PGMAllPhys.cpp revision 7328d8bec2798b4b8f02b3c7fc4f27d5661dc84f
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, Physical Memory Addressing.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
* Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
*
* Since this flag is currently incorrectly kept set for ROM regions we will
* have to ignore it for now so we don't break stuff.
*
* @todo this has been fixed now I believe, remove this hack.
*/
#define PGM_IGNORE_RAM_FLAGS_RESERVED
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_PHYS
#include <VBox/pgm.h>
#include <VBox/trpm.h>
#include <VBox/vmm.h>
#include <VBox/iom.h>
#include <VBox/em.h>
#include <VBox/rem.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/asm.h>
#include <VBox/log.h>
#ifdef IN_RING3
# include <iprt/thread.h>
#endif
#ifndef IN_RING3
/**
* \#PF Handler callback for Guest ROM range write access.
* We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
*
* @returns VBox status code (appropritate for trap handling and GC return).
* @param pVM VM Handle.
* @param uErrorCode CPU Error code.
* @param pRegFrame Trap register frame.
* @param pvFault The fault address (cr2).
* @param GCPhysFault The GC physical address corresponding to pvFault.
* @param pvUser User argument. Pointer to the ROM range structure.
*/
VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser)
{
int rc;
#ifdef VBOX_WITH_NEW_PHYS_CODE
PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
uint32_t iPage = GCPhysFault - pRom->GCPhys;
Assert(iPage < (pRom->cb >> PAGE_SHIFT));
switch (pRom->aPages[iPage].enmProt)
{
case PGMROMPROT_READ_ROM_WRITE_IGNORE:
case PGMROMPROT_READ_RAM_WRITE_IGNORE:
{
#endif
/*
* If it's a simple instruction which doesn't change the cpu state
* we will simply skip it. Otherwise we'll have to defer it to REM.
*/
uint32_t cbOp;
DISCPUSTATE Cpu;
rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, &cbOp);
if ( RT_SUCCESS(rc)
&& Cpu.mode == CPUMODE_32BIT /** @todo why does this matter? */
&& !(Cpu.prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
{
switch (Cpu.opcode)
{
/** @todo Find other instructions we can safely skip, possibly
* adding this kind of detection to DIS or EM. */
case OP_MOV:
pRegFrame->rip += cbOp;
STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteHandled);
return VINF_SUCCESS;
}
}
else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
return rc;
#ifdef VBOX_WITH_NEW_PHYS_CODE
break;
}
case PGMROMPROT_READ_RAM_WRITE_RAM:
rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
AssertRC(rc);
break; /** @todo Must restart the instruction, not use the interpreter! */
case PGMROMPROT_READ_ROM_WRITE_RAM:
/* Handle it in ring-3 because it's *way* easier there. */
break;
default:
AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
VERR_INTERNAL_ERROR);
}
#endif
STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteUnhandled);
return VINF_EM_RAW_EMULATE_INSTR;
}
#endif /* IN_RING3 */
/**
* Checks if Address Gate 20 is enabled or not.
*
* @returns true if enabled.
* @returns false if disabled.
* @param pVM VM handle.
*/
VMMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
{
LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */
}
/**
* Validates a GC physical address.
*
* @returns true if valid.
* @returns false if invalid.
* @param pVM The VM handle.
* @param GCPhys The physical address to validate.
*/
VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
{
PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
return pPage != NULL;
}
/**
* Checks if a GC physical address is a normal page,
* i.e. not ROM, MMIO or reserved.
*
* @returns true if normal.
* @returns false if invalid, ROM, MMIO or reserved page.
* @param pVM The VM handle.
* @param GCPhys The physical address to check.
*/
VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
{
PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
#ifdef VBOX_WITH_NEW_PHYS_CODE
return pPage
&& PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
#else
return pPage
&& !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
#endif
}
/**
* Converts a GC physical address to a HC physical address.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
*
* @param pVM The VM handle.
* @param GCPhys The GC physical address to convert.
* @param pHCPhys Where to store the HC physical address on success.
*/
VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
if (RT_FAILURE(rc))
return rc;
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */
return VERR_PGM_PHYS_PAGE_RESERVED;
#endif
*pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
return VINF_SUCCESS;
}
/**
* Invalidates the GC page mapping TLB.
*
* @param pVM The VM handle.
*/
VMMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM)
{
/* later */
NOREF(pVM);
}
/**
* Invalidates the ring-0 page mapping TLB.
*
* @param pVM The VM handle.
*/
VMMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM)
{
PGMPhysInvalidatePageR3MapTLB(pVM);
}
/**
* Invalidates the ring-3 page mapping TLB.
*
* @param pVM The VM handle.
*/
VMMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM)
{
pgmLock(pVM);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
{
pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
}
pgmUnlock(pVM);
}
/**
* Makes sure that there is at least one handy page ready for use.
*
* This will also take the appropriate actions when reaching water-marks.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success.
* @retval VERR_EM_NO_MEMORY if we're really out of memory.
*
* @param pVM The VM handle.
*
* @remarks Must be called from within the PGM critical section. It may
* nip back to ring-3/0 in some cases.
*/
static int pgmPhysEnsureHandyPage(PVM pVM)
{
/** @remarks
* low-water mark logic for R0 & GC:
* - 75%: Set FF.
* - 50%: Force return to ring-3 ASAP.
*
* For ring-3 there is a little problem wrt to the recompiler, so:
* - 75%: Set FF.
* - 50%: Try allocate pages; on failure we'll force REM to quite ASAP.
*
* The basic idea is that we should be able to get out of any situation with
* only 50% of handy pages remaining.
*
* At the moment we'll not adjust the number of handy pages relative to the
* actual VM RAM committment, that's too much work for now.
*/
Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
if ( !pVM->pgm.s.cHandyPages
#ifdef IN_RING3
|| pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */
#endif
)
{
Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
#ifdef IN_RING3
int rc = PGMR3PhysAllocateHandyPages(pVM);
#elif defined(IN_RING0)
int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
#else
int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
#endif
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
Assert(rc == VINF_EM_NO_MEMORY);
if (!pVM->pgm.s.cHandyPages)
{
LogRel(("PGM: no more handy pages!\n"));
return VERR_EM_NO_MEMORY;
}
Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
#ifdef IN_RING3
REMR3NotifyFF(pVM);
#else
VM_FF_SET(pVM, VM_FF_TO_R3);
#endif
}
Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
}
else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */
{
VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
#ifndef IN_RING3
if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2)
{
Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
VM_FF_SET(pVM, VM_FF_TO_R3);
}
#endif
}
return VINF_SUCCESS;
}
/**
* Replace a zero or shared page with new page that we can write to.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success, pPage is modified.
* @retval VERR_EM_NO_MEMORY if we're totally out of memory.
*
* @todo Propagate VERR_EM_NO_MEMORY up the call tree.
*
* @param pVM The VM address.
* @param pPage The physical page tracking structure. This will
* be modified on success.
* @param GCPhys The address of the page.
*
* @remarks Must be called from within the PGM critical section. It may
* nip back to ring-3/0 in some cases.
*
* @remarks This function shouldn't really fail, however if it does
* it probably means we've screwed up the size of the amount
* and/or the low-water mark of handy pages. Or, that some
* device I/O is causing a lot of pages to be allocated while
* while the host is in a low-memory condition.
*/
int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
/*
* Ensure that we've got a page handy, take it and use it.
*/
int rc = pgmPhysEnsureHandyPage(pVM);
if (RT_FAILURE(rc))
{
Assert(rc == VERR_EM_NO_MEMORY);
return rc;
}
Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%d %RGp\n", PGM_PAGE_GET_STATE(pPage), GCPhys));
Assert(!PGM_PAGE_IS_MMIO(pPage));
uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
Assert(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages));
Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
/*
* There are one or two action to be taken the next time we allocate handy pages:
* - Tell the GMM (global memory manager) what the page is being used for.
* (Speeds up replacement operations - sharing and defragmenting.)
* - If the current backing is shared, it must be freed.
*/
const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
if (PGM_PAGE_IS_SHARED(pPage))
{
pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageReplaceShared));
pVM->pgm.s.cSharedPages--;
AssertMsgFailed(("TODO: copy shared page content")); /** @todo err.. what about copying the page content? */
}
else
{
Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
pVM->pgm.s.cZeroPages--;
Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
}
/*
* Do the PGMPAGE modifications.
*/
pVM->pgm.s.cPrivatePages++;
PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
return VINF_SUCCESS;
}
/**
* Deal with pages that are not writable, i.e. not in the ALLOCATED state.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM The VM address.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
*
* @remarks Called from within the PGM critical section.
*/
int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_WRITE_MONITORED:
PGM_PAGE_SET_WRITTEN_TO(pPage);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
/* fall thru */
default: /* to shut up GCC */
case PGM_PAGE_STATE_ALLOCATED:
return VINF_SUCCESS;
/*
* Zero pages can be dummy pages for MMIO or reserved memory,
* so we need to check the flags before joining cause with
* shared page replacement.
*/
case PGM_PAGE_STATE_ZERO:
if (PGM_PAGE_IS_MMIO(pPage))
return VERR_PGM_PHYS_PAGE_RESERVED;
/* fall thru */
case PGM_PAGE_STATE_SHARED:
return pgmPhysAllocPage(pVM, pPage, GCPhys);
}
}
/**
* Wrapper for pgmPhysPageMakeWritable which enters the critsect.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM The VM address.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
*/
int pgmPhysPageMakeWritableUnlocked(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
int rc = pgmLock(pVM);
if (RT_SUCCESS(rc))
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
pgmUnlock(pVM);
}
return rc;
}
/**
* Internal usage: Map the page specified by its GMM ID.
*
* This is similar to pgmPhysPageMap
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param idPage The Page ID.
* @param HCPhys The physical address (for RC).
* @param ppv Where to store the mapping address.
*
* @remarks Called from within the PGM critical section.
*/
int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
{
/*
* Validation.
*/
Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
#ifdef IN_RC
/*
* Map it by HCPhys.
*/
return PGMDynMapHCPage(pVM, HCPhys, ppv);
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Map it by HCPhys.
*/
return pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
#else
/*
* Find/make Chunk TLB entry for the mapping chunk.
*/
PPGMCHUNKR3MAP pMap;
PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
if (pTlbe->idChunk == idChunk)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
pMap = pTlbe->pChunk;
}
else
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
/*
* Find the chunk, map it if necessary.
*/
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
if (!pMap)
{
# ifdef IN_RING0
int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
AssertRCReturn(rc, rc);
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
Assert(pMap);
# else
int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
if (RT_FAILURE(rc))
return rc;
# endif
}
/*
* Enter it into the Chunk TLB.
*/
pTlbe->idChunk = idChunk;
pTlbe->pChunk = pMap;
pMap->iAge = 0;
}
*ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
return VINF_SUCCESS;
#endif
}
/**
* Maps a page into the current virtual address space so it can be accessed.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
*
* @param pVM The VM address.
* @param pPage The physical page tracking structure.
* @param GCPhys The address of the page.
* @param ppMap Where to store the address of the mapping tracking structure.
* @param ppv Where to store the mapping address of the page. The page
* offset is masked off!
*
* @remarks Called from within the PGM critical section.
*/
int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
{
Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Just some sketchy GC/R0-darwin code.
*/
*ppMap = NULL;
RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
# else
PGMDynMapHCPage(pVM, HCPhys, ppv);
# endif
return VINF_SUCCESS;
#else /* IN_RING3 || IN_RING0 */
/*
* Special case: ZERO and MMIO2 pages.
*/
const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
if (idChunk == NIL_GMM_CHUNKID)
{
AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR);
if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2)
{
/* Lookup the MMIO2 range and use pvR3 to calc the address. */
PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
AssertMsgReturn(pRam || !pRam->pvR3, ("pRam=%p pPage=%R[pgmpage]\n", pRam, pPage), VERR_INTERNAL_ERROR);
*ppv = (void *)((uintptr_t)pRam->pvR3 + (GCPhys - pRam->GCPhys));
}
else if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
{
/** @todo deal with aliased MMIO2 pages somehow...
* One solution would be to seed MMIO2 pages to GMM and get unique Page IDs for
* them, that would also avoid this mess. It would actually be kind of
* elegant... */
AssertFailedReturn(VERR_INTERNAL_ERROR);
}
else
{
/** @todo handle MMIO2 */
AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR);
AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg,
("pPage=%R[pgmpage]\n", pPage),
VERR_INTERNAL_ERROR);
*ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
}
*ppMap = NULL;
return VINF_SUCCESS;
}
/*
* Find/make Chunk TLB entry for the mapping chunk.
*/
PPGMCHUNKR3MAP pMap;
PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
if (pTlbe->idChunk == idChunk)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
pMap = pTlbe->pChunk;
}
else
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
/*
* Find the chunk, map it if necessary.
*/
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
if (!pMap)
{
#ifdef IN_RING0
int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
AssertRCReturn(rc, rc);
pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
Assert(pMap);
#else
int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
if (RT_FAILURE(rc))
return rc;
#endif
}
/*
* Enter it into the Chunk TLB.
*/
pTlbe->idChunk = idChunk;
pTlbe->pChunk = pMap;
pMap->iAge = 0;
}
*ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
*ppMap = pMap;
return VINF_SUCCESS;
#endif /* IN_RING3 */
}
#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/**
* Load a guest page into the ring-3 physical TLB.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
* @param pPGM The PGM instance pointer.
* @param GCPhys The guest physical address in question.
*/
int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
{
STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
/*
* Find the ram range.
* 99.8% of requests are expected to be in the first range.
*/
PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (!pRam)
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
/*
* Map the page.
* Make a special case for the zero page as it is kind of special.
*/
PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
if (!PGM_PAGE_IS_ZERO(pPage))
{
void *pv;
PPGMPAGEMAP pMap;
int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
if (RT_FAILURE(rc))
return rc;
pTlbe->pMap = pMap;
pTlbe->pv = pv;
}
else
{
Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
pTlbe->pMap = NULL;
pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
}
pTlbe->pPage = pPage;
return VINF_SUCCESS;
}
/**
* Load a guest page into the ring-3 physical TLB.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pPGM The PGM instance pointer.
* @param pPage Pointer to the PGMPAGE structure corresponding to
* GCPhys.
* @param GCPhys The guest physical address in question.
*/
int pgmPhysPageLoadIntoTlbWithPage(PPGM pPGM, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
/*
* Map the page.
* Make a special case for the zero page as it is kind of special.
*/
PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
if (!PGM_PAGE_IS_ZERO(pPage))
{
void *pv;
PPGMPAGEMAP pMap;
int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
if (RT_FAILURE(rc))
return rc;
pTlbe->pMap = pMap;
pTlbe->pv = pv;
}
else
{
Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
pTlbe->pMap = NULL;
pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
}
pTlbe->pPage = pPage;
return VINF_SUCCESS;
}
#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
/**
* Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
* own the PGM lock and therefore not need to lock the mapped page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param pPage Pointer to the PGMPAGE structure for the page.
* @param ppv Where to store the address corresponding to GCPhys.
*
* @internal
*/
int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
{
int rc;
AssertReturn(pPage, VERR_INTERNAL_ERROR);
Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect) || VM_IS_EMT(pVM));
/*
* Make sure the page is writable.
*/
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_FAILURE(rc))
return rc;
}
Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
/*
* Get the mapping address.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
*ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK));
#else
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
#endif
return VINF_SUCCESS;
}
/**
* Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
* own the PGM lock and therefore not need to lock the mapped page.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param pPage Pointer to the PGMPAGE structure for the page.
* @param ppv Where to store the address corresponding to GCPhys.
*
* @internal
*/
int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv)
{
int rc;
AssertReturn(pPage, VERR_INTERNAL_ERROR);
Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect) || VM_IS_EMT(pVM));
Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
/*
* Get the mapping address.
*/
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
*ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
#else
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
if (RT_FAILURE(rc))
return rc;
*ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
#endif
return VINF_SUCCESS;
}
/**
* Requests the mapping of a guest page into the current context.
*
* This API should only be used for very short term, as it will consume
* scarse resources (R0 and GC) in the mapping cache. When you're done
* with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* This API will assume your intention is to write to the page, and will
* therefore replace shared and zero pages. If you do not intend to modify
* the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread Any thread.
*/
VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
#ifdef VBOX_WITH_NEW_PHYS_CODE
# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/*
* Find the page and make sure it's writable.
*/
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
if (RT_SUCCESS(rc))
{
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_SUCCESS(rc))
{
*ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
#if 0
pLock->pvMap = 0;
pLock->pvPage = pPage;
#else
pLock->u32Dummy = UINT32_MAX;
#endif
}
}
# else
int rc = pgmLock(pVM);
AssertRCReturn(rc, rc);
/*
* Query the Physical TLB entry for the page (may fail).
*/
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
if (RT_SUCCESS(rc))
{
/*
* If the page is shared, the zero page, or being write monitored
* it must be converted to an page that's writable if possible.
*/
PPGMPAGE pPage = pTlbe->pPage;
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (RT_SUCCESS(rc))
rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
}
if (RT_SUCCESS(rc))
{
/*
* Now, just perform the locking and calculate the return address.
*/
PPGMPAGEMAP pMap = pTlbe->pMap;
pMap->cRefs++;
#if 0 /** @todo implement locking properly */
if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
{
AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
pMap->cRefs++; /* Extra ref to prevent it from going away. */
}
#endif
*ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
pLock->pvPage = pPage;
pLock->pvMap = pMap;
}
}
pgmUnlock(pVM);
#endif /* IN_RING3 || IN_RING0 */
return rc;
#else
/*
* Temporary fallback code.
*/
# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/** @todo @bugref{3202}: check up this path. */
return PGMDynMapGCPageOff(pVM, GCPhys, ppv);
# else
return PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1, (PRTR3PTR)ppv);
# endif
#endif
}
/**
* Requests the mapping of a guest page into the current context.
*
* This API should only be used for very short term, as it will consume
* scarse resources (R0 and GC) in the mapping cache. When you're done
* with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread Any thread.
*/
VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
{
/** @todo implement this */
return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock);
}
/**
* Requests the mapping of a guest page given by virtual address into the current context.
*
* This API should only be used for very short term, as it will consume
* scarse resources (R0 and GC) in the mapping cache. When you're done
* with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* This API will assume your intention is to write to the page, and will
* therefore replace shared and zero pages. If you do not intend to modify
* the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
* @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread EMT
*/
VMMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
{
VM_ASSERT_EMT(pVM);
RTGCPHYS GCPhys;
int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock);
return rc;
}
/**
* Requests the mapping of a guest page given by virtual address into the current context.
*
* This API should only be used for very short term, as it will consume
* scarse resources (R0 and GC) in the mapping cache. When you're done
* with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
* @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread EMT
*/
VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
{
VM_ASSERT_EMT(pVM);
RTGCPHYS GCPhys;
int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock);
return rc;
}
/**
* Release the mapping of a guest page.
*
* This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
* PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
*
* @param pVM The VM handle.
* @param pLock The lock structure initialized by the mapping function.
*/
VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
{
#ifdef VBOX_WITH_NEW_PHYS_CODE
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/* currently nothing to do here. */
Assert(pLock->u32Dummy == UINT32_MAX);
pLock->u32Dummy = 0;
#else /* IN_RING3 */
PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
if (!pMap)
{
/* The ZERO page and MMIO2 ends up here. */
Assert(pLock->pvPage);
pLock->pvPage = NULL;
}
else
{
pgmLock(pVM);
# if 0 /** @todo implement page locking */
PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage;
Assert(pPage->cLocks >= 1);
if (pPage->cLocks != PGM_PAGE_MAX_LOCKS)
pPage->cLocks--;
# endif
Assert(pMap->cRefs >= 1);
pMap->cRefs--;
pMap->iAge = 0;
pgmUnlock(pVM);
}
#endif /* IN_RING3 */
#else
NOREF(pVM);
NOREF(pLock);
#endif
}
/**
* Converts a GC physical address to a HC ring-3 pointer.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
* @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
* a dynamic ram chunk boundary
*
* @param pVM The VM handle.
* @param GCPhys The GC physical address to convert.
* @param cbRange Physical range
* @param pR3Ptr Where to store the R3 pointer on success.
*
* @deprecated Avoid when possible!
*/
VMMDECL(int) PGMPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTR3PTR pR3Ptr)
{
#ifdef VBOX_WITH_NEW_PHYS_CODE
/** @todo this is kind of hacky and needs some more work. */
VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
LogAlways(("PGMPhysGCPhys2R3Ptr(,%RGp,%#x,): dont use this API!\n", GCPhys, cbRange)); /** @todo eliminate this API! */
# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
AssertFailedReturn(VERR_NOT_IMPLEMENTED);
# else
pgmLock(pVM);
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
if (RT_SUCCESS(rc))
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&pR3Ptr);
pgmUnlock(pVM);
Assert(rc <= VINF_SUCCESS);
return rc;
# endif
#else /* !VBOX_WITH_NEW_PHYS_CODE */
if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK))
{
AssertMsgFailed(("%RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
LogRel(("PGMPhysGCPhys2HCPtr %RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
}
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
if (RT_FAILURE(rc))
return rc;
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage)))
return VERR_PGM_PHYS_PAGE_RESERVED;
#endif
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off + cbRange > pRam->cb))
{
AssertMsgFailed(("%RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange));
return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
}
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES this is a rare occurence */
PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(pVM, pRam->paChunkR3Ptrs);
*pR3Ptr = (RTR3PTR)(paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
#else
*pR3Ptr = (RTR3PTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
#endif
}
else if (RT_LIKELY(pRam->pvR3))
*pR3Ptr = (RTR3PTR)((RTR3UINTPTR)pRam->pvR3 + off);
else
return VERR_PGM_PHYS_PAGE_RESERVED;
return VINF_SUCCESS;
#endif /* !VBOX_WITH_NEW_PHYS_CODE */
}
#ifdef VBOX_STRICT
/**
* PGMPhysGCPhys2R3Ptr convenience for use with assertions.
*
* @returns The R3Ptr, NIL_RTR3PTR on failure.
* @param pVM The VM handle.
* @param GCPhys The GC Physical addresss.
* @param cbRange Physical range.
*
* @deprecated Avoid when possible.
*/
VMMDECL(RTR3PTR) PGMPhysGCPhys2R3PtrAssert(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange)
{
RTR3PTR R3Ptr;
int rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys, cbRange, &R3Ptr);
if (RT_SUCCESS(rc))
return R3Ptr;
return NIL_RTR3PTR;
}
#endif /* VBOX_STRICT */
/**
* Converts a guest pointer to a GC physical address.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param pGCPhys Where to store the GC physical address.
*/
VMMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
{
int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
if (pGCPhys && RT_SUCCESS(rc))
*pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
return rc;
}
/**
* Converts a guest pointer to a HC physical address.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param pHCPhys Where to store the HC physical address.
*/
VMMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
{
RTGCPHYS GCPhys;
int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
return rc;
}
/**
* Converts a guest pointer to a R3 pointer.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param pR3Ptr Where to store the R3 virtual address.
*
* @deprecated Don't use this.
*/
VMMDECL(int) PGMPhysGCPtr2R3Ptr(PVM pVM, RTGCPTR GCPtr, PRTR3PTR pR3Ptr)
{
#ifdef VBOX_WITH_NEW_PHYS_CODE
VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
#endif
RTGCPHYS GCPhys;
int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
if (RT_SUCCESS(rc))
rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pR3Ptr);
return rc;
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
#ifdef IN_RING3
/**
* Cache PGMPhys memory access
*
* @param pVM VM Handle.
* @param pCache Cache structure pointer
* @param GCPhys GC physical address
* @param pbHC HC pointer corresponding to physical page
*
* @thread EMT.
*/
static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
{
uint32_t iCacheIndex;
Assert(VM_IS_EMT(pVM));
GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
ASMBitSet(&pCache->aEntries, iCacheIndex);
pCache->Entry[iCacheIndex].GCPhys = GCPhys;
pCache->Entry[iCacheIndex].pbR3 = pbR3;
}
#endif /* IN_RING3 */
#ifdef VBOX_WITH_NEW_PHYS_CODE
/**
* Deals with reading from a page with one or more ALL access handlers.
*
* @param pVM The VM handle.
* @param pPage The page descriptor.
* @param GCPhys The physical address to start reading at.
* @param pvBuf Where to put the bits we read.
* @param cb How much to read - less or equal to a page.
*/
static void pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb)
{
/*
* The most frequent access here is MMIO and shadowed ROM.
*
* The current code ASSUMES all these access handlers are page sized
* and that we do NOT use any virtual ones.
*/
if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL
&& PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) != PGM_PAGE_HNDL_VIRT_STATE_ALL)
{
#ifdef IN_RING3
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
AssertReleaseMsg(pCur, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
Assert(pCur->CTX_SUFF(pfnHandler));
const void *pvSrc;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc);
if (RT_SUCCESS(rc))
{
STAM_PROFILE_START(&pCur->Stat, h);
int rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pCur->CTX_SUFF(pvUser));
STAM_PROFILE_STOP(&pCur->Stat, h);
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvBuf, pvSrc, cb);
else
AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys));
}
else
{
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc));
memset(pvBuf, 0xff, cb);
}
#else
AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
#endif
}
else
AssertReleaseMsgFailed(("ALL access virtual handlers are not implemented here\n"));
}
/**
* Read physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
* want to ignore those.
*
* @param pVM VM Handle.
* @param GCPhys Physical address start reading from.
* @param pvBuf Where to put the read bits.
* @param cbRead How many bytes to read.
*/
VMMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
{
AssertMsgReturnVoid(cbRead > 0, ("don't even think about reading zero bytes!\n"));
LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
pgmLock(pVM);
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
for (;;)
{
/* Find range. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPHYS off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
unsigned iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb > cbRead)
cb = cbRead;
/*
* Any ALL access handlers?
*/
if (RT_UNLIKELY(PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)))
pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
else
{
/*
* Get the pointer to the page.
*/
const void *pvSrc;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
if (RT_SUCCESS(rc))
memcpy(pvBuf, pvSrc, cb);
else
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
pRam->GCPhys + off, pPage, rc));
}
/* next page */
if (cb >= cbRead)
{
pgmUnlock(pVM);
return;
}
cbRead -= cb;
off += cb;
pvBuf = (char *)pvBuf + cb;
} /* walk pages in ram range. */
GCPhys = pRam->GCPhysLast + 1;
}
else
{
LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
/*
* Unassigned address space.
*/
if (!pRam)
break;
size_t cb = pRam->GCPhys - GCPhys;
if (cb >= cbRead)
{
#if 0 /** @todo enable this later. */
memset(pvBuf, 0xff, cbRead);
#else
memset(pvBuf, 0, cbRead);
#endif
break;
}
#if 0 /** @todo enable this later. */
memset(pvBuf, 0xff, cb);
#else
memset(pvBuf, 0, cb);
#endif
cbRead -= cb;
pvBuf = (char *)pvBuf + cb;
GCPhys += cb;
}
} /* Ram range walk */
pgmUnlock(pVM);
}
#else /* Old PGMPhysRead */
/**
* Read physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
* want to ignore those.
*
* @param pVM VM Handle.
* @param GCPhys Physical address start reading from.
* @param pvBuf Where to put the read bits.
* @param cbRead How many bytes to read.
*/
VMMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
{
#ifdef IN_RING3
bool fGrabbedLock = false;
#endif
AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
if (cbRead == 0)
return;
LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
#ifdef IN_RING3
if (!VM_IS_EMT(pVM))
{
pgmLock(pVM);
fGrabbedLock = true;
}
#endif
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
for (;;)
{
/* Find range. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPHYS off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
unsigned iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
size_t cb;
/* Physical chunk in dynamically allocated range not present? */
if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
{
/* Treat it as reserved; return zeros */
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbRead)
{
memset(pvBuf, 0, cbRead);
goto l_End;
}
memset(pvBuf, 0, cb);
}
/* temp hacks, will be reorganized. */
/*
* Physical handler.
*/
else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_ALL)
&& !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* find and call the handler */
PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
if (pNode && pNode->pfnHandlerR3)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbRead)
cb = cbRead;
void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
/* Note! Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvSrc = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
if (cb >= cbRead)
{
memcpy(pvBuf, pvSrc, cbRead);
goto l_End;
}
memcpy(pvBuf, pvSrc, cb);
}
else if (cb >= cbRead)
goto l_End;
}
/*
* Virtual handlers.
*/
else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) >= PGM_PAGE_HNDL_VIRT_STATE_ALL)
&& !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* Search the whole tree for matching physical addresses (rather expensive!) */
PPGMVIRTHANDLER pNode;
unsigned iPage;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
if (RT_SUCCESS(rc2) && pNode->pfnHandlerR3)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbRead)
cb = cbRead;
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
/* Note! Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvSrc = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
if (cb >= cbRead)
{
memcpy(pvBuf, pvSrc, cbRead);
goto l_End;
}
memcpy(pvBuf, pvSrc, cb);
}
else if (cb >= cbRead)
goto l_End;
}
else
{
switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */
{
/*
* Normal memory or ROM.
*/
case 0:
case MM_RAM_FLAGS_ROM:
case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
//case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask.
case MM_RAM_FLAGS_MMIO2: // MMIO2 isn't in the mask.
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvSrc = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbRead)
{
#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */)
pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
memcpy(pvBuf, pvSrc, cbRead);
goto l_End;
}
memcpy(pvBuf, pvSrc, cb);
break;
}
/*
* All reserved, nothing there.
*/
case MM_RAM_FLAGS_RESERVED:
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbRead)
{
memset(pvBuf, 0, cbRead);
goto l_End;
}
memset(pvBuf, 0, cb);
break;
/*
* The rest needs to be taken more carefully.
*/
default:
#if 1 /** @todo r=bird: Can you do this properly please. */
/** @todo Try MMIO; quick hack */
if (cbRead <= 8 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
goto l_End;
#endif
/** @todo fix me later. */
AssertReleaseMsgFailed(("Unknown read at %RGp size %u implement the complex physical reading case %RHp\n",
GCPhys, cbRead,
pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
break;
}
}
cbRead -= cb;
off += cb;
pvBuf = (char *)pvBuf + cb;
}
GCPhys = pRam->GCPhysLast + 1;
}
else
{
LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
/*
* Unassigned address space.
*/
size_t cb;
if ( !pRam
|| (cb = pRam->GCPhys - GCPhys) >= cbRead)
{
memset(pvBuf, 0, cbRead);
goto l_End;
}
memset(pvBuf, 0, cb); /** @todo this is wrong, unassigne == 0xff not 0x00! */
cbRead -= cb;
pvBuf = (char *)pvBuf + cb;
GCPhys += cb;
}
}
l_End:
#ifdef IN_RING3
if (fGrabbedLock)
pgmUnlock(pVM);
#endif
return;
}
#endif /* Old PGMPhysRead */
#ifdef VBOX_WITH_NEW_PHYS_CODE
/**
* Deals with writing to a page with one or more WRITE or ALL access handlers.
*
* @param pVM The VM handle.
* @param pPage The page descriptor.
* @param GCPhys The physical address to start writing at.
* @param pvBuf What to write.
* @param cbWrite How much to write - less or equal to a page.
*/
static void pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite)
{
void *pvDst = NULL;
int rc;
/*
* Give priority to physical handlers (like #PF does).
*
* Hope for a lonely physical handler first that covers the whole
* write area. This should be a pretty frequent case with MMIO and
* the heavy usage of full page handlers in the page pool.
*/
if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
|| PGM_PAGE_IS_MMIO(pPage) /* screw virtual handlers on MMIO pages */)
{
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (pCur)
{
Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
Assert(pCur->CTX_SUFF(pfnHandler));
size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
if (cbRange > cbWrite)
cbRange = cbWrite;
#ifdef IN_RING3
if (!PGM_PAGE_IS_MMIO(pPage))
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
else
rc = VINF_SUCCESS;
if (RT_SUCCESS(rc))
{
STAM_PROFILE_START(&pCur->Stat, h);
rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pCur->CTX_SUFF(pvUser));
STAM_PROFILE_STOP(&pCur->Stat, h);
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvDst, pvBuf, cbRange);
else
AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
}
else
AssertLogRelMsgFailedReturnVoid(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc));
#else
AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
#endif
if (RT_LIKELY(cbRange == cbWrite))
return;
/* more fun to be had below */
cbWrite -= cbRange;
GCPhys += cbRange;
pvBuf = (uint8_t *)pvBuf + cbRange;
pvDst = (uint8_t *)pvDst + cbRange;
}
/* else: the handler is somewhere else in the page, deal with it below. */
Assert(!PGM_PAGE_IS_MMIO(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
}
/*
* A virtual handler without any interfering physical handlers.
* Hopefully it'll conver the whole write.
*/
else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
{
unsigned iPage;
PPGMVIRTHANDLER pCur;
rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pCur, &iPage);
if (RT_SUCCESS(rc))
{
size_t cbRange = (PAGE_OFFSET_MASK & pCur->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
if (cbRange > cbWrite)
cbRange = cbWrite;
#ifdef IN_RING3
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
if (RT_SUCCESS(rc))
{
rc = VINF_PGM_HANDLER_DO_DEFAULT;
if (pCur->pfnHandlerR3)
{
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pCur->Core.Key & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pCur->Stat, h);
rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pCur->Stat, h);
}
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvDst, pvBuf, cbRange);
else
AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
}
else
AssertLogRelMsgFailedReturnVoid(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc));
#else
AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cbRange));
#endif
if (RT_LIKELY(cbRange == cbWrite))
return;
/* more fun to be had below */
cbWrite -= cbRange;
GCPhys += cbRange;
pvBuf = (uint8_t *)pvBuf + cbRange;
pvDst = (uint8_t *)pvDst + cbRange;
}
/* else: the handler is somewhere else in the page, deal with it below. */
}
/*
* Deal with all the odd ends.
*/
/* We need a writable destination page. */
if (!pvDst)
{
rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
AssertLogRelMsgReturnVoid(RT_SUCCESS(rc),
("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
GCPhys, pPage, rc));
}
/* The loop state (big + ugly). */
unsigned iVirtPage = 0;
PPGMVIRTHANDLER pVirt = NULL;
uint32_t offVirt = PAGE_SIZE;
uint32_t offVirtLast = PAGE_SIZE;
bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
PPGMPHYSHANDLER pPhys = NULL;
uint32_t offPhys = PAGE_SIZE;
uint32_t offPhysLast = PAGE_SIZE;
bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
/* The loop. */
for (;;)
{
/*
* Find the closest handler at or above GCPhys.
*/
if (fMoreVirt && !pVirt)
{
int rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iVirtPage);
if (RT_SUCCESS(rc))
{
offVirt = 0;
offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
}
else
{
PPGMPHYS2VIRTHANDLER pVirtPhys;
pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
GCPhys, true /* fAbove */);
if (pVirtPhys)
{
/* ASSUME that pVirtPhys only covers one page. */
Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
offVirtLast = pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK - (GCPhys & PAGE_OFFSET_MASK);
}
else
{
pVirt = NULL;
fMoreVirt = false;
offVirt = offVirtLast = PAGE_SIZE;
}
}
}
if (fMorePhys && !pPhys)
{
pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (pPhys)
{
offPhys = 0;
offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
}
else
{
pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
GCPhys, true /* fAbove */);
if ( pPhys
&& pPhys->Core.Key <= GCPhys + (cbWrite - 1))
{
offPhys = pPhys->Core.Key - GCPhys;
offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
}
else
{
pPhys = NULL;
fMorePhys = false;
offPhys = offPhysLast = PAGE_SIZE;
}
}
}
/*
* Handle access to space without handlers (that's easy).
*/
rc = VINF_PGM_HANDLER_DO_DEFAULT;
size_t cbRange = cbWrite;
if (offPhys && offVirt)
{
if (cbRange > offPhys)
cbRange = offPhys;
if (cbRange > offVirt)
cbRange = offVirt;
}
/*
* Physical handler.
*/
else if (!offPhys && offVirt)
{
if (cbRange > offPhysLast + 1)
cbRange = offPhysLast + 1;
if (cbRange > offVirt)
cbRange = offVirt;
#ifdef IN_RING3
STAM_PROFILE_START(&pPhys->Stat, h);
rc = pPhys->CTX_SUFF(pfnHandler)(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pPhys->CTX_SUFF(pvUser));
STAM_PROFILE_STOP(&pPhys->Stat, h);
AssertLogRelMsg(rc != VINF_SUCCESS && rc != VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pPhys->pszDesc));
#else
AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
#endif
pPhys = NULL;
}
/*
* Virtual handler.
*/
else if (offPhys && !offVirt)
{
if (cbRange > offVirtLast + 1)
cbRange = offVirtLast + 1;
if (cbRange > offPhys)
cbRange = offPhys;
#ifdef IN_RING3
if (pVirt->pfnHandlerR3)
{
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
+ (iVirtPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pVirt->Stat, h);
rc = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pVirt->Stat, h);
AssertLogRelMsg(rc != VINF_SUCCESS && rc != VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
}
#else
AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cbRange));
#endif
pVirt = NULL;
}
/*
* Both... give the physical one priority.
*/
else
{
Assert(!offPhys && !offVirt);
if (cbRange > offVirtLast + 1)
cbRange = offVirtLast + 1;
if (cbRange > offPhysLast + 1)
cbRange = offPhysLast + 1;
#ifdef IN_RING3
if (pVirt->pfnHandlerR3)
Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
STAM_PROFILE_START(&pPhys->Stat, h);
rc = pPhys->CTX_SUFF(pfnHandler)(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pPhys->CTX_SUFF(pvUser));
STAM_PROFILE_STOP(&pPhys->Stat, h);
AssertLogRelMsg(rc != VINF_SUCCESS && rc != VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pPhys->pszDesc));
if (pVirt->pfnHandlerR3)
{
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
+ (iVirtPage << PAGE_SHIFT)
+ (GCPhys & PAGE_OFFSET_MASK);
STAM_PROFILE_START(&pVirt->Stat, h);
int rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
STAM_PROFILE_STOP(&pVirt->Stat, h);
AssertLogRelMsg(rc2 != VINF_SUCCESS && rc2 != VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
if (rc2 == VINF_SUCCESS && rc == VINF_PGM_HANDLER_DO_DEFAULT)
rc = VINF_SUCCESS;
}
#else
AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
#endif
pPhys = NULL;
pVirt = NULL;
}
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
memcpy(pvDst, pvBuf, cbRange);
/*
* Advance if we've got more stuff to do.
*/
if (cbRange >= cbWrite)
return;
cbWrite -= cbRange;
GCPhys += cbRange;
pvBuf = (uint8_t *)pvBuf + cbRange;
pvDst = (uint8_t *)pvDst + cbRange;
offPhys -= cbRange;
offPhysLast -= cbRange;
offVirt -= cbRange;
offVirtLast -= cbRange;
}
}
/**
* Write to physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
* want to ignore those.
*
* @param pVM VM Handle.
* @param GCPhys Physical address to write to.
* @param pvBuf What to write.
* @param cbWrite How many bytes to write.
*/
VMMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
{
AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
AssertMsgReturnVoid(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
pgmLock(pVM);
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
for (;;)
{
/* Find range. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPTR off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
RTGCPTR iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb > cbWrite)
cb = cbWrite;
/*
* Any active WRITE or ALL access handlers?
*/
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
else
{
/*
* Get the pointer to the page.
*/
void *pvDst;
int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
if (RT_SUCCESS(rc))
memcpy(pvDst, pvBuf, cb);
else
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
pRam->GCPhys + off, pPage, rc));
}
/* next page */
if (cb >= cbWrite)
{
pgmUnlock(pVM);
return;
}
cbWrite -= cb;
off += cb;
pvBuf = (const char *)pvBuf + cb;
} /* walk pages in ram range */
GCPhys = pRam->GCPhysLast + 1;
}
else
{
/*
* Unassigned address space, skip it.
*/
if (!pRam)
break;
size_t cb = pRam->GCPhys - GCPhys;
if (cb >= cbWrite)
break;
cbWrite -= cb;
pvBuf = (const char *)pvBuf + cb;
GCPhys += cb;
}
} /* Ram range walk */
pgmUnlock(pVM);
}
#else /* Old PGMPhysWrite */
/**
* Write to physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
* want to ignore those.
*
* @param pVM VM Handle.
* @param GCPhys Physical address to write to.
* @param pvBuf What to write.
* @param cbWrite How many bytes to write.
*/
VMMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
{
#ifdef IN_RING3
bool fGrabbedLock = false;
#endif
AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
if (cbWrite == 0)
return;
LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
#ifdef IN_RING3
if (!VM_IS_EMT(pVM))
{
pgmLock(pVM);
fGrabbedLock = true;
}
#endif
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
for (;;)
{
/* Find range. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPTR off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
RTGCPTR iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
/* Physical chunk in dynamically allocated range not present? */
if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
{
int rc;
#ifdef IN_RING3
if (fGrabbedLock)
{
pgmUnlock(pVM);
rc = pgmr3PhysGrowRange(pVM, GCPhys);
if (rc == VINF_SUCCESS)
PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pRam is still valid (paranoia) */
return;
}
rc = pgmr3PhysGrowRange(pVM, GCPhys);
#else
rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (rc != VINF_SUCCESS)
goto l_End;
}
size_t cb;
/* temporary hack, will reogranize is later. */
/*
* Virtual handlers
*/
if ( PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
&& !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
{
if (PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
{
/*
* Physical write handler + virtual write handler.
* Consider this a quick workaround for the CSAM + shadow caching problem.
*
* We hand it to the shadow caching first since it requires the unchanged
* data. CSAM will have to put up with it already being changed.
*/
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* 1. The physical handler */
PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
if (pPhysNode && pPhysNode->pfnHandlerR3)
{
size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
/* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
}
/* 2. The virtual handler (will see incorrect data) */
PPGMVIRTHANDLER pVirtNode;
unsigned iPage;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
if (RT_SUCCESS(rc2) && pVirtNode->pfnHandlerR3)
{
size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->Core.Key & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
/* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
rc2 = pVirtNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
&& rc == VINF_PGM_HANDLER_DO_DEFAULT)
|| ( RT_FAILURE(rc2)
&& RT_SUCCESS(rc)))
rc = rc2;
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
if (cb >= cbWrite)
{
memcpy(pvDst, pvBuf, cbWrite);
goto l_End;
}
memcpy(pvDst, pvBuf, cb);
}
else if (cb >= cbWrite)
goto l_End;
}
else
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3
/** @todo deal with this in GC and R0! */
/* Search the whole tree for matching physical addresses (rather expensive!) */
PPGMVIRTHANDLER pNode;
unsigned iPage;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
if (RT_SUCCESS(rc2) && pNode->pfnHandlerR3)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
/* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
if (cb >= cbWrite)
{
memcpy(pvDst, pvBuf, cbWrite);
goto l_End;
}
memcpy(pvDst, pvBuf, cb);
}
else if (cb >= cbWrite)
goto l_End;
}
}
/*
* Physical handler.
*/
else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE)
&& !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* find and call the handler */
PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
if (pNode && pNode->pfnHandlerR3)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
/** @todo Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
if (cb >= cbWrite)
{
memcpy(pvDst, pvBuf, cbWrite);
goto l_End;
}
memcpy(pvDst, pvBuf, cb);
}
else if (cb >= cbWrite)
goto l_End;
}
else
{
/** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
{
/*
* Normal memory, MMIO2 or writable shadow ROM.
*/
case 0:
case MM_RAM_FLAGS_MMIO2:
case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */
{
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
#endif
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbWrite)
{
#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */)
pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
memcpy(pvDst, pvBuf, cbWrite);
goto l_End;
}
memcpy(pvDst, pvBuf, cb);
break;
}
/*
* All reserved, nothing there.
*/
case MM_RAM_FLAGS_RESERVED:
case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbWrite)
goto l_End;
break;
/*
* The rest needs to be taken more carefully.
*/
default:
#if 1 /** @todo r=bird: Can you do this properly please. */
/** @todo Try MMIO; quick hack */
if (cbWrite <= 8 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
goto l_End;
#endif
/** @todo fix me later. */
AssertReleaseMsgFailed(("Unknown write at %RGp size %u implement the complex physical writing case %RHp\n",
GCPhys, cbWrite,
(pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)))); /** @todo PAGE FLAGS */
/* skip the write */
cb = cbWrite;
break;
}
}
cbWrite -= cb;
off += cb;
pvBuf = (const char *)pvBuf + cb;
}
GCPhys = pRam->GCPhysLast + 1;
}
else
{
/*
* Unassigned address space.
*/
size_t cb;
if ( !pRam
|| (cb = pRam->GCPhys - GCPhys) >= cbWrite)
goto l_End;
cbWrite -= cb;
pvBuf = (const char *)pvBuf + cb;
GCPhys += cb;
}
}
l_End:
#ifdef IN_RING3
if (fGrabbedLock)
pgmUnlock(pVM);
#endif
return;
}
#endif /* Old PGMPhysWrite */
/**
* Read from guest physical memory by GC physical address, bypassing
* MMIO and access handlers.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst The destination address.
* @param GCPhysSrc The source address (GC physical address).
* @param cb The number of bytes to read.
*/
VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
{
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void const *pvSrc;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysSrc += cbPage;
pvDst = (uint8_t *)pvDst + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysSrc += PAGE_SIZE;
pvDst = (uint8_t *)pvDst + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
#ifndef IN_RC /* Ring 0 & 3 only. (Just not needed in GC.) */
/**
* Write to guest physical memory referenced by GC pointer.
* Write memory to GC physical address in guest physical memory.
*
* This will bypass MMIO and access handlers.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPhysDst The GC physical address of the destination.
* @param pvSrc The source buffer.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
{
LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void *pvDst;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysDst += cbPage;
pvSrc = (const uint8_t *)pvSrc + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPhysDst += PAGE_SIZE;
pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Read from guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and not set any accessed bits.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst The destination address.
* @param GCPtrSrc The source address (GC pointer).
* @param cb The number of bytes to read.
*/
VMMDECL(int) PGMPhysSimpleReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void const *pvSrc;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
pvDst = (uint8_t *)pvDst + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
pvDst = (uint8_t *)pvDst + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Write to guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and not set dirty or accessed bits.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
/*
* Treat the first page as a special case.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void *pvDst;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
pvSrc = (const uint8_t *)pvSrc + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Write to guest physical memory referenced by GC pointer and update the PTE.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers but will set any dirty and accessed bits in the PTE.
*
* If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
/*
* Treat the first page as a special case.
* Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
*/
if (!cb)
return VINF_SUCCESS;
/* map the 1st page */
void *pvDst;
PGMPAGEMAPLOCK Lock;
int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* optimize for the case where access is completely within the first page. */
size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (RT_LIKELY(cb <= cbPage))
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
return VINF_SUCCESS;
}
/* copy to the end of the page. */
memcpy(pvDst, pvSrc, cbPage);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
pvSrc = (const uint8_t *)pvSrc + cbPage;
cb -= cbPage;
/*
* Page by page.
*/
for (;;)
{
/* map the page */
rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
if (RT_FAILURE(rc))
return rc;
/* last page? */
if (cb <= PAGE_SIZE)
{
memcpy(pvDst, pvSrc, cb);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
return VINF_SUCCESS;
}
/* copy the entire page and advance */
memcpy(pvDst, pvSrc, PAGE_SIZE);
PGMPhysReleasePageMappingLock(pVM, &Lock);
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
cb -= PAGE_SIZE;
}
/* won't ever get here. */
}
/**
* Read from guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* respect access handlers and set accessed bits.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst The destination address.
* @param GCPtrSrc The source address (GC pointer).
* @param cb The number of bytes to read.
*/
VMMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
RTGCPHYS GCPhys;
int rc;
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
/*
* Optimize reads within a single page.
*/
if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
/* Convert virtual to physical address */
rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
AssertRCReturn(rc, rc);
/* mark the guest page as accessed. */
rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
AssertRC(rc);
PGMPhysRead(pVM, GCPhys, pvDst, cb);
return VINF_SUCCESS;
}
/*
* Page by page.
*/
for (;;)
{
/* Convert virtual to physical address */
rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
AssertRCReturn(rc, rc);
/* mark the guest page as accessed. */
int rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
AssertRC(rc);
/* copy */
size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
if (cbRead >= cb)
{
PGMPhysRead(pVM, GCPhys, pvDst, cb);
return VINF_SUCCESS;
}
PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
/* next */
cb -= cbRead;
pvDst = (uint8_t *)pvDst + cbRead;
GCPtrSrc += cbRead;
}
}
/**
* Write to guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* respect access handlers and set dirty and accessed bits.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
VMMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
RTGCPHYS GCPhys;
int rc;
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
/*
* Optimize writes within a single page.
*/
if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
/* Convert virtual to physical address */
rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
AssertMsgRCReturn(rc, ("PGMPhysGCPtr2GCPhys failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
/* mark the guest page as accessed and dirty. */
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
return VINF_SUCCESS;
}
/*
* Page by page.
*/
for (;;)
{
/* Convert virtual to physical address */
rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
AssertRCReturn(rc, rc);
/* mark the guest page as accessed and dirty. */
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
/* copy */
size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (cbWrite >= cb)
{
PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
return VINF_SUCCESS;
}
PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
/* next */
cb -= cbWrite;
pvSrc = (uint8_t *)pvSrc + cbWrite;
GCPtrDst += cbWrite;
}
}
#endif /* !IN_RC */
/**
* Performs a read of guest virtual memory for instruction emulation.
*
* This will check permissions, raise exceptions and update the access bits.
*
* The current implementation will bypass all access handlers. It may later be
* changed to at least respect MMIO.
*
*
* @returns VBox status code suitable to scheduling.
* @retval VINF_SUCCESS if the read was performed successfully.
* @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
* @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
*
* @param pVM The VM handle.
* @param pCtxCore The context core.
* @param pvDst Where to put the bytes we've read.
* @param GCPtrSrc The source address.
* @param cb The number of bytes to read. Not more than a page.
*
* @remark This function will dynamically map physical pages in GC. This may unmap
* mappings done by the caller. Be careful!
*/
VMMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
{
Assert(cb <= PAGE_SIZE);
/** @todo r=bird: This isn't perfect!
* -# It's not checking for reserved bits being 1.
* -# It's not correctly dealing with the access bit.
* -# It's not respecting MMIO memory or any other access handlers.
*/
/*
* 1. Translate virtual to physical. This may fault.
* 2. Map the physical address.
* 3. Do the read operation.
* 4. Set access bits if required.
*/
int rc;
unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
if (cb <= cb1)
{
/*
* Not crossing pages.
*/
RTGCPHYS GCPhys;
uint64_t fFlags;
rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
if (RT_SUCCESS(rc))
{
/** @todo we should check reserved bits ... */
void *pvSrc;
rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0, cb); /** @todo this is wrong, it should be 0xff */
break;
default:
return rc;
}
/** @todo access bit emulation isn't 100% correct. */
if (!(fFlags & X86_PTE_A))
{
rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
else
{
/*
* Crosses pages.
*/
size_t cb2 = cb - cb1;
uint64_t fFlags1;
RTGCPHYS GCPhys1;
uint64_t fFlags2;
RTGCPHYS GCPhys2;
rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
if (RT_SUCCESS(rc))
rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
if (RT_SUCCESS(rc))
{
/** @todo we should check reserved bits ... */
AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
void *pvSrc1;
rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
switch (rc)
{
case VINF_SUCCESS:
memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
break;
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0, cb1); /** @todo this is wrong, it should be 0xff */
break;
default:
return rc;
}
void *pvSrc2;
rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
switch (rc)
{
case VINF_SUCCESS:
memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
break;
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset((uint8_t *)pvDst + cb1, 0, cb2); /** @todo this is wrong, it should be 0xff */
break;
default:
return rc;
}
if (!(fFlags1 & X86_PTE_A))
{
rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
if (!(fFlags2 & X86_PTE_A))
{
rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
/*
* Raise a #PF.
*/
uint32_t uErr;
/* Get the current privilege level. */
uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
switch (rc)
{
case VINF_SUCCESS:
uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
break;
case VERR_PAGE_NOT_PRESENT:
case VERR_PAGE_TABLE_NOT_PRESENT:
uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
break;
default:
AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
return rc;
}
Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
}
/// @todo VMMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)