PGMAllBth.h revision 7a896688c49bde3fa1490e7ebb321ac51b6ad29d
/* $Id$ */
/** @file
* VBox - Page Manager, Shadow+Guest Paging Template - All context code.
*
* @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
* {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
* set to PGM_TYPE_PROT. Half of the code in this file is not
* exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
*
* @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
* PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
*
* @remarks This file is one big \#ifdef-orgy!
*
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
#ifdef _MSC_VER
/** @todo we're generating unnecessary code in nested/ept shadow mode and for
* real/prot-guest+RC mode. */
# pragma warning(disable: 4505)
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
RT_C_DECLS_BEGIN
PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
# else
static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
#endif
PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
#ifdef VBOX_STRICT
PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
#endif
PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
RT_C_DECLS_END
/*
* Filter out some illegal combinations of guest and shadow paging, so we can
* remove redundant checks inside functions.
*/
#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
# error "Invalid combination; PAE guest implies PAE shadow"
#endif
#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
&& !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
#endif
#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
&& !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
#endif
#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
|| (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
#endif
#ifndef IN_RING3
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/**
* Deal with a guest page fault.
*
* @returns Strict VBox status code.
* @retval VINF_EM_RAW_GUEST_TRAP
* @retval VINF_EM_RAW_EMULATE_INSTR
*
* @param pVCpu The current CPU.
* @param pGstWalk The guest page table walk result.
* @param uErr The error code.
*/
PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
{
# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
/*
* Check for write conflicts with our hypervisor mapping.
*
* If the guest happens to access a non-present page, where our hypervisor
* is currently mapped, then we'll create a #PF storm in the guest.
*/
if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
&& MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
{
/* Force a CR3 sync to check for conflicts and emulate the instruction. */
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
return VINF_EM_RAW_EMULATE_INSTR;
}
# endif
/*
* Calc the error code for the guest trap.
*/
uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
: uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
if (pGstWalk->Core.fBadPhysAddr)
{
uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
Assert(!pGstWalk->Core.fNotPresent);
}
else if (!pGstWalk->Core.fNotPresent)
uNewErr |= X86_TRAP_PF_P;
TRPMSetErrorCode(pVCpu, uNewErr);
LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
return VINF_EM_RAW_GUEST_TRAP;
}
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/**
* Deal with a guest page fault.
*
* The caller has taken the PGM lock.
*
* @returns Strict VBox status code.
*
* @param pVCpu The current CPU.
* @param uErr The error code.
* @param pRegFrame The register frame.
* @param pvFault The fault address.
* @param pPage The guest page at @a pvFault.
* @param pGstWalk The guest page table walk result.
* @param pfLockTaken PGM lock taken here or not (out). This is true
* when we're called.
*/
static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
, PGSTPTWALK pGstWalk
# endif
)
{
# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
#endif
PVM pVM = pVCpu->CTX_SUFF(pVM);
int rc;
if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
{
/*
* Physical page access handler.
*/
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
# else
const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
# endif
PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
if (pCur)
{
# ifdef PGM_SYNC_N_PAGES
/*
* If the region is write protected and we got a page not present fault, then sync
* the pages. If the fault was caused by a read, then restart the instruction.
* In case of write access continue to the GC write handler.
*
* ASSUMES that there is only one handler per page or that they have similar write properties.
*/
if ( !(uErr & X86_TRAP_PF_P)
&& pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
{
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
# else
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
# endif
if ( RT_FAILURE(rc)
|| !(uErr & X86_TRAP_PF_RW)
|| rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
{
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
return rc;
}
}
# endif
# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
/*
* If the access was not thru a #PF(RSVD|...) resync the page.
*/
if ( !(uErr & X86_TRAP_PF_RSVD)
&& pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
&& pGstWalk->Core.fEffectiveRW
&& !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
# endif
)
{
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
# else
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
# endif
if ( RT_FAILURE(rc)
|| rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
{
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
return rc;
}
}
# endif
AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|| (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
else
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
}
if (pCur->CTX_SUFF(pfnHandler))
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
void *pvUser = pCur->CTX_SUFF(pvUser);
# ifdef IN_RING0
PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
# else
PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
# endif
STAM_PROFILE_START(&pCur->Stat, h);
if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
{
pgmUnlock(pVM);
*pfLockTaken = false;
}
rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
# ifdef VBOX_WITH_STATISTICS
pgmLock(pVM);
pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
if (pCur)
STAM_PROFILE_STOP(&pCur->Stat, h);
pgmUnlock(pVM);
# endif
}
else
rc = VINF_EM_RAW_EMULATE_INSTR;
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
return rc;
}
}
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
else
{
# ifdef PGM_SYNC_N_PAGES
/*
* If the region is write protected and we got a page not present fault, then sync
* the pages. If the fault was caused by a read, then restart the instruction.
* In case of write access continue to the GC write handler.
*/
if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
&& !(uErr & X86_TRAP_PF_P))
{
rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
if ( RT_FAILURE(rc)
|| rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|| !(uErr & X86_TRAP_PF_RW))
{
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
return rc;
}
}
# endif
/*
* Ok, it's an virtual page access handler.
*
* Since it's faster to search by address, we'll do that first
* and then retry by GCPhys if that fails.
*/
/** @todo r=bird: perhaps we should consider looking up by physical address directly now?
* r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
* out of sync, because the page was changed without us noticing it (not-present -> present
* without invlpg or mov cr3, xxx).
*/
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
if (pCur)
{
AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
|| ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|| !(uErr & X86_TRAP_PF_P)
|| (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
if ( pvFault - pCur->Core.Key < pCur->cb
&& ( uErr & X86_TRAP_PF_RW
|| pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
{
# ifdef IN_RC
STAM_PROFILE_START(&pCur->Stat, h);
RTGCPTR GCPtrStart = pCur->Core.Key;
CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
pgmUnlock(pVM);
*pfLockTaken = false;
rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
# ifdef VBOX_WITH_STATISTICS
pgmLock(pVM);
pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
if (pCur)
STAM_PROFILE_STOP(&pCur->Stat, h);
pgmUnlock(pVM);
# endif
# else
rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
# endif
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
return rc;
}
/* Unhandled part of a monitored page */
}
else
{
/* Check by physical address. */
unsigned iPage;
rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
Assert(RT_SUCCESS(rc) || !pCur);
if ( pCur
&& ( uErr & X86_TRAP_PF_RW
|| pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
{
Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
# ifdef IN_RC
STAM_PROFILE_START(&pCur->Stat, h);
RTGCPTR GCPtrStart = pCur->Core.Key;
CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
pgmUnlock(pVM);
*pfLockTaken = false;
RTGCPTR off = (iPage << PAGE_SHIFT)
+ (pvFault & PAGE_OFFSET_MASK)
- (GCPtrStart & PAGE_OFFSET_MASK);
Assert(off < pCur->cb);
rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
# ifdef VBOX_WITH_STATISTICS
pgmLock(pVM);
pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
if (pCur)
STAM_PROFILE_STOP(&pCur->Stat, h);
pgmUnlock(pVM);
# endif
# else
rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
# endif
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
return rc;
}
}
}
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/*
* There is a handled area of the page, but this fault doesn't belong to it.
* We must emulate the instruction.
*
* To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
* we first check if this was a page-not-present fault for a page with only
* write access handlers. Restart the instruction if it wasn't a write access.
*/
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
&& !(uErr & X86_TRAP_PF_P))
{
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
# else
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
# endif
if ( RT_FAILURE(rc)
|| rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|| !(uErr & X86_TRAP_PF_RW))
{
AssertRC(rc);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
return rc;
}
}
/** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
* It's writing to an unhandled part of the LDT page several million times.
*/
rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
return rc;
} /* if any kind of handler */
/**
* #PF Handler for raw-mode guest execution.
*
* @returns VBox status code (appropriate for trap handling and GC return).
*
* @param pVCpu Pointer to the VMCPU.
* @param uErr The trap error code.
* @param pRegFrame Trap register frame.
* @param pvFault The fault address.
* @param pfLockTaken PGM lock taken here or not (out)
*/
PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
{
PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
*pfLockTaken = false;
# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
|| PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
int rc;
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/*
* Walk the guest page translation tables and check if it's a guest fault.
*/
GSTPTWALK GstWalk;
rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
if (RT_FAILURE_NP(rc))
return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
/* assert some GstWalk sanity. */
# if PGM_GST_TYPE == PGM_TYPE_AMD64
/*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
# endif
# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
/*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
# endif
/*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
/*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
Assert(GstWalk.Core.fSucceeded);
if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
{
if ( ( (uErr & X86_TRAP_PF_RW)
&& !GstWalk.Core.fEffectiveRW
&& ( (uErr & X86_TRAP_PF_US)
|| CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
|| ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
|| ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
)
return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
}
/*
* Set the accessed and dirty flags.
*/
# if PGM_GST_TYPE == PGM_TYPE_AMD64
GstWalk.Pml4e.u |= X86_PML4E_A;
GstWalk.pPml4e->u |= X86_PML4E_A;
GstWalk.Pdpe.u |= X86_PDPE_A;
GstWalk.pPdpe->u |= X86_PDPE_A;
# endif
if (GstWalk.Core.fBigPage)
{
Assert(GstWalk.Pde.b.u1Size);
if (uErr & X86_TRAP_PF_RW)
{
GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
}
else
{
GstWalk.Pde.u |= X86_PDE4M_A;
GstWalk.pPde->u |= X86_PDE4M_A;
}
}
else
{
Assert(!GstWalk.Pde.b.u1Size);
GstWalk.Pde.u |= X86_PDE_A;
GstWalk.pPde->u |= X86_PDE_A;
if (uErr & X86_TRAP_PF_RW)
{
# ifdef VBOX_WITH_STATISTICS
if (!GstWalk.Pte.n.u1Dirty)
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
else
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
# endif
GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
}
else
{
GstWalk.Pte.u |= X86_PTE_A;
GstWalk.pPte->u |= X86_PTE_A;
}
Assert(GstWalk.Pte.u == GstWalk.pPte->u);
}
AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/* Take the big lock now. */
*pfLockTaken = true;
pgmLock(pVM);
# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
/*
* If it is a reserved bit fault we know that it is an MMIO (access
* handler) related fault and can skip some 200 lines of code.
*/
if (uErr & X86_TRAP_PF_RSVD)
{
Assert(uErr & X86_TRAP_PF_P);
PPGMPAGE pPage;
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
pfLockTaken, &GstWalk));
rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
# else
rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
pfLockTaken));
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
# endif
AssertRC(rc);
PGM_INVL_PG(pVCpu, pvFault);
return rc; /* Restart with the corrected entry. */
}
# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
/*
* Fetch the guest PDE, PDPE and PML4E.
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
PX86PDPAE pPDDst;
# if PGM_GST_TYPE == PGM_TYPE_PAE
rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
# else
rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
# endif
AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
PX86PDPAE pPDDst;
# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
# else
rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
# endif
AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
PEPTPD pPDDst;
rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
# endif
Assert(pPDDst);
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/*
* Dirty page handling.
*
* If we successfully correct the write protection fault due to dirty bit
* tracking, then return immediately.
*/
if (uErr & X86_TRAP_PF_RW) /* write fault? */
{
STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
{
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
= rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
: &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
//AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
//AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
}
# if 0 /* rarely useful; leave for debugging. */
STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
# endif
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/*
* A common case is the not-present error caused by lazy page table syncing.
*
* It is IMPORTANT that we weed out any access to non-present shadow PDEs
* here so we can safely assume that the shadow PT is present when calling
* SyncPage later.
*
* On failure, we ASSUME that SyncPT is out of memory or detected some kind
* of mapping conflict and defer to SyncCR3 in R3.
* (Again, we do NOT support access handlers for non-present guest pages.)
*
*/
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
Assert(GstWalk.Pde.n.u1Present);
# endif
if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
&& !pPDDst->a[iPDDst].n.u1Present)
{
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
# else
LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
# endif
if (RT_SUCCESS(rc))
return rc;
Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
return VINF_PGM_SYNC_CR3;
}
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
/*
* Check if this address is within any of our mappings.
*
* This is *very* fast and it's gonna save us a bit of effort below and prevent
* us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
* (BTW, it's impossible to have physical access handlers in a mapping.)
*/
if (pgmMapAreMappingsEnabled(pVM))
{
PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
{
if (pvFault < pMapping->GCPtr)
break;
if (pvFault - pMapping->GCPtr < pMapping->cb)
{
/*
* The first thing we check is if we've got an undetected conflict.
*/
if (pgmMapAreMappingsFloating(pVM))
{
unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
while (iPT-- > 0)
if (GstWalk.pPde[iPT].n.u1Present)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
return VINF_PGM_SYNC_CR3;
}
}
/*
* Check if the fault address is in a virtual page access handler range.
*/
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
if ( pCur
&& pvFault - pCur->Core.Key < pCur->cb
&& uErr & X86_TRAP_PF_RW)
{
# ifdef IN_RC
STAM_PROFILE_START(&pCur->Stat, h);
pgmUnlock(pVM);
rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
pgmLock(pVM);
STAM_PROFILE_STOP(&pCur->Stat, h);
# else
AssertFailed();
rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
# endif
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
return rc;
}
/*
* Pretend we're not here and let the guest handle the trap.
*/
TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
return VINF_EM_RAW_GUEST_TRAP;
}
}
} /* pgmAreMappingsEnabled(&pVM->pgm.s) */
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/*
* Check if this fault address is flagged for special treatment,
* which means we'll have to figure out the physical address and
* check flags associated with it.
*
* ASSUME that we can limit any special access handling to pages
* in page tables which the guest believes to be present.
*/
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
# else
RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
PPGMPAGE pPage;
rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
if (RT_FAILURE(rc))
{
/*
* When the guest accesses invalid physical memory (e.g. probing
* of RAM or accessing a remapped MMIO range), then we'll fall
* back to the recompiler to emulate the instruction.
*/
LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
return VINF_EM_RAW_EMULATE_INSTR;
}
/*
* Any handlers for this page?
*/
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
&GstWalk));
# else
return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
# endif
STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
if (uErr & X86_TRAP_PF_P)
{
/*
* The page isn't marked, but it might still be monitored by a virtual page access handler.
* (ASSUMES no temporary disabling of virtual handlers.)
*/
/** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
* we should correct both the shadow page table and physical memory flags, and not only check for
* accesses within the handler region but for access to pages with virtual handlers. */
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
if (pCur)
{
AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
|| ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|| !(uErr & X86_TRAP_PF_P)
|| (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
if ( pvFault - pCur->Core.Key < pCur->cb
&& ( uErr & X86_TRAP_PF_RW
|| pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
{
# ifdef IN_RC
STAM_PROFILE_START(&pCur->Stat, h);
pgmUnlock(pVM);
rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
pgmLock(pVM);
STAM_PROFILE_STOP(&pCur->Stat, h);
# else
rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
# endif
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
return rc;
}
}
}
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/*
* We are here only if page is present in Guest page tables and
* trap is not handled by our handlers.
*
* Check it for page out-of-sync situation.
*/
if (!(uErr & X86_TRAP_PF_P))
{
/*
* Page is not present in our page tables. Try to sync it!
*/
if (uErr & X86_TRAP_PF_US)
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
else /* supervisor */
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
if (PGM_PAGE_IS_BALLOONED(pPage))
{
/* Emulate reads from ballooned pages as they are not present in
our shadow page tables. (Required for e.g. Solaris guests; soft
ecc, random nr generator.) */
rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
return rc;
}
# if defined(LOG_ENABLED) && !defined(IN_RING0)
RTGCPHYS GCPhys2;
uint64_t fPageGst2;
PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
# else
Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
# endif
# endif /* LOG_ENABLED */
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
if ( !GstWalk.Core.fEffectiveUS
&& CPUMGetGuestCPL(pVCpu) == 0)
{
/* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
if ( pvFault == (RTGCPTR)pRegFrame->eip
|| pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
# ifdef CSAM_DETECT_NEW_CODE_PAGES
|| ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
&& CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
# endif /* CSAM_DETECT_NEW_CODE_PAGES */
)
{
LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
if (rc != VINF_SUCCESS)
{
/*
* CSAM needs to perform a job in ring 3.
*
* Sync the page before going to the host context; otherwise we'll end up in a loop if
* CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
*/
LogFlow(("CSAM ring 3 job\n"));
int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
AssertRC(rc2);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
return rc;
}
}
# ifdef CSAM_DETECT_NEW_CODE_PAGES
else if ( uErr == X86_TRAP_PF_RW
&& pRegFrame->ecx >= 0x100 /* early check for movswd count */
&& pRegFrame->ecx < 0x10000)
{
/* In case of a write to a non-present supervisor shadow page, we'll take special precautions
* to detect loading of new code pages.
*/
/*
* Decode the instruction.
*/
PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
uint32_t cbOp;
rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, &cbOp);
/* For now we'll restrict this to rep movsw/d instructions */
if ( rc == VINF_SUCCESS
&& pDis->pCurInstr->opcode == OP_MOVSWD
&& (pDis->prefix & DISPREFIX_REP))
{
CSAMMarkPossibleCodePage(pVM, pvFault);
}
}
# endif /* CSAM_DETECT_NEW_CODE_PAGES */
/*
* Mark this page as safe.
*/
/** @todo not correct for pages that contain both code and data!! */
Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
CSAMMarkPage(pVM, pvFault, true);
}
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
# else
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
# endif
if (RT_SUCCESS(rc))
{
/* The page was successfully synced, return to the guest. */
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
return VINF_SUCCESS;
}
}
else /* uErr & X86_TRAP_PF_P: */
{
/*
* Write protected pages are made writable when the guest makes the
* first write to it. This happens for pages that are shared, write
* monitored or not yet allocated.
*
* We may also end up here when CR0.WP=0 in the guest.
*
* Also, a side effect of not flushing global PDEs are out of sync
* pages due to physical monitored regions, that are no longer valid.
* Assume for now it only applies to the read/write flag.
*/
if (uErr & X86_TRAP_PF_RW)
{
/*
* Check if it is a read-only page.
*/
if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
{
Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
Assert(!PGM_PAGE_IS_ZERO(pPage));
AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
if (rc != VINF_SUCCESS)
{
AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
return rc;
}
if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
return VINF_EM_NO_MEMORY;
}
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/*
* Check to see if we need to emulate the instruction if CR0.WP=0.
*/
if ( !GstWalk.Core.fEffectiveRW
&& (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
&& CPUMGetGuestCPL(pVCpu) == 0)
{
Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
if (RT_SUCCESS(rc))
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
else
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
return rc;
}
# endif
/// @todo count the above case; else
if (uErr & X86_TRAP_PF_US)
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
else /* supervisor */
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
/*
* Sync the page.
*
* Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
* page is not present, which is not true in this case.
*/
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
# else
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
# endif
if (RT_SUCCESS(rc))
{
/*
* Page was successfully synced, return to guest but invalidate
* the TLB first as the page is very likely to be in it.
*/
# if PGM_SHW_TYPE == PGM_TYPE_EPT
HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
# else
PGM_INVL_PG(pVCpu, pvFault);
# endif
# ifdef VBOX_STRICT
RTGCPHYS GCPhys2;
uint64_t fPageGst;
if (!pVM->pgm.s.fNestedPaging)
{
rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
}
uint64_t fPageShw;
rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
# endif /* VBOX_STRICT */
STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
return VINF_SUCCESS;
}
}
/** @todo else: why are we here? */
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
/*
* Check for VMM page flags vs. Guest page flags consistency.
* Currently only for debug purposes.
*/
if (RT_SUCCESS(rc))
{
/* Get guest page flags. */
uint64_t fPageGst;
rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
if (RT_SUCCESS(rc))
{
uint64_t fPageShw;
rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
/*
* Compare page flags.
* Note: we have AVL, A, D bits desynced.
*/
AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
== (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
}
else
AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
}
else
AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
}
/*
* If we get here it is because something failed above, i.e. most like guru
* meditiation time.
*/
LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
__PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
return rc;
# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
return VERR_PGM_NOT_USED_IN_MODE;
# endif
}
#endif /* !IN_RING3 */
/**
* Emulation of the invlpg instruction.
*
*
* @returns VBox status code.
*
* @param pVCpu Pointer to the VMCPU.
* @param GCPtrPage Page to invalidate.
*
* @remark ASSUMES that the guest is updating before invalidating. This order
* isn't required by the CPU, so this is speculative and could cause
* trouble.
* @remark No TLB shootdown is done on any other VCPU as we assume that
* invlpg emulation is the *only* reason for calling this function.
* (The guest has to shoot down TLB entries on other CPUs itself)
* Currently true, but keep in mind!
*
* @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
* Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
*/
PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
{
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& PGM_SHW_TYPE != PGM_TYPE_EPT
int rc;
PVM pVM = pVCpu->CTX_SUFF(pVM);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
PGM_LOCK_ASSERT_OWNER(pVM);
LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
/*
* Get the shadow PD entry and skip out if this PD isn't present.
* (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
Assert(pShwPde);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
/* If the shadow PDPE isn't present, then skip the invalidate. */
if (!pPdptDst->a[iPdpt].n.u1Present)
{
Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
return VINF_SUCCESS;
}
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PPGMPOOLPAGE pShwPde = NULL;
PX86PDPAE pPDDst;
/* Fetch the pgm pool shadow descriptor. */
rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
AssertRCSuccessReturn(rc, rc);
Assert(pShwPde);
pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
/* PML4 */
/*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PX86PDPAE pPDDst;
PX86PDPT pPdptDst;
PX86PML4E pPml4eDst;
rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
if (rc != VINF_SUCCESS)
{
AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
return VINF_SUCCESS;
}
Assert(pPDDst);
PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
if (!pPdpeDst->n.u1Present)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
return VINF_SUCCESS;
}
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
Assert(pShwPde);
# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
const SHWPDE PdeDst = *pPdeDst;
if (!PdeDst.n.u1Present)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
return VINF_SUCCESS;
}
/*
* Get the guest PD entry and calc big page.
*/
# if PGM_GST_TYPE == PGM_TYPE_32BIT
PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
unsigned iPDSrc = 0;
# if PGM_GST_TYPE == PGM_TYPE_PAE
X86PDPE PdpeSrcIgn;
PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
# else /* AMD64 */
PX86PML4E pPml4eSrcIgn;
X86PDPE PdpeSrcIgn;
PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
# endif
GSTPDE PdeSrc;
if (pPDSrc)
PdeSrc = pPDSrc->a[iPDSrc];
else
PdeSrc.u = 0;
# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
# ifdef IN_RING3
/*
* If a CR3 Sync is pending we may ignore the invalidate page operation
* depending on the kind of sync and if it's a global page or not.
* This doesn't make sense in GC/R0 so we'll skip it entirely there.
*/
# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
|| ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
&& fIsBigPage
&& PdeSrc.b.u1Global
)
)
# else
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
# endif
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
return VINF_SUCCESS;
}
# endif /* IN_RING3 */
/*
* Deal with the Guest PDE.
*/
rc = VINF_SUCCESS;
if (PdeSrc.n.u1Present)
{
Assert( PdeSrc.n.u1User == PdeDst.n.u1User
&& (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
# ifndef PGM_WITHOUT_MAPPING
if (PdeDst.u & PGM_PDFLAGS_MAPPING)
{
/*
* Conflict - Let SyncPT deal with it to avoid duplicate code.
*/
Assert(pgmMapAreMappingsEnabled(pVM));
Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
}
else
# endif /* !PGM_WITHOUT_MAPPING */
if (!fIsBigPage)
{
/*
* 4KB - page.
*/
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
# endif
if (pShwPage->GCPhys == GCPhys)
{
/* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
PGSTPT pPTSrc;
rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
if (RT_SUCCESS(rc))
{
const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
GSTPTE PteSrc = pPTSrc->a[iPTSrc];
const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
GCPtrPage, PteSrc.n.u1Present,
PteSrc.n.u1Write & PdeSrc.n.u1Write,
PteSrc.n.u1User & PdeSrc.n.u1User,
(uint64_t)PteSrc.u,
SHW_PTE_LOG64(pPTDst->a[iPTDst]),
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
}
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
PGM_INVL_PG(pVCpu, GCPtrPage);
}
else
{
/*
* The page table address changed.
*/
LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
ASMAtomicWriteSize(pPdeDst, 0);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
PGM_INVL_VCPU_TLBS(pVCpu);
}
}
else
{
/*
* 2/4MB - page.
*/
/* Before freeing the page, check if anything really changed. */
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
# endif
if ( pShwPage->GCPhys == GCPhys
&& pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
{
/* ASSUMES a the given bits are identical for 4M and normal PDEs */
/** @todo This test is wrong as it cannot check the G bit!
* FIXME */
if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
== (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
&& ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
|| (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
{
LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
return VINF_SUCCESS;
}
}
/*
* Ok, the page table is present and it's been changed in the guest.
* If we're in host context, we'll just mark it as not present taking the lazy approach.
* We could do this for some flushes in GC too, but we need an algorithm for
* deciding which 4MB pages containing code likely to be executed very soon.
*/
LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
ASMAtomicWriteSize(pPdeDst, 0);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
}
}
else
{
/*
* Page directory is not present, mark shadow PDE not present.
*/
if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
{
pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
ASMAtomicWriteSize(pPdeDst, 0);
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
PGM_INVL_PG(pVCpu, GCPtrPage);
}
else
{
Assert(pgmMapAreMappingsEnabled(pVM));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
}
}
return rc;
#else /* guest real and protected mode */
/* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
NOREF(pVCpu); NOREF(GCPtrPage);
return VINF_SUCCESS;
#endif
}
/**
* Update the tracking of shadowed pages.
*
* @param pVCpu Pointer to the VMCPU.
* @param pShwPage The shadow page.
* @param HCPhys The physical page we is being dereferenced.
* @param iPte Shadow PTE index
* @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
*/
DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
RTGCPHYS GCPhysPage)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
&& PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
&& (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
/* Use the hint we retrieved from the cached guest PT. */
if (pShwPage->fDirty)
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
Assert(pShwPage->cPresent);
Assert(pPool->cPresent);
pShwPage->cPresent--;
pPool->cPresent--;
PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
AssertRelease(pPhysPage);
pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
return;
}
# else
NOREF(GCPhysPage);
# endif
STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
/** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
* 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
* 2. write protect all shadowed pages. I.e. implement caching.
*/
/** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
/*
* Find the guest address.
*/
for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
pRam;
pRam = pRam->CTX_SUFF(pNext))
{
unsigned iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
{
if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
Assert(pShwPage->cPresent);
Assert(pPool->cPresent);
pShwPage->cPresent--;
pPool->cPresent--;
pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
return;
}
}
}
for (;;)
AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
}
/**
* Update the tracking of shadowed pages.
*
* @param pVCpu Pointer to the VMCPU.
* @param pShwPage The shadow page.
* @param u16 The top 16-bit of the pPage->HCPhys.
* @param pPage Pointer to the guest page. this will be modified.
* @param iPTDst The index into the shadow table.
*/
DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
/*
* Just deal with the simple first time here.
*/
if (!u16)
{
STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
/* Save the page table index. */
PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
}
else
u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
/* write back */
Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
/* update statistics. */
pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
pShwPage->cPresent++;
if (pShwPage->iFirstPresent > iPTDst)
pShwPage->iFirstPresent = iPTDst;
}
/**
* Modifies a shadow PTE to account for access handlers.
*
* @param pVM Pointer to the VM.
* @param pPage The page in question.
* @param fPteSrc The shadowed flags of the source PTE. Must include the
* A (accessed) bit so it can be emulated correctly.
* @param pPteDst The shadow PTE (output). This is temporary storage and
* does not need to be set atomically.
*/
DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
{
NOREF(pVM);
/** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
* Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
{
LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
#if PGM_SHW_TYPE == PGM_TYPE_EPT
pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
pPteDst->n.u1Present = 1;
pPteDst->n.u1Execute = 1;
pPteDst->n.u1IgnorePAT = 1;
pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
/* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
#else
if (fPteSrc & X86_PTE_A)
{
SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
SHW_PTE_SET_RO(*pPteDst);
}
else
SHW_PTE_SET(*pPteDst, 0);
#endif
}
#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
&& ( BTH_IS_NP_ACTIVE(pVM)
|| (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
# if PGM_SHW_TYPE == PGM_TYPE_AMD64
&& pVM->pgm.s.fLessThan52PhysicalAddressBits
# endif
)
{
LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
# if PGM_SHW_TYPE == PGM_TYPE_EPT
/* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
/* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
pPteDst->n.u1Present = 0;
pPteDst->n.u1Write = 1;
pPteDst->n.u1Execute = 0;
/* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
pPteDst->n.u3EMT = 7;
# else
/* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
# endif
}
# endif
#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
else
{
LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
SHW_PTE_SET(*pPteDst, 0);
}
/** @todo count these kinds of entries. */
}
/**
* Creates a 4K shadow page for a guest page.
*
* For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
* physical address. The PdeSrc argument only the flags are used. No page
* structured will be mapped in this function.
*
* @param pVCpu Pointer to the VMCPU.
* @param pPteDst Destination page table entry.
* @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
* Can safely assume that only the flags are being used.
* @param PteSrc Source page table entry (i.e. Guest OS page table entry).
* @param pShwPage Pointer to the shadow page.
* @param iPTDst The index into the shadow table.
*
* @remark Not used for 2/4MB pages!
*/
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
PPGMPOOLPAGE pShwPage, unsigned iPTDst)
#else
static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
#endif
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
&& PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
&& (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
if (pShwPage->fDirty)
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
PGSTPT pGstPT;
/* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
pGstPT->a[iPTDst].u = PteSrc.u;
}
#else
Assert(!pShwPage->fDirty);
#endif
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
if ( PteSrc.n.u1Present
&& GST_IS_PTE_VALID(pVCpu, PteSrc))
#endif
{
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
# endif
PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
/*
* Find the ram range.
*/
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
if (RT_SUCCESS(rc))
{
/* Ignore ballooned pages.
Don't return errors or use a fatal assert here as part of a
shadow sync range might included ballooned pages. */
if (PGM_PAGE_IS_BALLOONED(pPage))
{
Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
return;
}
#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
/* Make the page writable if necessary. */
if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
&& ( PGM_PAGE_IS_ZERO(pPage)
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|| ( PteSrc.n.u1Write
# else
|| ( 1
# endif
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
# endif
# ifdef VBOX_WITH_PAGE_SHARING
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
# endif
)
)
)
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
AssertRC(rc);
}
#endif
/*
* Make page table entry.
*/
SHWPTE PteDst;
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
# else
uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
# endif
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
else
{
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/*
* If the page or page directory entry is not marked accessed,
* we mark the page not present.
*/
if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
{
LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
SHW_PTE_SET(PteDst, 0);
}
/*
* If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
* when the page is modified.
*/
else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
SHW_PTE_SET(PteDst,
fGstShwPteFlags
| PGM_PAGE_GET_HCPHYS(pPage)
| PGM_PTFLAGS_TRACK_DIRTY);
SHW_PTE_SET_RO(PteDst);
}
else
#endif
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
#if PGM_SHW_TYPE == PGM_TYPE_EPT
PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
PteDst.n.u1Present = 1;
PteDst.n.u1Write = 1;
PteDst.n.u1Execute = 1;
PteDst.n.u1IgnorePAT = 1;
PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
/* PteDst.n.u1Size = 0 */
#else
SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
#endif
}
/*
* Make sure only allocated pages are mapped writable.
*/
if ( SHW_PTE_IS_P_RW(PteDst)
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
{
/* Still applies to shared pages. */
Assert(!PGM_PAGE_IS_ZERO(pPage));
SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
}
}
/*
* Keep user track up to date.
*/
if (SHW_PTE_IS_P(PteDst))
{
if (!SHW_PTE_IS_P(*pPteDst))
PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
{
Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
}
}
else if (SHW_PTE_IS_P(*pPteDst))
{
Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
}
/*
* Update statistics and commit the entry.
*/
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
if (!PteSrc.n.u1Global)
pShwPage->fSeenNonGlobal = true;
#endif
SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
return;
}
/** @todo count these three different kinds. */
Log2(("SyncPageWorker: invalid address in Pte\n"));
}
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
else if (!PteSrc.n.u1Present)
Log2(("SyncPageWorker: page not present in Pte\n"));
else
Log2(("SyncPageWorker: invalid Pte\n"));
#endif
/*
* The page is not present or the PTE is bad. Replace the shadow PTE by
* an empty entry, making sure to keep the user tracking up to date.
*/
if (SHW_PTE_IS_P(*pPteDst))
{
Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
}
SHW_PTE_ATOMIC_SET(*pPteDst, 0);
}
/**
* Syncs a guest OS page.
*
* There are no conflicts at this point, neither is there any need for
* page table allocations.
*
* When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
* When called in AMD64 guest mode, the guest PML4E shall be valid.
*
* @returns VBox status code.
* @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
* @param pVCpu Pointer to the VMCPU.
* @param PdeSrc Page directory entry of the guest.
* @param GCPtrPage Guest context page address.
* @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
* @param uErr Fault error (X86_TRAP_PF_*).
*/
static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
PGM_LOCK_ASSERT_OWNER(pVM);
#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& PGM_SHW_TYPE != PGM_TYPE_EPT
/*
* Assert preconditions.
*/
Assert(PdeSrc.n.u1Present);
Assert(cPages);
# if 0 /* rarely useful; leave for debugging. */
STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
# endif
/*
* Get the shadow PDE, find the shadow page table in the pool.
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
Assert(pShwPde);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PPGMPOOLPAGE pShwPde = NULL;
PX86PDPAE pPDDst;
/* Fetch the pgm pool shadow descriptor. */
int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
AssertRCSuccessReturn(rc2, rc2);
Assert(pShwPde);
pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
AssertRCSuccessReturn(rc2, rc2);
Assert(pPDDst && pPdptDst);
PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
# endif
SHWPDE PdeDst = *pPdeDst;
/*
* - In the guest SMP case we could have blocked while another VCPU reused
* this page table.
* - With W7-64 we may also take this path when the A bit is cleared on
* higher level tables (PDPE/PML4E). The guest does not invalidate the
* relevant TLB entries. If we're write monitoring any page mapped by
* the modified entry, we may end up here with a "stale" TLB entry.
*/
if (!PdeDst.n.u1Present)
{
Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
if (uErr & X86_TRAP_PF_P)
PGM_INVL_PG(pVCpu, GCPtrPage);
return VINF_SUCCESS; /* force the instruction to be executed again. */
}
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
Assert(pShwPage);
# if PGM_GST_TYPE == PGM_TYPE_AMD64
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
Assert(pShwPde);
# endif
/*
* Check that the page is present and that the shadow PDE isn't out of sync.
*/
const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
RTGCPHYS GCPhys;
if (!fBigPage)
{
GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
# endif
}
else
{
GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
# endif
}
/** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
if ( fPdeValid
&& pShwPage->GCPhys == GCPhys
&& PdeSrc.n.u1Present
&& PdeSrc.n.u1User == PdeDst.n.u1User
&& (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
&& (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
# endif
)
{
/*
* Check that the PDE is marked accessed already.
* Since we set the accessed bit *before* getting here on a #PF, this
* check is only meant for dealing with non-#PF'ing paths.
*/
if (PdeSrc.n.u1Accessed)
{
PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
if (!fBigPage)
{
/*
* 4KB Page - Map the guest page table.
*/
PGSTPT pPTSrc;
int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
if (RT_SUCCESS(rc))
{
# ifdef PGM_SYNC_N_PAGES
Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
if ( cPages > 1
&& !(uErr & X86_TRAP_PF_P)
&& !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
/*
* This code path is currently only taken when the caller is PGMTrap0eHandler
* for non-present pages!
*
* We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
* deal with locality.
*/
unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
# else
const unsigned offPTSrc = 0;
# endif
const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
if (iPTDst < PGM_SYNC_NR_PAGES / 2)
iPTDst = 0;
else
iPTDst -= PGM_SYNC_NR_PAGES / 2;
for (; iPTDst < iPTDstEnd; iPTDst++)
{
const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
if ( pPteSrc->n.u1Present
&& !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
{
RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
NOREF(GCPtrCurPage);
#ifndef IN_RING0
/*
* Assuming kernel code will be marked as supervisor - and not as user level
* and executed using a conforming code selector - And marked as readonly.
* Also assume that if we're monitoring a page, it's of no interest to CSAM.
*/
PPGMPAGE pPage;
if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
|| iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
|| !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
|| ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
&& PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
)
#endif /* else: CSAM not active */
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
GCPtrCurPage, pPteSrc->n.u1Present,
pPteSrc->n.u1Write & PdeSrc.n.u1Write,
pPteSrc->n.u1User & PdeSrc.n.u1User,
(uint64_t)pPteSrc->u,
SHW_PTE_LOG64(pPTDst->a[iPTDst]),
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
}
}
}
else
# endif /* PGM_SYNC_N_PAGES */
{
const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
GSTPTE PteSrc = pPTSrc->a[iPTSrc];
const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
GCPtrPage, PteSrc.n.u1Present,
PteSrc.n.u1Write & PdeSrc.n.u1Write,
PteSrc.n.u1User & PdeSrc.n.u1User,
(uint64_t)PteSrc.u,
SHW_PTE_LOG64(pPTDst->a[iPTDst]),
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
}
}
else /* MMIO or invalid page: emulated in #PF handler. */
{
LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
}
}
else
{
/*
* 4/2MB page - lazy syncing shadow 4K pages.
* (There are many causes of getting here, it's no longer only CSAM.)
*/
/* Calculate the GC physical address of this 4KB shadow page. */
GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
/* Find ram range. */
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
if (RT_SUCCESS(rc))
{
AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
/* Try to make the page writable if necessary. */
if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
&& ( PGM_PAGE_IS_ZERO(pPage)
|| ( PdeSrc.n.u1Write
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
# endif
# ifdef VBOX_WITH_PAGE_SHARING
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
# endif
)
)
)
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
AssertRC(rc);
}
# endif
/*
* Make shadow PTE entry.
*/
SHWPTE PteDst;
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
else
SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
if ( SHW_PTE_IS_P(PteDst)
&& !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
/* Make sure only allocated pages are mapped writable. */
if ( SHW_PTE_IS_P_RW(PteDst)
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
{
/* Still applies to shared pages. */
Assert(!PGM_PAGE_IS_ZERO(pPage));
SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
}
SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
/*
* If the page is not flagged as dirty and is writable, then make it read-only
* at PD level, so we can set the dirty bit when the page is modified.
*
* ASSUMES that page access handlers are implemented on page table entry level.
* Thus we will first catch the dirty access and set PDE.D and restart. If
* there is an access handler, we'll trap again and let it work on the problem.
*/
/** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
* As for invlpg, it simply frees the whole shadow PT.
* ...It's possibly because the guest clears it and the guest doesn't really tell us... */
if ( !PdeSrc.b.u1Dirty
&& PdeSrc.b.u1Write)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
PdeDst.n.u1Write = 0;
}
else
{
PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
PdeDst.n.u1Write = PdeSrc.n.u1Write;
}
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
}
else
{
LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
/** @todo must wipe the shadow page table entry in this
* case. */
}
}
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
return VINF_SUCCESS;
}
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
}
else if (fPdeValid)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
}
else
{
/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
}
/*
* Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
* Yea, I'm lazy.
*/
pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
ASMAtomicWriteSize(pPdeDst, 0);
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
PGM_INVL_VCPU_TLBS(pVCpu);
return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
&& !defined(IN_RC)
NOREF(PdeSrc);
# ifdef PGM_SYNC_N_PAGES
/*
* Get the shadow PDE, find the shadow page table in the pool.
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
X86PDEPAE PdeDst;
PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
AssertRCSuccessReturn(rc, rc);
Assert(pPDDst && pPdptDst);
PdeDst = pPDDst->a[iPDDst];
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
PEPTPD pPDDst;
EPTPDE PdeDst;
int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
if (rc != VINF_SUCCESS)
{
AssertRC(rc);
return rc;
}
Assert(pPDDst);
PdeDst = pPDDst->a[iPDDst];
# endif
/* In the guest SMP case we could have blocked while another VCPU reused this page table. */
if (!PdeDst.n.u1Present)
{
AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
return VINF_SUCCESS; /* force the instruction to be executed again. */
}
/* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
if (PdeDst.n.u1Size)
{
Assert(pVM->pgm.s.fNestedPaging);
Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
return VINF_SUCCESS;
}
/* Mask away the page offset. */
GCPtrPage &= ~((RTGCPTR)0xfff);
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
if ( cPages > 1
&& !(uErr & X86_TRAP_PF_P)
&& !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
/*
* This code path is currently only taken when the caller is PGMTrap0eHandler
* for non-present pages!
*
* We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
* deal with locality.
*/
unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
if (iPTDst < PGM_SYNC_NR_PAGES / 2)
iPTDst = 0;
else
iPTDst -= PGM_SYNC_NR_PAGES / 2;
for (; iPTDst < iPTDstEnd; iPTDst++)
{
if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
{
RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
| (iPTDst << PAGE_SHIFT));
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
GCPtrCurPage,
SHW_PTE_LOG64(pPTDst->a[iPTDst]),
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
break;
}
else
Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
}
}
else
# endif /* PGM_SYNC_N_PAGES */
{
const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
| (iPTDst << PAGE_SHIFT));
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
GCPtrPage,
SHW_PTE_LOG64(pPTDst->a[iPTDst]),
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
}
return VINF_SUCCESS;
#else
NOREF(PdeSrc);
AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
return VERR_PGM_NOT_USED_IN_MODE;
#endif
}
#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/**
* CheckPageFault helper for returning a page fault indicating a non-present
* (NP) entry in the page translation structures.
*
* @returns VINF_EM_RAW_GUEST_TRAP.
* @param pVCpu Pointer to the VMCPU.
* @param uErr The error code of the shadow fault. Corrections to
* TRPM's copy will be made if necessary.
* @param GCPtrPage For logging.
* @param uPageFaultLevel For logging.
*/
DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
return VINF_EM_RAW_GUEST_TRAP;
}
/**
* CheckPageFault helper for returning a page fault indicating a reserved bit
* (RSVD) error in the page translation structures.
*
* @returns VINF_EM_RAW_GUEST_TRAP.
* @param pVCpu Pointer to the VMCPU.
* @param uErr The error code of the shadow fault. Corrections to
* TRPM's copy will be made if necessary.
* @param GCPtrPage For logging.
* @param uPageFaultLevel For logging.
*/
DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
return VINF_EM_RAW_GUEST_TRAP;
}
/**
* CheckPageFault helper for returning a page protection fault (P).
*
* @returns VINF_EM_RAW_GUEST_TRAP.
* @param pVCpu Pointer to the VMCPU.
* @param uErr The error code of the shadow fault. Corrections to
* TRPM's copy will be made if necessary.
* @param GCPtrPage For logging.
* @param uPageFaultLevel For logging.
*/
DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
return VINF_EM_RAW_GUEST_TRAP;
}
/**
* Handle dirty bit tracking faults.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param uErr Page fault error code.
* @param pPdeSrc Guest page directory entry.
* @param pPdeDst Shadow page directory entry.
* @param GCPtrPage Guest context page address.
*/
static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
RTGCPTR GCPtrPage)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
NOREF(uErr);
PGM_LOCK_ASSERT_OWNER(pVM);
/*
* Handle big page.
*/
if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
{
if ( pPdeDst->n.u1Present
&& (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
{
SHWPDE PdeDst = *pPdeDst;
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
Assert(pPdeSrc->b.u1Write);
/* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
* fault again and take this path to only invalidate the entry (see below).
*/
PdeDst.n.u1Write = 1;
PdeDst.n.u1Accessed = 1;
PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
}
# ifdef IN_RING0
/* Check for stale TLB entry; only applies to the SMP guest case. */
if ( pVM->cCpus > 1
&& pPdeDst->n.u1Write
&& pPdeDst->n.u1Accessed)
{
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
if (pShwPage)
{
PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
if (SHW_PTE_IS_P_RW(*pPteDst))
{
/* Stale TLB entry. */
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
PGM_INVL_PG(pVCpu, GCPtrPage);
return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
}
}
}
# endif /* IN_RING0 */
return VINF_PGM_NO_DIRTY_BIT_TRACKING;
}
/*
* Map the guest page table.
*/
PGSTPT pPTSrc;
int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
if (RT_FAILURE(rc))
{
AssertRC(rc);
return rc;
}
if (pPdeDst->n.u1Present)
{
GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
const GSTPTE PteSrc = *pPteSrc;
#ifndef IN_RING0
/* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
* Our individual shadow handlers will provide more information and force a fatal exit.
*/
if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
{
LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
return VINF_PGM_NO_DIRTY_BIT_TRACKING;
}
#endif
/*
* Map shadow page table.
*/
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
if (pShwPage)
{
PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
{
if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
{
PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
SHWPTE PteDst = *pPteDst;
LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
Assert(PteSrc.n.u1Write);
/* Note: No need to invalidate this entry on other VCPUs as a stale TLB
* entry will not harm; write access will simply fault again and
* take this path to only invalidate the entry.
*/
if (RT_LIKELY(pPage))
{
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
{
//AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
/* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
SHW_PTE_SET_RO(PteDst);
}
else
{
if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
&& PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
AssertRC(rc);
}
if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
SHW_PTE_SET_RW(PteDst);
else
{
/* Still applies to shared pages. */
Assert(!PGM_PAGE_IS_ZERO(pPage));
SHW_PTE_SET_RO(PteDst);
}
}
}
else
SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
PGM_INVL_PG(pVCpu, GCPtrPage);
return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
}
# ifdef IN_RING0
/* Check for stale TLB entry; only applies to the SMP guest case. */
if ( pVM->cCpus > 1
&& SHW_PTE_IS_RW(*pPteDst)
&& SHW_PTE_IS_A(*pPteDst))
{
/* Stale TLB entry. */
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
PGM_INVL_PG(pVCpu, GCPtrPage);
return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
}
# endif
}
}
else
AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
}
return VINF_PGM_NO_DIRTY_BIT_TRACKING;
}
#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
/**
* Sync a shadow page table.
*
* The shadow page table is not present in the shadow PDE.
*
* Handles mapping conflicts.
*
* This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
* conflict), and Trap0eHandler.
*
* A precondition for this method is that the shadow PDE is not present. The
* caller must take the PGM lock before checking this and continue to hold it
* when calling this method.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param iPD Page directory index.
* @param pPDSrc Source page directory (i.e. Guest OS page directory).
* Assume this is a temporary mapping.
* @param GCPtrPage GC Pointer of the page that caused the fault
*/
static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
#if 0 /* rarely useful; leave for debugging. */
STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
#endif
LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
PGM_LOCK_ASSERT_OWNER(pVM);
#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& PGM_SHW_TYPE != PGM_TYPE_EPT
int rc = VINF_SUCCESS;
STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
/*
* Some input validation first.
*/
AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
/*
* Get the relevant shadow PDE entry.
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
Assert(pShwPde);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PPGMPOOLPAGE pShwPde = NULL;
PX86PDPAE pPDDst;
PSHWPDE pPdeDst;
/* Fetch the pgm pool shadow descriptor. */
rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
AssertRCSuccessReturn(rc, rc);
Assert(pShwPde);
pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
pPdeDst = &pPDDst->a[iPDDst];
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
AssertRCSuccessReturn(rc, rc);
Assert(pPDDst);
PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
# endif
SHWPDE PdeDst = *pPdeDst;
# if PGM_GST_TYPE == PGM_TYPE_AMD64
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
Assert(pShwPde);
# endif
# ifndef PGM_WITHOUT_MAPPINGS
/*
* Check for conflicts.
* RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
* R3: Simply resolve the conflict.
*/
if (PdeDst.u & PGM_PDFLAGS_MAPPING)
{
Assert(pgmMapAreMappingsEnabled(pVM));
# ifndef IN_RING3
Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
return VERR_ADDRESS_CONFLICT;
# else /* IN_RING3 */
PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
Assert(pMapping);
# if PGM_GST_TYPE == PGM_TYPE_32BIT
rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
# elif PGM_GST_TYPE == PGM_TYPE_PAE
rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
# else
AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
# endif
if (RT_FAILURE(rc))
{
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
return rc;
}
PdeDst = *pPdeDst;
# endif /* IN_RING3 */
}
# endif /* !PGM_WITHOUT_MAPPINGS */
Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
/*
* Sync the page directory entry.
*/
GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
if ( PdeSrc.n.u1Present
&& (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
{
/*
* Allocate & map the page table.
*/
PSHWPT pPTDst;
PPGMPOOLPAGE pShwPage;
RTGCPHYS GCPhys;
if (fPageTable)
{
GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
# endif
rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
pShwPde->idx, iPDDst, false /*fLockPage*/,
&pShwPage);
}
else
{
PGMPOOLACCESS enmAccess;
# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
# else
const bool fNoExecute = false;
# endif
GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
# endif
/* Determine the right kind of large page to avoid incorrect cached entry reuse. */
if (PdeSrc.n.u1User)
{
if (PdeSrc.n.u1Write)
enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
else
enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
}
else
{
if (PdeSrc.n.u1Write)
enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
else
enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
}
rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
pShwPde->idx, iPDDst, false /*fLockPage*/,
&pShwPage);
}
if (rc == VINF_SUCCESS)
pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
else if (rc == VINF_PGM_CACHED_PAGE)
{
/*
* The PT was cached, just hook it up.
*/
if (fPageTable)
PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
else
{
PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
/* (see explanation and assumptions further down.) */
if ( !PdeSrc.b.u1Dirty
&& PdeSrc.b.u1Write)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
PdeDst.b.u1Write = 0;
}
}
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
return VINF_SUCCESS;
}
else if (rc == VERR_PGM_POOL_FLUSHED)
{
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
return VINF_PGM_SYNC_CR3;
}
else
AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
/** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
* Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
* irrelevant at this point. */
PdeDst.u &= X86_PDE_AVL_MASK;
PdeDst.u |= pShwPage->Core.Key;
/*
* Page directory has been accessed (this is a fault situation, remember).
*/
/** @todo
* Well, when the caller is PrefetchPage or InvalidatePage is isn't a
* fault situation. What's more, the Trap0eHandler has already set the
* accessed bit. So, it's actually just VerifyAccessSyncPage which
* might need setting the accessed flag.
*
* The best idea is to leave this change to the caller and add an
* assertion that it's set already. */
pPDSrc->a[iPDSrc].n.u1Accessed = 1;
if (fPageTable)
{
/*
* Page table - 4KB.
*
* Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
*/
Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
PGSTPT pPTSrc;
rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
if (RT_SUCCESS(rc))
{
/*
* Start by syncing the page directory entry so CSAM's TLB trick works.
*/
PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
| GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
/*
* Directory/page user or supervisor privilege: (same goes for read/write)
*
* Directory Page Combined
* U/S U/S U/S
* 0 0 0
* 0 1 0
* 1 0 0
* 1 1 1
*
* Simple AND operation. Table listed for completeness.
*
*/
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
# ifdef PGM_SYNC_N_PAGES
unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
unsigned iPTDst = iPTBase;
const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
iPTDst = 0;
else
iPTDst -= PGM_SYNC_NR_PAGES / 2;
# else /* !PGM_SYNC_N_PAGES */
unsigned iPTDst = 0;
const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
# endif /* !PGM_SYNC_N_PAGES */
RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
| ((RTGCPTR)iPTDst << PAGE_SHIFT);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
# else
const unsigned offPTSrc = 0;
# endif
for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
{
const unsigned iPTSrc = iPTDst + offPTSrc;
const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
if (PteSrc.n.u1Present)
{
# ifndef IN_RING0
/*
* Assuming kernel code will be marked as supervisor - and not as user level
* and executed using a conforming code selector - And marked as readonly.
* Also assume that if we're monitoring a page, it's of no interest to CSAM.
*/
PPGMPAGE pPage;
if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
|| !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
|| ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
&& PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
)
# endif
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
GCPtrCur,
PteSrc.n.u1Present,
PteSrc.n.u1Write & PdeSrc.n.u1Write,
PteSrc.n.u1User & PdeSrc.n.u1User,
(uint64_t)PteSrc.u,
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
(RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
}
/* else: the page table was cleared by the pool */
} /* for PTEs */
}
}
else
{
/*
* Big page - 2/4MB.
*
* We'll walk the ram range list in parallel and optimize lookups.
* We will only sync one shadow page table at a time.
*/
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
/**
* @todo It might be more efficient to sync only a part of the 4MB
* page (similar to what we do for 4KB PDs).
*/
/*
* Start by syncing the page directory entry.
*/
PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
| GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
/*
* If the page is not flagged as dirty and is writable, then make it read-only
* at PD level, so we can set the dirty bit when the page is modified.
*
* ASSUMES that page access handlers are implemented on page table entry level.
* Thus we will first catch the dirty access and set PDE.D and restart. If
* there is an access handler, we'll trap again and let it work on the problem.
*/
/** @todo move the above stuff to a section in the PGM documentation. */
Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
if ( !PdeSrc.b.u1Dirty
&& PdeSrc.b.u1Write)
{
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
PdeDst.b.u1Write = 0;
}
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
/*
* Fill the shadow page table.
*/
/* Get address and flags from the source PDE. */
SHWPTE PteDstBase;
SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
/* Loop thru the entries in the shadow PT. */
const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
unsigned iPTDst = 0;
while ( iPTDst < RT_ELEMENTS(pPTDst->a)
&& !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
if (pRam && GCPhys >= pRam->GCPhys)
{
# ifndef PGM_WITH_A20
unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
# endif
do
{
/* Make shadow PTE. */
# ifdef PGM_WITH_A20
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
# else
PPGMPAGE pPage = &pRam->aPages[iHCPage];
# endif
SHWPTE PteDst;
# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
/* Try to make the page writable if necessary. */
if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
&& ( PGM_PAGE_IS_ZERO(pPage)
|| ( SHW_PTE_IS_RW(PteDstBase)
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
# endif
# ifdef VBOX_WITH_PAGE_SHARING
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
# endif
&& !PGM_PAGE_IS_BALLOONED(pPage))
)
)
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
AssertRCReturn(rc, rc);
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
break;
}
# endif
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
else if (PGM_PAGE_IS_BALLOONED(pPage))
SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
# ifndef IN_RING0
/*
* Assuming kernel code will be marked as supervisor and not as user level and executed
* using a conforming code selector. Don't check for readonly, as that implies the whole
* 4MB can be code or readonly data. Linux enables write access for its large pages.
*/
else if ( !PdeSrc.n.u1User
&& CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
SHW_PTE_SET(PteDst, 0);
# endif
else
SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
/* Only map writable pages writable. */
if ( SHW_PTE_IS_P_RW(PteDst)
&& PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
{
/* Still applies to shared pages. */
Assert(!PGM_PAGE_IS_ZERO(pPage));
SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
}
if (SHW_PTE_IS_P(PteDst))
PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
/* commit it (not atomic, new table) */
pPTDst->a[iPTDst] = PteDst;
Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
(RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
/* advance */
GCPhys += PAGE_SIZE;
PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
# ifndef PGM_WITH_A20
iHCPage++;
# endif
iPTDst++;
} while ( iPTDst < RT_ELEMENTS(pPTDst->a)
&& GCPhys <= pRam->GCPhysLast);
/* Advance ram range list. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
}
else if (pRam)
{
Log(("Invalid pages at %RGp\n", GCPhys));
do
{
SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
GCPhys += PAGE_SIZE;
iPTDst++;
} while ( iPTDst < RT_ELEMENTS(pPTDst->a)
&& GCPhys < pRam->GCPhys);
PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
}
else
{
Log(("Invalid pages at %RGp (2)\n", GCPhys));
for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
}
} /* while more PTEs */
} /* 4KB / 4MB */
}
else
AssertRelease(!PdeDst.n.u1Present);
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
if (RT_FAILURE(rc))
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
return rc;
#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
&& !defined(IN_RC)
NOREF(iPDSrc); NOREF(pPDSrc);
STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
/*
* Validate input a little bit.
*/
int rc = VINF_SUCCESS;
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
Assert(pShwPde);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
PX86PDPAE pPDDst;
PSHWPDE pPdeDst;
/* Fetch the pgm pool shadow descriptor. */
rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
AssertRCSuccessReturn(rc, rc);
Assert(pShwPde);
pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
pPdeDst = &pPDDst->a[iPDDst];
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
AssertRCSuccessReturn(rc, rc);
Assert(pPDDst);
PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
Assert(pShwPde);
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
PEPTPD pPDDst;
PEPTPDPT pPdptDst;
rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
if (rc != VINF_SUCCESS)
{
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
AssertRC(rc);
return rc;
}
Assert(pPDDst);
PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
Assert(pShwPde);
# endif
SHWPDE PdeDst = *pPdeDst;
Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
if (BTH_IS_NP_ACTIVE(pVM))
{
/* Check if we allocated a big page before for this 2 MB range. */
PPGMPAGE pPage;
rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
if (RT_SUCCESS(rc))
{
RTHCPHYS HCPhys = NIL_RTHCPHYS;
if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
{
if (PGM_A20_IS_ENABLED(pVCpu))
{
STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
}
else
{
PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
pVM->pgm.s.cLargePagesDisabled++;
}
}
else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
&& PGM_A20_IS_ENABLED(pVCpu))
{
/* Recheck the entire 2 MB range to see if we can use it again as a large page. */
rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
if (RT_SUCCESS(rc))
{
Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
}
}
else if ( PGMIsUsingLargePages(pVM)
&& PGM_A20_IS_ENABLED(pVCpu))
{
rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
if (RT_SUCCESS(rc))
{
Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
}
else
LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
}
if (HCPhys != NIL_RTHCPHYS)
{
PdeDst.u &= X86_PDE_AVL_MASK;
PdeDst.u |= HCPhys;
PdeDst.n.u1Present = 1;
PdeDst.n.u1Write = 1;
PdeDst.b.u1Size = 1;
# if PGM_SHW_TYPE == PGM_TYPE_EPT
PdeDst.n.u1Execute = 1;
PdeDst.b.u1IgnorePAT = 1;
PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
# else
PdeDst.n.u1User = 1;
# endif
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
/* Add a reference to the first page only. */
PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
return VINF_SUCCESS;
}
}
}
# endif /* HC_ARCH_BITS == 64 */
/*
* Allocate & map the page table.
*/
PSHWPT pPTDst;
PPGMPOOLPAGE pShwPage;
RTGCPHYS GCPhys;
/* Virtual address = physical address */
GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
&pShwPage);
if ( rc == VINF_SUCCESS
|| rc == VINF_PGM_CACHED_PAGE)
pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
else
{
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
}
if (rc == VINF_SUCCESS)
{
/* New page table; fully set it up. */
Assert(pPTDst);
/* Mask away the page offset. */
GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
{
RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
| (iPTDst << PAGE_SHIFT));
PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
GCPtrCurPage,
SHW_PTE_LOG64(pPTDst->a[iPTDst]),
SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
break;
}
}
else
rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
/* Save the new PDE. */
PdeDst.u &= X86_PDE_AVL_MASK;
PdeDst.u |= pShwPage->Core.Key;
PdeDst.n.u1Present = 1;
PdeDst.n.u1Write = 1;
# if PGM_SHW_TYPE == PGM_TYPE_EPT
PdeDst.n.u1Execute = 1;
# else
PdeDst.n.u1User = 1;
PdeDst.n.u1Accessed = 1;
# endif
ASMAtomicWriteSize(pPdeDst, PdeDst.u);
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
if (RT_FAILURE(rc))
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
return rc;
#else
NOREF(iPDSrc); NOREF(pPDSrc);
AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
return VERR_PGM_NOT_USED_IN_MODE;
#endif
}
/**
* Prefetch a page/set of pages.
*
* Typically used to sync commonly used pages before entering raw mode
* after a CR3 reload.
*
* @returns VBox status code.
* @param pVCpu Pointer to the VMCPU.
* @param GCPtrPage Page to invalidate.
*/
PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
{
#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_REAL \
|| PGM_GST_TYPE == PGM_TYPE_PROT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& PGM_SHW_TYPE != PGM_TYPE_EPT
/*
* Check that all Guest levels thru the PDE are present, getting the
* PD and PDE in the processes.
*/
int rc = VINF_SUCCESS;
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
# if PGM_GST_TYPE == PGM_TYPE_32BIT
const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
# elif PGM_GST_TYPE == PGM_TYPE_PAE
unsigned iPDSrc;
X86PDPE PdpeSrc;
PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
if (!pPDSrc)
return VINF_SUCCESS; /* not present */
# elif PGM_GST_TYPE == PGM_TYPE_AMD64
unsigned iPDSrc;
PX86PML4E pPml4eSrc;
X86PDPE PdpeSrc;
PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
if (!pPDSrc)
return VINF_SUCCESS; /* not present */
# endif
const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
# else
PGSTPD pPDSrc = NULL;
const unsigned iPDSrc = 0;
GSTPDE PdeSrc;
PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
PdeSrc.n.u1Present = 1;
PdeSrc.n.u1Write = 1;
PdeSrc.n.u1Accessed = 1;
PdeSrc.n.u1User = 1;
# endif
if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
pgmLock(pVM);
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
PX86PDPAE pPDDst;
X86PDEPAE PdeDst;
# if PGM_GST_TYPE != PGM_TYPE_PAE
X86PDPE PdpeSrc;
/* Fake PDPT entry; access control handled on the page table level, so allow everything. */
PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
# endif
rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
if (rc != VINF_SUCCESS)
{
pgmUnlock(pVM);
AssertRC(rc);
return rc;
}
Assert(pPDDst);
PdeDst = pPDDst->a[iPDDst];
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
PX86PDPAE pPDDst;
X86PDEPAE PdeDst;
# if PGM_GST_TYPE == PGM_TYPE_PROT
/* AMD-V nested paging */
X86PML4E Pml4eSrc;
X86PDPE PdpeSrc;
PX86PML4E pPml4eSrc = &Pml4eSrc;
/* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
# endif
rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
if (rc != VINF_SUCCESS)
{
pgmUnlock(pVM);
AssertRC(rc);
return rc;
}
Assert(pPDDst);
PdeDst = pPDDst->a[iPDDst];
# endif
if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
{
if (!PdeDst.n.u1Present)
{
/** @todo r=bird: This guy will set the A bit on the PDE,
* probably harmless. */
rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
}
else
{
/* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
* R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
* makes no sense to prefetch more than one page.
*/
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
if (RT_SUCCESS(rc))
rc = VINF_SUCCESS;
}
}
pgmUnlock(pVM);
}
return rc;
#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
NOREF(pVCpu); NOREF(GCPtrPage);
return VINF_SUCCESS; /* ignore */
#else
AssertCompile(0);
#endif
}
/**
* Syncs a page during a PGMVerifyAccess() call.
*
* @returns VBox status code (informational included).
* @param pVCpu Pointer to the VMCPU.
* @param GCPtrPage The address of the page to sync.
* @param fPage The effective guest page flags.
* @param uErr The trap error code.
* @remarks This will normally never be called on invalid guest page
* translation entries.
*/
PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
{
PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
Assert(!pVM->pgm.s.fNestedPaging);
#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_REAL \
|| PGM_GST_TYPE == PGM_TYPE_PROT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
&& PGM_SHW_TYPE != PGM_TYPE_NESTED \
&& PGM_SHW_TYPE != PGM_TYPE_EPT
# ifndef IN_RING0
if (!(fPage & X86_PTE_US))
{
/*
* Mark this page as safe.
*/
/** @todo not correct for pages that contain both code and data!! */
Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
CSAMMarkPage(pVM, GCPtrPage, true);
}
# endif
/*
* Get guest PD and index.
*/
/** @todo Performance: We've done all this a jiffy ago in the
* PGMGstGetPage call. */
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
# if PGM_GST_TYPE == PGM_TYPE_32BIT
const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
# elif PGM_GST_TYPE == PGM_TYPE_PAE
unsigned iPDSrc = 0;
X86PDPE PdpeSrc;
PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
if (RT_UNLIKELY(!pPDSrc))
{
Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
return VINF_EM_RAW_GUEST_TRAP;
}
# elif PGM_GST_TYPE == PGM_TYPE_AMD64
unsigned iPDSrc = 0; /* shut up gcc */
PX86PML4E pPml4eSrc = NULL; /* ditto */
X86PDPE PdpeSrc;
PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
if (RT_UNLIKELY(!pPDSrc))
{
Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
return VINF_EM_RAW_GUEST_TRAP;
}
# endif
# else /* !PGM_WITH_PAGING */
PGSTPD pPDSrc = NULL;
const unsigned iPDSrc = 0;
# endif /* !PGM_WITH_PAGING */
int rc = VINF_SUCCESS;
pgmLock(pVM);
/*
* First check if the shadow pd is present.
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
PX86PDEPAE pPdeDst;
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
PX86PDPAE pPDDst;
# if PGM_GST_TYPE != PGM_TYPE_PAE
/* Fake PDPT entry; access control handled on the page table level, so allow everything. */
X86PDPE PdpeSrc;
PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
# endif
rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
if (rc != VINF_SUCCESS)
{
pgmUnlock(pVM);
AssertRC(rc);
return rc;
}
Assert(pPDDst);
pPdeDst = &pPDDst->a[iPDDst];
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
PX86PDPAE pPDDst;
PX86PDEPAE pPdeDst;
# if PGM_GST_TYPE == PGM_TYPE_PROT
/* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
X86PML4E Pml4eSrc;
X86PDPE PdpeSrc;
PX86PML4E pPml4eSrc = &Pml4eSrc;
Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
# endif
rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
if (rc != VINF_SUCCESS)
{
pgmUnlock(pVM);
AssertRC(rc);
return rc;
}
Assert(pPDDst);
pPdeDst = &pPDDst->a[iPDDst];
# endif
if (!pPdeDst->n.u1Present)
{
rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
if (rc != VINF_SUCCESS)
{
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
pgmUnlock(pVM);
AssertRC(rc);
return rc;
}
}
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
/* Check for dirty bit fault */
rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
Log(("PGMVerifyAccess: success (dirty)\n"));
else
# endif
{
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
# else
GSTPDE PdeSrc;
PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
PdeSrc.n.u1Present = 1;
PdeSrc.n.u1Write = 1;
PdeSrc.n.u1Accessed = 1;
PdeSrc.n.u1User = 1;
# endif
Assert(rc != VINF_EM_RAW_GUEST_TRAP);
if (uErr & X86_TRAP_PF_US)
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
else /* supervisor */
STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
if (RT_SUCCESS(rc))
{
/* Page was successfully synced */
Log2(("PGMVerifyAccess: success (sync)\n"));
rc = VINF_SUCCESS;
}
else
{
Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
rc = VINF_EM_RAW_GUEST_TRAP;
}
}
PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
pgmUnlock(pVM);
return rc;
#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
return VERR_PGM_NOT_USED_IN_MODE;
#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
}
/**
* Syncs the paging hierarchy starting at CR3.
*
* @returns VBox status code, no specials.
* @param pVCpu Pointer to the VMCPU.
* @param cr0 Guest context CR0 register.
* @param cr3 Guest context CR3 register. Not subjected to the A20
* mask.
* @param cr4 Guest context CR4 register.
* @param fGlobal Including global page directories or not
*/
PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
{
PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
pgmLock(pVM);
# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
if (pPool->cDirtyPages)
pgmPoolResetDirtyPages(pVM);
# endif
/*
* Update page access handlers.
* The virtual are always flushed, while the physical are only on demand.
* WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
* have to look into that later because it will have a bad influence on the performance.
* @note SvL: There's no need for that. Just invalidate the virtual range(s).
* bird: Yes, but that won't work for aliases.
*/
/** @todo this MUST go away. See @bugref{1557}. */
STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
pgmUnlock(pVM);
#endif /* !NESTED && !EPT */
#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
/*
* Nested / EPT - almost no work.
*/
Assert(!pgmMapAreMappingsEnabled(pVM));
return VINF_SUCCESS;
#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
/*
* AMD64 (Shw & Gst) - No need to check all paging levels; we zero
* out the shadow parts when the guest modifies its tables.
*/
Assert(!pgmMapAreMappingsEnabled(pVM));
return VINF_SUCCESS;
#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
# ifndef PGM_WITHOUT_MAPPINGS
/*
* Check for and resolve conflicts with our guest mappings if they
* are enabled and not fixed.
*/
if (pgmMapAreMappingsFloating(pVM))
{
int rc = pgmMapResolveConflicts(pVM);
Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
if (rc == VINF_PGM_SYNC_CR3)
{
LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
return VINF_PGM_SYNC_CR3;
}
}
# else
Assert(!pgmMapAreMappingsEnabled(pVM));
# endif
return VINF_SUCCESS;
#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
}
#ifdef VBOX_STRICT
# ifdef IN_RC
# undef AssertMsgFailed
# define AssertMsgFailed Log
# endif
/**
* Checks that the shadow page table is in sync with the guest one.
*
* @returns The number of errors.
* @param pVM The virtual machine.
* @param pVCpu Pointer to the VMCPU.
* @param cr3 Guest context CR3 register.
* @param cr4 Guest context CR4 register.
* @param GCPtr Where to start. Defaults to 0.
* @param cb How much to check. Defaults to everything.
*/
PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
{
NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
return 0;
#else
unsigned cErrors = 0;
PVM pVM = pVCpu->CTX_SUFF(pVM);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
# if PGM_GST_TYPE == PGM_TYPE_PAE
/** @todo currently broken; crashes below somewhere */
AssertFailed();
# endif
# if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
PPGMCPU pPGM = &pVCpu->pgm.s;
RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
# ifndef IN_RING0
RTHCPHYS HCPhys; /* general usage. */
# endif
int rc;
/*
* Check that the Guest CR3 and all its mappings are correct.
*/
AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
false);
# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
# if PGM_GST_TYPE == PGM_TYPE_32BIT
rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
# else
rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
# endif
AssertRCReturn(rc, 1);
HCPhys = NIL_RTHCPHYS;
rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
pgmGstGet32bitPDPtr(pVCpu);
RTGCPHYS GCPhys;
rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
AssertRCReturn(rc, 1);
AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
# endif
# endif /* !IN_RING0 */
/*
* Get and check the Shadow CR3.
*/
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
unsigned cPDEs = X86_PG_ENTRIES;
unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
# elif PGM_SHW_TYPE == PGM_TYPE_PAE
# if PGM_GST_TYPE == PGM_TYPE_32BIT
unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
# else
unsigned cPDEs = X86_PG_PAE_ENTRIES;
# endif
unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
unsigned cPDEs = X86_PG_PAE_ENTRIES;
unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
# endif
if (cb != ~(RTGCPTR)0)
cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
/** @todo call the other two PGMAssert*() functions. */
# if PGM_GST_TYPE == PGM_TYPE_AMD64
unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
{
PPGMPOOLPAGE pShwPdpt = NULL;
PX86PML4E pPml4eSrc;
PX86PML4E pPml4eDst;
RTGCPHYS GCPhysPdptSrc;
pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
/* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
if (!pPml4eDst->n.u1Present)
{
GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
continue;
}
pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
{
AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
cErrors++;
continue;
}
if (GCPhysPdptSrc != pShwPdpt->GCPhys)
{
AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
cErrors++;
continue;
}
if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
|| pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
|| pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
{
AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
cErrors++;
continue;
}
# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
{
# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
/*
* Check the PDPTEs too.
*/
unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
{
unsigned iPDSrc = 0; /* initialized to shut up gcc */
PPGMPOOLPAGE pShwPde = NULL;
PX86PDPE pPdpeDst;
RTGCPHYS GCPhysPdeSrc;
X86PDPE PdpeSrc;
PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
# if PGM_GST_TYPE == PGM_TYPE_PAE
PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
# else
PX86PML4E pPml4eSrcIgn;
PX86PDPT pPdptDst;
PX86PDPAE pPDDst;
PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
if (rc != VINF_SUCCESS)
{
AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
GCPtr += 512 * _2M;
continue; /* next PDPTE */
}
Assert(pPDDst);
# endif
Assert(iPDSrc == 0);
pPdpeDst = &pPdptDst->a[iPdpt];
if (!pPdpeDst->n.u1Present)
{
GCPtr += 512 * _2M;
continue; /* next PDPTE */
}
pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
{
AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
GCPtr += 512 * _2M;
cErrors++;
continue;
}
if (GCPhysPdeSrc != pShwPde->GCPhys)
{
# if PGM_GST_TYPE == PGM_TYPE_AMD64
AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
# else
AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
# endif
GCPtr += 512 * _2M;
cErrors++;
continue;
}
# if PGM_GST_TYPE == PGM_TYPE_AMD64
if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
|| pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
|| pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
{
AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
GCPtr += 512 * _2M;
cErrors++;
continue;
}
# endif
# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
{
# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
# if PGM_GST_TYPE == PGM_TYPE_32BIT
GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
# if PGM_SHW_TYPE == PGM_TYPE_32BIT
PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
# endif
# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
/*
* Iterate the shadow page directory.
*/
GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
for (;
iPDDst < cPDEs;
iPDDst++, GCPtr += cIncrement)
{
# if PGM_SHW_TYPE == PGM_TYPE_PAE
const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
# else
const SHWPDE PdeDst = pPDDst->a[iPDDst];
# endif
if (PdeDst.u & PGM_PDFLAGS_MAPPING)
{
Assert(pgmMapAreMappingsEnabled(pVM));
if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
{
AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
cErrors++;
continue;
}
}
else if ( (PdeDst.u & X86_PDE_P)
|| ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
)
{
HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
if (!pPoolPage)
{
AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
cErrors++;
continue;
}
const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
{
AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeDst.u));
cErrors++;
}
if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
{
AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeDst.u));
cErrors++;
}
const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
if (!PdeSrc.n.u1Present)
{
AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
cErrors++;
continue;
}
if ( !PdeSrc.b.u1Size
|| !fBigPagesSupported)
{
GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
# endif
}
else
{
# if PGM_GST_TYPE == PGM_TYPE_32BIT
if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
{
AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u));
cErrors++;
continue;
}
# endif
GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
# endif
}
if ( pPoolPage->enmKind
!= (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
{
AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
cErrors++;
}
PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
if (!pPhysPage)
{
AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
cErrors++;
continue;
}
if (GCPhysGst != pPoolPage->GCPhys)
{
AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
GCPhysGst, pPoolPage->GCPhys, GCPtr));
cErrors++;
continue;
}
if ( !PdeSrc.b.u1Size
|| !fBigPagesSupported)
{
/*
* Page Table.
*/
const GSTPT *pPTSrc;
rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
&pPTSrc);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
cErrors++;
continue;
}
if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
!= (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
{
/// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
// (This problem will go away when/if we shadow multiple CR3s.)
AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
continue;
}
if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
{
AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeDst.u));
cErrors++;
continue;
}
/* iterate the page table. */
# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
/* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
# else
const unsigned offPTSrc = 0;
# endif
for (unsigned iPT = 0, off = 0;
iPT < RT_ELEMENTS(pPTDst->a);
iPT++, off += PAGE_SIZE)
{
const SHWPTE PteDst = pPTDst->a[iPT];
/* skip not-present and dirty tracked entries. */
if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
continue;
Assert(SHW_PTE_IS_P(PteDst));
const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
if (!PteSrc.n.u1Present)
{
# ifdef IN_RING3
PGMAssertHandlerAndFlagsInSync(pVM);
DBGFR3PagingDumpEx(pVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
| DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
0, 0, UINT64_MAX, 99, NULL);
# endif
AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
(uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
cErrors++;
continue;
}
uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
# if 1 /** @todo sync accessed bit properly... */
fIgnoreFlags |= X86_PTE_A;
# endif
/* match the physical addresses */
HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
# ifdef IN_RING3
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
if (RT_FAILURE(rc))
{
if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
{
AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
}
else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
{
AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
# endif
pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
if (!pPhysPage)
{
# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
{
AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
# endif
if (SHW_PTE_IS_RW(PteDst))
{
AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
fIgnoreFlags |= X86_PTE_RW;
}
else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
{
AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
/* flags */
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
{
if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
{
if (SHW_PTE_IS_RW(PteDst))
{
AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
fIgnoreFlags |= X86_PTE_RW;
}
else
{
if ( SHW_PTE_IS_P(PteDst)
# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
&& !PGM_PAGE_IS_MMIO(pPhysPage)
# endif
)
{
AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
fIgnoreFlags |= X86_PTE_P;
}
}
else
{
if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
{
if (SHW_PTE_IS_RW(PteDst))
{
AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
{
AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
if (SHW_PTE_IS_D(PteDst))
{
AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
# if 0 /** @todo sync access bit properly... */
if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
{
AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
fIgnoreFlags |= X86_PTE_RW;
# else
fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
# endif
}
else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
{
/* access bit emulation (not implemented). */
if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
{
AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
if (!SHW_PTE_IS_A(PteDst))
{
AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
fIgnoreFlags |= X86_PTE_P;
}
# ifdef DEBUG_sandervl
fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
# endif
}
if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
&& (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
)
{
AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
} /* foreach PTE */
}
else
{
/*
* Big Page.
*/
uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
{
if (PdeDst.n.u1Write)
{
AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
continue;
}
if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
{
AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
continue;
}
# if 0 /** @todo sync access bit properly... */
if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
{
AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
}
fIgnoreFlags |= X86_PTE_RW;
# else
fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
# endif
}
else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
{
/* access bit emulation (not implemented). */
if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
{
AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
continue;
}
if (!PdeDst.n.u1Accessed)
{
AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
}
fIgnoreFlags |= X86_PTE_P;
}
if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
{
AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
cErrors++;
}
/* iterate the page table. */
for (unsigned iPT = 0, off = 0;
iPT < RT_ELEMENTS(pPTDst->a);
iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
{
const SHWPTE PteDst = pPTDst->a[iPT];
if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
{
AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
/* skip not-present entries. */
if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
continue;
fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
/* match the physical addresses */
HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
# ifdef IN_RING3
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
if (RT_FAILURE(rc))
{
if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
{
AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
}
else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
{
AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
# endif
pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
if (!pPhysPage)
{
# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
{
AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
# endif
if (SHW_PTE_IS_RW(PteDst))
{
AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
}
fIgnoreFlags |= X86_PTE_RW;
}
else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
{
AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
/* flags */
if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
{
if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
{
if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
{
if (SHW_PTE_IS_RW(PteDst))
{
AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
fIgnoreFlags |= X86_PTE_RW;
}
}
else
{
if ( SHW_PTE_IS_P(PteDst)
# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
&& !PGM_PAGE_IS_MMIO(pPhysPage)
# endif
)
{
AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
fIgnoreFlags |= X86_PTE_P;
}
}
if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
&& (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
)
{
AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
cErrors++;
continue;
}
} /* for each PTE */
}
}
/* not present */
} /* for each PDE */
} /* for each PDPTE */
} /* for each PML4E */
# ifdef DEBUG
if (cErrors)
LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
# endif
# endif /* GST is in {32BIT, PAE, AMD64} */
return cErrors;
#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
}
#endif /* VBOX_STRICT */
/**
* Sets up the CR3 for shadow paging
*
* @returns Strict VBox status code.
* @retval VINF_SUCCESS.
*
* @param pVCpu Pointer to the VMCPU.
* @param GCPhysCR3 The physical address in the CR3 register. (A20
* mask already applied.)
*/
PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
{
PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
/* Update guest paging info. */
#if PGM_GST_TYPE == PGM_TYPE_32BIT \
|| PGM_GST_TYPE == PGM_TYPE_PAE \
|| PGM_GST_TYPE == PGM_TYPE_AMD64
LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
/*
* Map the page CR3 points at.
*/
RTHCPTR HCPtrGuestCR3;
RTHCPHYS HCPhysGuestCR3;
pgmLock(pVM);
PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
/** @todo this needs some reworking wrt. locking? */
# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
HCPtrGuestCR3 = NIL_RTHCPTR;
int rc = VINF_SUCCESS;
# else
int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
# endif
pgmUnlock(pVM);
if (RT_SUCCESS(rc))
{
rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
if (RT_SUCCESS(rc))
{
# ifdef IN_RC
PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
# endif
# if PGM_GST_TYPE == PGM_TYPE_32BIT
pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
# endif
pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
# elif PGM_GST_TYPE == PGM_TYPE_PAE
unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
# endif
pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
/*
* Map the 4 PDs too.
*/
PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
{
pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
if (pGuestPDPT->a[i].n.u1Present)
{
RTHCPTR HCPtr;
RTHCPHYS HCPhys;
RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
pgmLock(pVM);
PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
HCPtr = NIL_RTHCPTR;
int rc2 = VINF_SUCCESS;
# else
int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
# endif
pgmUnlock(pVM);
if (RT_SUCCESS(rc2))
{
rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
AssertRCReturn(rc, rc);
pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
# endif
pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
# ifdef IN_RC
PGM_INVL_PG(pVCpu, GCPtr);
# endif
continue;
}
AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
}
pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
# endif
pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
# ifdef IN_RC
PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
# endif
}
# elif PGM_GST_TYPE == PGM_TYPE_AMD64
pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
# endif
# endif
}
else
AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
}
else
AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
#else /* prot/real stub */
int rc = VINF_SUCCESS;
#endif
/* Update shadow paging info for guest modes with paging (32, pae, 64). */
# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
|| PGM_SHW_TYPE == PGM_TYPE_PAE \
|| PGM_SHW_TYPE == PGM_TYPE_AMD64) \
&& ( PGM_GST_TYPE != PGM_TYPE_REAL \
&& PGM_GST_TYPE != PGM_TYPE_PROT))
Assert(!pVM->pgm.s.fNestedPaging);
PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
/*
* Update the shadow root page as well since that's not fixed.
*/
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
PPGMPOOLPAGE pNewShwPageCR3;
pgmLock(pVM);
# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
if (pPool->cDirtyPages)
pgmPoolResetDirtyPages(pVM);
# endif
Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, true /*fLockPage*/,
&pNewShwPageCR3);
AssertFatalRC(rc);
rc = VINF_SUCCESS;
# ifdef IN_RC
/*
* WARNING! We can't deal with jumps to ring 3 in the code below as the
* state will be inconsistent! Flush important things now while
* we still can and then make sure there are no ring-3 calls.
*/
# ifdef VBOX_WITH_REM
REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
# endif
VMMRZCallRing3Disable(pVCpu);
# endif
pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
# ifdef IN_RING0
pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
# elif defined(IN_RC)
pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
# else
pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
# endif
# ifndef PGM_WITHOUT_MAPPINGS
/*
* Apply all hypervisor mappings to the new CR3.
* Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
* make sure we check for conflicts in the new CR3 root.
*/
# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
# endif
rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
AssertRCReturn(rc, rc);
# endif
/* Set the current hypervisor CR3. */
CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
SELMShadowCR3Changed(pVM, pVCpu);
# ifdef IN_RC
/* NOTE: The state is consistent again. */
VMMRZCallRing3Enable(pVCpu);
# endif
/* Clean up the old CR3 root. */
if ( pOldShwPageCR3
&& pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
{
Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
# ifndef PGM_WITHOUT_MAPPINGS
/* Remove the hypervisor mappings from the shadow page table. */
pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
# endif
/* Mark the page as unlocked; allow flushing again. */
pgmPoolUnlockPage(pPool, pOldShwPageCR3);
pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
}
pgmUnlock(pVM);
# else
NOREF(GCPhysCR3);
# endif
return rc;
}
/**
* Unmaps the shadow CR3.
*
* @returns VBox status, no specials.
* @param pVCpu Pointer to the VMCPU.
*/
PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
{
LogFlow(("UnmapCR3\n"));
int rc = VINF_SUCCESS;
PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
/*
* Update guest paging info.
*/
#if PGM_GST_TYPE == PGM_TYPE_32BIT
pVCpu->pgm.s.pGst32BitPdR3 = 0;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.pGst32BitPdR0 = 0;
# endif
pVCpu->pgm.s.pGst32BitPdRC = 0;
#elif PGM_GST_TYPE == PGM_TYPE_PAE
pVCpu->pgm.s.pGstPaePdptR3 = 0;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.pGstPaePdptR0 = 0;
# endif
pVCpu->pgm.s.pGstPaePdptRC = 0;
for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
{
pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
# endif
pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
}
#elif PGM_GST_TYPE == PGM_TYPE_AMD64
pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
# endif
#else /* prot/real mode stub */
/* nothing to do */
#endif
#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
/*
* Update shadow paging info.
*/
# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
|| PGM_SHW_TYPE == PGM_TYPE_PAE \
|| PGM_SHW_TYPE == PGM_TYPE_AMD64))
# if PGM_GST_TYPE != PGM_TYPE_REAL
Assert(!pVM->pgm.s.fNestedPaging);
# endif
pgmLock(pVM);
# ifndef PGM_WITHOUT_MAPPINGS
if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
/* Remove the hypervisor mappings from the shadow page table. */
pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
# endif
if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
if (pPool->cDirtyPages)
pgmPoolResetDirtyPages(pVM);
# endif
/* Mark the page as unlocked; allow flushing again. */
pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
pVCpu->pgm.s.pShwPageCR3R3 = 0;
pVCpu->pgm.s.pShwPageCR3R0 = 0;
pVCpu->pgm.s.pShwPageCR3RC = 0;
pVCpu->pgm.s.iShwUser = 0;
pVCpu->pgm.s.iShwUserTable = 0;
}
pgmUnlock(pVM);
# endif
#endif /* !IN_RC*/
return rc;
}