
AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
pPool->cModifiedPages = 0;
}
/**
* Clear all shadow pages and clear all modification counters.
*
* @param pVM The VM handle.
* @remark Should only be used when monitoring is available, thus placed in
* the PGMPOOL_WITH_MONITORING #ifdef.
*/
void pgmPoolClearAll(PVM pVM)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
STAM_PROFILE_START(&pPool->StatClearAll, c);
LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
/*
* Iterate all the pages until we've encountered all that in use.
* This is simple but not quite optimal solution.
*/
unsigned cModifiedPages = 0; NOREF(cModifiedPages);
unsigned cLeft = pPool->cUsedPages;
unsigned iPage = pPool->cCurPages;
while (--iPage >= PGMPOOL_IDX_FIRST)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if (pPage->GCPhys != NIL_RTGCPHYS)
{
switch (pPage->enmKind)
{
/*
* We only care about shadow page tables.
*/
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
{
#ifdef PGMPOOL_WITH_USER_TRACKING
if (pPage->cPresent)
#endif
{
void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage);
STAM_PROFILE_START(&pPool->StatZeroPage, z);
ASMMemZeroPage(pvShw);
STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
#ifdef PGMPOOL_WITH_USER_TRACKING
pPage->cPresent = 0;
pPage->iFirstPresent = ~0;
#endif
}
}
/* fall thru */
default:
Assert(!pPage->cModifications || ++cModifiedPages);
Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
break;
}
if (!--cLeft)
break;
}
}
/* swipe the special pages too. */
for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if (pPage->GCPhys != NIL_RTGCPHYS)
{
Assert(!pPage->cModifications || ++cModifiedPages);
Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
}
}
AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
pPool->iModifiedHead = NIL_PGMPOOL_IDX;
pPool->cModifiedPages = 0;
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/*
* Clear all the GCPhys links and rebuild the phys ext free list.
*/
for (PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXALLSUFF(pRamRanges);
pRam;
pRam = CTXALLSUFF(pRam->pNext))
{
unsigned iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
pRam->aPages[iPage].HCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; /** @todo PAGE FLAGS */
}
pPool->iPhysExtFreeHead = 0;
PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts);
const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
for (unsigned i = 0; i < cMaxPhysExts; i++)
{
paPhysExts[i].iNext = i + 1;
paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
}
paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
#endif
pPool->cPresent = 0;
STAM_PROFILE_STOP(&pPool->StatClearAll, c);
}
#endif /* PGMPOOL_WITH_MONITORING */
#ifdef PGMPOOL_WITH_USER_TRACKING
/**
* Frees up at least one user entry.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if successfully added.
* @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
* @param pPool The pool.
* @param iUser The user index.
*/
static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
{
STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
#ifdef PGMPOOL_WITH_CACHE
/*
* Just free cached pages in a braindead fashion.
*/
/** @todo walk the age list backwards and free the first with usage. */
int rc = VINF_SUCCESS;
do
{
int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
if (VBOX_FAILURE(rc2) && rc == VINF_SUCCESS)
rc = rc2;
} while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
return rc;
#else
/*
* Lazy approach.
*/
pgmPoolFlushAllInt(pPool);
return VERR_PGM_POOL_FLUSHED;
#endif
}
/**
* Inserts a page into the cache.
*
* This will create user node for the page, insert it into the GCPhys
* hash, and insert it into the age list.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if successfully added.
* @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
* @retval VERR_PGM_POOL_CLEARED if the deregistration of the physical handler will cause a light weight pool flush.
* @param pPool The pool.
* @param pPage The cached page.
* @param GCPhys The GC physical address of the page we're gonna shadow.
* @param iUser The user index.
* @param iUserTable The user table index.
*/
DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint16_t iUserTable)
{
int rc = VINF_SUCCESS;
PPGMPOOLUSER pUser = pPool->CTXSUFF(paUsers);
/*
* Find free a user node.
*/
uint16_t i = pPool->iUserFreeHead;
if (i == NIL_PGMPOOL_USER_INDEX)
{
int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
if (VBOX_FAILURE(rc))
return rc;
i = pPool->iUserFreeHead;
}
/*
* Unlink the user node from the free list,
* initialize and insert it into the user list.
*/
pPool->iUserFreeHead = pUser[i].iNext;
pUser[i].iNext = NIL_PGMPOOL_USER_INDEX;
pUser[i].iUser = iUser;
pUser[i].iUserTable = iUserTable;
pPage->iUserHead = i;
/*
* Insert into cache and enable monitoring of the guest page if enabled.
*
* Until we implement caching of all levels, including the CR3 one, we'll
* have to make sure we don't try monitor & cache any recursive reuse of
* a monitored CR3 page. Because all windows versions are doing this we'll
* have to be able to do combined access monitoring, CR3 + PT and
* PD + PT (guest PAE).
*
* Update:
* We're now cooperating with the CR3 monitor if an uncachable page is found.
*/
#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
# ifdef PGMPOOL_WITH_MIXED_PT_CR3
const bool fCanBeMonitored = true;
# else
bool fCanBeMonitored = pPool->CTXSUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
|| (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTXSUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
|| pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
# endif
# ifdef PGMPOOL_WITH_CACHE
pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
# endif
if (fCanBeMonitored)
{
# ifdef PGMPOOL_WITH_MONITORING
rc = pgmPoolMonitorInsert(pPool, pPage);
if (rc == VERR_PGM_POOL_CLEARED)
{
/* 'Failed' - free the usage, and keep it in the cache (if enabled). */
# ifndef PGMPOOL_WITH_CACHE
pgmPoolMonitorFlush(pPool, pPage);
rc = VERR_PGM_POOL_FLUSHED;
# endif
pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
pUser[i].iNext = pPool->iUserFreeHead;
pUser[i].iUser = NIL_PGMPOOL_IDX;
pPool->iUserFreeHead = i;
}
}
# endif
#endif /* PGMPOOL_WITH_MONITORING */
return rc;
}
# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
/**
* Adds a user reference to a page.
*
* This will
* This will move the page to the head of the
*
* @returns VBox status code.
* @retval VINF_SUCCESS if successfully added.
* @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
* @param pPool The pool.
* @param pPage The cached page.
* @param iUser The user index.
* @param iUserTable The user table.
*/
static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable)
{
PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers);
# ifdef VBOX_STRICT
/*
* Check that the entry doesn't already exists.
*/
if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
{
uint16_t i = pPage->iUserHead;
do
{
Assert(i < pPool->cMaxUsers);
AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%d %d\n", iUser, iUserTable));
i = paUsers[i].iNext;
} while (i != NIL_PGMPOOL_USER_INDEX);
}
# endif
/*
* Allocate a user node.
*/
uint16_t i = pPool->iUserFreeHead;
if (i == NIL_PGMPOOL_USER_INDEX)
{
int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
if (VBOX_FAILURE(rc))
return rc;
i = pPool->iUserFreeHead;
}
pPool->iUserFreeHead = paUsers[i].iNext;
/*
* Initialize the user node and insert it.
*/
paUsers[i].iNext = pPage->iUserHead;
paUsers[i].iUser = iUser;
paUsers[i].iUserTable = iUserTable;
pPage->iUserHead = i;
# ifdef PGMPOOL_WITH_CACHE
/*
* Tell the cache to update its replacement stats for this page.
*/
pgmPoolCacheUsed(pPool, pPage);
# endif
return VINF_SUCCESS;
}
# endif /* PGMPOOL_WITH_CACHE */
/**
* Frees a user record associated with a page.
*
* This does not clear the entry in the user table, it simply replaces the
* user record to the chain of free records.
*
* @param pPool The pool.
* @param HCPhys The HC physical address of the shadow page.
* @param iUser The shadow page pool index of the user table.
* @param iUserTable The index into the user table (shadowed).
*/
static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable)
{
/*
* Unlink and free the specified user entry.
*/
PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers);
/* Special: For PAE and 32-bit paging, there are usually no more than one user. */
uint16_t i = pPage->iUserHead;
if ( i != NIL_PGMPOOL_USER_INDEX
&& paUsers[i].iUser == iUser
&& paUsers[i].iUserTable == iUserTable)
{
pPage->iUserHead = paUsers[i].iNext;
paUsers[i].iUser = NIL_PGMPOOL_IDX;
paUsers[i].iNext = pPool->iUserFreeHead;
pPool->iUserFreeHead = i;
return;
}
/* General: Linear search. */
uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
while (i != NIL_PGMPOOL_USER_INDEX)
{
if ( paUsers[i].iUser == iUser
&& paUsers[i].iUserTable == iUserTable)
{
if (iPrev != NIL_PGMPOOL_USER_INDEX)
paUsers[iPrev].iNext = paUsers[i].iNext;
else
pPage->iUserHead = paUsers[i].iNext;
paUsers[i].iUser = NIL_PGMPOOL_IDX;
paUsers[i].iNext = pPool->iUserFreeHead;
pPool->iUserFreeHead = i;
return;
}
iPrev = i;
i = paUsers[i].iNext;
}
/* Fatal: didn't find it */
AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%VGp\n",
iUser, iUserTable, pPage->GCPhys));
}
/**
* Gets the entry size of a shadow table.
*
* @param enmKind The kind of page.
*
* @returns The size of the entry in bytes. That is, 4 or 8.
* @returns If the kind is not for a table, an assertion is raised and 0 is
* returned.
*/
DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
{
switch (enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_ROOT_32BIT_PD:
return 4;
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_PAE_PD:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
return 8;
default:
AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
}
}
/**
* Gets the entry size of a guest table.
*
* @param enmKind The kind of page.
*
* @returns The size of the entry in bytes. That is, 0, 4 or 8.
* @returns If the kind is not for a table, an assertion is raised and 0 is
* returned.
*/
DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
{
switch (enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_ROOT_32BIT_PD:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
return 4;
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_PAE_PD:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
return 8;
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
/** @todo can we return 0? (nobody is calling this...) */
return 0;
default:
AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
}
}
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/**
* Scans one shadow page table for mappings of a physical page.
*
* @param pVM The VM handle.
* @param pPhysPage The guest page in question.
* @param iShw The shadow page table.
* @param cRefs The number of references made in that PT.
*/
static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
{
LogFlow(("pgmPoolTrackFlushGCPhysPT: HCPhys=%RHp iShw=%d cRefs=%d\n", pPhysPage->HCPhys, iShw, cRefs));
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
/*
* Assert sanity.
*/
Assert(cRefs == 1);
AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
/*
* Then, clear the actual mappings to the page in the shadow PT.
*/
switch (pPage->enmKind)
{
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
{
const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++)
if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
{
Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
pPT->a[i].u = 0;
cRefs--;
if (!cRefs)
return;
}
#if defined(DEBUG) && !defined(IN_RING0) ///@todo RTLogPrintf is missing in R0.
RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
{
RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
pPT->a[i].u = 0;
}
#endif
AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
break;
}
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
{
const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++)
if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
{
Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
pPT->a[i].u = 0;
cRefs--;
if (!cRefs)
return;
}
#if defined(DEBUG) && !defined(IN_RING0) ///@todo RTLogPrintf is missing in R0.
RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
{
RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
pPT->a[i].u = 0;
}
#endif
AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
break;
}
default:
AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
}
}
/**
* Scans one shadow page table for mappings of a physical page.
*
* @param pVM The VM handle.
* @param pPhysPage The guest page in question.
* @param iShw The shadow page table.
* @param cRefs The number of references made in that PT.
*/
void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); NOREF(pPool);
LogFlow(("pgmPoolTrackFlushGCPhysPT: HCPhys=%RHp iShw=%d cRefs=%d\n", pPhysPage->HCPhys, iShw, cRefs));
STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
pPhysPage->HCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; /** @todo PAGE FLAGS */
STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
}
/**
* Flushes a list of shadow page tables mapping the same physical page.
*
* @param pVM The VM handle.
* @param pPhysPage The guest page in question.
* @param iPhysExt The physical cross reference extent list to flush.
*/
void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
LogFlow(("pgmPoolTrackFlushGCPhysPTs: HCPhys=%RHp iPhysExt\n", pPhysPage->HCPhys, iPhysExt));
const uint16_t iPhysExtStart = iPhysExt;
PPGMPOOLPHYSEXT pPhysExt;
do
{
Assert(iPhysExt < pPool->cMaxPhysExts);
pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt];
for (unsigned i = 0; i < ELEMENTS(pPhysExt->aidx); i++)
if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
{
pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
}
/* next */
iPhysExt = pPhysExt->iNext;
} while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
/* insert the list into the free list and clear the ram range entry. */
pPhysExt->iNext = pPool->iPhysExtFreeHead;
pPool->iPhysExtFreeHead = iPhysExtStart;
pPhysPage->HCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; /** @todo PAGE FLAGS */
STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
}
#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
/**
* Scans all shadow page tables for mappings of a physical page.
*
* This may be slow, but it's most likely more efficient than cleaning
* out the entire page pool / cache.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if all references has been successfully cleared.
* @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
* a page pool cleaning.
*
* @param pVM The VM handle.
* @param pPhysPage The guest page in question.
*/
int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d HCPhys=%RHp\n",
pPool->cUsedPages, pPool->cPresent, pPhysPage->HCPhys));
#if 1
/*
* There is a limit to what makes sense.
*/
if (pPool->cPresent > 1024)
{
LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
return VINF_PGM_GCPHYS_ALIASED;
}
#endif
/*
* Iterate all the pages until we've encountered all that in use.
* This is simple but not quite optimal solution.
*/
const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
const uint32_t u32 = u64;
unsigned cLeft = pPool->cUsedPages;
unsigned iPage = pPool->cCurPages;
while (--iPage >= PGMPOOL_IDX_FIRST)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if (pPage->GCPhys != NIL_RTGCPHYS)
{
switch (pPage->enmKind)
{
/*
* We only care about shadow page tables.
*/
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
{
unsigned cPresent = pPage->cPresent;
PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++)
if (pPT->a[i].n.u1Present)
{
if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
{
//Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
pPT->a[i].u = 0;
}
if (!--cPresent)
break;
}
break;
}
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
{
unsigned cPresent = pPage->cPresent;
PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++)
if (pPT->a[i].n.u1Present)
{
if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
{
//Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
pPT->a[i].u = 0;
}
if (!--cPresent)
break;
}
break;
}
}
if (!--cLeft)
break;
}
}
pPhysPage->HCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; /** @todo PAGE FLAGS */
STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
return VINF_SUCCESS;
}
/**
* Clears the user entry in a user table.
*
* This is used to remove all references to a page when flushing it.
*/
static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
{
Assert(pUser->iUser != NIL_PGMPOOL_IDX);
Assert(pUser->iUser < pPool->cCurPages);
/*
* Map the user page.
*/
PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
union
{
uint64_t *pau64;
uint32_t *pau32;
} u;
u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pUserPage);
#ifdef VBOX_STRICT
/*
* Some sanity checks.
*/
switch (pUserPage->enmKind)
{
case PGMPOOLKIND_ROOT_32BIT_PD:
Assert(!(u.pau32[pUser->iUser] & PGM_PDFLAGS_MAPPING));
Assert(pUser->iUserTable < X86_PG_ENTRIES);
break;
case PGMPOOLKIND_ROOT_PAE_PD:
Assert(!(u.pau64[pUser->iUser] & PGM_PDFLAGS_MAPPING));
Assert(pUser->iUserTable < 2048 && pUser->iUser == PGMPOOL_IDX_PAE_PD);
break;
case PGMPOOLKIND_ROOT_PDPTR:
Assert(!(u.pau64[pUser->iUserTable] & PGM_PLXFLAGS_PERMANENT));
Assert(pUser->iUserTable < 4);
break;
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
Assert(pUser->iUserTable < X86_PG_PAE_ENTRIES);
break;
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
Assert(!(u.pau64[pUser->iUserTable] & PGM_PLXFLAGS_PERMANENT));
Assert(pUser->iUserTable < X86_PG_PAE_ENTRIES);
break;
default:
AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
break;
}
#endif /* VBOX_STRICT */
/*
* Clear the entry in the user page.
*/
switch (pUserPage->enmKind)
{
/* 32-bit entries */
case PGMPOOLKIND_ROOT_32BIT_PD:
u.pau32[pUser->iUserTable] = 0;
break;
/* 64-bit entries */
case PGMPOOLKIND_ROOT_PAE_PD:
case PGMPOOLKIND_ROOT_PDPTR:
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
case PGMPOOLKIND_ROOT_PML4:
u.pau64[pUser->iUserTable] = 0;
break;
default:
AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
}
}
/**
* Clears all users of a page.
*/
static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Free all the user records.
*/
PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers);
uint16_t i = pPage->iUserHead;
while (i != NIL_PGMPOOL_USER_INDEX)
{
/* Clear enter in user table. */
pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
/* Free it. */
const uint16_t iNext = paUsers[i].iNext;
paUsers[i].iUser = NIL_PGMPOOL_IDX;
paUsers[i].iNext = pPool->iUserFreeHead;
pPool->iUserFreeHead = i;
/* Next. */
i = iNext;
}
pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
}
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/**
* Allocates a new physical cross reference extent.
*
* @returns Pointer to the allocated extent on success. NULL if we're out of them.
* @param pVM The VM handle.
* @param piPhysExt Where to store the phys ext index.
*/
PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
uint16_t iPhysExt = pPool->iPhysExtFreeHead;
if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
{
STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
return NULL;
}
PPGMPOOLPHYSEXT pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt];
pPool->iPhysExtFreeHead = pPhysExt->iNext;
pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
*piPhysExt = iPhysExt;
return pPhysExt;
}
/**
* Frees a physical cross reference extent.
*
* @param pVM The VM handle.
* @param iPhysExt The extent to free.
*/
void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
Assert(iPhysExt < pPool->cMaxPhysExts);
PPGMPOOLPHYSEXT pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt];
for (unsigned i = 0; i < ELEMENTS(pPhysExt->aidx); i++)
pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
pPhysExt->iNext = pPool->iPhysExtFreeHead;
pPool->iPhysExtFreeHead = iPhysExt;
}
/**
* Frees a physical cross reference extent.
*
* @param pVM The VM handle.
* @param iPhysExt The extent to free.
*/
void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
const uint16_t iPhysExtStart = iPhysExt;
PPGMPOOLPHYSEXT pPhysExt;
do
{
Assert(iPhysExt < pPool->cMaxPhysExts);
pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt];
for (unsigned i = 0; i < ELEMENTS(pPhysExt->aidx); i++)
pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
/* next */
iPhysExt = pPhysExt->iNext;
} while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
pPhysExt->iNext = pPool->iPhysExtFreeHead;
pPool->iPhysExtFreeHead = iPhysExtStart;
}
/**
* Insert a reference into a list of physical cross reference extents.
*
* @returns The new ram range flags (top 16-bits).
*
* @param pVM The VM handle.
* @param iPhysExt The physical extent index of the list head.
* @param iShwPT The shadow page table index.
*
*/
static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts);
/* special common case. */
if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
{
paPhysExts[iPhysExt].aidx[2] = iShwPT;
STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
return iPhysExt | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
/* general treatment. */
const uint16_t iPhysExtStart = iPhysExt;
unsigned cMax = 15;
for (;;)
{
Assert(iPhysExt < pPool->cMaxPhysExts);
for (unsigned i = 0; i < ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
{
paPhysExts[iPhysExt].aidx[i] = iShwPT;
STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
return iPhysExtStart | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
if (!--cMax)
{
STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
return MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
}
/* add another extent to the list. */
PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
if (!pNew)
{
STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
return MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
pNew->iNext = iPhysExtStart;
pNew->aidx[0] = iShwPT;
LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
return iPhysExt | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
/**
* Add a reference to guest physical page where extents are in use.
*
* @returns The new ram range flags (top 16-bits).
*
* @param pVM The VM handle.
* @param u16 The ram range flags (top 16-bits).
* @param iShwPT The shadow page table index.
*/
uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
{
if ((u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) != MM_RAM_FLAGS_CREFS_PHYSEXT)
{
/*
* Convert to extent list.
*/
Assert((u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) == 1);
uint16_t iPhysExt;
PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
if (pPhysExt)
{
LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, u16 & MM_RAM_FLAGS_IDX_MASK, iShwPT));
STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
pPhysExt->aidx[0] = u16 & MM_RAM_FLAGS_IDX_MASK;
pPhysExt->aidx[1] = iShwPT;
u16 = iPhysExt | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
else
u16 = MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
}
else if (u16 != (MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT))))
{
/*
* Insert into the extent list.
*/
u16 = pgmPoolTrackPhysExtInsert(pVM, u16 & MM_RAM_FLAGS_IDX_MASK, iShwPT);
}
else
STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
return u16;
}
/**
* Clear references to guest physical memory.
*
* @param pPool The pool.
* @param pPage The page.
* @param pPhysPage Pointer to the aPages entry in the ram range.
*/
void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
{
const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
AssertFatalMsg(cRefs == MM_RAM_FLAGS_CREFS_PHYSEXT, ("cRefs=%d HCPhys=%RHp pPage=%p:{.idx=%d}\n", cRefs, pPhysPage->HCPhys, pPage, pPage->idx));
uint16_t iPhysExt = (pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK;
if (iPhysExt != MM_RAM_FLAGS_IDX_OVERFLOWED)
{
uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts);
do
{
Assert(iPhysExt < pPool->cMaxPhysExts);
/*
* Look for the shadow page and check if it's all freed.
*/
for (unsigned i = 0; i < ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
{
if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
{
paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
for (i = 0; i < ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
{
LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: HCPhys=%RX64 idx=%d\n", pPhysPage->HCPhys, pPage->idx));
return;
}
/* we can free the node. */
PVM pVM = pPool->CTXSUFF(pVM);
const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
&& iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
{
/* lonely node */
pgmPoolTrackPhysExtFree(pVM, iPhysExt);
LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: HCPhys=%RX64 idx=%d lonely\n", pPhysPage->HCPhys, pPage->idx));
pPhysPage->HCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; /** @todo PAGE FLAGS */
}
else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
{
/* head */
LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: HCPhys=%RX64 idx=%d head\n", pPhysPage->HCPhys, pPage->idx));
pPhysPage->HCPhys = (pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) /** @todo PAGE FLAGS */
| ((uint64_t)MM_RAM_FLAGS_CREFS_PHYSEXT << MM_RAM_FLAGS_CREFS_SHIFT)
| ((uint64_t)iPhysExtNext << MM_RAM_FLAGS_IDX_SHIFT);
pgmPoolTrackPhysExtFree(pVM, iPhysExt);
}
else
{
/* in list */
LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: HCPhys=%RX64 idx=%d\n", pPhysPage->HCPhys, pPage->idx));
paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
pgmPoolTrackPhysExtFree(pVM, iPhysExt);
}
iPhysExt = iPhysExtNext;
return;
}
}
/* next */
iPhysExtPrev = iPhysExt;
iPhysExt = paPhysExts[iPhysExt].iNext;
} while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
AssertFatalMsgFailed(("not-found! cRefs=%d HCPhys=%RHp pPage=%p:{.idx=%d}\n", cRefs, pPhysPage->HCPhys, pPage, pPage->idx));
}
else /* nothing to do */
LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: HCPhys=%RX64\n", pPhysPage->HCPhys));
}
/**
* Clear references to guest physical memory.
*
* This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
* is assumed to be correct, so the linear search can be skipped and we can assert
* at an earlier point.
*
* @param pPool The pool.
* @param pPage The page.
* @param HCPhys The host physical address corresponding to the guest page.
* @param GCPhys The guest physical address corresponding to HCPhys.
*/
static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
{
/*
* Walk range list.
*/
PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXALLSUFF(pRamRanges);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
/* does it match? */
const unsigned iPage = off >> PAGE_SHIFT;
Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
{
pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
return;
}
break;
}
pRam = CTXALLSUFF(pRam->pNext);
}
AssertFatalMsgFailed(("HCPhys=%VHp GCPhys=%VGp\n", HCPhys, GCPhys));
}
/**
* Clear references to guest physical memory.
*
* @param pPool The pool.
* @param pPage The page.
* @param HCPhys The host physical address corresponding to the guest page.
* @param GCPhysHint The guest physical address which may corresponding to HCPhys.
*/
static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
{
/*
* Walk range list.
*/
PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXALLSUFF(pRamRanges);
while (pRam)
{
RTGCPHYS off = GCPhysHint - pRam->GCPhys;
if (off < pRam->cb)
{
/* does it match? */
const unsigned iPage = off >> PAGE_SHIFT;
Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
{
pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
return;
}
break;
}
pRam = CTXALLSUFF(pRam->pNext);
}
/*
* Damn, the hint didn't work. We'll have to do an expensive linear search.
*/
STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXALLSUFF(pRamRanges);
while (pRam)
{
unsigned iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
{
if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
{
Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%VHp GCPhysHint=%VGp GCPhysReal=%VGp\n",
HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
return;
}
}
pRam = CTXALLSUFF(pRam->pNext);
}
AssertFatalMsgFailed(("HCPhys=%VHp GCPhysHint=%VGp\n", HCPhys, GCPhysHint));
}
/**
* Clear references to guest physical memory in a 32-bit / 32-bit page table.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPT The shadow page table (mapping of the page).
* @param pGstPT The guest page table.
*/
DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
{
for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pShwPT->a); i++)
if (pShwPT->a[i].n.u1Present)
{
Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
if (!--pPage->cPresent)
break;
}
}
/**
* Clear references to guest physical memory in a PAE / 32-bit page table.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPT The shadow page table (mapping of the page).
* @param pGstPT The guest page table (just a half one).
*/
DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
{
for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++)
if (pShwPT->a[i].n.u1Present)
{
Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX32 hint=%RX32\n",
i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
}
}
/**
* Clear references to guest physical memory in a PAE / PAE page table.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPT The shadow page table (mapping of the page).
* @param pGstPT The guest page table.
*/
DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
{
for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++)
if (pShwPT->a[i].n.u1Present)
{
Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
}
}
/**
* Clear references to guest physical memory in a 32-bit / 4MB page table.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPT The shadow page table (mapping of the page).
*/
DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
{
RTGCPHYS GCPhys = pPage->GCPhys;
for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
if (pShwPT->a[i].n.u1Present)
{
Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
}
}
/**
* Clear references to guest physical memory in a PAE / 2/4MB page table.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPT The shadow page table (mapping of the page).
*/
DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
{
RTGCPHYS GCPhys = pPage->GCPhys;
for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
if (pShwPT->a[i].n.u1Present)
{
Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX32 hint=%RX32\n",
i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
}
}
#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
/**
* Clear references to shadowed pages in a PAE page directory.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPD The shadow page directory (mapping of the page).
*/
DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
{
for (unsigned i = 0; i < ELEMENTS(pShwPD->a); i++)
{
if (pShwPD->a[i].n.u1Present)
{
PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
if (pSubPage)
pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
else
AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
/** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
}
}
}
/**
* Clear references to shadowed pages in a 64-bit page directory pointer table.
*
* @param pPool The pool.
* @param pPage The page.
* @param pShwPdPtr The shadow page directory pointer table (mapping of the page).
*/
DECLINLINE(void) pgmPoolTrackDerefPDPTR64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPTR pShwPdPtr)
{
for (unsigned i = 0; i < ELEMENTS(pShwPdPtr->a); i++)
{
if (pShwPdPtr->a[i].n.u1Present)
{
PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPdPtr->a[i].u & X86_PDPE_PG_MASK);
if (pSubPage)
pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
else
AssertFatalMsgFailed(("%RX64\n", pShwPdPtr->a[i].u & X86_PDPE_PG_MASK));
/** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
}
}
}
/**
* Clears all references made by this page.
*
* This includes other shadow pages and GC physical addresses.
*
* @param pPool The pool.
* @param pPage The page.
*/
static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Map the shadow page and take action according to the page kind.
*/
void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage);
switch (pPage->enmKind)
{
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
{
STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
void *pvGst;
int rc = PGM_GCPHYS_2_PTR(pPool->CTXSUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
break;
}
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
{
STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
void *pvGst;
int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTXSUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
break;
}
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
{
STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
void *pvGst;
int rc = PGM_GCPHYS_2_PTR(pPool->CTXSUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
break;
}
case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
{
STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
break;
}
case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 4 MB page */
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
{
STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
break;
}
#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
break;
#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD:
case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
break;
case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR:
pgmPoolTrackDerefPDPTR64Bit(pPool, pPage, (PX86PDPTR)pvShw);
break;
default:
AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
}
/* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
STAM_PROFILE_START(&pPool->StatZeroPage, z);
ASMMemZeroPage(pvShw);
STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
pPage->fZeroed = true;
}
#endif /* PGMPOOL_WITH_USER_TRACKING */
/**
* Flushes all the special root pages as part of a pgmPoolFlushAllInt operation.
*
* @param pPool The pool.
*/
static void pgmPoolFlushAllSpecialRoots(PPGMPOOL pPool)
{
/*
* These special pages are all mapped into the indexes 1..PGMPOOL_IDX_FIRST.
*/
Assert(NIL_PGMPOOL_IDX == 0);
for (unsigned i = 1; i < PGMPOOL_IDX_FIRST; i++)
{
/*
* Get the page address.
*/
PPGMPOOLPAGE pPage = &pPool->aPages[i];
union
{
uint64_t *pau64;
uint32_t *pau32;
} u;
u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage);
/*
* Mark stuff not present.
*/
switch (pPage->enmKind)
{
case PGMPOOLKIND_ROOT_32BIT_PD:
for (unsigned iPage = 0; iPage < X86_PG_ENTRIES; iPage++)
if ((u.pau32[iPage] & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == X86_PDE_P)
u.pau32[iPage] = 0;
break;
case PGMPOOLKIND_ROOT_PAE_PD:
for (unsigned iPage = 0; iPage < X86_PG_PAE_ENTRIES * X86_PG_PAE_PDPE_ENTRIES; iPage++)
if ((u.pau64[iPage] & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == X86_PDE_P)
u.pau64[iPage] = 0;
break;
case PGMPOOLKIND_ROOT_PML4:
for (unsigned iPage = 0; iPage < X86_PG_PAE_ENTRIES; iPage++)
if ((u.pau64[iPage] & (PGM_PLXFLAGS_PERMANENT | X86_PML4E_P)) == X86_PML4E_P)
u.pau64[iPage] = 0;
break;
case PGMPOOLKIND_ROOT_PDPTR:
/* Not root of shadowed pages currently, ignore it. */
break;
}
}
/*
* Paranoia (to be removed), flag a global CR3 sync.
*/
VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3);
}
/**
* Flushes the entire cache.
*
* It will assert a global CR3 flush (FF) and assumes the caller is aware of this
* and execute this CR3 flush.
*
* @param pPool The pool.
*/
static void pgmPoolFlushAllInt(PPGMPOOL pPool)
{
STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
LogFlow(("pgmPoolFlushAllInt:\n"));
/*
* If there are no pages in the pool, there is nothing to do.
*/
if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
{
STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
return;
}
/*
* Nuke the free list and reinsert all pages into it.
*/
for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
#ifdef IN_RING3
Assert(pPage->Core.Key == MMPage2Phys(pPool->pVMHC, pPage->pvPageHC));
#endif
#ifdef PGMPOOL_WITH_MONITORING
if (pPage->fMonitored)
pgmPoolMonitorFlush(pPool, pPage);
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
#endif
pPage->GCPhys = NIL_RTGCPHYS;
pPage->enmKind = PGMPOOLKIND_FREE;
Assert(pPage->idx == i);
pPage->iNext = i + 1;
pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
pPage->fSeenNonGlobal = false;
pPage->fMonitored= false;
pPage->fCached = false;
pPage->fReusedFlushPending = false;
pPage->fCR3Mix = false;
#ifdef PGMPOOL_WITH_USER_TRACKING
pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
#endif
#ifdef PGMPOOL_WITH_CACHE
pPage->iAgeNext = NIL_PGMPOOL_IDX;
pPage->iAgePrev = NIL_PGMPOOL_IDX;
#endif
}
pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
pPool->iFreeHead = PGMPOOL_IDX_FIRST;
pPool->cUsedPages = 0;
#ifdef PGMPOOL_WITH_USER_TRACKING
/*
* Zap and reinitialize the user records.
*/
pPool->cPresent = 0;
pPool->iUserFreeHead = 0;
PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers);
const unsigned cMaxUsers = pPool->cMaxUsers;
for (unsigned i = 0; i < cMaxUsers; i++)
{
paUsers[i].iNext = i + 1;
paUsers[i].iUser = NIL_PGMPOOL_IDX;
paUsers[i].iUserTable = 0xfffe;
}
paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
#endif
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/*
* Clear all the GCPhys links and rebuild the phys ext free list.
*/
for (PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXALLSUFF(pRamRanges);
pRam;
pRam = CTXALLSUFF(pRam->pNext))
{
unsigned iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
pRam->aPages[iPage].HCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; /** @todo PAGE FLAGS */
}
pPool->iPhysExtFreeHead = 0;
PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts);
const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
for (unsigned i = 0; i < cMaxPhysExts; i++)
{
paPhysExts[i].iNext = i + 1;
paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
}
paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
#endif
#ifdef PGMPOOL_WITH_MONITORING
/*
* Just zap the modified list.
*/
pPool->cModifiedPages = 0;
pPool->iModifiedHead = NIL_PGMPOOL_IDX;
#endif
#ifdef PGMPOOL_WITH_CACHE
/*
* Clear the GCPhys hash and the age list.
*/
for (unsigned i = 0; i < ELEMENTS(pPool->aiHash); i++)
pPool->aiHash[i] = NIL_PGMPOOL_IDX;
pPool->iAgeHead = NIL_PGMPOOL_IDX;
pPool->iAgeTail = NIL_PGMPOOL_IDX;
#endif
/*
* Flush all the special root pages.
* Reinsert active pages into the hash and ensure monitoring chains are correct.
*/
pgmPoolFlushAllSpecialRoots(pPool);
for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
pPage->iNext = NIL_PGMPOOL_IDX;
#ifdef PGMPOOL_WITH_MONITORING
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
/* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
if (pPage->fMonitored)
{
PVM pVM = pPool->CTXSUFF(pVM);
int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
pPool->pfnAccessHandlerGC, MMHyperCCToGC(pVM, pPage),
pPool->pszAccessHandler);
AssertFatalRCSuccess(rc);
# ifdef PGMPOOL_WITH_CACHE
pgmPoolHashInsert(pPool, pPage);
# endif
}
#endif
#ifdef PGMPOOL_WITH_USER_TRACKING
Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
#endif
#ifdef PGMPOOL_WITH_CACHE
Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
#endif
}
STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
}
/**
* Flushes a pool page.
*
* This moves the page to the free list after removing all user references to it.
* In GC this will cause a CR3 reload if the page is traced back to an active root page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_POOL_CLEARED if the deregistration of the physical handler will cause a light weight pool flush.
* @param pPool The pool.
* @param HCPhys The HC physical address of the shadow page.
*/
int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
int rc = VINF_SUCCESS;
STAM_PROFILE_START(&pPool->StatFlushPage, f);
LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%VHp, .idx=%d, .enmKind=%d, .GCPhys=%VGp}\n",
pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, pPage->GCPhys));
/*
* Quietly reject any attempts at flushing any of the special root pages.
*/
if (pPage->idx < PGMPOOL_IDX_FIRST)
{
Log(("pgmPoolFlushPage: specaial root page, rejected. enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
return VINF_SUCCESS;
}
/*
* Mark the page as being in need of a ASMMemZeroPage().
*/
pPage->fZeroed = false;
#ifdef PGMPOOL_WITH_USER_TRACKING
/*
* Clear the page.
*/
pgmPoolTrackClearPageUsers(pPool, pPage);
STAM_PROFILE_START(&pPool->StatTrackDeref,a);
pgmPoolTrackDeref(pPool, pPage);
STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
#endif
#ifdef PGMPOOL_WITH_CACHE
/*
* Flush it from the cache.
*/
pgmPoolCacheFlushPage(pPool, pPage);
#endif /* PGMPOOL_WITH_CACHE */
#ifdef PGMPOOL_WITH_MONITORING
/*
* Deregistering the monitoring.
*/
if (pPage->fMonitored)
rc = pgmPoolMonitorFlush(pPool, pPage);
#endif
/*
* Free the page.
*/
Assert(pPage->iNext == NIL_PGMPOOL_IDX);
pPage->iNext = pPool->iFreeHead;
pPool->iFreeHead = pPage->idx;
pPage->enmKind = PGMPOOLKIND_FREE;
pPage->GCPhys = NIL_RTGCPHYS;
pPage->fReusedFlushPending = false;
pPool->cUsedPages--;
STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
return rc;
}
/**
* Frees a usage of a pool page.
*
* The caller is responsible to updating the user table so that it no longer
* references the shadow page.
*
* @param pPool The pool.
* @param HCPhys The HC physical address of the shadow page.
* @param iUser The shadow page pool index of the user table.
* @param iUserTable The index into the user table (shadowed).
*/
void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable)
{
STAM_PROFILE_START(&pPool->StatFree, a);
LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%VHp, .idx=%d, enmKind=%d} iUser=%#x iUserTable=%#x\n",
pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, iUser, iUserTable));
Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
#ifdef PGMPOOL_WITH_USER_TRACKING
pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
#endif
#ifdef PGMPOOL_WITH_CACHE
if (!pPage->fCached)
#endif
pgmPoolFlushPage(pPool, pPage); /* ASSUMES that VERR_PGM_POOL_CLEARED can be ignored here. */
STAM_PROFILE_STOP(&pPool->StatFree, a);
}
/**
* Makes one or more free page free.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
*
* @param pPool The pool.
* @param iUser The user of the page.
*/
static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, uint16_t iUser)
{
LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
/*
* If the pool isn't full grown yet, expand it.
*/
if (pPool->cCurPages < pPool->cMaxPages)
{
STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
#ifdef IN_RING3
int rc = PGMR3PoolGrow(pPool->pVMHC);
#else
int rc = CTXALLMID(VMM, CallHost)(pPool->CTXSUFF(pVM), VMMCALLHOST_PGM_POOL_GROW, 0);
#endif
if (VBOX_FAILURE(rc))
return rc;
STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
return VINF_SUCCESS;
}
#ifdef PGMPOOL_WITH_CACHE
/*
* Free one cached page.
*/
return pgmPoolCacheFreeOne(pPool, iUser);
#else
/*
* Flush the pool.
* If we have tracking enabled, it should be possible to come up with
* a cheap replacement strategy...
*/
pgmPoolFlushAllInt(pPool);
return VERR_PGM_POOL_FLUSHED;
#endif
}
/**
* Allocates a page from the pool.
*
* This page may actually be a cached page and not in need of any processing
* on the callers part.
*
* @returns VBox status code.
* @retval VINF_SUCCESS if a NEW page was allocated.
* @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
* @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
* @param pVM The VM handle.
* @param GCPhys The GC physical address of the page we're gonna shadow.
* For 4MB and 2MB PD entries, it's the first address the
* shadow PT is covering.
* @param enmKind The kind of mapping.
* @param iUser The shadow page pool index of the user table.
* @param iUserTable The index into the user table (shadowed).
* @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
*/
int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage)
{
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
LogFlow(("pgmPoolAlloc: GCPhys=%VGp enmKind=%d iUser=%#x iUserTable=%#x\n", GCPhys, enmKind, iUser, iUserTable));
*ppPage = NULL;
#ifdef PGMPOOL_WITH_CACHE
if (pPool->fCacheEnabled)
{
int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, iUser, iUserTable, ppPage);
if (VBOX_SUCCESS(rc2))
{
STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
LogFlow(("pgmPoolAlloc: returns %Vrc *ppPage=%p:{.Key=%VHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
return rc2;
}
}
#endif
/*
* Allocate a new one.
*/
int rc = VINF_SUCCESS;
uint16_t iNew = pPool->iFreeHead;
if (iNew == NIL_PGMPOOL_IDX)
{
rc = pgmPoolMakeMoreFreePages(pPool, iUser);
if (VBOX_FAILURE(rc))
{
if (rc != VERR_PGM_POOL_CLEARED)
{
Log(("pgmPoolAlloc: returns %Vrc (Free)\n", rc));
STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
return rc;
}
rc = VERR_PGM_POOL_FLUSHED;
}
iNew = pPool->iFreeHead;
AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
}
/* unlink the free head */
PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
pPool->iFreeHead = pPage->iNext;
pPage->iNext = NIL_PGMPOOL_IDX;
/*
* Initialize it.
*/
pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
pPage->enmKind = enmKind;
pPage->GCPhys = GCPhys;
pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
pPage->fMonitored = false;
pPage->fCached = false;
pPage->fReusedFlushPending = false;
pPage->fCR3Mix = false;
#ifdef PGMPOOL_WITH_MONITORING
pPage->cModifications = 0;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
#endif
#ifdef PGMPOOL_WITH_USER_TRACKING
pPage->cPresent = 0;
pPage->iFirstPresent = ~0;
/*
* Insert into the tracking and cache. If this fails, free the page.
*/
int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
if (VBOX_FAILURE(rc3))
{
if (rc3 != VERR_PGM_POOL_CLEARED)
{
pPool->cUsedPages--;
pPage->enmKind = PGMPOOLKIND_FREE;
pPage->GCPhys = NIL_RTGCPHYS;
pPage->iNext = pPool->iFreeHead;
pPool->iFreeHead = pPage->idx;
STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
Log(("pgmPoolAlloc: returns %Vrc (Insert)\n", rc3));
return rc3;
}
rc = VERR_PGM_POOL_FLUSHED;
}
#endif /* PGMPOOL_WITH_USER_TRACKING */
/*
* Commit the allocation, clear the page and return.
*/
#ifdef VBOX_WITH_STATISTICS
if (pPool->cUsedPages > pPool->cUsedPagesHigh)
pPool->cUsedPagesHigh = pPool->cUsedPages;
#endif
if (!pPage->fZeroed)
{
STAM_PROFILE_START(&pPool->StatZeroPage, z);
void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
ASMMemZeroPage(pv);
STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
}
*ppPage = pPage;
LogFlow(("pgmPoolAlloc: returns %Vrc *ppPage=%p:{.Key=%VHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
return rc;
}
/**
* Frees a usage of a pool page.
*
* @param pVM The VM handle.
* @param HCPhys The HC physical address of the shadow page.
* @param iUser The shadow page pool index of the user table.
* @param iUserTable The index into the user table (shadowed).
*/
void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint16_t iUserTable)
{
LogFlow(("pgmPoolFree: HCPhys=%VHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
}
/**
* Gets a in-use page in the pool by it's physical address.
*
* @returns Pointer to the page.
* @param pVM The VM handle.
* @param HCPhys The HC physical address of the shadow page.
* @remark This function will NEVER return NULL. It will assert if HCPhys is invalid.
*/
PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys)
{
/** @todo profile this! */
PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
PPGMPOOLPAGE pPage = pgmPoolGetPage(pPool, HCPhys);
Log3(("pgmPoolGetPageByHCPhys: HCPhys=%VHp -> %p:{.idx=%d .GCPhys=%VGp .enmKind=%d}\n",
HCPhys, pPage, pPage->idx, pPage->GCPhys, pPage->enmKind));
return pPage;
}
/**
* Flushes the entire cache.
*
* It will assert a global CR3 flush (FF) and assumes the caller is aware of this
* and execute this CR3 flush.
*
* @param pPool The pool.
*/
void pgmPoolFlushAll(PVM pVM)
{
LogFlow(("pgmPoolFlushAll:\n"));
pgmPoolFlushAllInt(pVM->pgm.s.CTXSUFF(pPool));
}