PGMAllHandler.cpp revision 74d2472026d1c10b37d8e89c0c4786119e314dc6
/* $Id$ */
/** @file
* PGM - Page Manager / Monitor, Access Handlers.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/dbgf.h>
#include <VBox/pgm.h>
#include <VBox/iom.h>
#include <VBox/mm.h>
#include <VBox/em.h>
#include <VBox/stam.h>
#include <VBox/rem.h>
#include <VBox/dbgf.h>
#include <VBox/rem.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/selm.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam);
static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur);
static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur);
/**
* Register a access handler for a physical range.
*
* @returns VBox status code.
* @retval VINF_SUCCESS when successfully installed.
* @retval VINF_PGM_GCPHYS_ALIASED when the shadow PTs could be updated because
* the guest page aliased or/and mapped by multiple PTs. A CR3 sync has been
* flagged together with a pool clearing.
* @retval VERR_PGM_HANDLER_PHYSICAL_CONFLICT if the range conflicts with an existing
* one. A debug assertion is raised.
*
* @param pVM VM Handle.
* @param enmType Handler type. Any of the PGMPHYSHANDLERTYPE_PHYSICAL* enums.
* @param GCPhys Start physical address.
* @param GCPhysLast Last physical address. (inclusive)
* @param pfnHandlerR3 The R3 handler.
* @param pvUserR3 User argument to the R3 handler.
* @param pfnHandlerR0 The R0 handler.
* @param pvUserR0 User argument to the R0 handler.
* @param pfnHandlerRC The RC handler.
* @param pvUserRC User argument to the RC handler. This can be a value
* less that 0x10000 or a (non-null) pointer that is
* automatically relocatated.
* @param pszDesc Pointer to description string. This must not be freed.
*/
VMMDECL(int) PGMHandlerPhysicalRegisterEx(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
R3PTRTYPE(const char *) pszDesc)
{
Log(("PGMHandlerPhysicalRegisterEx: enmType=%d GCPhys=%RGp GCPhysLast=%RGp pfnHandlerR3=%RHv pvUserR3=%RHv pfnHandlerR0=%RHv pvUserR0=%RHv pfnHandlerGC=%RRv pvUserGC=%RRv pszDesc=%s\n",
enmType, GCPhys, GCPhysLast, pfnHandlerR3, pvUserR3, pfnHandlerR0, pvUserR0, pfnHandlerRC, pvUserRC, R3STRING(pszDesc)));
/*
* Validate input.
*/
AssertMsgReturn(GCPhys < GCPhysLast, ("GCPhys >= GCPhysLast (%#x >= %#x)\n", GCPhys, GCPhysLast), VERR_INVALID_PARAMETER);
switch (enmType)
{
case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
break;
case PGMPHYSHANDLERTYPE_MMIO:
case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
/* Simplification in PGMPhysRead among other places. */
AssertMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_INVALID_PARAMETER);
AssertMsgReturn((GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK, ("%RGp\n", GCPhysLast), VERR_INVALID_PARAMETER);
break;
default:
AssertMsgFailed(("Invalid input enmType=%d!\n", enmType));
return VERR_INVALID_PARAMETER;
}
AssertMsgReturn( (RTRCUINTPTR)pvUserRC < 0x10000
|| MMHyperR3ToRC(pVM, MMHyperRCToR3(pVM, pvUserRC)) == pvUserRC,
("Not RC pointer! pvUserRC=%RRv\n", pvUserRC),
VERR_INVALID_PARAMETER);
AssertMsgReturn( (RTR0UINTPTR)pvUserR0 < 0x10000
|| MMHyperR3ToR0(pVM, MMHyperR0ToR3(pVM, pvUserR0)) == pvUserR0,
("Not R0 pointer! pvUserR0=%RHv\n", pvUserR0),
VERR_INVALID_PARAMETER);
AssertPtrReturn(pfnHandlerR3, VERR_INVALID_POINTER);
AssertReturn(pfnHandlerR0, VERR_INVALID_PARAMETER);
AssertReturn(pfnHandlerRC, VERR_INVALID_PARAMETER);
/*
* We require the range to be within registered ram.
* There is no apparent need to support ranges which cover more than one ram range.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
if ( !pRam
|| GCPhysLast < pRam->GCPhys
|| GCPhys > pRam->GCPhysLast)
{
#ifdef IN_RING3
DBGFR3Info(pVM, "phys", NULL, NULL);
#endif
AssertMsgFailed(("No RAM range for %RGp-%RGp\n", GCPhys, GCPhysLast));
return VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
}
/*
* Allocate and initialize the new entry.
*/
PPGMPHYSHANDLER pNew;
int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
if (RT_FAILURE(rc))
return rc;
pNew->Core.Key = GCPhys;
pNew->Core.KeyLast = GCPhysLast;
pNew->enmType = enmType;
pNew->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
pNew->pfnHandlerR3 = pfnHandlerR3;
pNew->pvUserR3 = pvUserR3;
pNew->pfnHandlerR0 = pfnHandlerR0;
pNew->pvUserR0 = pvUserR0;
pNew->pfnHandlerRC = pfnHandlerRC;
pNew->pvUserRC = pvUserRC;
pNew->pszDesc = pszDesc;
pgmLock(pVM);
/*
* Try insert into list.
*/
if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pNew->Core))
{
rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pNew, pRam);
if (rc == VINF_PGM_SYNC_CR3)
rc = VINF_PGM_GCPHYS_ALIASED;
pVM->pgm.s.fPhysCacheFlushPending = true;
pgmUnlock(pVM);
HWACCMFlushTLBOnAllVCpus(pVM);
#ifndef IN_RING3
REMNotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
#else
REMR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
#endif
if (rc != VINF_SUCCESS)
Log(("PGMHandlerPhysicalRegisterEx: returns %Rrc (%RGp-%RGp)\n", rc, GCPhys, GCPhysLast));
return rc;
}
pgmUnlock(pVM);
#if defined(IN_RING3) && defined(VBOX_STRICT)
DBGFR3Info(pVM, "handlers", "phys nostats", NULL);
#endif
AssertMsgFailed(("Conflict! GCPhys=%RGp GCPhysLast=%RGp pszDesc=%s\n", GCPhys, GCPhysLast, pszDesc));
MMHyperFree(pVM, pNew);
return VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
}
/**
* Sets ram range flags and attempts updating shadow PTs.
*
* @returns VBox status code.
* @retval VINF_SUCCESS when shadow PTs was successfully updated.
* @retval VINF_PGM_SYNC_CR3 when the shadow PTs could be updated because
* the guest page aliased or/and mapped by multiple PTs. FFs set.
* @param pVM The VM handle.
* @param pCur The physical handler.
* @param pRam The RAM range.
*/
static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam)
{
/*
* Iterate the guest ram pages updating the flags and flushing PT entries
* mapping the page.
*/
bool fFlushTLBs = false;
int rc = VINF_SUCCESS;
const unsigned uState = pgmHandlerPhysicalCalcState(pCur);
uint32_t cPages = pCur->cPages;
uint32_t i = (pCur->Core.Key - pRam->GCPhys) >> PAGE_SHIFT;
for (;;)
{
PPGMPAGE pPage = &pRam->aPages[i];
AssertMsg(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO || PGM_PAGE_IS_MMIO(pPage),
("%RGp %R[pgmpage]\n", pRam->GCPhys + (i << PAGE_SHIFT), pPage));
/* Only do upgrades. */
if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
{
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
int rc2 = pgmPoolTrackFlushGCPhys(pVM, pPage, &fFlushTLBs);
if (rc2 != VINF_SUCCESS && rc == VINF_SUCCESS)
rc = rc2;
}
/* next */
if (--cPages == 0)
break;
i++;
}
if (fFlushTLBs && rc == VINF_SUCCESS)
{
PGM_INVL_ALL_VCPU_TLBS(pVM);
Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: flushing guest TLBs\n"));
}
else
{
Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: doesn't flush guest TLBs. rc=%Rrc\n", rc));
}
return rc;
}
/**
* Register a physical page access handler.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param GCPhys Start physical address.
*/
VMMDECL(int) PGMHandlerPhysicalDeregister(PVM pVM, RTGCPHYS GCPhys)
{
/*
* Find the handler.
*/
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (pCur)
{
LogFlow(("PGMHandlerPhysicalDeregister: Removing Range %RGp-%RGp %s\n",
pCur->Core.Key, pCur->Core.KeyLast, R3STRING(pCur->pszDesc)));
/*
* Clear the page bits and notify the REM about this change.
*/
pgmHandlerPhysicalResetRamFlags(pVM, pCur);
pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
MMHyperFree(pVM, pCur);
pgmUnlock(pVM);
HWACCMFlushTLBOnAllVCpus(pVM);
return VINF_SUCCESS;
}
pgmUnlock(pVM);
AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys));
return VERR_PGM_HANDLER_NOT_FOUND;
}
/**
* Shared code with modify.
*/
static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur)
{
RTGCPHYS GCPhysStart = pCur->Core.Key;
RTGCPHYS GCPhysLast = pCur->Core.KeyLast;
/*
* Page align the range.
*
* Since we've reset (recalculated) the physical handler state of all pages
* we can make use of the page states to figure out whether a page should be
* included in the REM notification or not.
*/
if ( (pCur->Core.Key & PAGE_OFFSET_MASK)
|| ((pCur->Core.KeyLast + 1) & PAGE_OFFSET_MASK))
{
Assert(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO);
if (GCPhysStart & PAGE_OFFSET_MASK)
{
PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysStart);
if ( pPage
&& PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
{
RTGCPHYS GCPhys = (GCPhysStart + (PAGE_SIZE - 1)) & X86_PTE_PAE_PG_MASK;
if ( GCPhys > GCPhysLast
|| GCPhys < GCPhysStart)
return;
GCPhysStart = GCPhys;
}
else
GCPhysStart &= X86_PTE_PAE_PG_MASK;
Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
}
if (GCPhysLast & PAGE_OFFSET_MASK)
{
PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysLast);
if ( pPage
&& PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
{
RTGCPHYS GCPhys = (GCPhysLast & X86_PTE_PAE_PG_MASK) - 1;
if ( GCPhys < GCPhysStart
|| GCPhys > GCPhysLast)
return;
GCPhysLast = GCPhys;
}
else
GCPhysLast |= PAGE_OFFSET_MASK;
Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
}
}
/*
* Tell REM.
*/
const bool fRestoreAsRAM = pCur->pfnHandlerR3
&& pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
#ifndef IN_RING3
REMNotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
#else
REMR3NotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
#endif
}
/**
* pgmHandlerPhysicalResetRamFlags helper that checks for
* other handlers on edge pages.
*/
DECLINLINE(void) pgmHandlerPhysicalRecalcPageState(PPGM pPGM, RTGCPHYS GCPhys, bool fAbove, PPGMRAMRANGE *ppRamHint)
{
/*
* Look for other handlers.
*/
unsigned uState = PGM_PAGE_HNDL_PHYS_STATE_NONE;
for (;;)
{
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, GCPhys, fAbove);
if ( !pCur
|| ((fAbove ? pCur->Core.Key : pCur->Core.KeyLast) >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
break;
unsigned uThisState = pgmHandlerPhysicalCalcState(pCur);
uState = RT_MAX(uState, uThisState);
/* next? */
RTGCPHYS GCPhysNext = fAbove
? pCur->Core.KeyLast + 1
: pCur->Core.Key - 1;
if ((GCPhysNext >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
break;
GCPhys = GCPhysNext;
}
/*
* Update if we found something that is a higher priority
* state than the current.
*/
if (uState != PGM_PAGE_HNDL_PHYS_STATE_NONE)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
if ( RT_SUCCESS(rc)
&& PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
else
AssertRC(rc);
}
}
/**
* Resets an aliased page.
*
* @param pVM The VM.
* @param pPage The page.
* @param GCPhysPage The page address in case it comes in handy.
*/
void pgmHandlerPhysicalResetAliasedPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhysPage)
{
Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO);
Assert(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
/*
* Flush any shadow page table references *first*.
*/
bool fFlushTLBs = false;
int rc = pgmPoolTrackFlushGCPhys(pVM, pPage, &fFlushTLBs);
AssertLogRelRCReturnVoid(rc);
# ifdef IN_RC
if (fFlushTLBs && rc != VINF_PGM_SYNC_CR3)
PGM_INVL_VCPU_TLBS(VMMGetCpu0(pVM));
# else
HWACCMFlushTLBOnAllVCpus(pVM);
# endif
pVM->pgm.s.fPhysCacheFlushPending = true;
/*
* Make it an MMIO/Zero page.
*/
PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_MMIO);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_ALL);
NOREF(GCPhysPage);
}
/**
* Resets ram range flags.
*
* @returns VBox status code.
* @retval VINF_SUCCESS when shadow PTs was successfully updated.
* @param pVM The VM handle.
* @param pCur The physical handler.
*
* @remark We don't start messing with the shadow page tables, as we've already got code
* in Trap0e which deals with out of sync handler flags (originally conceived for
* global pages).
*/
static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur)
{
/*
* Iterate the guest ram pages updating the state.
*/
RTUINT cPages = pCur->cPages;
RTGCPHYS GCPhys = pCur->Core.Key;
PPGMRAMRANGE pRamHint = NULL;
PPGM pPGM = &pVM->pgm.s;
for (;;)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, &pRamHint);
if (RT_SUCCESS(rc))
{
/* Reset MMIO2 for MMIO pages to MMIO, since this aliasing is our business.
(We don't flip MMIO to RAM though, that's PGMPhys.cpp's job.) */
if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
pgmHandlerPhysicalResetAliasedPage(pVM, pPage, GCPhys);
AssertMsg(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO || PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", GCPhys, pPage));
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_NONE);
}
else
AssertRC(rc);
/* next */
if (--cPages == 0)
break;
GCPhys += PAGE_SIZE;
}
/*
* Check for partial start and end pages.
*/
if (pCur->Core.Key & PAGE_OFFSET_MASK)
pgmHandlerPhysicalRecalcPageState(pPGM, pCur->Core.Key - 1, false /* fAbove */, &pRamHint);
if ((pCur->Core.KeyLast & PAGE_OFFSET_MASK) != PAGE_SIZE - 1)
pgmHandlerPhysicalRecalcPageState(pPGM, pCur->Core.KeyLast + 1, true /* fAbove */, &pRamHint);
}
/**
* Modify a physical page access handler.
*
* Modification can only be done to the range it self, not the type or anything else.
*
* @returns VBox status code.
* For all return codes other than VERR_PGM_HANDLER_NOT_FOUND and VINF_SUCCESS the range is deregistered
* and a new registration must be performed!
* @param pVM VM handle.
* @param GCPhysCurrent Current location.
* @param GCPhys New location.
* @param GCPhysLast New last location.
*/
VMMDECL(int) PGMHandlerPhysicalModify(PVM pVM, RTGCPHYS GCPhysCurrent, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast)
{
/*
* Remove it.
*/
int rc;
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysCurrent);
if (pCur)
{
/*
* Clear the ram flags. (We're gonna move or free it!)
*/
pgmHandlerPhysicalResetRamFlags(pVM, pCur);
const bool fRestoreAsRAM = pCur->pfnHandlerR3
&& pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
/*
* Validate the new range, modify and reinsert.
*/
if (GCPhysLast >= GCPhys)
{
/*
* We require the range to be within registered ram.
* There is no apparent need to support ranges which cover more than one ram range.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
if ( pRam
&& GCPhys <= pRam->GCPhysLast
&& GCPhysLast >= pRam->GCPhys)
{
pCur->Core.Key = GCPhys;
pCur->Core.KeyLast = GCPhysLast;
pCur->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + 1) >> PAGE_SHIFT;
if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pCur->Core))
{
PGMPHYSHANDLERTYPE enmType = pCur->enmType;
RTGCPHYS GCPhysLast = pCur->Core.KeyLast - GCPhys + 1;
bool fHasHCHandler = !!pCur->pfnHandlerR3;
/*
* Set ram flags, flush shadow PT entries and finally tell REM about this.
*/
rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
pVM->pgm.s.fPhysCacheFlushPending = true;
pgmUnlock(pVM);
#ifndef IN_RING3
REMNotifyHandlerPhysicalModify(pVM, enmType, GCPhysCurrent, GCPhys,
GCPhysLast - GCPhys + 1, fHasHCHandler, fRestoreAsRAM);
#else
REMR3NotifyHandlerPhysicalModify(pVM, enmType, GCPhysCurrent, GCPhys,
GCPhysLast, fHasHCHandler, fRestoreAsRAM);
#endif
HWACCMFlushTLBOnAllVCpus(pVM);
Log(("PGMHandlerPhysicalModify: GCPhysCurrent=%RGp -> GCPhys=%RGp GCPhysLast=%RGp\n",
GCPhysCurrent, GCPhys, GCPhysLast));
return VINF_SUCCESS;
}
AssertMsgFailed(("Conflict! GCPhys=%RGp GCPhysLast=%RGp\n", GCPhys, GCPhysLast));
rc = VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
}
else
{
AssertMsgFailed(("No RAM range for %RGp-%RGp\n", GCPhys, GCPhysLast));
rc = VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
}
}
else
{
AssertMsgFailed(("Invalid range %RGp-%RGp\n", GCPhys, GCPhysLast));
rc = VERR_INVALID_PARAMETER;
}
/*
* Invalid new location, free it.
* We've only gotta notify REM and free the memory.
*/
pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
MMHyperFree(pVM, pCur);
}
else
{
AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhysCurrent));
rc = VERR_PGM_HANDLER_NOT_FOUND;
}
pgmUnlock(pVM);
return rc;
}
/**
* Changes the callbacks associated with a physical access handler.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param GCPhys Start physical address.
* @param pfnHandlerR3 The R3 handler.
* @param pvUserR3 User argument to the R3 handler.
* @param pfnHandlerR0 The R0 handler.
* @param pvUserR0 User argument to the R0 handler.
* @param pfnHandlerRC The RC handler.
* @param pvUserRC User argument to the RC handler. Values larger or
* equal to 0x10000 will be relocated automatically.
* @param pszDesc Pointer to description string. This must not be freed.
*/
VMMDECL(int) PGMHandlerPhysicalChangeCallbacks(PVM pVM, RTGCPHYS GCPhys,
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
R3PTRTYPE(const char *) pszDesc)
{
/*
* Get the handler.
*/
int rc = VINF_SUCCESS;
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (pCur)
{
/*
* Change callbacks.
*/
pCur->pfnHandlerR3 = pfnHandlerR3;
pCur->pvUserR3 = pvUserR3;
pCur->pfnHandlerR0 = pfnHandlerR0;
pCur->pvUserR0 = pvUserR0;
pCur->pfnHandlerRC = pfnHandlerRC;
pCur->pvUserRC = pvUserRC;
pCur->pszDesc = pszDesc;
}
else
{
AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys));
rc = VERR_PGM_HANDLER_NOT_FOUND;
}
pgmUnlock(pVM);
return rc;
}
/**
* Splits a physical access handler in two.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param GCPhys Start physical address of the handler.
* @param GCPhysSplit The split address.
*/
VMMDECL(int) PGMHandlerPhysicalSplit(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysSplit)
{
AssertReturn(GCPhys < GCPhysSplit, VERR_INVALID_PARAMETER);
/*
* Do the allocation without owning the lock.
*/
PPGMPHYSHANDLER pNew;
int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
if (RT_FAILURE(rc))
return rc;
/*
* Get the handler.
*/
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (RT_LIKELY(pCur))
{
if (RT_LIKELY(GCPhysSplit <= pCur->Core.KeyLast))
{
/*
* Create new handler node for the 2nd half.
*/
*pNew = *pCur;
pNew->Core.Key = GCPhysSplit;
pNew->cPages = (pNew->Core.KeyLast - (pNew->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
pCur->Core.KeyLast = GCPhysSplit - 1;
pCur->cPages = (pCur->Core.KeyLast - (pCur->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
if (RT_LIKELY(RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pNew->Core)))
{
LogFlow(("PGMHandlerPhysicalSplit: %RGp-%RGp and %RGp-%RGp\n",
pCur->Core.Key, pCur->Core.KeyLast, pNew->Core.Key, pNew->Core.KeyLast));
pgmUnlock(pVM);
return VINF_SUCCESS;
}
AssertMsgFailed(("whu?\n"));
rc = VERR_INTERNAL_ERROR;
}
else
{
AssertMsgFailed(("outside range: %RGp-%RGp split %RGp\n", pCur->Core.Key, pCur->Core.KeyLast, GCPhysSplit));
rc = VERR_INVALID_PARAMETER;
}
}
else
{
AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys));
rc = VERR_PGM_HANDLER_NOT_FOUND;
}
pgmUnlock(pVM);
MMHyperFree(pVM, pNew);
return rc;
}
/**
* Joins up two adjacent physical access handlers which has the same callbacks.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param GCPhys1 Start physical address of the first handler.
* @param GCPhys2 Start physical address of the second handler.
*/
VMMDECL(int) PGMHandlerPhysicalJoin(PVM pVM, RTGCPHYS GCPhys1, RTGCPHYS GCPhys2)
{
/*
* Get the handlers.
*/
int rc;
pgmLock(pVM);
PPGMPHYSHANDLER pCur1 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys1);
if (RT_LIKELY(pCur1))
{
PPGMPHYSHANDLER pCur2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys2);
if (RT_LIKELY(pCur2))
{
/*
* Make sure that they are adjacent, and that they've got the same callbacks.
*/
if (RT_LIKELY(pCur1->Core.KeyLast + 1 == pCur2->Core.Key))
{
if (RT_LIKELY( pCur1->pfnHandlerRC == pCur2->pfnHandlerRC
&& pCur1->pfnHandlerR0 == pCur2->pfnHandlerR0
&& pCur1->pfnHandlerR3 == pCur2->pfnHandlerR3))
{
PPGMPHYSHANDLER pCur3 = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys2);
if (RT_LIKELY(pCur3 == pCur2))
{
pCur1->Core.KeyLast = pCur2->Core.KeyLast;
pCur1->cPages = (pCur1->Core.KeyLast - (pCur1->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
LogFlow(("PGMHandlerPhysicalJoin: %RGp-%RGp %RGp-%RGp\n",
pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
MMHyperFree(pVM, pCur2);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
Assert(pCur3 == pCur2);
rc = VERR_INTERNAL_ERROR;
}
else
{
AssertMsgFailed(("mismatching handlers\n"));
rc = VERR_ACCESS_DENIED;
}
}
else
{
AssertMsgFailed(("not adjacent: %RGp-%RGp %RGp-%RGp\n",
pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
rc = VERR_INVALID_PARAMETER;
}
}
else
{
AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys2));
rc = VERR_PGM_HANDLER_NOT_FOUND;
}
}
else
{
AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys1));
rc = VERR_PGM_HANDLER_NOT_FOUND;
}
pgmUnlock(pVM);
return rc;
}
/**
* Resets any modifications to individual pages in a physical
* page access handler region.
*
* This is used in pair with PGMHandlerPhysicalPageTempOff() or
* PGMHandlerPhysicalPageAlias().
*
* @returns VBox status code.
* @param pVM VM Handle
* @param GCPhys The start address of the handler regions, i.e. what you
* passed to PGMR3HandlerPhysicalRegister(),
* PGMHandlerPhysicalRegisterEx() or
* PGMHandlerPhysicalModify().
*/
VMMDECL(int) PGMHandlerPhysicalReset(PVM pVM, RTGCPHYS GCPhys)
{
LogFlow(("PGMHandlerPhysicalReset GCPhys=%RGp\n", GCPhys));
pgmLock(pVM);
/*
* Find the handler.
*/
int rc;
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (RT_LIKELY(pCur))
{
/*
* Validate type.
*/
switch (pCur->enmType)
{
case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
case PGMPHYSHANDLERTYPE_MMIO: /* NOTE: Only use when clearing MMIO ranges with aliased MMIO2 pages! */
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysHandlerReset)); /**@Todo move out of switch */
PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
Assert(pRam);
Assert(pRam->GCPhys <= pCur->Core.Key);
Assert(pRam->GCPhysLast >= pCur->Core.KeyLast);
if (pCur->enmType == PGMPHYSHANDLERTYPE_MMIO)
{
/*
* Reset all the PGMPAGETYPE_MMIO2_ALIAS_MMIO pages first and that's it.
* This could probably be optimized a bit wrt to flushing, but I'm too lazy
* to do that now...
*/
PPGMPAGE pPage = &pRam->aPages[(pCur->Core.Key - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cLeft = pCur->cPages;
while (cLeft-- > 0)
{
if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT));
Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO);
pPage++;
}
}
else
{
/*
* Set the flags and flush shadow PT entries.
*/
rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
pVM->pgm.s.fPhysCacheFlushPending = true;
HWACCMFlushTLBOnAllVCpus(pVM);
}
rc = VINF_SUCCESS;
break;
}
/*
* Invalid.
*/
default:
AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
rc = VERR_INTERNAL_ERROR;
break;
}
}
else
{
AssertMsgFailed(("Didn't find MMIO Range starting at %#x\n", GCPhys));
rc = VERR_PGM_HANDLER_NOT_FOUND;
}
pgmUnlock(pVM);
return rc;
}
/**
* Temporarily turns off the access monitoring of a page within a monitored
* physical write/all page access handler region.
*
* Use this when no further \#PFs are required for that page. Be aware that
* a page directory sync might reset the flags, and turn on access monitoring
* for the page.
*
* The caller must do required page table modifications.
*
* @returns VBox status code.
* @param pVM VM Handle
* @param GCPhys The start address of the access handler. This
* must be a fully page aligned range or we risk
* messing up other handlers installed for the
* start and end pages.
* @param GCPhysPage The physical address of the page to turn off
* access monitoring for.
*/
VMMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
{
LogFlow(("PGMHandlerPhysicalPageTempOff GCPhys=%RGp\n", GCPhys));
pgmLock(pVM);
/*
* Validate the range.
*/
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (RT_LIKELY(pCur))
{
if (RT_LIKELY( GCPhysPage >= pCur->Core.Key
&& GCPhysPage <= pCur->Core.KeyLast))
{
Assert(!(pCur->Core.Key & PAGE_OFFSET_MASK));
Assert((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
AssertReturnStmt( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|| pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL,
pgmUnlock(pVM), VERR_ACCESS_DENIED);
/*
* Change the page status.
*/
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
pgmUnlock(pVM);
#ifndef IN_RC
HWACCMInvalidatePhysPage(pVM, GCPhysPage);
#endif
return VINF_SUCCESS;
}
pgmUnlock(pVM);
AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
return VERR_INVALID_PARAMETER;
}
pgmUnlock(pVM);
AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
return VERR_PGM_HANDLER_NOT_FOUND;
}
/**
* Replaces an MMIO page with an MMIO2 page.
*
* This is a worker for IOMMMIOMapMMIO2Page that works in a similar way to
* PGMHandlerPhysicalPageTempOff but for an MMIO page. Since an MMIO page has no
* backing, the caller must provide a replacement page. For various reasons the
* replacement page must be an MMIO2 page.
*
* The caller must do required page table modifications. You can get away
* without making any modifations since it's an MMIO page, the cost is an extra
* \#PF which will the resync the page.
*
* Call PGMHandlerPhysicalReset() to restore the MMIO page.
*
* The caller may still get handler callback even after this call and must be
* able to deal correctly with such calls. The reason for these callbacks are
* either that we're executing in the recompiler (which doesn't know about this
* arrangement) or that we've been restored from saved state (where we won't
* save the change).
*
* @returns VBox status code.
* @param pVM The VM handle
* @param GCPhys The start address of the access handler. This
* must be a fully page aligned range or we risk
* messing up other handlers installed for the
* start and end pages.
* @param GCPhysPage The physical address of the page to turn off
* access monitoring for.
* @param GCPhysPageRemap The physical address of the MMIO2 page that
* serves as backing memory.
*
* @remark May cause a page pool flush if used on a page that is already
* aliased.
*
* @note This trick does only work reliably if the two pages are never ever
* mapped in the same page table. If they are the page pool code will
* be confused should either of them be flushed. See the special case
* of zero page aliasing mentioned in #3170.
*
*/
VMMDECL(int) PGMHandlerPhysicalPageAlias(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage, RTGCPHYS GCPhysPageRemap)
{
/// Assert(!IOMIsLockOwner(pVM)); /* We mustn't own any other locks when calling this */
pgmLock(pVM);
/*
* Lookup and validate the range.
*/
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (RT_LIKELY(pCur))
{
if (RT_LIKELY( GCPhysPage >= pCur->Core.Key
&& GCPhysPage <= pCur->Core.KeyLast))
{
AssertReturnStmt(pCur->enmType == PGMPHYSHANDLERTYPE_MMIO, pgmUnlock(pVM), VERR_ACCESS_DENIED);
AssertReturnStmt(!(pCur->Core.Key & PAGE_OFFSET_MASK), pgmUnlock(pVM), VERR_INVALID_PARAMETER);
AssertReturnStmt((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
/*
* Get and validate the two pages.
*/
PPGMPAGE pPageRemap;
int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPageRemap, &pPageRemap);
AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
AssertMsgReturnStmt(PGM_PAGE_GET_TYPE(pPageRemap) == PGMPAGETYPE_MMIO2,
("GCPhysPageRemap=%RGp %R[pgmpage]\n", GCPhysPageRemap, pPageRemap),
pgmUnlock(pVM), VERR_PGM_PHYS_NOT_MMIO2);
PPGMPAGE pPage;
rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
if (PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO)
{
AssertMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO,
("GCPhysPage=%RGp %R[pgmpage]\n", GCPhysPage, pPage),
VERR_PGM_PHYS_NOT_MMIO2);
if (PGM_PAGE_GET_HCPHYS(pPage) == PGM_PAGE_GET_HCPHYS(pPageRemap))
{
pgmUnlock(pVM);
return VINF_PGM_HANDLER_ALREADY_ALIASED;
}
/*
* The page is already mapped as some other page, reset it
* to an MMIO/ZERO page before doing the new mapping.
*/
Log(("PGMHandlerPhysicalPageAlias: GCPhysPage=%RGp (%R[pgmpage]; %RHp -> %RHp\n",
GCPhysPage, pPage, PGM_PAGE_GET_HCPHYS(pPage), PGM_PAGE_GET_HCPHYS(pPageRemap)));
pgmHandlerPhysicalResetAliasedPage(pVM, pPage, GCPhysPage);
}
Assert(PGM_PAGE_IS_ZERO(pPage));
/*
* Do the actual remapping here.
* This page now serves as an alias for the backing memory specified.
*/
LogFlow(("PGMHandlerPhysicalPageAlias: %RGp (%R[pgmpage]) alias for %RGp (%R[pgmpage])\n",
GCPhysPage, pPage, GCPhysPageRemap, pPageRemap ));
PGM_PAGE_SET_HCPHYS(pPage, PGM_PAGE_GET_HCPHYS(pPageRemap));
PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_MMIO2_ALIAS_MMIO);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
PGM_PAGE_SET_PAGEID(pPage, PGM_PAGE_GET_PAGEID(pPageRemap));
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
LogFlow(("PGMHandlerPhysicalPageAlias: => %R[pgmpage]\n", pPage));
pgmUnlock(pVM);
#ifndef IN_RC
HWACCMInvalidatePhysPage(pVM, GCPhysPage);
#endif
return VINF_SUCCESS;
}
pgmUnlock(pVM);
AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
return VERR_INVALID_PARAMETER;
}
pgmUnlock(pVM);
AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
return VERR_PGM_HANDLER_NOT_FOUND;
}
/**
* Replaces an MMIO page with an arbitrary HC page.
*
* This is a worker for IOMMMIOMapMMIO2Page that works in a similar way to
* PGMHandlerPhysicalPageTempOff but for an MMIO page. Since an MMIO page has no
* backing, the caller must provide a replacement page. For various reasons the
* replacement page must be an MMIO2 page.
*
* The caller must do required page table modifications. You can get away
* without making any modifations since it's an MMIO page, the cost is an extra
* \#PF which will the resync the page.
*
* Call PGMHandlerPhysicalReset() to restore the MMIO page.
*
* The caller may still get handler callback even after this call and must be
* able to deal correctly with such calls. The reason for these callbacks are
* either that we're executing in the recompiler (which doesn't know about this
* arrangement) or that we've been restored from saved state (where we won't
* save the change).
*
* @returns VBox status code.
* @param pVM The VM handle
* @param GCPhys The start address of the access handler. This
* must be a fully page aligned range or we risk
* messing up other handlers installed for the
* start and end pages.
* @param GCPhysPage The physical address of the page to turn off
* access monitoring for.
* @param HCPhysPageRemap The physical address of the HC page that
* serves as backing memory.
*
* @remark May cause a page pool flush if used on a page that is already
* aliased.
*/
VMMDECL(int) PGMHandlerPhysicalPageAliasHC(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage, RTHCPHYS HCPhysPageRemap)
{
/// Assert(!IOMIsLockOwner(pVM)); /* We mustn't own any other locks when calling this */
/*
* Lookup and validate the range.
*/
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (RT_LIKELY(pCur))
{
if (RT_LIKELY( GCPhysPage >= pCur->Core.Key
&& GCPhysPage <= pCur->Core.KeyLast))
{
AssertReturnStmt(pCur->enmType == PGMPHYSHANDLERTYPE_MMIO, pgmUnlock(pVM), VERR_ACCESS_DENIED);
AssertReturnStmt(!(pCur->Core.Key & PAGE_OFFSET_MASK), pgmUnlock(pVM), VERR_INVALID_PARAMETER);
AssertReturnStmt((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
/*
* Get and validate the pages.
*/
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
if (PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO)
{
pgmUnlock(pVM);
AssertMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO,
("GCPhysPage=%RGp %R[pgmpage]\n", GCPhysPage, pPage),
VERR_PGM_PHYS_NOT_MMIO2);
return VINF_PGM_HANDLER_ALREADY_ALIASED;
}
Assert(PGM_PAGE_IS_ZERO(pPage));
/*
* Do the actual remapping here.
* This page now serves as an alias for the backing memory specified.
*/
LogFlow(("PGMHandlerPhysicalPageAlias: %RGp (%R[pgmpage]) alias for %RHp\n",
GCPhysPage, pPage, HCPhysPageRemap));
PGM_PAGE_SET_HCPHYS(pPage, HCPhysPageRemap);
PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_MMIO2_ALIAS_MMIO);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
/** @todo hack alert
* This needs to be done properly. Currently we get away with it as the recompiler directly calls
* IOM read and write functions. Access through PGMPhysRead/Write will crash the process.
*/
PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
LogFlow(("PGMHandlerPhysicalPageAliasHC: => %R[pgmpage]\n", pPage));
pgmUnlock(pVM);
#ifndef IN_RC
HWACCMInvalidatePhysPage(pVM, GCPhysPage);
#endif
return VINF_SUCCESS;
}
pgmUnlock(pVM);
AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
return VERR_INVALID_PARAMETER;
}
pgmUnlock(pVM);
AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
return VERR_PGM_HANDLER_NOT_FOUND;
}
/**
* Checks if a physical range is handled
*
* @returns boolean
* @param pVM VM Handle.
* @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
* @remarks Caller must take the PGM lock...
* @threads EMT.
*/
VMMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
{
/*
* Find the handler.
*/
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (pCur)
{
Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
Assert( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|| pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL
|| pCur->enmType == PGMPHYSHANDLERTYPE_MMIO);
pgmUnlock(pVM);
return true;
}
pgmUnlock(pVM);
return false;
}
/**
* Checks if it's an disabled all access handler or write access handler at the
* given address.
*
* @returns true if it's an all access handler, false if it's a write access
* handler.
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The address of the page with a disabled handler.
*
* @remarks The caller, PGMR3PhysTlbGCPhys2Ptr, must hold the PGM lock.
*/
bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys)
{
pgmLock(pVM);
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
if (!pCur)
{
pgmUnlock(pVM);
AssertFailed();
return true;
}
Assert( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|| pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL
|| pCur->enmType == PGMPHYSHANDLERTYPE_MMIO); /* sanity */
/* Only whole pages can be disabled. */
Assert( pCur->Core.Key <= (GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK)
&& pCur->Core.KeyLast >= (GCPhys | PAGE_OFFSET_MASK));
bool bRet = pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE;
pgmUnlock(pVM);
return bRet;
}
/**
* Check if particular guest's VA is being monitored.
*
* @returns true or false
* @param pVM VM handle.
* @param GCPtr Virtual address.
* @remarks Will acquire the PGM lock.
* @threads Any.
*/
VMMDECL(bool) PGMHandlerVirtualIsRegistered(PVM pVM, RTGCPTR GCPtr)
{
pgmLock(pVM);
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtr);
pgmUnlock(pVM);
return pCur != NULL;
}
/**
* Search for virtual handler with matching physical address
*
* @returns VBox status code
* @param pVM The VM handle.
* @param GCPhys GC physical address to search for.
* @param ppVirt Where to store the pointer to the virtual handler structure.
* @param piPage Where to store the pointer to the index of the cached physical page.
*/
int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage)
{
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,VirtHandlerSearchByPhys), a);
Assert(ppVirt);
pgmLock(pVM);
PPGMPHYS2VIRTHANDLER pCur;
pCur = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, GCPhys);
if (pCur)
{
/* found a match! */
*ppVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
*piPage = pCur - &(*ppVirt)->aPhysToVirt[0];
pgmUnlock(pVM);
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertRelease(pCur->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD);
#endif
LogFlow(("PHYS2VIRT: found match for %RGp -> %RGv *piPage=%#x\n", GCPhys, (*ppVirt)->Core.Key, *piPage));
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,VirtHandlerSearchByPhys), a);
return VINF_SUCCESS;
}
pgmUnlock(pVM);
*ppVirt = NULL;
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,VirtHandlerSearchByPhys), a);
return VERR_PGM_HANDLER_NOT_FOUND;
}
/**
* Deal with aliases in phys2virt.
*
* As pointed out by the various todos, this currently only deals with
* aliases where the two ranges match 100%.
*
* @param pVM The VM handle.
* @param pPhys2Virt The node we failed insert.
*/
static void pgmHandlerVirtualInsertAliased(PVM pVM, PPGMPHYS2VIRTHANDLER pPhys2Virt)
{
/*
* First find the node which is conflicting with us.
*/
/** @todo Deal with partial overlapping. (Unlikly situation, so I'm too lazy to do anything about it now.) */
/** @todo check if the current head node covers the ground we do. This is highly unlikely
* and I'm too lazy to implement this now as it will require sorting the list and stuff like that. */
PPGMPHYS2VIRTHANDLER pHead = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertReleaseMsg(pHead != pPhys2Virt, ("%RGp-%RGp offVirtHandler=%#RX32\n",
pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler));
#endif
if (RT_UNLIKELY(!pHead || pHead->Core.KeyLast != pPhys2Virt->Core.KeyLast))
{
/** @todo do something clever here... */
LogRel(("pgmHandlerVirtualInsertAliased: %RGp-%RGp\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
pPhys2Virt->offNextAlias = 0;
return;
}
/*
* Insert ourselves as the next node.
*/
if (!(pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IN_TREE;
else
{
PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pHead + (pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
pPhys2Virt->offNextAlias = ((intptr_t)pNext - (intptr_t)pPhys2Virt)
| PGMPHYS2VIRTHANDLER_IN_TREE;
}
pHead->offNextAlias = ((intptr_t)pPhys2Virt - (intptr_t)pHead)
| (pHead->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
Log(("pgmHandlerVirtualInsertAliased: %RGp-%RGp offNextAlias=%#RX32\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
}
/**
* Resets one virtual handler range.
*
* This is called by HandlerVirtualUpdate when it has detected some kind of
* problem and have started clearing the virtual handler page states (or
* when there have been registration/deregistrations). For this reason this
* function will only update the page status if it's lower than desired.
*
* @returns 0
* @param pNode Pointer to a PGMVIRTHANDLER.
* @param pvUser The VM handle.
*/
DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
PVM pVM = (PVM)pvUser;
Assert(PGMIsLockOwner(pVM));
/*
* Iterate the pages and apply the new state.
*/
unsigned uState = pgmHandlerVirtualCalcState(pCur);
PPGMRAMRANGE pRamHint = NULL;
RTGCUINTPTR offPage = ((RTGCUINTPTR)pCur->Core.Key & PAGE_OFFSET_MASK);
RTGCUINTPTR cbLeft = pCur->cb;
for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
{
PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
if (pPhys2Virt->Core.Key != NIL_RTGCPHYS)
{
/*
* Update the page state wrt virtual handlers.
*/
PPGMPAGE pPage;
int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, pPhys2Virt->Core.Key, &pPage, &pRamHint);
if ( RT_SUCCESS(rc)
&& PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, uState);
else
AssertRC(rc);
/*
* Need to insert the page in the Phys2Virt lookup tree?
*/
if (pPhys2Virt->Core.KeyLast == NIL_RTGCPHYS)
{
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertRelease(!pPhys2Virt->offNextAlias);
#endif
unsigned cbPhys = cbLeft;
if (cbPhys > PAGE_SIZE - offPage)
cbPhys = PAGE_SIZE - offPage;
else
Assert(iPage == pCur->cPages - 1);
pPhys2Virt->Core.KeyLast = pPhys2Virt->Core.Key + cbPhys - 1; /* inclusive */
pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IS_HEAD | PGMPHYS2VIRTHANDLER_IN_TREE;
if (!RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, &pPhys2Virt->Core))
pgmHandlerVirtualInsertAliased(pVM, pPhys2Virt);
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
else
AssertReleaseMsg(RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key) == &pPhys2Virt->Core,
("%RGp-%RGp offNextAlias=%#RX32\n",
pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
#endif
Log2(("PHYS2VIRT: Insert physical range %RGp-%RGp offNextAlias=%#RX32 %s\n",
pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
}
}
cbLeft -= PAGE_SIZE - offPage;
offPage = 0;
}
return 0;
}
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
/**
* Worker for pgmHandlerVirtualDumpPhysPages.
*
* @returns 0 (continue enumeration).
* @param pNode The virtual handler node.
* @param pvUser User argument, unused.
*/
static DECLCALLBACK(int) pgmHandlerVirtualDumpPhysPagesCallback(PAVLROGCPHYSNODECORE pNode, void *pvUser)
{
PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
Log(("PHYS2VIRT: Range %RGp-%RGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
return 0;
}
/**
* Assertion / logging helper for dumping all the
* virtual handlers to the log.
*
* @param pVM Pointer to the shared VM structure.
*/
void pgmHandlerVirtualDumpPhysPages(PVM pVM)
{
RTAvlroGCPhysDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, true /* from left */,
pgmHandlerVirtualDumpPhysPagesCallback, 0);
}
#endif /* VBOX_STRICT || LOG_ENABLED */
#ifdef VBOX_STRICT
/**
* State structure used by the PGMAssertHandlerAndFlagsInSync() function
* and its AVL enumerators.
*/
typedef struct PGMAHAFIS
{
/** The current physical address. */
RTGCPHYS GCPhys;
/** The state we've calculated. */
unsigned uVirtStateFound;
/** The state we're matching up to. */
unsigned uVirtState;
/** Number of errors. */
unsigned cErrors;
/** The VM handle. */
PVM pVM;
} PGMAHAFIS, *PPGMAHAFIS;
#if 0 /* unused */
/**
* Verify virtual handler by matching physical address.
*
* @returns 0
* @param pNode Pointer to a PGMVIRTHANDLER.
* @param pvUser Pointer to user parameter.
*/
static DECLCALLBACK(int) pgmHandlerVirtualVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
{
if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
{
unsigned uState = pgmHandlerVirtualCalcState(pCur);
if (pState->uVirtState < uState)
{
error
}
if (pState->uVirtState == uState)
break; //??
}
}
return 0;
}
#endif /* unused */
/**
* Verify a virtual handler (enumeration callback).
*
* Called by PGMAssertHandlerAndFlagsInSync to check the sanity of all
* the virtual handlers, esp. that the physical addresses matches up.
*
* @returns 0
* @param pNode Pointer to a PGMVIRTHANDLER.
* @param pvUser Pointer to a PPGMAHAFIS structure.
*/
static DECLCALLBACK(int) pgmHandlerVirtualVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
PVM pVM = pState->pVM;
/*
* Validate the type and calc state.
*/
switch (pVirt->enmType)
{
case PGMVIRTHANDLERTYPE_WRITE:
case PGMVIRTHANDLERTYPE_ALL:
break;
default:
AssertMsgFailed(("unknown/wrong enmType=%d\n", pVirt->enmType));
pState->cErrors++;
return 0;
}
const unsigned uState = pgmHandlerVirtualCalcState(pVirt);
/*
* Check key alignment.
*/
if ( (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->Core.Key & PAGE_OFFSET_MASK)
&& pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS)
{
AssertMsgFailed(("virt handler phys has incorrect key! %RGp %RGv %s\n",
pVirt->aPhysToVirt[0].Core.Key, pVirt->Core.Key, R3STRING(pVirt->pszDesc)));
pState->cErrors++;
}
if ( (pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->Core.KeyLast & PAGE_OFFSET_MASK)
&& pVirt->aPhysToVirt[pVirt->cPages - 1].Core.Key != NIL_RTGCPHYS)
{
AssertMsgFailed(("virt handler phys has incorrect key! %RGp %RGv %s\n",
pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast, pVirt->Core.KeyLast, R3STRING(pVirt->pszDesc)));
pState->cErrors++;
}
/*
* Check pages for sanity and state.
*/
RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->Core.Key;
for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
{
for (unsigned i=0;i<pVM->cCPUs;i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
RTGCPHYS GCPhysGst;
uint64_t fGst;
int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
if ( rc == VERR_PAGE_NOT_PRESENT
|| rc == VERR_PAGE_TABLE_NOT_PRESENT)
{
if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
{
AssertMsgFailed(("virt handler phys out of sync. %RGp GCPhysNew=~0 iPage=%#x %RGv %s\n",
pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
pState->cErrors++;
}
continue;
}
AssertRCReturn(rc, 0);
if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
{
AssertMsgFailed(("virt handler phys out of sync. %RGp GCPhysGst=%RGp iPage=%#x %RGv %s\n",
pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
pState->cErrors++;
continue;
}
PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
if (!pPage)
{
AssertMsgFailed(("virt handler getting ram flags. GCPhysGst=%RGp iPage=%#x %RGv %s\n",
GCPhysGst, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
pState->cErrors++;
continue;
}
if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
{
AssertMsgFailed(("virt handler state mismatch. pPage=%R[pgmpage] GCPhysGst=%RGp iPage=%#x %RGv state=%d expected>=%d %s\n",
pPage, GCPhysGst, iPage, GCPtr, PGM_PAGE_GET_HNDL_VIRT_STATE(pPage), uState, R3STRING(pVirt->pszDesc)));
pState->cErrors++;
continue;
}
} /* for each VCPU */
} /* for pages in virtual mapping. */
return 0;
}
/**
* Asserts that the handlers+guest-page-tables == ramrange-flags and
* that the physical addresses associated with virtual handlers are correct.
*
* @returns Number of mismatches.
* @param pVM The VM handle.
*/
VMMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
{
PPGM pPGM = &pVM->pgm.s;
PGMAHAFIS State;
State.GCPhys = 0;
State.uVirtState = 0;
State.uVirtStateFound = 0;
State.cErrors = 0;
State.pVM = pVM;
Assert(PGMIsLockOwner(pVM));
/*
* Check the RAM flags against the handlers.
*/
for (PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); pRam; pRam = pRam->CTX_SUFF(pNext))
{
const unsigned cPages = pRam->cb >> PAGE_SHIFT;
for (unsigned iPage = 0; iPage < cPages; iPage++)
{
PGMPAGE const *pPage = &pRam->aPages[iPage];
if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
{
State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
/*
* Physical first - calculate the state based on the handlers
* active on the page, then compare.
*/
if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
{
/* the first */
PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, State.GCPhys);
if (!pPhys)
{
pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, State.GCPhys, true);
if ( pPhys
&& pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
pPhys = NULL;
Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
}
if (pPhys)
{
unsigned uState = pgmHandlerPhysicalCalcState(pPhys);
/* more? */
while (pPhys->Core.KeyLast < (State.GCPhys | PAGE_OFFSET_MASK))
{
PPGMPHYSHANDLER pPhys2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers,
pPhys->Core.KeyLast + 1, true);
if ( !pPhys2
|| pPhys2->Core.Key > (State.GCPhys | PAGE_OFFSET_MASK))
break;
unsigned uState2 = pgmHandlerPhysicalCalcState(pPhys2);
uState = RT_MAX(uState, uState2);
pPhys = pPhys2;
}
/* compare.*/
if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != uState
&& PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
{
AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%RGp state=%d expected=%d %s\n",
State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), uState, pPhys->pszDesc));
State.cErrors++;
}
#ifdef IN_RING3
/* validate that REM is handling it. */
if ( !REMR3IsPageAccessHandled(pVM, State.GCPhys)
/* ignore shadowed ROM for the time being. */
&& PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW)
{
AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%RGp state=%d %s\n",
State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), pPhys->pszDesc));
State.cErrors++;
}
#endif
}
else
{
AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%RGp\n", State.GCPhys));
State.cErrors++;
}
}
/*
* Virtual handlers.
*/
if (PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
{
State.uVirtState = PGM_PAGE_GET_HNDL_VIRT_STATE(pPage);
#if 1
/* locate all the matching physical ranges. */
State.uVirtStateFound = PGM_PAGE_HNDL_VIRT_STATE_NONE;
RTGCPHYS GCPhysKey = State.GCPhys;
for (;;)
{
PPGMPHYS2VIRTHANDLER pPhys2Virt = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
GCPhysKey, true /* above-or-equal */);
if ( !pPhys2Virt
|| (pPhys2Virt->Core.Key & X86_PTE_PAE_PG_MASK) != State.GCPhys)
break;
/* the head */
GCPhysKey = pPhys2Virt->Core.KeyLast;
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
unsigned uState = pgmHandlerVirtualCalcState(pCur);
State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
/* any aliases */
while (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
{
pPhys2Virt = (PPGMPHYS2VIRTHANDLER)((uintptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
uState = pgmHandlerVirtualCalcState(pCur);
State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
}
/* done? */
if ((GCPhysKey & X86_PTE_PAE_PG_MASK) != State.GCPhys)
break;
}
#else
/* very slow */
RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOneByPhysAddr, &State);
#endif
if (State.uVirtState != State.uVirtStateFound)
{
AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%RGp uVirtState=%#x uVirtStateFound=%#x\n",
State.GCPhys, State.uVirtState, State.uVirtStateFound));
State.cErrors++;
}
}
}
} /* foreach page in ram range. */
} /* foreach ram range. */
/*
* Check that the physical addresses of the virtual handlers matches up
* and that they are otherwise sane.
*/
RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOne, &State);
/*
* Do the reverse check for physical handlers.
*/
/** @todo */
return State.cErrors;
}
#endif /* VBOX_STRICT */