PGMAllPhys.cpp revision 308abff56ead3a7df68c25111148318844021b47
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, Physical Memory Addressing.
*/
/*
* Copyright (C) 2006 InnoTek Systemberatung GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*
* If you received this file as part of a commercial VirtualBox
* distribution, then only the terms of your commercial VirtualBox
* license agreement apply instead of the previous paragraph.
*/
/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
* Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
*
* Since this flag is currently incorrectly kept set for ROM regions we will
* have to ignore it for now so we don't break stuff.
*/
#define PGM_IGNORE_RAM_FLAGS_RESERVED
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_PHYS
#include <VBox/pgm.h>
#include <VBox/trpm.h>
#include <VBox/vmm.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/asm.h>
#include <VBox/log.h>
#ifdef IN_RING3
# include <iprt/thread.h>
#endif
/**
* Checks if Address Gate 20 is enabled or not.
*
* @returns true if enabled.
* @returns false if disabled.
* @param pVM VM handle.
*/
PGMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
{
LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */
}
/**
* Validates a GC physical address.
*
* @returns true if valid.
* @returns false if invalid.
* @param pVM The VM handle.
* @param GCPhys The physical address to validate.
*/
PGMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
{
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
return true;
}
return false;
}
/**
* Checks if a GC physical address is a normal page,
* i.e. not ROM, MMIO or reserved.
*
* @returns true if normal.
* @returns false if invalid, ROM, MMIO or reserved page.
* @param pVM The VM handle.
* @param GCPhys The physical address to check.
*/
PGMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
{
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
return !(pRam->aHCPhys[off >> PAGE_SHIFT] & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
}
return false;
}
/**
* Converts a GC physical address to a HC physical address.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
* @param pVM The VM handle.
* @param GCPhys The GC physical address to convert.
* @param pHCPhys Where to store the HC physical address on success.
*/
PGMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
{
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
if ( pRam->pvHC
|| (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
{
unsigned iPage = off >> PAGE_SHIFT;
if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK)))
{
#ifdef IN_RING3
int rc = pgmr3PhysGrowRange(pVM, GCPhys);
#else
int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (rc != VINF_SUCCESS)
return rc;
}
RTHCPHYS HCPhys = pRam->aHCPhys[off >> PAGE_SHIFT];
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if (!(HCPhys & MM_RAM_FLAGS_RESERVED))
#endif
{
*pHCPhys = (HCPhys & X86_PTE_PAE_PG_MASK)
| (off & PAGE_OFFSET_MASK);
return VINF_SUCCESS;
}
}
return VERR_PGM_PHYS_PAGE_RESERVED;
}
}
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Converts a GC physical address to a HC pointer.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
* GC physical address.
* @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
* a dynamic ram chunk boundary
* @param pVM The VM handle.
* @param GCPhys The GC physical address to convert.
* @param cbRange Physical range
* @param pHCPtr Where to store the HC pointer on success.
*/
PGMDECL(int) PGMPhysGCPhys2HCPtr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTHCPTR pHCPtr)
{
#ifdef PGM_DYNAMIC_RAM_ALLOC
if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange) & PGM_DYNAMIC_CHUNK_BASE_MASK))
{
AssertMsgFailed(("PGMPhysGCPhys2HCPtr %VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
}
#endif
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (off < pRam->cb)
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned iPage = off >> PAGE_SHIFT;
if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK)))
{
#ifdef IN_RING3
int rc = pgmr3PhysGrowRange(pVM, GCPhys);
#else
int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (rc != VINF_SUCCESS)
return rc;
}
unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
return VINF_SUCCESS;
}
if (pRam->pvHC)
{
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if (!(pRam->aHCPhys[off >> PAGE_SHIFT] & MM_RAM_FLAGS_RESERVED))
#endif
{
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
return VINF_SUCCESS;
}
}
return VERR_PGM_PHYS_PAGE_RESERVED;
}
}
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Validates a HC pointer.
*
* @returns true if valid.
* @returns false if invalid.
* @param pVM The VM handle.
* @param HCPtr The pointer to validate.
*/
PGMDECL(bool) PGMPhysIsHCPtrValid(PVM pVM, RTHCPTR HCPtr)
{
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/** @note this is quite slow */
for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
{
if (CTXSUFF(pRam->pavHCChunk)[iChunk])
{
RTHCUINTPTR off = (RTHCUINTPTR)HCPtr - (RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk];
if (off < PGM_DYNAMIC_CHUNK_SIZE)
return true;
}
}
}
else if (pRam->pvHC)
{
RTHCUINTPTR off = (RTHCUINTPTR)HCPtr - (RTHCUINTPTR)pRam->pvHC;
if (off < pRam->cb)
return true;
}
}
return false;
}
/**
* Converts a HC pointer to a GC physical address.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_INVALID_POINTER if the pointer is not within the
* GC physical memory.
* @param pVM The VM handle.
* @param HCPtr The HC pointer to convert.
* @param pGCPhys Where to store the GC physical address on success.
*/
PGMDECL(int) PGMPhysHCPtr2GCPhys(PVM pVM, RTHCPTR HCPtr, PRTGCPHYS pGCPhys)
{
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/** @note this is quite slow */
for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
{
if (CTXSUFF(pRam->pavHCChunk)[iChunk])
{
RTHCUINTPTR off = (RTHCUINTPTR)HCPtr - (RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk];
if (off < PGM_DYNAMIC_CHUNK_SIZE)
{
*pGCPhys = pRam->GCPhys + iChunk*PGM_DYNAMIC_CHUNK_SIZE + off;
return VINF_SUCCESS;
}
}
}
}
else if (pRam->pvHC)
{
RTHCUINTPTR off = (RTHCUINTPTR)HCPtr - (RTHCUINTPTR)pRam->pvHC;
if (off < pRam->cb)
{
*pGCPhys = pRam->GCPhys + off;
return VINF_SUCCESS;
}
}
}
return VERR_INVALID_POINTER;
}
/**
* Converts a HC pointer to a GC physical address.
*
* @returns VINF_SUCCESS on success.
* @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
* page but has no physical backing.
* @returns VERR_INVALID_POINTER if the pointer is not within the
* GC physical memory.
* @param pVM The VM handle.
* @param HCPtr The HC pointer to convert.
* @param pHCPhys Where to store the HC physical address on success.
*/
PGMDECL(int) PGMPhysHCPtr2HCPhys(PVM pVM, RTHCPTR HCPtr, PRTHCPHYS pHCPhys)
{
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/** @note this is quite slow */
for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
{
if (CTXSUFF(pRam->pavHCChunk)[iChunk])
{
RTHCUINTPTR off = (RTHCUINTPTR)HCPtr - (RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk];
if (off < PGM_DYNAMIC_CHUNK_SIZE)
{
RTHCPHYS HCPhys = pRam->aHCPhys[off >> PAGE_SHIFT];
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if (!(HCPhys & MM_RAM_FLAGS_RESERVED))
#endif
{
*pHCPhys = (HCPhys & X86_PTE_PAE_PG_MASK)
| (off & PAGE_OFFSET_MASK);
return VINF_SUCCESS;
}
return VERR_PGM_PHYS_PAGE_RESERVED;
}
}
}
}
else if (pRam->pvHC)
{
RTHCUINTPTR off = (RTHCUINTPTR)HCPtr - (RTHCUINTPTR)pRam->pvHC;
if (off < pRam->cb)
{
RTHCPHYS HCPhys = pRam->aHCPhys[off >> PAGE_SHIFT];
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if (!(HCPhys & MM_RAM_FLAGS_RESERVED))
#endif
{
*pHCPhys = (HCPhys & X86_PTE_PAE_PG_MASK)
| (off & PAGE_OFFSET_MASK);
return VINF_SUCCESS;
}
return VERR_PGM_PHYS_PAGE_RESERVED;
}
}
}
return VERR_INVALID_POINTER;
}
/**
* Validates a HC Physical address.
*
* This is an extremely slow API, don't use it!
*
* @returns true if valid.
* @returns false if invalid.
* @param pVM The VM handle.
* @param HCPhys The physical address to validate.
*/
PGMDECL(bool) PGMPhysIsHCPhysValid(PVM pVM, RTHCPHYS HCPhys)
{
RTGCPHYS GCPhys;
int rc = PGMPhysHCPhys2GCPhys(pVM, HCPhys, &GCPhys);
return VBOX_SUCCESS(rc);
}
/**
* Converts a HC physical address to a GC physical address.
*
* This is an extremely slow API, don't use it!
*
* @returns VINF_SUCCESS on success.
* @returns VERR_INVALID_POINTER if the HC physical address is
* not within the GC physical memory.
* @param pVM The VM handle.
* @param HCPhys The HC physical address to convert.
* @param pGCPhys Where to store the GC physical address on success.
*/
PGMDECL(int) PGMPhysHCPhys2GCPhys(PVM pVM, RTHCPHYS HCPhys, PRTGCPHYS pGCPhys)
{
unsigned off = HCPhys & PAGE_OFFSET_MASK;
HCPhys &= X86_PTE_PAE_PG_MASK;
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
if ( pRam->pvHC
|| (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
{
unsigned iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if ((pRam->aHCPhys[iPage] & (X86_PTE_PAE_PG_MASK | MM_RAM_FLAGS_RESERVED)) == HCPhys)
#else
if ((pRam->aHCPhys[iPage] & (X86_PTE_PAE_PG_MASK)) == HCPhys)
#endif
{
*pGCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT) + off;
return VINF_SUCCESS;
}
}
}
return VERR_INVALID_POINTER;
}
/**
* Converts a HC physical address to a HC pointer.
*
* This is an extremely slow API, don't use it!
*
* @returns VINF_SUCCESS on success.
* @returns VERR_INVALID_POINTER if the HC physical address is
* not within the GC physical memory.
* @param pVM The VM handle.
* @param HCPhys The HC physical address to convert.
* @param pHCPtr Where to store the HC pointer on success.
*/
PGMDECL(int) PGMPhysHCPhys2HCPtr(PVM pVM, RTHCPHYS HCPhys, PRTHCPTR pHCPtr)
{
unsigned off = HCPhys & PAGE_OFFSET_MASK;
HCPhys &= X86_PTE_PAE_PG_MASK;
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = CTXSUFF(pRam->pNext))
{
if ( pRam->pvHC
|| (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
{
unsigned iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
if ((pRam->aHCPhys[iPage] & (X86_PTE_PAE_PG_MASK | MM_RAM_FLAGS_RESERVED)) == HCPhys)
#else
if ((pRam->aHCPhys[iPage] & (X86_PTE_PAE_PG_MASK)) == HCPhys)
#endif
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned idx = (iPage >> (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT));
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + ((iPage << PAGE_SHIFT) & PGM_DYNAMIC_CHUNK_OFFSET_MASK) + off);
}
else
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + (iPage << PAGE_SHIFT) + off);
return VINF_SUCCESS;
}
}
}
return VERR_INVALID_POINTER;
}
/**
* Converts a guest pointer to a GC physical address.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param pGCPhys Where to store the HC physical address.
*/
PGMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
{
int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
/** @todo real mode & protected mode? */
return rc;
}
/**
* Converts a guest pointer to a HC physical address.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param pHCPhys Where to store the HC physical address.
*/
PGMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
{
RTGCPHYS GCPhys;
int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
if (VBOX_SUCCESS(rc))
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
/** @todo real mode & protected mode? */
return rc;
}
/**
* Converts a guest pointer to a HC pointer.
*
* This uses the current CR3/CR0/CR4 of the guest.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param pHCPtr Where to store the HC virtual address.
*/
PGMDECL(int) PGMPhysGCPtr2HCPtr(PVM pVM, RTGCPTR GCPtr, PRTHCPTR pHCPtr)
{
RTGCPHYS GCPhys;
int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
if (VBOX_SUCCESS(rc))
rc = PGMPhysGCPhys2HCPtr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within on page */, pHCPtr);
/** @todo real mode & protected mode? */
return rc;
}
/**
* Converts a guest virtual address to a HC pointer by specfied CR3 and flags.
*
* @returns VBox status code.
* @param pVM The VM Handle
* @param GCPtr The guest pointer to convert.
* @param cr3 The guest CR3.
* @param fFlags Flags used for interpreting the PD correctly: X86_CR4_PSE and X86_CR4_PAE
* @param pHCPtr Where to store the HC pointer.
*
* @remark This function is used by the REM at a time where PGM could
* potentially not be in sync. It could also be used by a
* future DBGF API to cpu state independent conversions.
*/
PGMDECL(int) PGMPhysGCPtr2HCPtrByGstCR3(PVM pVM, RTGCPTR GCPtr, uint32_t cr3, unsigned fFlags, PRTHCPTR pHCPtr)
{
/*
* PAE or 32-bit?
*/
int rc;
if (!(fFlags & X86_CR4_PAE))
{
PX86PD pPD;
rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
if (VBOX_SUCCESS(rc))
{
VBOXPDE Pde = pPD->a[(RTGCUINTPTR)GCPtr >> X86_PD_SHIFT];
if (Pde.n.u1Present)
{
if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
{ /* (big page) */
rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE4M_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within on page */, pHCPtr);
}
else
{ /* (normal page) */
PVBOXPT pPT;
rc = PGM_GCPHYS_2_PTR(pVM, Pde.u & X86_PDE_PG_MASK, &pPT);
if (VBOX_SUCCESS(rc))
{
VBOXPTE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_SHIFT) & X86_PT_MASK];
if (Pte.n.u1Present)
return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within on page */, pHCPtr);
rc = VERR_PAGE_NOT_PRESENT;
}
}
}
else
rc = VERR_PAGE_TABLE_NOT_PRESENT;
}
}
else
{
/** @todo long mode! */
PX86PDPTR pPdptr;
rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, &pPdptr);
if (VBOX_SUCCESS(rc))
{
X86PDPE Pdpe = pPdptr->a[((RTGCUINTPTR)GCPtr >> X86_PDPTR_SHIFT) & X86_PDPTR_MASK];
if (Pdpe.n.u1Present)
{
PX86PDPAE pPD;
rc = PGM_GCPHYS_2_PTR(pVM, Pdpe.u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_SUCCESS(rc))
{
X86PDEPAE Pde = pPD->a[((RTGCUINTPTR)GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK];
if (Pde.n.u1Present)
{
if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
{ /* (big page) */
rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE4M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within on page */, pHCPtr);
}
else
{ /* (normal page) */
PX86PTPAE pPT;
rc = PGM_GCPHYS_2_PTR(pVM, (Pde.u & X86_PDE_PAE_PG_MASK), &pPT);
if (VBOX_SUCCESS(rc))
{
X86PTEPAE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK];
if (Pte.n.u1Present)
return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within on page */, pHCPtr);
rc = VERR_PAGE_NOT_PRESENT;
}
}
}
else
rc = VERR_PAGE_TABLE_NOT_PRESENT;
}
}
else
rc = VERR_PAGE_TABLE_NOT_PRESENT;
}
}
return rc;
}
#undef LOG_GROUP
#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
#ifdef IN_RING3
/**
* Cache PGMPhys memory access
*
* @param pVM VM Handle.
* @param pCache Cache structure pointer
* @param GCPhys GC physical address
* @param pbHC HC pointer corresponding to physical page
*/
static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbHC)
{
uint32_t iCacheIndex;
GCPhys = PAGE_ADDRESS(GCPhys);
pbHC = (uint8_t *)PAGE_ADDRESS(pbHC);
iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
ASMBitSet(&pCache->aEntries, iCacheIndex);
pCache->Entry[iCacheIndex].GCPhys = GCPhys;
pCache->Entry[iCacheIndex].pbHC = pbHC;
}
#endif
/**
* Read physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you
* want to ignore those.
*
* @param pVM VM Handle.
* @param GCPhys Physical address start reading from.
* @param pvBuf Where to put the read bits.
* @param cbRead How many bytes to read.
*/
PGMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
{
#ifdef IN_RING3
bool fGrabbedLock = false;
#endif
AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
if (cbRead == 0)
return;
LogFlow(("PGMPhysRead: %VGp %d\n", GCPhys, cbRead));
#ifdef IN_RING3
if (!VM_IS_EMT(pVM))
{
pgmLock(pVM);
fGrabbedLock = true;
}
#endif
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pCur = CTXSUFF(pVM->pgm.s.pRamRanges);
for (;;)
{
/* Find range. */
while (pCur && GCPhys > pCur->GCPhysLast)
pCur = CTXSUFF(pCur->pNext);
/* Inside range or not? */
if (pCur && GCPhys >= pCur->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPHYS off = GCPhys - pCur->GCPhys;
while (off < pCur->cb)
{
unsigned iPage = off >> PAGE_SHIFT;
/* Physical chunk in dynamically allocated range not present? */
if (RT_UNLIKELY(!(pCur->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK)))
{
int rc;
#ifdef IN_RING3
if (fGrabbedLock)
{
pgmUnlock(pVM);
rc = pgmr3PhysGrowRange(pVM, GCPhys);
if (rc == VINF_SUCCESS)
PGMPhysRead(pVM, GCPhys, pvBuf, cbRead); /* try again; can't assume pCur is still valid (paranoia) */
return;
}
rc = pgmr3PhysGrowRange(pVM, GCPhys);
#else
rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (rc != VINF_SUCCESS)
goto end;
}
size_t cb;
RTHCPHYS HCPhys = pCur->aHCPhys[iPage];
switch (HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_ROM))
{
/*
* Normal memory or ROM.
*/
case 0:
case MM_RAM_FLAGS_ROM:
case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
case MM_RAM_FLAGS_PHYSICAL_WRITE:
case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_WRITE:
case MM_RAM_FLAGS_VIRTUAL_WRITE:
{
#ifdef IN_GC
void *pvSrc = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvSrc);
pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
#else
void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbRead)
{
#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
if (cbRead <= 4)
pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
memcpy(pvBuf, pvSrc, cbRead);
goto end;
}
memcpy(pvBuf, pvSrc, cb);
break;
}
/*
* All reserved, nothing there.
*/
case MM_RAM_FLAGS_RESERVED:
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbRead)
{
memset(pvBuf, 0, cbRead);
goto end;
}
memset(pvBuf, 0, cb);
break;
/*
* Physical handler.
*/
case MM_RAM_FLAGS_PHYSICAL_ALL:
case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_ALL: /** r=bird: MMIO2 isn't in the mask! */
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* find and call the handler */
PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
if (pNode && pNode->pfnHandlerR3)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbRead)
cb = cbRead;
void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off)
/** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#ifdef IN_GC
void *pvSrc = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvSrc);
pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
#else
void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
if (cb >= cbRead)
{
memcpy(pvBuf, pvSrc, cbRead);
goto end;
}
memcpy(pvBuf, pvSrc, cb);
}
else if (cb >= cbRead)
goto end;
break;
}
case MM_RAM_FLAGS_VIRTUAL_ALL:
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* Search the whole tree for matching physical addresses (rather expensive!) */
PPGMVIRTHANDLER pNode;
unsigned iPage;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbRead)
cb = cbRead;
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off)
/** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#ifdef IN_GC
void *pvSrc = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvSrc);
pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
#else
void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
if (cb >= cbRead)
{
memcpy(pvBuf, pvSrc, cbRead);
goto end;
}
memcpy(pvBuf, pvSrc, cb);
}
else if (cb >= cbRead)
goto end;
break;
}
/*
* The rest needs to be taken more carefully.
*/
default:
#if 1 /** @todo r=bird: Can you do this properly please. */
/** @todo Try MMIO; quick hack */
if (cbRead <= 4 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
goto end;
#endif
/** @todo fix me later. */
AssertReleaseMsgFailed(("Unknown read at %VGp size %d implement the complex physical reading case %x\n",
GCPhys, cbRead,
HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_ROM)));
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
break;
}
cbRead -= cb;
off += cb;
pvBuf = (char *)pvBuf + cb;
}
GCPhys = pCur->GCPhysLast + 1;
}
else
{
LogFlow(("PGMPhysRead: Unassigned %VGp size=%d\n", GCPhys, cbRead));
/*
* Unassigned address space.
*/
size_t cb;
if ( !pCur
|| (cb = pCur->GCPhys - GCPhys) >= cbRead)
{
memset(pvBuf, 0, cbRead);
goto end;
}
memset(pvBuf, 0, cb);
cbRead -= cb;
pvBuf = (char *)pvBuf + cb;
GCPhys += cb;
}
}
end:
#ifdef IN_RING3
if (fGrabbedLock)
pgmUnlock(pVM);
#endif
return;
}
/**
* Write to physical memory.
*
* This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you
* want to ignore those.
*
* @param pVM VM Handle.
* @param GCPhys Physical address to write to.
* @param pvBuf What to write.
* @param cbWrite How many bytes to write.
*/
PGMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
{
#ifdef IN_RING3
bool fGrabbedLock = false;
#endif
AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
if (cbWrite == 0)
return;
LogFlow(("PGMPhysWrite: %VGp %d\n", GCPhys, cbWrite));
#ifdef IN_RING3
if (!VM_IS_EMT(pVM))
{
pgmLock(pVM);
fGrabbedLock = true;
}
#endif
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pCur = CTXSUFF(pVM->pgm.s.pRamRanges);
for (;;)
{
/* Find range. */
while (pCur && GCPhys > pCur->GCPhysLast)
pCur = CTXSUFF(pCur->pNext);
/* Inside range or not? */
if (pCur && GCPhys >= pCur->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
unsigned off = GCPhys - pCur->GCPhys;
while (off < pCur->cb)
{
unsigned iPage = off >> PAGE_SHIFT;
/* Physical chunk in dynamically allocated range not present? */
if (RT_UNLIKELY(!(pCur->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK)))
{
int rc;
#ifdef IN_RING3
if (fGrabbedLock)
{
pgmUnlock(pVM);
rc = pgmr3PhysGrowRange(pVM, GCPhys);
if (rc == VINF_SUCCESS)
PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pCur is still valid (paranoia) */
return;
}
rc = pgmr3PhysGrowRange(pVM, GCPhys);
#else
rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (rc != VINF_SUCCESS)
goto end;
}
size_t cb;
RTHCPHYS HCPhys = pCur->aHCPhys[iPage];
/** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
switch (HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE))
{
/*
* Normal memory.
*/
case 0:
case MM_RAM_FLAGS_MMIO2:
{
#ifdef IN_GC
void *pvDst = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvDst);
pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbWrite)
{
#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
if (cbWrite <= 4)
pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
memcpy(pvDst, pvBuf, cbWrite);
goto end;
}
memcpy(pvDst, pvBuf, cb);
break;
}
/*
* All reserved, nothing there.
*/
case MM_RAM_FLAGS_RESERVED:
case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb >= cbWrite)
goto end;
break;
/*
* Physical handler.
*/
case MM_RAM_FLAGS_PHYSICAL_ALL:
case MM_RAM_FLAGS_PHYSICAL_WRITE:
case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_ALL:
case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_WRITE:
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* find and call the handler */
PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
if (pNode && pNode->pfnHandlerR3)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
/** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#ifdef IN_GC
void *pvDst = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvDst);
pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
if (cb >= cbWrite)
{
memcpy(pvDst, pvBuf, cbWrite);
goto end;
}
memcpy(pvDst, pvBuf, cb);
}
else if (cb >= cbWrite)
goto end;
break;
}
case MM_RAM_FLAGS_VIRTUAL_ALL:
case MM_RAM_FLAGS_VIRTUAL_WRITE:
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3
/** @todo deal with this in GC and R0! */
/* Search the whole tree for matching physical addresses (rather expensive!) */
PPGMVIRTHANDLER pNode;
unsigned iPage;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC)
{
size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
/** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#ifdef IN_GC
void *pvDst = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvDst);
pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
if (cb >= cbWrite)
{
memcpy(pvDst, pvBuf, cbWrite);
goto end;
}
memcpy(pvDst, pvBuf, cb);
}
else if (cb >= cbWrite)
goto end;
break;
}
/*
* Physical write handler + virtual write handler.
* Consider this a quick workaround for the CSAM + shadow caching problem.
*
* We hand it to the shadow caching first since it requires the unchanged
* data. CSAM will have to put up with it already being changed.
*/
case MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE:
{
int rc = VINF_PGM_HANDLER_DO_DEFAULT;
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
/* 1. The physical handler */
PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
if (pPhysNode && pPhysNode->pfnHandlerR3)
{
size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
/** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
}
/* 2. The virtual handler (will see incorrect data) */
PPGMVIRTHANDLER pVirtNode;
unsigned iPage;
int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
if (VBOX_SUCCESS(rc2) && pVirtNode->pfnHandlerHC)
{
size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
if (cbRange < cb)
cb = cbRange;
if (cb > cbWrite)
cb = cbWrite;
RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->GCPtr & PAGE_BASE_GC_MASK)
+ (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
/** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
rc2 = pVirtNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
&& rc == VINF_PGM_HANDLER_DO_DEFAULT)
|| ( VBOX_FAILURE(rc2)
&& VBOX_SUCCESS(rc)))
rc = rc2;
}
#endif /* IN_RING3 */
if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
{
#ifdef IN_GC
void *pvDst = NULL;
PGMGCDynMapHCPage(pVM, HCPhys & X86_PTE_PAE_PG_MASK, &pvDst);
pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
#else
void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off)
#endif
if (cb >= cbWrite)
{
memcpy(pvDst, pvBuf, cbWrite);
goto end;
}
memcpy(pvDst, pvBuf, cb);
}
else if (cb >= cbWrite)
goto end;
break;
}
/*
* The rest needs to be taken more carefully.
*/
default:
#if 1 /** @todo r=bird: Can you do this properly please. */
/** @todo Try MMIO; quick hack */
if (cbWrite <= 4 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
goto end;
#endif
/** @todo fix me later. */
AssertReleaseMsgFailed(("Unknown write at %VGp size %d implement the complex physical writing case %x\n",
GCPhys, cbWrite,
(HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE))));
cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
break;
}
cbWrite -= cb;
off += cb;
pvBuf = (const char *)pvBuf + cb;
}
GCPhys = pCur->GCPhysLast + 1;
}
else
{
/*
* Unassigned address space.
*/
size_t cb;
if ( !pCur
|| (cb = pCur->GCPhys - GCPhys) >= cbWrite)
goto end;
cbWrite -= cb;
pvBuf = (const char *)pvBuf + cb;
GCPhys += cb;
}
}
end:
#ifdef IN_RING3
if (fGrabbedLock)
pgmUnlock(pVM);
#endif
return;
}
#ifndef IN_GC /* Ring 0 & 3 only */
/**
* Read from guest physical memory by GC physical address, bypassing
* MMIO and access handlers.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst The destination address.
* @param GCPhysSrc The source address (GC physical address).
* @param cb The number of bytes to read.
*/
PGMDECL(int) PGMPhysReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
{
/*
* Anything to be done?
*/
if (!cb)
return VINF_SUCCESS;
/*
* Loop ram ranges.
*/
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = pRam->CTXSUFF(pNext))
{
RTGCPHYS off = GCPhysSrc - pRam->GCPhys;
if (off < pRam->cb)
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/* Copy page by page as we're not dealing with a linear HC range. */
for (;;)
{
/* convert */
void *pvSrc;
int rc = PGMRamGCPhys2HCPtr(pVM, pRam, GCPhysSrc, &pvSrc);
if (VBOX_FAILURE(rc))
return rc;
/* copy */
size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPhysSrc & PAGE_OFFSET_MASK);
if (cbRead >= cb)
{
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
memcpy(pvDst, pvSrc, cbRead);
/* next */
cb -= cbRead;
pvDst = (uint8_t *)pvDst + cbRead;
GCPhysSrc += cbRead;
}
}
else if (pRam->pvHC)
{
/* read */
size_t cbRead = pRam->cb - off;
if (cbRead >= cb)
{
memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cb);
return VINF_SUCCESS;
}
memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cbRead);
/* next */
cb -= cbRead;
pvDst = (uint8_t *)pvDst + cbRead;
GCPhysSrc += cbRead;
}
else
return VERR_PGM_PHYS_PAGE_RESERVED;
}
else if (GCPhysSrc < pRam->GCPhysLast)
break;
}
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Write to guest physical memory referenced by GC pointer.
* Write memory to GC physical address in guest physical memory.
*
* This will bypass MMIO and access handlers.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPhysDst The GC physical address of the destination.
* @param pvSrc The source buffer.
* @param cb The number of bytes to write.
*/
PGMDECL(int) PGMPhysWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
{
/*
* Anything to be done?
*/
if (!cb)
return VINF_SUCCESS;
LogFlow(("PGMPhysWriteGCPhys: %VGp %d\n", GCPhysDst, cb));
/*
* Loop ram ranges.
*/
for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
pRam;
pRam = pRam->CTXSUFF(pNext))
{
RTGCPHYS off = GCPhysDst - pRam->GCPhys;
if (off < pRam->cb)
{
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/* Copy page by page as we're not dealing with a linear HC range. */
for (;;)
{
/* convert */
void *pvDst;
int rc = PGMRamGCPhys2HCPtr(pVM, pRam, GCPhysDst, &pvDst);
if (VBOX_FAILURE(rc))
return rc;
/* copy */
size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPhysDst & PAGE_OFFSET_MASK);
if (cbWrite >= cb)
{
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
memcpy(pvDst, pvSrc, cbWrite);
/* next */
cb -= cbWrite;
pvSrc = (uint8_t *)pvSrc + cbWrite;
GCPhysDst += cbWrite;
}
}
else if (pRam->pvHC)
{
/* write */
size_t cbWrite = pRam->cb - off;
if (cbWrite >= cb)
{
memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cb);
return VINF_SUCCESS;
}
memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cbWrite);
/* next */
cb -= cbWrite;
GCPhysDst += cbWrite;
pvSrc = (uint8_t *)pvSrc + cbWrite;
}
else
return VERR_PGM_PHYS_PAGE_RESERVED;
}
else if (GCPhysDst < pRam->GCPhysLast)
break;
}
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Read from guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and not set any accessed bits.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst The destination address.
* @param GCPtrSrc The source address (GC pointer).
* @param cb The number of bytes to read.
*/
PGMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
/*
* Optimize reads within a single page.
*/
if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
void *pvSrc;
int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc);
if (VBOX_FAILURE(rc))
return rc;
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
/*
* Page by page.
*/
for (;;)
{
/* convert */
void *pvSrc;
int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc);
if (VBOX_FAILURE(rc))
return rc;
/* copy */
size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
if (cbRead >= cb)
{
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
memcpy(pvDst, pvSrc, cbRead);
/* next */
cb -= cbRead;
pvDst = (uint8_t *)pvDst + cbRead;
GCPtrSrc += cbRead;
}
}
/**
* Write to guest physical memory referenced by GC pointer.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and not set dirty or accessed bits.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
PGMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
LogFlow(("PGMPhysWriteGCPtr: %VGv %d\n", GCPtrDst, cb));
/*
* Optimize writes within a single page.
*/
if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
void *pvDst;
int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
if (VBOX_FAILURE(rc))
return rc;
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
/*
* Page by page.
*/
for (;;)
{
/* convert */
void *pvDst;
int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
if (VBOX_FAILURE(rc))
return rc;
/* copy */
size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (cbWrite >= cb)
{
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
memcpy(pvDst, pvSrc, cbWrite);
/* next */
cb -= cbWrite;
pvSrc = (uint8_t *)pvSrc + cbWrite;
GCPtrDst += cbWrite;
}
}
/**
* Write to guest physical memory referenced by GC pointer and update the PTE.
*
* This function uses the current CR3/CR0/CR4 of the guest and will
* bypass access handlers and set any dirty and accessed bits in the PTE.
*
* If you don't want to set the dirty bit, use PGMPhysWriteGCPtr().
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtrDst The destination address (GC pointer).
* @param pvSrc The source address.
* @param cb The number of bytes to write.
*/
PGMDECL(int) PGMPhysWriteGCPtrDirty(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
/*
* Anything to do?
*/
if (!cb)
return VINF_SUCCESS;
/*
* Optimize writes within a single page.
*/
if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
{
void *pvDst;
int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
if (VBOX_FAILURE(rc))
return rc;
memcpy(pvDst, pvSrc, cb);
rc = PGMGstModifyPage(pVM, GCPtrDst, cb, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
return VINF_SUCCESS;
}
/*
* Page by page.
*/
for (;;)
{
/* convert */
void *pvDst;
int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
if (VBOX_FAILURE(rc))
return rc;
/* mark the guest page as accessed and dirty. */
rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
AssertRC(rc);
/* copy */
size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
if (cbWrite >= cb)
{
memcpy(pvDst, pvSrc, cb);
return VINF_SUCCESS;
}
memcpy(pvDst, pvSrc, cbWrite);
/* next */
cb -= cbWrite;
GCPtrDst += cbWrite;
pvSrc = (char *)pvSrc + cbWrite;
}
}
#endif /* !IN_GC */
/**
* Performs a read of guest virtual memory for instruction emulation.
*
* This will check permissions, raise exceptions and update the access bits.
*
* The current implementation will bypass all access handlers. It may later be
* changed to at least respect MMIO.
*
*
* @returns VBox status code suitable to scheduling.
* @retval VINF_SUCCESS if the read was performed successfully.
* @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
* @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
*
* @param pVM The VM handle.
* @param pCtxCore The context core.
* @param pvDst Where to put the bytes we've read.
* @param GCPtrSrc The source address.
* @param cb The number of bytes to read. Not more than a page.
*
* @remark This function will dynamically map physical pages in GC. This may unmap
* mappings done by the caller. Be careful!
*/
PGMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
{
Assert(cb <= PAGE_SIZE);
/** @todo r=bird: This isn't perfect!
* -# It's not checking for reserved bits being 1.
* -# It's not correctly dealing with the access bit.
* -# It's not respecting MMIO memory or any other access handlers.
*/
/*
* 1. Translate virtual to physical. This may fault.
* 2. Map the physical address.
* 3. Do the read operation.
* 4. Set access bits if required.
*/
int rc;
unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
if (cb <= cb1)
{
/*
* Not crossing pages.
*/
RTGCPHYS GCPhys;
uint64_t fFlags;
rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
if (VBOX_SUCCESS(rc))
{
/** @todo we should check reserved bits ... */
void *pvSrc;
rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
switch (rc)
{
case VINF_SUCCESS:
Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
break;
case VERR_PGM_PHYS_PAGE_RESERVED:
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0, cb);
break;
default:
return rc;
}
/** @todo access bit emulation isn't 100% correct. */
if (!(fFlags & X86_PTE_A))
{
rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
else
{
/*
* Crosses pages.
*/
unsigned cb2 = cb - cb1;
uint64_t fFlags1;
RTGCPHYS GCPhys1;
uint64_t fFlags2;
RTGCPHYS GCPhys2;
rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
if (VBOX_SUCCESS(rc))
rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
if (VBOX_SUCCESS(rc))
{
/** @todo we should check reserved bits ... */
AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%VGv\n", cb, cb1, cb2, GCPtrSrc));
void *pvSrc1;
rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
switch (rc)
{
case VINF_SUCCESS:
memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
break;
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset(pvDst, 0, cb1);
break;
default:
return rc;
}
void *pvSrc2;
rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
switch (rc)
{
case VINF_SUCCESS:
memcpy((uint8_t *)pvDst + cb2, pvSrc2, cb2);
break;
case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
memset((uint8_t *)pvDst + cb2, 0, cb2);
break;
default:
return rc;
}
if (!(fFlags1 & X86_PTE_A))
{
rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
if (!(fFlags2 & X86_PTE_A))
{
rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
AssertRC(rc);
}
return VINF_SUCCESS;
}
}
/*
* Raise a #PF.
*/
uint32_t uErr;
switch (rc)
{
case VINF_SUCCESS:
uErr = (pCtxCore->ss & X86_SEL_RPL) >= 2
? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
break;
case VERR_PAGE_NOT_PRESENT:
case VERR_PAGE_TABLE_NOT_PRESENT:
uErr = (pCtxCore->ss & X86_SEL_RPL) >= 2 ? X86_TRAP_PF_US : 0;
break;
default:
AssertMsgFailed(("rc=%Vrc GCPtrSrc=%VGv cb=%#x\n", rc, GCPtrSrc, cb));
return rc;
}
Log(("PGMPhysInterpretedRead: GCPtrSrc=%VGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
}
/// @todo PGMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)