PGMAllPhys.cpp revision b2fae6494c13147d0f29944b9bf048705a32750a
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, Physical Memory Addressing.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_PHYS
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/trpm.h>
#include <VBox/vmm/vmm.h>
#include <VBox/vmm/iom.h>
#include <VBox/vmm/em.h>
#ifdef VBOX_WITH_REM
# include <VBox/vmm/rem.h>
#endif
#include "PGMInternal.h"
#include <VBox/vmm/vm.h>
#include "PGMInline.h"
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/asm-amd64-x86.h>
#include <VBox/log.h>
#ifdef IN_RING3
# include <iprt/thread.h>
#endif
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** Enable the physical TLB. */
#define PGM_WITH_PHYS_TLB
#ifndef IN_RING3
/**
* \#PF Handler callback for physical memory accesses without a RC/R0 handler.
* This simply pushes everything to the HC handler.
*
* @returns VBox status code (appropriate for trap handling and GC return).
* @param pVM Pointer to the VM.
* @param uErrorCode CPU Error code.
* @param pRegFrame Trap register frame.
* @param pvFault The fault address (cr2).
* @param GCPhysFault The GC physical address corresponding to pvFault.
* @param pvUser User argument.
*/
VMMDECL(int) pgmPhysHandlerRedirectToHC(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
{
NOREF(pVM); NOREF(uErrorCode); NOREF(pRegFrame); NOREF(pvFault); NOREF(GCPhysFault); NOREF(pvUser);
return (uErrorCode & X86_TRAP_PF_RW) ? VINF_IOM_R3_MMIO_WRITE : VINF_IOM_R3_MMIO_READ;
}
/**
* \#PF Handler callback for Guest ROM range write access.
* We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
*
* @returns VBox status code (appropriate for trap handling and GC return).
* @param pVM Pointer to the VM.
* @param uErrorCode CPU Error code.
* @param pRegFrame Trap register frame.
* @param pvFault The fault address (cr2).
* @param GCPhysFault The GC physical address corresponding to pvFault.
* @param pvUser User argument. Pointer to the ROM range structure.
*/
VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
{
int rc;
PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
PVMCPU pVCpu = VMMGetCpu(pVM);
NOREF(uErrorCode); NOREF(pvFault);
Assert(uErrorCode & X86_TRAP_PF_RW); /* This shall not be used for read access! */
Assert(iPage < (pRom->cb >> PAGE_SHIFT));
switch (pRom->aPages[iPage].enmProt)
{
case PGMROMPROT_READ_ROM_WRITE_IGNORE:
case PGMROMPROT_READ_RAM_WRITE_IGNORE:
{
/*
* If it's a simple instruction which doesn't change the cpu state
* we will simply skip it. Otherwise we'll have to defer it to REM.
*/
uint32_t cbOp;
PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
if ( RT_SUCCESS(rc)
&& pDis->uCpuMode == DISCPUMODE_32BIT /** @todo why does this matter? */
&& !(pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP | DISPREFIX_SEG)))
{
switch (pDis->bOpCode)
{
/** @todo Find other instructions we can safely skip, possibly
* adding this kind of detection to DIS or EM. */
case OP_MOV:
pRegFrame->rip += cbOp;
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteHandled);
return VINF_SUCCESS;
}
}
break;
}
case PGMROMPROT_READ_RAM_WRITE_RAM:
pRom->aPages[iPage].LiveSave.fWrittenTo = true;
rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
AssertRC(rc);
break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
case PGMROMPROT_READ_ROM_WRITE_RAM:
/* Handle it in ring-3 because it's *way* easier there. */
pRom->aPages[iPage].LiveSave.fWrittenTo = true;
break;
default:
AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
VERR_IPE_NOT_REACHED_DEFAULT_CASE);
}
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteUnhandled);
return VINF_EM_RAW_EMULATE_INSTR;
}
#endif /* IN_RING3 */
/**
* Invalidates the RAM range TLBs.
*
* @param pVM Pointer to the VM.
*/
void pgmPhysInvalidRamRangeTlbs(PVM pVM)
{
pgmLock(pVM);
for (uint32_t i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
{
pVM->pgm.s.apRamRangesTlbR3[i] = NIL_RTR3PTR;
pVM->pgm.s.apRamRangesTlbR0[i] = NIL_RTR0PTR;
pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
}
pgmUnlock(pVM);
}
/**
* Tests if a value of type RTGCPHYS is negative if the type had been signed
* instead of unsigned.
*
* @returns @c true if negative, @c false if positive or zero.
* @param a_GCPhys The value to test.
* @todo Move me to iprt/types.h.
*/
#define RTGCPHYS_IS_NEGATIVE(a_GCPhys) ((a_GCPhys) & ((RTGCPHYS)1 << (sizeof(RTGCPHYS)*8 - 1)))
/**
* Slow worker for pgmPhysGetRange.
*
* @copydoc pgmPhysGetRange
*/
PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
return pRam;
}
if (RTGCPHYS_IS_NEGATIVE(off))
pRam = pRam->CTX_SUFF(pLeft);
else
pRam = pRam->CTX_SUFF(pRight);
}
return NULL;
}
/**
* Slow worker for pgmPhysGetRangeAtOrAbove.
*
* @copydoc pgmPhysGetRangeAtOrAbove
*/
PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
PPGMRAMRANGE pLastLeft = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
return pRam;
}
if (RTGCPHYS_IS_NEGATIVE(off))
{
pLastLeft = pRam;
pRam = pRam->CTX_SUFF(pLeft);
}
else
pRam = pRam->CTX_SUFF(pRight);
}
return pLastLeft;
}
/**
* Slow worker for pgmPhysGetPage.
*
* @copydoc pgmPhysGetPage
*/
PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
return &pRam->aPages[off >> PAGE_SHIFT];
}
if (RTGCPHYS_IS_NEGATIVE(off))
pRam = pRam->CTX_SUFF(pLeft);
else
pRam = pRam->CTX_SUFF(pRight);
}
return NULL;
}
/**
* Slow worker for pgmPhysGetPageEx.
*
* @copydoc pgmPhysGetPageEx
*/
int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
*ppPage = &pRam->aPages[off >> PAGE_SHIFT];
return VINF_SUCCESS;
}
if (RTGCPHYS_IS_NEGATIVE(off))
pRam = pRam->CTX_SUFF(pLeft);
else
pRam = pRam->CTX_SUFF(pRight);
}
*ppPage = NULL;
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Slow worker for pgmPhysGetPageAndRangeEx.
*
* @copydoc pgmPhysGetPageAndRangeEx
*/
int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
*ppRam = pRam;
*ppPage = &pRam->aPages[off >> PAGE_SHIFT];
return VINF_SUCCESS;
}
if (RTGCPHYS_IS_NEGATIVE(off))
pRam = pRam->CTX_SUFF(pLeft);
else
pRam = pRam->CTX_SUFF(pRight);
}
*ppRam = NULL;
*ppPage = NULL;
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Checks if Address Gate 20 is enabled or not.
*
* @returns true if enabled.
* @returns false if disabled.
* @param pVCpu Pointer to the VMCPU.
*/
VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu)
{
LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled));
return pVCpu->pgm.s.fA20Enabled;
}
/**
* Validates a GC physical address.
*
* @returns true if valid.
* @returns false if invalid.
* @param pVM Pointer to the VM.
* @param GCPhys The physical address to validate.
*/
VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
{
PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
return pPage != NULL;
}
/**
* Checks if a GC physical address is a normal page,
* i.e. not ROM, MMIO or reserved.
*
* @returns true if normal.
* @returns false if invalid, ROM, MMIO or reserved page.
* @param pVM Pointer to the VM.
* @param GCPhys The physical address to check.
*/
VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
{
PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
return pPage
&& PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
}
/**
* Converts a GC physical address to a HC physical address.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
*
* @param pVM Pointer to the VM.
* @param GCPhys The GC physical address to convert.
* @param pHCPhys Where to store the HC physical address on success.
*/
VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
{
pgmLock(pVM);
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
if (RT_SUCCESS(rc))
*pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
pgmUnlock(pVM);
return rc;
}
/**
* Invalidates all page mapping TLBs.
*
* @param pVM Pointer to the VM.
*/
void pgmPhysInvalidatePageMapTLB(PVM pVM)
{
pgmLock(pVM);
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushes);
/* Clear the shared R0/R3 TLB completely. */
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
{
pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
}
/** @todo clear the RC TLB whenever we add it. */
pgmUnlock(pVM);
}
/**
* Invalidates a page mapping TLB entry
*
* @param pVM Pointer to the VM.
* @param GCPhys GCPhys entry to flush
*/
void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys)
{
PGM_LOCK_ASSERT_OWNER(pVM);
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushEntry);
#ifdef IN_RC
unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys);
pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS;
pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0;
pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0;
pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0;
#else
/* Clear the shared R0/R3 TLB entry. */
PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
pTlbe->GCPhys = NIL_RTGCPHYS;
pTlbe->pPage = 0;
pTlbe->pMap = 0;
pTlbe->pv = 0;
#endif
/** @todo clear the RC TLB whenever we add it. */
}
/**
* Makes sure that there is at least one handy page ready for use.
*
* This will also take the appropriate actions when reaching water-marks.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_EM_NO_MEMORY if we're really out of memory.
*
* @param pVM Pointer to the VM.
*
* @remarks Must be called from within the PGM critical section. It may
* nip back to ring-3/0 in some cases.
*/
static int pgmPhysEnsureHandyPage(PVM pVM)
{
AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
/*
* Do we need to do anything special?
*/
#ifdef IN_RING3
if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC))
#else
if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3))
#endif
{
/*
* Allocate pages only if we're out of them, or in ring-3, almost out.
*/
#ifdef IN_RING3
if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC)
#else
if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC)
#endif
{
Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n",
pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY) ));
#ifdef IN_RING3
int rc = PGMR3PhysAllocateHandyPages(pVM);
#else
int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0);
#endif
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
if (RT_FAILURE(rc))
return rc;
AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
if (!pVM->pgm.s.cHandyPages)
{
LogRel(("PGM: no more handy pages!\n"));
return VERR_EM_NO_MEMORY;
}
Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY));
#ifdef IN_RING3
# ifdef VBOX_WITH_REM
REMR3NotifyFF(pVM);
# endif
#else
VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */
#endif
}
AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
&& pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
("%u\n", pVM->pgm.s.cHandyPages),
VERR_PGM_HANDY_PAGE_IPE);
}
else
{
if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF)
VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
#ifndef IN_RING3
if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3)
{
Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
}
#endif
}
}
return VINF_SUCCESS;
}
/**
* Replace a zero or shared page with new page that we can write to.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success, pPage is modified.
* @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
* @retval VERR_EM_NO_MEMORY if we're totally out of memory.
*
* @todo Propagate VERR_EM_NO_MEMORY up the call tree.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure. This will
* be modified on success.
* @param GCPhys The address of the page.
*
* @remarks Must be called from within the PGM critical section. It may
* nip back to ring-3/0 in some cases.
*
* @remarks This function shouldn't really fail, however if it does
* it probably means we've screwed up the size of handy pages and/or
* the low-water mark. Or, that some device I/O is causing a lot of
* pages to be allocated while while the host is in a low-memory
* condition. This latter should be handled elsewhere and in a more
* controlled manner, it's on the @bugref{3170} todo list...
*/
int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
/*
* Prereqs.
*/
PGM_LOCK_ASSERT_OWNER(pVM);
AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
# ifdef PGM_WITH_LARGE_PAGES
/*
* Try allocate a large page if applicable.
*/
if ( PGMIsUsingLargePages(pVM)
&& PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
{
RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
PPGMPAGE pBasePage;
int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pBasePage);
AssertRCReturn(rc, rc); /* paranoia; can't happen. */
if (PGM_PAGE_GET_PDE_TYPE(pBasePage) == PGM_PAGE_PDE_TYPE_DONTCARE)
{
rc = pgmPhysAllocLargePage(pVM, GCPhys);
if (rc == VINF_SUCCESS)
return rc;
}
/* Mark the base as type page table, so we don't check over and over again. */
PGM_PAGE_SET_PDE_TYPE(pVM, pBasePage, PGM_PAGE_PDE_TYPE_PT);
/* fall back to 4KB pages. */
}
# endif
/*
* Flush any shadow page table mappings of the page.
* When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
*/
bool fFlushTLBs = false;
int rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhys, pPage, true /*fFlushTLBs*/, &fFlushTLBs);
AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS);
/*
* Ensure that we've got a page handy, take it and use it.
*/
int rc2 = pgmPhysEnsureHandyPage(pVM);
if (RT_FAILURE(rc2))
{
if (fFlushTLBs)
PGM_INVL_ALL_VCPU_TLBS(pVM);
Assert(rc2 == VERR_EM_NO_MEMORY);
return rc2;
}
/* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
PGM_LOCK_ASSERT_OWNER(pVM);
AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
/*
* There are one or two action to be taken the next time we allocate handy pages:
* - Tell the GMM (global memory manager) what the page is being used for.
* (Speeds up replacement operations - sharing and defragmenting.)
* - If the current backing is shared, it must be freed.
*/
const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
void const *pvSharedPage = NULL;
if (PGM_PAGE_IS_SHARED(pPage))
{
/* Mark this shared page for freeing/dereferencing. */
pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
Log(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageReplaceShared));
pVM->pgm.s.cSharedPages--;
/* Grab the address of the page so we can make a copy later on. (safe) */
rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvSharedPage);
AssertRC(rc);
}
else
{
Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
pVM->pgm.s.cZeroPages--;
}
/*
* Do the PGMPAGE modifications.
*/
pVM->pgm.s.cPrivatePages++;
PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
PGM_PAGE_SET_PAGEID(pVM, pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PT);
pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
/* Copy the shared page contents to the replacement page. */
if (pvSharedPage)
{
/* Get the virtual address of the new page. */
PGMPAGEMAPLOCK PgMpLck;
void *pvNewPage;
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvNewPage, &PgMpLck); AssertRC(rc);
if (RT_SUCCESS(rc))
{
memcpy(pvNewPage, pvSharedPage, PAGE_SIZE); /** @todo todo write ASMMemCopyPage */
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
}
if ( fFlushTLBs
&& rc != VINF_PGM_GCPHYS_ALIASED)
PGM_INVL_ALL_VCPU_TLBS(pVM);
return rc;
}
#ifdef PGM_WITH_LARGE_PAGES
/**
* Replace a 2 MB range of zero pages with new pages that we can write to.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success, pPage is modified.
* @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
* @retval VERR_EM_NO_MEMORY if we're totally out of memory.
*
* @todo Propagate VERR_EM_NO_MEMORY up the call tree.
*
* @param pVM Pointer to the VM.
* @param GCPhys The address of the page.
*
* @remarks Must be called from within the PGM critical section. It may
* nip back to ring-3/0 in some cases.
*/
int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys)
{
RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
LogFlow(("pgmPhysAllocLargePage: %RGp base %RGp\n", GCPhys, GCPhysBase));
/*
* Prereqs.
*/
PGM_LOCK_ASSERT_OWNER(pVM);
Assert(PGMIsUsingLargePages(pVM));
PPGMPAGE pFirstPage;
int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pFirstPage);
if ( RT_SUCCESS(rc)
&& PGM_PAGE_GET_TYPE(pFirstPage) == PGMPAGETYPE_RAM)
{
unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pFirstPage);
/* Don't call this function for already allocated pages. */
Assert(uPDEType != PGM_PAGE_PDE_TYPE_PDE);
if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE
&& PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ZERO)
{
/* Lazy approach: check all pages in the 2 MB range.
* The whole range must be ram and unallocated. */
GCPhys = GCPhysBase;
unsigned iPage;
for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++)
{
PPGMPAGE pSubPage;
rc = pgmPhysGetPageEx(pVM, GCPhys, &pSubPage);
if ( RT_FAILURE(rc)
|| PGM_PAGE_GET_TYPE(pSubPage) != PGMPAGETYPE_RAM /* Anything other than ram implies monitoring. */
|| PGM_PAGE_GET_STATE(pSubPage) != PGM_PAGE_STATE_ZERO) /* Allocated, monitored or shared means we can't use a large page here */
{
LogFlow(("Found page %RGp with wrong attributes (type=%d; state=%d); cancel check. rc=%d\n", GCPhys, PGM_PAGE_GET_TYPE(pSubPage), PGM_PAGE_GET_STATE(pSubPage), rc));
break;
}
Assert(PGM_PAGE_GET_PDE_TYPE(pSubPage) == PGM_PAGE_PDE_TYPE_DONTCARE);
GCPhys += PAGE_SIZE;
}
if (iPage != _2M/PAGE_SIZE)
{
/* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */
STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRefused);
PGM_PAGE_SET_PDE_TYPE(pVM, pFirstPage, PGM_PAGE_PDE_TYPE_PT);
return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
}
/*
* Do the allocation.
*/
# ifdef IN_RING3
rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhysBase);
# else
rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhysBase);
# endif
if (RT_SUCCESS(rc))
{
Assert(PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ALLOCATED);
pVM->pgm.s.cLargePages++;
return VINF_SUCCESS;
}
/* If we fail once, it most likely means the host's memory is too
fragmented; don't bother trying again. */
LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
PGMSetLargePageUsage(pVM, false);
return rc;
}
}
return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
}
/**
* Recheck the entire 2 MB range to see if we can use it again as a large page.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success, the large page can be used again
* @retval VERR_PGM_INVALID_LARGE_PAGE_RANGE if it can't be reused
*
* @param pVM Pointer to the VM.
* @param GCPhys The address of the page.
* @param pLargePage Page structure of the base page
*/
int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage)
{
STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRecheck);
GCPhys &= X86_PDE2M_PAE_PG_MASK;
/* Check the base page. */
Assert(PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED);
if ( PGM_PAGE_GET_STATE(pLargePage) != PGM_PAGE_STATE_ALLOCATED
|| PGM_PAGE_GET_TYPE(pLargePage) != PGMPAGETYPE_RAM
|| PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
{
LogFlow(("pgmPhysRecheckLargePage: checks failed for base page %x %x %x\n", PGM_PAGE_GET_STATE(pLargePage), PGM_PAGE_GET_TYPE(pLargePage), PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage)));
return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
}
STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
/* Check all remaining pages in the 2 MB range. */
unsigned i;
GCPhys += PAGE_SIZE;
for (i = 1; i < _2M/PAGE_SIZE; i++)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
AssertRCBreak(rc);
if ( PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|| PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
|| PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
|| PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
{
LogFlow(("pgmPhysRecheckLargePage: checks failed for page %d; %x %x %x\n", i, PGM_PAGE_GET_STATE(pPage), PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)));
break;
}
GCPhys += PAGE_SIZE;
}
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
if (i == _2M/PAGE_SIZE)
{
PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE);
pVM->pgm.s.cLargePagesDisabled--;
Log(("pgmPhysRecheckLargePage: page %RGp can be reused!\n", GCPhys - _2M));
return VINF_SUCCESS;
}
return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
}
#endif /* PGM_WITH_LARGE_PAGES */
/**
* Deal with a write monitored page.
*
* @returns VBox strict status code.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure.
*
* @remarks Called from within the PGM critical section.
*/
void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage)
{
Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED);
PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
Assert(pVM->pgm.s.cMonitoredPages > 0);
pVM->pgm.s.cMonitoredPages--;
pVM->pgm.s.cWrittenToPages++;
}
/**
* Deal with pages that are not writable, i.e. not in the ALLOCATED state.
*
* @returns VBox strict status code.
* @retval VINF_SUCCESS on success.
* @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
*
* @remarks Called from within the PGM critical section.
*/
int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
PGM_LOCK_ASSERT_OWNER(pVM);
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_WRITE_MONITORED:
pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
/* fall thru */
default: /* to shut up GCC */
case PGM_PAGE_STATE_ALLOCATED:
return VINF_SUCCESS;
/*
* Zero pages can be dummy pages for MMIO or reserved memory,
* so we need to check the flags before joining cause with
* shared page replacement.
*/
case PGM_PAGE_STATE_ZERO:
if (PGM_PAGE_IS_MMIO(pPage))
return VERR_PGM_PHYS_PAGE_RESERVED;
/* fall thru */
case PGM_PAGE_STATE_SHARED:
return pgmPhysAllocPage(pVM, pPage, GCPhys);
/* Not allowed to write to ballooned pages. */
case PGM_PAGE_STATE_BALLOONED:
return VERR_PGM_PHYS_PAGE_BALLOONED;
}
}
/**
* Internal usage: Map the page specified by its GMM ID.
*
* This is similar to pgmPhysPageMap
*
* @returns VBox status code.
*
* @param pVM Pointer to the VM.
* @param idPage The Page ID.
* @param HCPhys The physical address (for RC).
* @param ppv Where to store the mapping address.
*
* @remarks Called from within the PGM critical section. The mapping is only
* valid while you are inside this section.
*/
int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
{
/*
* Validation.
*/
PGM_LOCK_ASSERT_OWNER(pVM);
AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Map it by HCPhys.
*/
return pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
#else
/*
* Find/make Chunk TLB entry for the mapping chunk.
*/
PPGMCHUNKR3MAP pMap;
PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
if (pTlbe->idChunk == idChunk)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
pMap = pTlbe->pChunk;
}
else
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
/*
* Find the chunk, map it if necessary.
*/
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
if (pMap)
pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
else
{
# ifdef IN_RING0
int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
AssertRCReturn(rc, rc);
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
Assert(pMap);
# else
int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
if (RT_FAILURE(rc))
return rc;
# endif
}
/*
* Enter it into the Chunk TLB.
*/
pTlbe->idChunk = idChunk;
pTlbe->pChunk = pMap;
}
*ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
return VINF_SUCCESS;
#endif
}
/**
* Maps a page into the current virtual address space so it can be accessed.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
* @param ppMap Where to store the address of the mapping tracking structure.
* @param ppv Where to store the mapping address of the page. The page
* offset is masked off!
*
* @remarks Called from within the PGM critical section.
*/
static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
{
PGM_LOCK_ASSERT_OWNER(pVM);
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Just some sketchy GC/R0-darwin code.
*/
*ppMap = NULL;
RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
NOREF(GCPhys);
return VINF_SUCCESS;
#else /* IN_RING3 || IN_RING0 */
/*
* Special cases: MMIO2, ZERO and specially aliased MMIO pages.
*/
if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2
|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
{
/* Fend off the VT-x APIC access page hack. */
AssertLogRelReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, VERR_PGM_MAP_MMIO2_ALIAS_MMIO);
/* Decode the page id to a page in a MMIO2 ram range. */
uint8_t idMmio2 = PGM_MMIO2_PAGEID_GET_MMIO2_ID(PGM_PAGE_GET_PAGEID(pPage));
uint32_t iPage = PGM_MMIO2_PAGEID_GET_IDX(PGM_PAGE_GET_PAGEID(pPage));
AssertLogRelReturn((uint8_t)(idMmio2 - 1U)< RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)),
VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
PPGMMMIO2RANGE pMmio2Range = pVM->pgm.s.CTX_SUFF(apMmio2Ranges)[idMmio2 - 1];
AssertLogRelReturn(pMmio2Range, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
AssertLogRelReturn(pMmio2Range->idMmio2 == idMmio2, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
AssertLogRelReturn(iPage < (pMmio2Range->RamRange.cb >> PAGE_SHIFT), VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
*ppv = (uint8_t *)pMmio2Range->RamRange.pvR3 + ((uintptr_t)iPage << PAGE_SHIFT);
*ppMap = NULL;
return VINF_SUCCESS;
}
const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
if (idChunk == NIL_GMM_CHUNKID)
{
AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage),
VERR_PGM_PHYS_PAGE_MAP_IPE_1);
if (!PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
{
AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage),
VERR_PGM_PHYS_PAGE_MAP_IPE_3);
AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage)== pVM->pgm.s.HCPhysZeroPg, ("pPage=%R[pgmpage]\n", pPage),
VERR_PGM_PHYS_PAGE_MAP_IPE_4);
*ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
}
else
{
static uint8_t s_abPlayItSafe[0x1000*2]; /* I don't dare return the zero page at the moment. */
*ppv = (uint8_t *)((uintptr_t)&s_abPlayItSafe[0x1000] & ~(uintptr_t)0xfff);
}
*ppMap = NULL;
return VINF_SUCCESS;
}
/*
* Find/make Chunk TLB entry for the mapping chunk.
*/
PPGMCHUNKR3MAP pMap;
PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
if (pTlbe->idChunk == idChunk)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
pMap = pTlbe->pChunk;
AssertPtr(pMap->pv);
}
else
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
/*
* Find the chunk, map it if necessary.
*/
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
if (pMap)
{
AssertPtr(pMap->pv);
pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
}
else
{
#ifdef IN_RING0
int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
AssertRCReturn(rc, rc);
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
Assert(pMap);
#else
int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
if (RT_FAILURE(rc))
return rc;
#endif
AssertPtr(pMap->pv);
}
/*
* Enter it into the Chunk TLB.
*/
pTlbe->idChunk = idChunk;
pTlbe->pChunk = pMap;
}
*ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
*ppMap = pMap;
return VINF_SUCCESS;
#endif /* IN_RING3 */
}
/**
* Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable.
*
* This is typically used is paths where we cannot use the TLB methods (like ROM
* pages) or where there is no point in using them since we won't get many hits.
*
* @returns VBox strict status code.
* @retval VINF_SUCCESS on success.
* @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
* @param ppv Where to store the mapping address of the page. The page
* offset is masked off!
*
* @remarks Called from within the PGM critical section. The mapping is only
* valid while you are inside section.
*/
int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
{
int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_SUCCESS(rc))
{
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
PPGMPAGEMAP pMapIgnore;
int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
if (RT_FAILURE(rc2)) /* preserve rc */
rc = rc2;
}
return rc;
}
/**
* Maps a page into the current virtual address space so it can be accessed for
* both writing and reading.
*
* This is typically used is paths where we cannot use the TLB methods (like ROM
* pages) or where there is no point in using them since we won't get many hits.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure. Must be in the
* allocated state.
* @param GCPhys The address of the page.
* @param ppv Where to store the mapping address of the page. The page
* offset is masked off!
*
* @remarks Called from within the PGM critical section. The mapping is only
* valid while you are inside section.
*/
int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
{
Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
PPGMPAGEMAP pMapIgnore;
return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
}
/**
* Maps a page into the current virtual address space so it can be accessed for
* reading.
*
* This is typically used is paths where we cannot use the TLB methods (like ROM
* pages) or where there is no point in using them since we won't get many hits.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM Pointer to the VM.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
* @param ppv Where to store the mapping address of the page. The page
* offset is masked off!
*
* @remarks Called from within the PGM critical section. The mapping is only
* valid while you are inside this section.
*/
int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv)
{
PPGMPAGEMAP pMapIgnore;
return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv);
}
#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/**
* Load a guest page into the ring-3 physical TLB.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
* @param pPGM The PGM instance pointer.
* @param GCPhys The guest physical address in question.
*/
int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys)
{
PGM_LOCK_ASSERT_OWNER(pVM);
/*
* Find the ram range and page and hand it over to the with-page function.
* 99.8% of requests are expected to be in the first range.
*/
PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
if (!pPage)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
return pgmPhysPageLoadIntoTlbWithPage(pVM, pPage, GCPhys);
}
/**
* Load a guest page into the ring-3 physical TLB.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM Pointer to the VM.
* @param pPage Pointer to the PGMPAGE structure corresponding to
* GCPhys.
* @param GCPhys The guest physical address in question.
*/
int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
PGM_LOCK_ASSERT_OWNER(pVM);
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
/*
* Map the page.
* Make a special case for the zero page as it is kind of special.
*/
PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
if ( !PGM_PAGE_IS_ZERO(pPage)
&& !PGM_PAGE_IS_BALLOONED(pPage))
{
void *pv;
PPGMPAGEMAP pMap;
int rc = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMap, &pv);
if (RT_FAILURE(rc))
return rc;
pTlbe->pMap = pMap;
pTlbe->pv = pv;
Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
}
else
{
AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg, ("%RGp/%R[pgmpage]\n", GCPhys, pPage));
pTlbe->pMap = NULL;
pTlbe->pv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
}
#ifdef PGM_WITH_PHYS_TLB
if ( PGM_PAGE_GET_TYPE(pPage) < PGMPAGETYPE_ROM_SHADOW
|| PGM_PAGE_GET_TYPE(pPage) > PGMPAGETYPE_ROM)
pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
else
pTlbe->GCPhys = NIL_RTGCPHYS; /* ROM: Problematic because of the two pages. :-/ */
#else
pTlbe->GCPhys = NIL_RTGCPHYS;
#endif
pTlbe->pPage = pPage;
return VINF_SUCCESS;
}
#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
/**
* Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
* own the PGM lock and therefore not need to lock the mapped page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM Pointer to the VM.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param pPage Pointer to the PGMPAGE structure for the page.
* @param ppv Where to store the address corresponding to GCPhys.
*
* @internal
* @deprecated Use pgmPhysGCPhys2CCPtrInternalEx.
*/
int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
{
int rc;
AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
PGM_LOCK_ASSERT_OWNER(pVM);
pVM->pgm.s.cDeprecatedPageLocks++;
/*
* Make sure the page is writable.
*/
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_FAILURE(rc))
return rc;
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
}
Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
/*
* Get the mapping address.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pv;
rc = pgmRZDynMapHCPageInlined(VMMGetCpu(pVM),
PGM_PAGE_GET_HCPHYS(pPage),
&pv
RTLOG_COMMA_SRC_POS);
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
#else
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
#endif
return VINF_SUCCESS;
}
#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/**
* Locks a page mapping for writing.
*
* @param pVM Pointer to the VM.
* @param pPage The page.
* @param pTlbe The mapping TLB entry for the page.
* @param pLock The lock structure (output).
*/
DECLINLINE(void) pgmPhysPageMapLockForWriting(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
{
PPGMPAGEMAP pMap = pTlbe->pMap;
if (pMap)
pMap->cRefs++;
unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
{
if (cLocks == 0)
pVM->pgm.s.cWriteLockedPages++;
PGM_PAGE_INC_WRITE_LOCKS(pPage);
}
else if (cLocks != PGM_PAGE_MAX_LOCKS)
{
PGM_PAGE_INC_WRITE_LOCKS(pPage);
AssertMsgFailed(("%R[pgmpage] is entering permanent write locked state!\n", pPage));
if (pMap)
pMap->cRefs++; /* Extra ref to prevent it from going away. */
}
pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
pLock->pvMap = pMap;
}
/**
* Locks a page mapping for reading.
*
* @param pVM Pointer to the VM.
* @param pPage The page.
* @param pTlbe The mapping TLB entry for the page.
* @param pLock The lock structure (output).
*/
DECLINLINE(void) pgmPhysPageMapLockForReading(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
{
PPGMPAGEMAP pMap = pTlbe->pMap;
if (pMap)
pMap->cRefs++;
unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
{
if (cLocks == 0)
pVM->pgm.s.cReadLockedPages++;
PGM_PAGE_INC_READ_LOCKS(pPage);
}
else if (cLocks != PGM_PAGE_MAX_LOCKS)
{
PGM_PAGE_INC_READ_LOCKS(pPage);
AssertMsgFailed(("%R[pgmpage] is entering permanent read locked state!\n", pPage));
if (pMap)
pMap->cRefs++; /* Extra ref to prevent it from going away. */
}
pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
pLock->pvMap = pMap;
}
#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
/**
* Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
* own the PGM lock and have access to the page structure.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM Pointer to the VM.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param pPage Pointer to the PGMPAGE structure for the page.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that
* pgmPhysReleaseInternalPageMappingLock needs.
*
* @internal
*/
int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
int rc;
AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
PGM_LOCK_ASSERT_OWNER(pVM);
/*
* Make sure the page is writable.
*/
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_FAILURE(rc))
return rc;
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
}
Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
/*
* Do the job.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pv;
PVMCPU pVCpu = VMMGetCpu(pVM);
rc = pgmRZDynMapHCPageInlined(pVCpu,
PGM_PAGE_GET_HCPHYS(pPage),
&pv
RTLOG_COMMA_SRC_POS);
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
pLock->pvPage = pv;
pLock->pVCpu = pVCpu;
#else
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
if (RT_FAILURE(rc))
return rc;
pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
#endif
return VINF_SUCCESS;
}
/**
* Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
* own the PGM lock and have access to the page structure.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM Pointer to the VM.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param pPage Pointer to the PGMPAGE structure for the page.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that
* pgmPhysReleaseInternalPageMappingLock needs.
*
* @internal
*/
int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock)
{
AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
PGM_LOCK_ASSERT_OWNER(pVM);
Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
/*
* Do the job.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pv;
PVMCPU pVCpu = VMMGetCpu(pVM);
int rc = pgmRZDynMapHCPageInlined(pVCpu,
PGM_PAGE_GET_HCPHYS(pPage),
&pv
RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
pLock->pvPage = pv;
pLock->pVCpu = pVCpu;
#else
PPGMPAGEMAPTLBE pTlbe;
int rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
if (RT_FAILURE(rc))
return rc;
pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
#endif
return VINF_SUCCESS;
}
/**
* Requests the mapping of a guest page into the current context.
*
* This API should only be used for very short term, as it will consume scarse
* resources (R0 and GC) in the mapping cache. When you're done with the page,
* call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* This API will assume your intention is to write to the page, and will
* therefore replace shared and zero pages. If you do not intend to modify
* the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM Pointer to the VM.
* @param GCPhys The guest physical address of the page that should be
* mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that
* PGMPhysReleasePageMappingLock needs.
*
* @remarks The caller is responsible for dealing with access handlers.
* @todo Add an informational return code for pages with access handlers?
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk. External threads may
* need to delegate jobs to the EMTs.
* @remarks Only one page is mapped! Make no assumption about what's after or
* before the returned page!
* @thread Any thread.
*/
VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
int rc = pgmLock(pVM);
AssertRCReturn(rc, rc);
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Find the page and make sure it's writable.
*/
PPGMPAGE pPage;
rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
if (RT_SUCCESS(rc))
{
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_SUCCESS(rc))
{
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
PVMCPU pVCpu = VMMGetCpu(pVM);
void *pv;
rc = pgmRZDynMapHCPageInlined(pVCpu,
PGM_PAGE_GET_HCPHYS(pPage),
&pv
RTLOG_COMMA_SRC_POS);
if (RT_SUCCESS(rc))
{
AssertRCSuccess(rc);
pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
*ppv = pv;
pLock->pvPage = pv;
pLock->pVCpu = pVCpu;
}
}
}
#else /* IN_RING3 || IN_RING0 */
/*
* Query the Physical TLB entry for the page (may fail).
*/
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
if (RT_SUCCESS(rc))
{
/*
* If the page is shared, the zero page, or being write monitored
* it must be converted to a page that's writable if possible.
*/
PPGMPAGE pPage = pTlbe->pPage;
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_SUCCESS(rc))
{
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
}
}
if (RT_SUCCESS(rc))
{
/*
* Now, just perform the locking and calculate the return address.
*/
pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
}
}
#endif /* IN_RING3 || IN_RING0 */
pgmUnlock(pVM);
return rc;
}
/**
* Requests the mapping of a guest page into the current context.
*
* This API should only be used for very short term, as it will consume scarse
* resources (R0 and GC) in the mapping cache. When you're done with the page,
* call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM Pointer to the VM.
* @param GCPhys The guest physical address of the page that should be
* mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that
* PGMPhysReleasePageMappingLock needs.
*
* @remarks The caller is responsible for dealing with access handlers.
* @todo Add an informational return code for pages with access handlers?
*
* @remarks Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @remarks Only one page is mapped! Make no assumption about what's after or
* before the returned page!
* @thread Any thread.
*/
VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
{
int rc = pgmLock(pVM);
AssertRCReturn(rc, rc);
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Find the page and make sure it's readable.
*/
PPGMPAGE pPage;
rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
if (RT_SUCCESS(rc))
{
if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
rc = VERR_PGM_PHYS_PAGE_RESERVED;
else
{
PVMCPU pVCpu = VMMGetCpu(pVM);
void *pv;
rc = pgmRZDynMapHCPageInlined(pVCpu,
PGM_PAGE_GET_HCPHYS(pPage),
&pv
RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
if (RT_SUCCESS(rc))
{
AssertRCSuccess(rc);
pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
*ppv = pv;
pLock->pvPage = pv;
pLock->pVCpu = pVCpu;
}
}
}
#else /* IN_RING3 || IN_RING0 */
/*
* Query the Physical TLB entry for the page (may fail).
*/
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
if (RT_SUCCESS(rc))
{
/* MMIO pages doesn't have any readable backing. */
PPGMPAGE pPage = pTlbe->pPage;
if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
rc = VERR_PGM_PHYS_PAGE_RESERVED;
else
{
/*
* Now, just perform the locking and calculate the return address.
*/
pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
}
}
#endif /* IN_RING3 || IN_RING0 */
pgmUnlock(pVM);
return rc;
}
/**
* Requests the mapping of a guest page given by virtual address into the current context.
*
* This API should only be used for very short term, as it will consume
* scarse resources (R0 and GC) in the mapping cache. When you're done
* with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* This API will assume your intention is to write to the page, and will
* therefore replace shared and zero pages. If you do not intend to modify
* the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
* @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVCpu Pointer to the VMCPU.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread EMT
*/
VMMDECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
{
VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
RTGCPHYS GCPhys;
int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
return rc;
}
/**
* Requests the mapping of a guest page given by virtual address into the current context.
*
* This API should only be used for very short term, as it will consume
* scarse resources (R0 and GC) in the mapping cache. When you're done
* with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
* @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVCpu Pointer to the VMCPU.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread EMT
*/
VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
{
VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
RTGCPHYS GCPhys;
int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
return rc;
}
/**
* Release the mapping of a guest page.
*
* This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
* PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
*
* @param pVM Pointer to the VM.
* @param pLock The lock structure initialized by the mapping function.
*/
VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
Assert(pLock->pvPage != NULL);
Assert(pLock->pVCpu == VMMGetCpu(pVM));
PGM_DYNMAP_UNUSED_HINT(pLock->pVCpu, pLock->pvPage);
pLock->pVCpu = NULL;
pLock->pvPage = NULL;
#else
PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK);
bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE;
pLock->uPageAndType = 0;
pLock->pvMap = NULL;
pgmLock(pVM);
if (fWriteLock)
{
unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
Assert(cLocks > 0);
if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
{
if (cLocks == 1)
{
Assert(pVM->pgm.s.cWriteLockedPages > 0);
pVM->pgm.s.cWriteLockedPages--;
}
PGM_PAGE_DEC_WRITE_LOCKS(pPage);
}
if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
{
PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
Assert(pVM->pgm.s.cMonitoredPages > 0);
pVM->pgm.s.cMonitoredPages--;
pVM->pgm.s.cWrittenToPages++;
}
}
else
{
unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
Assert(cLocks > 0);
if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
{
if (cLocks == 1)
{
Assert(pVM->pgm.s.cReadLockedPages > 0);
pVM->pgm.s.cReadLockedPages--;
}
PGM_PAGE_DEC_READ_LOCKS(pPage);
}
}
if (pMap)
{
Assert(pMap->cRefs >= 1);
pMap->cRefs--;
}
pgmUnlock(pVM);
#endif /* IN_RING3 */
}
/**
* Release the internal mapping of a guest page.
*
* This is the counter part of pgmPhysGCPhys2CCPtrInternalEx and
* pgmPhysGCPhys2CCPtrInternalReadOnly.
*
* @param pVM Pointer to the VM.
* @param pLock The lock structure initialized by the mapping function.
*
* @remarks Caller must hold the PGM lock.
*/
void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
{
PGM_LOCK_ASSERT_OWNER(pVM);
PGMPhysReleasePageMappingLock(pVM, pLock); /* lazy for now */
}
/**
* Converts a GC physical address to a HC ring-3 pointer.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
* @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
* a dynamic ram chunk boundary
*
* @param pVM Pointer to the VM.
* @param GCPhys The GC physical address to convert.
* @param pR3Ptr Where to store the R3 pointer on success.
*
* @deprecated Avoid when possible!
*/
int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
{
/** @todo this is kind of hacky and needs some more work. */
#ifndef DEBUG_sandervl
VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
#endif
Log(("pgmPhysGCPhys2R3Ptr(,%RGp,): dont use this API!\n", GCPhys)); /** @todo eliminate this API! */
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
NOREF(pVM); NOREF(pR3Ptr);
AssertFailedReturn(VERR_NOT_IMPLEMENTED);
#else
pgmLock(pVM);
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
if (RT_SUCCESS(rc))
rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
pgmUnlock(pVM);
Assert(rc <= VINF_SUCCESS);
return rc;
#endif
}
#if 0 /*defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)*/
/**
* Maps and locks a guest CR3 or PD (PAE) page.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
* @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
* a dynamic ram chunk boundary
*
* @param pVM Pointer to the VM.
* @param GCPhys The GC physical address to convert.
* @param pR3Ptr Where to store the R3 pointer on success. This may or
* may not be valid in ring-0 depending on the
* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 build option.
*
* @remarks The caller must own the PGM lock.
*/
int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
{
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
if (RT_SUCCESS(rc))
rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
Assert(rc <= VINF_SUCCESS);
return rc;
}
int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
{
}
#endif
/**
* Converts a guest pointer to a GC physical address.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param GCPtr The guest pointer to convert.
* @param pGCPhys Where to store the GC physical address.
*/
VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
{
int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
if (pGCPhys && RT_SUCCESS(rc))
*pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
return rc;
}
/**
* Converts a guest pointer to a HC physical address.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param GCPtr The guest pointer to convert.
* @param pHCPhys Where to store the HC physical address.
*/
VMMDECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
RTGCPHYS GCPhys;
int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
return rc;
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
#if defined(IN_RING3) && defined(SOME_UNUSED_FUNCTION)
/**
* Cache PGMPhys memory access
*
* @param pVM Pointer to the VM.
* @param pCache Cache structure pointer
* @param GCPhys GC physical address
* @param pbHC HC pointer corresponding to physical page
*
* @thread EMT.
*/
static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
{
uint32_t iCacheIndex;
Assert(VM_IS_EMT(pVM));
GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
ASMBitSet(&pCache->aEntries, iCacheIndex);
pCache->Entry[iCacheIndex].GCPhys = GCPhys;
pCache->Entry[iCacheIndex].pbR3 = pbR3;
}
#endif /* IN_RING3 */
/**
* Deals with reading from a page with one or more ALL access handlers.
*
* @returns VBox status code. Can be ignored in ring-3.
* @retval VINF_SUCCESS.
* @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
*
* @param pVM Pointer to the VM.
* @param pPage The page descriptor.
* @param GCPhys The physical address to start reading at.
* @param pvBuf Where to put the bits we read.
* @param cb How much to read - less or equal to a page.
*/
static int pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb)
{
/*
* The most frequent access here is MMIO and shadowed ROM.
* The current code ASSUMES all these access handlers covers full pages!
*/
/*
* Whatever we do we need the source page, map it first.
*/
PGMPAGEMAPLOCK PgMpLck;
const void *pvSrc = NULL;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc, &PgMpLck);
if (RT_FAILURE(rc))
{
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc));
memset(pvBuf, 0xff, cb);
return VINF_SUCCESS;
}
rc = VINF_PGM_HANDLER_DO_DEFAULT;
/*
* Deal with any physical handlers.
*/
#ifdef IN_RING3
PPGMPHYSHANDLER pPhys = NULL;
#endif
if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL
|| PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
{
#ifdef IN_RING3
pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
Assert(pPhys->CTX_SUFF(pfnHandler));
PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
void *pvUser = pPhys->CTX_SUFF(pvUser);
Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
STAM_PROFILE_START(&pPhys->Stat, h);
PGM_LOCK_ASSERT_OWNER(pVM);
/* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
pgmUnlock(pVM);
rc = pfnHandler(pVM, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pvUser);
pgmLock(pVM);
# ifdef VBOX_WITH_STATISTICS
pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
if (pPhys)
STAM_PROFILE_STOP(&pPhys->Stat, h);
# else
pPhys = NULL; /* might not be valid anymore. */
# endif
AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys));
#else
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#endif
}
/*
* Deal with any virtual handlers.
*/
if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
{
unsigned iPage;
PPGMVIRTHANDLER pVirt;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iPage);
AssertReleaseMsg(RT_SUCCESS(rc2), ("GCPhys=%RGp cb=%#x rc2=%Rrc\n", GCPhys, cb, rc2));
Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
#ifdef IN_RING3
if (pVirt->pfnHandlerR3)
{
if (!pPhys)
Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
else
Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pVirt->Stat, h);
rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, /*pVirt->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pVirt->Stat, h);
if (rc2 == VINF_SUCCESS)
rc = VINF_SUCCESS;
AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc2, GCPhys, pPage, pVirt->pszDesc));
}
else
Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s [no handler]\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
#else
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#endif
}
/*
* Take the default action.
*/
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvBuf, pvSrc, cb);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return rc;
}
/**
* Read physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
* want to ignore those.
*
* @returns VBox status code. Can be ignored in ring-3.
* @retval VINF_SUCCESS.
* @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
*
* @param pVM Pointer to the VM.
* @param GCPhys Physical address start reading from.
* @param pvBuf Where to put the read bits.
* @param cbRead How many bytes to read.
*/
VMMDECL(int) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
{
AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysRead));
STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysReadBytes), cbRead);
pgmLock(pVM);
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
for (;;)
{
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPHYS off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
unsigned iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb > cbRead)
cb = cbRead;
/*
* Any ALL access handlers?
*/
if (RT_UNLIKELY( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|| PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)))
{
int rc = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
return rc;
}
}
else
{
/*
* Get the pointer to the page.
*/
PGMPAGEMAPLOCK PgMpLck;
const void *pvSrc;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
if (RT_SUCCESS(rc))
{
memcpy(pvBuf, pvSrc, cb);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
else
{
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
pRam->GCPhys + off, pPage, rc));
memset(pvBuf, 0xff, cb);
}
}
/* next page */
if (cb >= cbRead)
{
pgmUnlock(pVM);
return VINF_SUCCESS;
}
cbRead -= cb;
off += cb;
pvBuf = (char *)pvBuf + cb;
} /* walk pages in ram range. */
GCPhys = pRam->GCPhysLast + 1;
}
else
{
LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
/*
* Unassigned address space.
*/
size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
if (cb >= cbRead)
{
memset(pvBuf, 0xff, cbRead);
break;
}
memset(pvBuf, 0xff, cb);
cbRead -= cb;
pvBuf = (char *)pvBuf + cb;
GCPhys += cb;
}
/* Advance range if necessary. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
} /* Ram range walk */
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Deals with writing to a page with one or more WRITE or ALL access handlers.
*
* @returns VBox status code. Can be ignored in ring-3.
* @retval VINF_SUCCESS.
* @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
*
* @param pVM Pointer to the VM.
* @param pPage The page descriptor.
* @param GCPhys The physical address to start writing at.
* @param pvBuf What to write.
* @param cbWrite How much to write - less or equal to a page.
*/
static int pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite)
{
PGMPAGEMAPLOCK PgMpLck;
void *pvDst = NULL;
int rc;
/*
* Give priority to physical handlers (like #PF does).
*
* Hope for a lonely physical handler first that covers the whole
* write area. This should be a pretty frequent case with MMIO and
* the heavy usage of full page handlers in the page pool.
*/
if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
|| PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) /* screw virtual handlers on MMIO pages */)
{
PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
if (pCur)
{
Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
Assert(pCur->CTX_SUFF(pfnHandler));
size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
if (cbRange > cbWrite)
cbRange = cbWrite;
#ifndef IN_RING3
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
NOREF(cbRange);
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#else /* IN_RING3 */
Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
if (!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
else
rc = VINF_SUCCESS;
if (RT_SUCCESS(rc))
{
PFNPGMR3PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
void *pvUser = pCur->CTX_SUFF(pvUser);
STAM_PROFILE_START(&pCur->Stat, h);
PGM_LOCK_ASSERT_OWNER(pVM);
/* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
pgmUnlock(pVM);
rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
pgmLock(pVM);
# ifdef VBOX_WITH_STATISTICS
pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
if (pCur)
STAM_PROFILE_STOP(&pCur->Stat, h);
# else
pCur = NULL; /* might not be valid anymore. */
# endif
if (rc == VINF_PGM_HANDLER_DO_DEFAULT && pvDst)
{
if (pvDst)
memcpy(pvDst, pvBuf, cbRange);
}
else
AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pCur) ? pCur->pszDesc : ""));
}
else
AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc), rc);
if (RT_LIKELY(cbRange == cbWrite))
{
if (pvDst)
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VINF_SUCCESS;
}
/* more fun to be had below */
cbWrite -= cbRange;
GCPhys += cbRange;
pvBuf = (uint8_t *)pvBuf + cbRange;
pvDst = (uint8_t *)pvDst + cbRange;
#endif /* IN_RING3 */
}
/* else: the handler is somewhere else in the page, deal with it below. */
Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
}
/*
* A virtual handler without any interfering physical handlers.
* Hopefully it'll cover the whole write.
*/
else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
{
unsigned iPage;
PPGMVIRTHANDLER pCur;
rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pCur, &iPage);
if (RT_SUCCESS(rc))
{
size_t cbRange = (PAGE_OFFSET_MASK & pCur->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
if (cbRange > cbWrite)
cbRange = cbWrite;
#ifndef IN_RING3
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
NOREF(cbRange);
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#else /* IN_RING3 */
Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
if (RT_SUCCESS(rc))
{
rc = VINF_PGM_HANDLER_DO_DEFAULT;
if (pCur->pfnHandlerR3)
{
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pCur->Core.Key & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pCur->Stat, h);
rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pCur->Stat, h);
}
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvDst, pvBuf, cbRange);
else
AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
}
else
AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc), rc);
if (RT_LIKELY(cbRange == cbWrite))
{
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VINF_SUCCESS;
}
/* more fun to be had below */
cbWrite -= cbRange;
GCPhys += cbRange;
pvBuf = (uint8_t *)pvBuf + cbRange;
pvDst = (uint8_t *)pvDst + cbRange;
#endif
}
/* else: the handler is somewhere else in the page, deal with it below. */
}
/*
* Deal with all the odd ends.
*/
/* We need a writable destination page. */
if (!pvDst)
{
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
AssertLogRelMsgReturn(RT_SUCCESS(rc),
("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc), rc);
}
/* The loop state (big + ugly). */
unsigned iVirtPage = 0;
PPGMVIRTHANDLER pVirt = NULL;
uint32_t offVirt = PAGE_SIZE;
uint32_t offVirtLast = PAGE_SIZE;
bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
PPGMPHYSHANDLER pPhys = NULL;
uint32_t offPhys = PAGE_SIZE;
uint32_t offPhysLast = PAGE_SIZE;
bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
/* The loop. */
for (;;)
{
/*
* Find the closest handler at or above GCPhys.
*/
if (fMoreVirt && !pVirt)
{
rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iVirtPage);
if (RT_SUCCESS(rc))
{
offVirt = 0;
offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
}
else
{
PPGMPHYS2VIRTHANDLER pVirtPhys;
pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
GCPhys, true /* fAbove */);
if ( pVirtPhys
&& (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
{
/* ASSUME that pVirtPhys only covers one page. */
Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
Assert(pVirtPhys->Core.Key > GCPhys);
pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
}
else
{
pVirt = NULL;
fMoreVirt = false;
offVirt = offVirtLast = PAGE_SIZE;
}
}
}
if (fMorePhys && !pPhys)
{
pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
if (pPhys)
{
offPhys = 0;
offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
}
else
{
pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
GCPhys, true /* fAbove */);
if ( pPhys
&& pPhys->Core.Key <= GCPhys + (cbWrite - 1))
{
offPhys = pPhys->Core.Key - GCPhys;
offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
}
else
{
pPhys = NULL;
fMorePhys = false;
offPhys = offPhysLast = PAGE_SIZE;
}
}
}
/*
* Handle access to space without handlers (that's easy).
*/
rc = VINF_PGM_HANDLER_DO_DEFAULT;
uint32_t cbRange = (uint32_t)cbWrite;
if (offPhys && offVirt)
{
if (cbRange > offPhys)
cbRange = offPhys;
if (cbRange > offVirt)
cbRange = offVirt;
Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
}
/*
* Physical handler.
*/
else if (!offPhys && offVirt)
{
if (cbRange > offPhysLast + 1)
cbRange = offPhysLast + 1;
if (cbRange > offVirt)
cbRange = offVirt;
#ifdef IN_RING3
PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
void *pvUser = pPhys->CTX_SUFF(pvUser);
Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
STAM_PROFILE_START(&pPhys->Stat, h);
PGM_LOCK_ASSERT_OWNER(pVM);
/* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
pgmUnlock(pVM);
rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
pgmLock(pVM);
# ifdef VBOX_WITH_STATISTICS
pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
if (pPhys)
STAM_PROFILE_STOP(&pPhys->Stat, h);
# else
pPhys = NULL; /* might not be valid anymore. */
# endif
AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : ""));
#else
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
NOREF(cbRange);
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#endif
}
/*
* Virtual handler.
*/
else if (offPhys && !offVirt)
{
if (cbRange > offVirtLast + 1)
cbRange = offVirtLast + 1;
if (cbRange > offPhys)
cbRange = offPhys;
#ifdef IN_RING3
Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
if (pVirt->pfnHandlerR3)
{
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
+ (iVirtPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pVirt->Stat, h);
rc = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pVirt->Stat, h);
AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
}
pVirt = NULL;
#else
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
NOREF(cbRange);
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#endif
}
/*
* Both... give the physical one priority.
*/
else
{
Assert(!offPhys && !offVirt);
if (cbRange > offVirtLast + 1)
cbRange = offVirtLast + 1;
if (cbRange > offPhysLast + 1)
cbRange = offPhysLast + 1;
#ifdef IN_RING3
if (pVirt->pfnHandlerR3)
Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
void *pvUser = pPhys->CTX_SUFF(pvUser);
STAM_PROFILE_START(&pPhys->Stat, h);
PGM_LOCK_ASSERT_OWNER(pVM);
/* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
pgmUnlock(pVM);
rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
pgmLock(pVM);
# ifdef VBOX_WITH_STATISTICS
pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
if (pPhys)
STAM_PROFILE_STOP(&pPhys->Stat, h);
# else
pPhys = NULL; /* might not be valid anymore. */
# endif
AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : ""));
if (pVirt->pfnHandlerR3)
{
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
+ (iVirtPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pVirt->Stat, h2);
int rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pVirt->Stat, h2);
if (rc2 == VINF_SUCCESS && rc == VINF_PGM_HANDLER_DO_DEFAULT)
rc = VINF_SUCCESS;
else
AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
}
pPhys = NULL;
pVirt = NULL;
#else
/* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
NOREF(cbRange);
//AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VERR_PGM_PHYS_WR_HIT_HANDLER;
#endif
}
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvDst, pvBuf, cbRange);
/*
* Advance if we've got more stuff to do.
*/
if (cbRange >= cbWrite)
{
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
return VINF_SUCCESS;
}
cbWrite -= cbRange;
GCPhys += cbRange;
pvBuf = (uint8_t *)pvBuf + cbRange;
pvDst = (uint8_t *)pvDst + cbRange;
offPhys -= cbRange;
offPhysLast -= cbRange;
offVirt -= cbRange;
offVirtLast -= cbRange;
}
}
/**
* Write to physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysSimpleWriteGCPhys() if you
* want to ignore those.
*
* @returns VBox status code. Can be ignored in ring-3.
* @retval VINF_SUCCESS.
* @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
*
* @param pVM Pointer to the VM.
* @param GCPhys Physical address to write to.
* @param pvBuf What to write.
* @param cbWrite How many bytes to write.
*/
VMMDECL(int) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
{
AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWrite));
STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWriteBytes), cbWrite);
pgmLock(pVM);
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
for (;;)
{
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPTR off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
RTGCPTR iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb > cbWrite)
cb = cbWrite;
/*
* Any active WRITE or ALL access handlers?
*/
if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|| PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
{
int rc = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
return rc;
}
}
else
{
/*
* Get the pointer to the page.
*/
PGMPAGEMAPLOCK PgMpLck;
void *pvDst;
int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
if (RT_SUCCESS(rc))
{
Assert(!PGM_PAGE_IS_BALLOONED(pPage));
memcpy(pvDst, pvBuf, cb);
pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
}
/* Ignore writes to ballooned pages. */
else if (!PGM_PAGE_IS_BALLOONED(pPage))
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
pRam->GCPhys + off, pPage, rc));
}
/* next page */
if (cb >= cbWrite)
{
pgmUnlock(pVM);
return VINF_SUCCESS;
}
cbWrite -= cb;
off += cb;
pvBuf = (const char *)pvBuf + cb;
} /* walk pages in ram range */
GCPhys = pRam->GCPhysLast + 1;
}
else
{
/*
* Unassigned address space, skip it.
*/
if (!pRam)
break;
size_t cb = pRam->GCPhys - GCPhys;
if (cb >= cbWrite)
break;
cbWrite -= cb;
pvBuf = (const char *)pvBuf + cb;
GCPhys += cb;
}
/* Advance range if necessary. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
} /* Ram range walk */
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Read from guest physical memory by GC physical address, bypassing
* MMIO and access handlers.
*
* @returns VBox status.
* @param pVM Pointer to the VM.
* @param pvDst The destination address.
* @param GCPhysSrc The source address (GC physical address).
* @param cb The number of bytes to read.
*/
VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
{
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void const *pvSrc;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysSrc += cbPage;
pvDst = (uint8_t *)pvDst + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysSrc += PAGE_SIZE;
pvDst = (uint8_t *)pvDst + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Write to guest physical memory referenced by GC pointer.
* Write memory to GC physical address in guest physical memory.
*
* This will bypass MMIO and access handlers.
*
* @returns VBox status.
* @param pVM Pointer to the VM.
* @param GCPhysDst The GC physical address of the destination.
* @param pvSrc The source buffer.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
{
LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void *pvDst;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysDst += cbPage;
pvSrc = (const uint8_t *)pvSrc + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysDst += PAGE_SIZE;
pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Read from guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and not set any accessed bits.
*
* @returns VBox status.
* @param pVCpu Handle to the current virtual CPU.
* @param pvDst The destination address.
* @param GCPtrSrc The source address (GC pointer).
* @param cb The number of bytes to read.
*/
VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
/** @todo fix the macro / state handling: VMCPU_ASSERT_EMT_OR_GURU(pVCpu); */
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleRead));
STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleReadBytes), cb);
/* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive
* when many VCPUs are fighting for the lock.
*/
pgmLock(pVM);
/* map the 1st page */
void const *pvSrc;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
return rc;
}
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
pvDst = (uint8_t *)pvDst + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
return rc;
}
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
pvDst = (uint8_t *)pvDst + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Write to guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and not set dirty or accessed bits.
*
* @returns VBox status.
* @param pVCpu Handle to the current virtual CPU.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
VMCPU_ASSERT_EMT(pVCpu);
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWrite));
STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb);
/* map the 1st page */
void *pvDst;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
pvSrc = (const uint8_t *)pvSrc + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Write to guest physical memory referenced by GC pointer and update the PTE.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers but will set any dirty and accessed bits in the PTE.
*
* If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
*
* @returns VBox status.
* @param pVCpu Handle to the current virtual CPU.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
VMCPU_ASSERT_EMT(pVCpu);
/*
* Treat the first page as a special case.
* Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void *pvDst;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
pvSrc = (const uint8_t *)pvSrc + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Read from guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* respect access handlers and set accessed bits.
*
* @returns VBox status.
* @param pVCpu Handle to the current virtual CPU.
* @param pvDst The destination address.
* @param GCPtrSrc The source address (GC pointer).
* @param cb The number of bytes to read.
* @thread The vCPU EMT.
*/
VMMDECL(int) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
RTGCPHYS GCPhys;
uint64_t fFlags;
int rc;
PVM pVM = pVCpu->CTX_SUFF(pVM);
VMCPU_ASSERT_EMT(pVCpu);
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
/*
* Optimize reads within a single page.
*/
if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
/* Convert virtual to physical address + flags */
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
/* mark the guest page as accessed. */
if (!(fFlags & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
AssertRC(rc);
}
return PGMPhysRead(pVM, GCPhys, pvDst, cb);
}
/*
* Page by page.
*/
for (;;)
{
/* Convert virtual to physical address + flags */
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
/* mark the guest page as accessed. */
if (!(fFlags & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
AssertRC(rc);
}
/* copy */
size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
rc = PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
if (cbRead >= cb || RT_FAILURE(rc))
return rc;
/* next */
cb -= cbRead;
pvDst = (uint8_t *)pvDst + cbRead;
GCPtrSrc += cbRead;
}
}
/**
* Write to guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* respect access handlers and set dirty and accessed bits.
*
* @returns VBox status.
* @retval VINF_SUCCESS.
* @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
*
* @param pVCpu Handle to the current virtual CPU.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
RTGCPHYS GCPhys;
uint64_t fFlags;
int rc;
PVM pVM = pVCpu->CTX_SUFF(pVM);
VMCPU_ASSERT_EMT(pVCpu);
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
/*
* Optimize writes within a single page.
*/
if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
/* Convert virtual to physical address + flags */
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
/* Mention when we ignore X86_PTE_RW... */
if (!(fFlags & X86_PTE_RW))
Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
/* Mark the guest page as accessed and dirty if necessary. */
if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
{
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
}
return PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
}
/*
* Page by page.
*/
for (;;)
{
/* Convert virtual to physical address + flags */
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
/* Mention when we ignore X86_PTE_RW... */
if (!(fFlags & X86_PTE_RW))
Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
/* Mark the guest page as accessed and dirty if necessary. */
if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
{
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
}
/* copy */
size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
rc = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
if (cbWrite >= cb || RT_FAILURE(rc))
return rc;
/* next */
cb -= cbWrite;
pvSrc = (uint8_t *)pvSrc + cbWrite;
GCPtrDst += cbWrite;
}
}
/**
* Performs a read of guest virtual memory for instruction emulation.
*
* This will check permissions, raise exceptions and update the access bits.
*
* The current implementation will bypass all access handlers. It may later be
* changed to at least respect MMIO.
*
*
* @returns VBox status code suitable to scheduling.
* @retval VINF_SUCCESS if the read was performed successfully.
* @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
* @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
*
* @param pVCpu Handle to the current virtual CPU.
* @param pCtxCore The context core.
* @param pvDst Where to put the bytes we've read.
* @param GCPtrSrc The source address.
* @param cb The number of bytes to read. Not more than a page.
*
* @remark This function will dynamically map physical pages in GC. This may unmap
* mappings done by the caller. Be careful!
*/
VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
Assert(cb <= PAGE_SIZE);
VMCPU_ASSERT_EMT(pVCpu);
/** @todo r=bird: This isn't perfect!
* -# It's not checking for reserved bits being 1.
* -# It's not correctly dealing with the access bit.
* -# It's not respecting MMIO memory or any other access handlers.
*/
/*
* 1. Translate virtual to physical. This may fault.
* 2. Map the physical address.
* 3. Do the read operation.
* 4. Set access bits if required.
*/
int rc;
unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
if (cb <= cb1)
{
/*
* Not crossing pages.
*/
RTGCPHYS GCPhys;
uint64_t fFlags;
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
if (RT_SUCCESS(rc))
{
/** @todo we should check reserved bits ... */
PGMPAGEMAPLOCK PgMpLck;
void const *pvSrc;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &PgMpLck);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0xff, cb);
break;
default:
Assert(RT_FAILURE_NP(rc));
return rc;
}
/** @todo access bit emulation isn't 100% correct. */
if (!(fFlags & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
else
{
/*
* Crosses pages.
*/
size_t cb2 = cb - cb1;
uint64_t fFlags1;
RTGCPHYS GCPhys1;
uint64_t fFlags2;
RTGCPHYS GCPhys2;
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
if (RT_SUCCESS(rc))
{
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
if (RT_SUCCESS(rc))
{
/** @todo we should check reserved bits ... */
AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
PGMPAGEMAPLOCK PgMpLck;
void const *pvSrc1;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc1, &PgMpLck);
switch (rc)
{
case VINF_SUCCESS:
memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
break;
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0xff, cb1);
break;
default:
Assert(RT_FAILURE_NP(rc));
return rc;
}
void const *pvSrc2;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc2, &PgMpLck);
switch (rc)
{
case VINF_SUCCESS:
memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
break;
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset((uint8_t *)pvDst + cb1, 0xff, cb2);
break;
default:
Assert(RT_FAILURE_NP(rc));
return rc;
}
if (!(fFlags1 & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
if (!(fFlags2 & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
}
/*
* Raise a #PF.
*/
uint32_t uErr;
/* Get the current privilege level. */
uint32_t cpl = CPUMGetGuestCPL(pVCpu);
switch (rc)
{
case VINF_SUCCESS:
uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
break;
case VERR_PAGE_NOT_PRESENT:
case VERR_PAGE_TABLE_NOT_PRESENT:
uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
break;
default:
AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
return rc;
}
Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
}
/**
* Performs a read of guest virtual memory for instruction emulation.
*
* This will check permissions, raise exceptions and update the access bits.
*
* The current implementation will bypass all access handlers. It may later be
* changed to at least respect MMIO.
*
*
* @returns VBox status code suitable to scheduling.
* @retval VINF_SUCCESS if the read was performed successfully.
* @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
* @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
*
* @param pVCpu Handle to the current virtual CPU.
* @param pCtxCore The context core.
* @param pvDst Where to put the bytes we've read.
* @param GCPtrSrc The source address.
* @param cb The number of bytes to read. Not more than a page.
* @param fRaiseTrap If set the trap will be raised on as per spec, if clear
* an appropriate error status will be returned (no
* informational at all).
*
*
* @remarks Takes the PGM lock.
* @remarks A page fault on the 2nd page of the access will be raised without
* writing the bits on the first page since we're ASSUMING that the
* caller is emulating an instruction access.
* @remarks This function will dynamically map physical pages in GC. This may
* unmap mappings done by the caller. Be careful!
*/
VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb,
bool fRaiseTrap)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
Assert(cb <= PAGE_SIZE);
VMCPU_ASSERT_EMT(pVCpu);
/*
* 1. Translate virtual to physical. This may fault.
* 2. Map the physical address.
* 3. Do the read operation.
* 4. Set access bits if required.
*/
int rc;
unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
if (cb <= cb1)
{
/*
* Not crossing pages.
*/
RTGCPHYS GCPhys;
uint64_t fFlags;
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
if (RT_SUCCESS(rc))
{
if (1) /** @todo we should check reserved bits ... */
{
const void *pvSrc;
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0xff, cb);
break;
default:
AssertMsgFailed(("%Rrc\n", rc));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
if (!(fFlags & X86_PTE_A))
{
/** @todo access bit emulation isn't 100% correct. */
rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
}
else
{
/*
* Crosses pages.
*/
size_t cb2 = cb - cb1;
uint64_t fFlags1;
RTGCPHYS GCPhys1;
uint64_t fFlags2;
RTGCPHYS GCPhys2;
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
if (RT_SUCCESS(rc))
{
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
if (RT_SUCCESS(rc))
{
if (1) /** @todo we should check reserved bits ... */
{
const void *pvSrc;
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
PGMPhysReleasePageMappingLock(pVM, &Lock);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0xff, cb1);
break;
default:
AssertMsgFailed(("%Rrc\n", rc));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
switch (rc)
{
case VINF_SUCCESS:
memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
PGMPhysReleasePageMappingLock(pVM, &Lock);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset((uint8_t *)pvDst + cb1, 0xff, cb2);
break;
default:
AssertMsgFailed(("%Rrc\n", rc));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
if (!(fFlags1 & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
if (!(fFlags2 & X86_PTE_A))
{
rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
/* sort out which page */
}
else
GCPtrSrc += cb1; /* fault on 2nd page */
}
}
/*
* Raise a #PF if we're allowed to do that.
*/
/* Calc the error bits. */
uint32_t cpl = CPUMGetGuestCPL(pVCpu);
uint32_t uErr;
switch (rc)
{
case VINF_SUCCESS:
uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
rc = VERR_ACCESS_DENIED;
break;
case VERR_PAGE_NOT_PRESENT:
case VERR_PAGE_TABLE_NOT_PRESENT:
uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
break;
default:
AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
if (fRaiseTrap)
{
Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
}
Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
return rc;
}
/**
* Performs a write to guest virtual memory for instruction emulation.
*
* This will check permissions, raise exceptions and update the dirty and access
* bits.
*
* @returns VBox status code suitable to scheduling.
* @retval VINF_SUCCESS if the read was performed successfully.
* @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
* @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
*
* @param pVCpu Handle to the current virtual CPU.
* @param pCtxCore The context core.
* @param GCPtrDst The destination address.
* @param pvSrc What to write.
* @param cb The number of bytes to write. Not more than a page.
* @param fRaiseTrap If set the trap will be raised on as per spec, if clear
* an appropriate error status will be returned (no
* informational at all).
*
* @remarks Takes the PGM lock.
* @remarks A page fault on the 2nd page of the access will be raised without
* writing the bits on the first page since we're ASSUMING that the
* caller is emulating an instruction access.
* @remarks This function will dynamically map physical pages in GC. This may
* unmap mappings done by the caller. Be careful!
*/
VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc,
size_t cb, bool fRaiseTrap)
{
Assert(cb <= PAGE_SIZE);
PVM pVM = pVCpu->CTX_SUFF(pVM);
VMCPU_ASSERT_EMT(pVCpu);
/*
* 1. Translate virtual to physical. This may fault.
* 2. Map the physical address.
* 3. Do the write operation.
* 4. Set access bits if required.
*/
/** @todo Since this method is frequently used by EMInterpret or IOM
* upon a write fault to an write access monitored page, we can
* reuse the guest page table walking from the \#PF code. */
int rc;
unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
if (cb <= cb1)
{
/*
* Not crossing pages.
*/
RTGCPHYS GCPhys;
uint64_t fFlags;
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags, &GCPhys);
if (RT_SUCCESS(rc))
{
if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
|| ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
&& CPUMGetGuestCPL(pVCpu) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
{
void *pvDst;
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
(uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
/* bit bucket */
break;
default:
AssertMsgFailed(("%Rrc\n", rc));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
{
/** @todo dirty & access bit emulation isn't 100% correct. */
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
}
return VINF_SUCCESS;
}
rc = VERR_ACCESS_DENIED;
}
}
else
{
/*
* Crosses pages.
*/
size_t cb2 = cb - cb1;
uint64_t fFlags1;
RTGCPHYS GCPhys1;
uint64_t fFlags2;
RTGCPHYS GCPhys2;
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags1, &GCPhys1);
if (RT_SUCCESS(rc))
{
rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2);
if (RT_SUCCESS(rc))
{
if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
&& (fFlags2 & X86_PTE_RW))
|| ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
&& CPUMGetGuestCPL(pVCpu) <= 2) )
{
void *pvDst;
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
(uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
PGMPhysReleasePageMappingLock(pVM, &Lock);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
/* bit bucket */
break;
default:
AssertMsgFailed(("%Rrc\n", rc));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
switch (rc)
{
case VINF_SUCCESS:
memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
PGMPhysReleasePageMappingLock(pVM, &Lock);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
/* bit bucket */
break;
default:
AssertMsgFailed(("%Rrc\n", rc));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
{
rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
AssertRC(rc);
}
if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
{
rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
AssertRC(rc);
}
return VINF_SUCCESS;
}
if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
GCPtrDst += cb1; /* fault on the 2nd page. */
rc = VERR_ACCESS_DENIED;
}
else
GCPtrDst += cb1; /* fault on the 2nd page. */
}
}
/*
* Raise a #PF if we're allowed to do that.
*/
/* Calc the error bits. */
uint32_t uErr;
uint32_t cpl = CPUMGetGuestCPL(pVCpu);
switch (rc)
{
case VINF_SUCCESS:
uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
rc = VERR_ACCESS_DENIED;
break;
case VERR_ACCESS_DENIED:
uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
break;
case VERR_PAGE_NOT_PRESENT:
case VERR_PAGE_TABLE_NOT_PRESENT:
uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
break;
default:
AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
if (fRaiseTrap)
{
Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
}
Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
return rc;
}
/**
* Return the page type of the specified physical address.
*
* @returns The page type.
* @param pVM Pointer to the VM.
* @param GCPhys Guest physical address
*/
VMMDECL(PGMPAGETYPE) PGMPhysGetPageType(PVM pVM, RTGCPHYS GCPhys)
{
pgmLock(pVM);
PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
PGMPAGETYPE enmPgType = pPage ? (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage) : PGMPAGETYPE_INVALID;
pgmUnlock(pVM);
return enmPgType;
}
/**
* Converts a GC physical address to a HC ring-3 pointer, with some
* additional checks.
*
* @returns VBox status code (no informational statuses).
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
* access handler of some kind.
* @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
* accesses or is odd in any way.
* @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
*
* @param pVM Pointer to the VM.
* @param GCPhys The GC physical address to convert. Since this is only
* used for filling the REM TLB, the A20 mask must be
* applied before calling this API.
* @param fWritable Whether write access is required.
* @param ppv Where to store the pointer corresponding to GCPhys on
* success.
* @param pLock
*
* @remarks This is more or a less a copy of PGMR3PhysTlbGCPhys2Ptr.
*/
VMM_INT_DECL(int) PGMPhysIemGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers,
void **ppv, PPGMPAGEMAPLOCK pLock)
{
pgmLock(pVM);
PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
if (RT_SUCCESS(rc))
{
if (PGM_PAGE_IS_BALLOONED(pPage))
rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
|| (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
rc = VINF_SUCCESS;
else
{
if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
{
Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
}
else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
{
Assert(!fByPassHandlers);
rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
}
}
if (RT_SUCCESS(rc))
{
int rc2;
/* Make sure what we return is writable. */
if (fWritable)
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_ALLOCATED:
break;
case PGM_PAGE_STATE_BALLOONED:
AssertFailed();
case PGM_PAGE_STATE_ZERO:
case PGM_PAGE_STATE_SHARED:
case PGM_PAGE_STATE_WRITE_MONITORED:
rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
AssertLogRelRCReturn(rc2, rc2);
break;
}
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
PVMCPU pVCpu = VMMGetCpu(pVM);
void *pv;
rc = pgmRZDynMapHCPageInlined(pVCpu,
PGM_PAGE_GET_HCPHYS(pPage),
&pv
RTLOG_COMMA_SRC_POS);
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
pLock->pvPage = pv;
pLock->pVCpu = pVCpu;
#else
/* Get a ring-3 mapping of the address. */
PPGMPAGER3MAPTLBE pTlbe;
rc2 = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
AssertLogRelRCReturn(rc2, rc2);
/* Lock it and calculate the address. */
if (fWritable)
pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
else
pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
#endif
Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
}
else
Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
/* else: handler catching all access, no pointer returned. */
}
else
rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
pgmUnlock(pVM);
return rc;
}
/**
* Checks if the give GCPhys page requires special handling for the given access
* because it's MMIO or otherwise monitored.
*
* @returns VBox status code (no informational statuses).
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
* access handler of some kind.
* @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
* accesses or is odd in any way.
* @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
*
* @param pVM Pointer to the VM.
* @param GCPhys The GC physical address to convert. Since this is only
* used for filling the REM TLB, the A20 mask must be
* applied before calling this API.
* @param fWritable Whether write access is required.
*
* @remarks This is a watered down version PGMPhysIemGCPhys2Ptr and really just
* a stop gap thing that should be removed once there is a better TLB
* for virtual address accesses.
*/
VMM_INT_DECL(int) PGMPhysIemQueryAccess(PVM pVM, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers)
{
pgmLock(pVM);
PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
if (RT_SUCCESS(rc))
{
if (PGM_PAGE_IS_BALLOONED(pPage))
rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
|| (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
rc = VINF_SUCCESS;
else
{
if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
{
Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
}
else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
{
Assert(!fByPassHandlers);
rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
}
}
}
pgmUnlock(pVM);
return rc;
}