PGMAll.cpp revision 8e972b677df5ee27b99211fc7e456a5aa50f3e68
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor - All context code.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/pgm.h>
#include <VBox/cpum.h>
#include <VBox/selm.h>
#include <VBox/iom.h>
#include <VBox/sup.h>
#include <VBox/mm.h>
#include <VBox/stam.h>
#include <VBox/csam.h>
#include <VBox/patm.h>
#include <VBox/trpm.h>
#include <VBox/rem.h>
#include <VBox/em.h>
#include <VBox/hwaccm.h>
#include <VBox/hwacc_vmx.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <VBox/log.h>
#include <VBox/param.h>
#include <VBox/err.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
* passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
*/
typedef struct PGMHVUSTATE
{
/** The VM handle. */
PVM pVM;
/** The todo flags. */
RTUINT fTodo;
/** The CR4 register value. */
uint32_t cr4;
} PGMHVUSTATE, *PPGMHVUSTATE;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
DECLINLINE(int) pgmShwGetLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
DECLINLINE(int) pgmShwGetPAEPDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGM pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
#endif
/*
* Shadow - 32-bit mode
*/
#define PGM_SHW_TYPE PGM_TYPE_32BIT
#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
#include "PGMAllShw.h"
/* Guest - real mode */
#define PGM_GST_TYPE PGM_TYPE_REAL
#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
#include "PGMAllGst.h"
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
/* Guest - protected mode */
#define PGM_GST_TYPE PGM_TYPE_PROT
#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
#include "PGMAllGst.h"
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
/* Guest - 32-bit mode */
#define PGM_GST_TYPE PGM_TYPE_32BIT
#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
#include "PGMAllGst.h"
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
/*
* Shadow - PAE mode
*/
#define PGM_SHW_TYPE PGM_TYPE_PAE
#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
#include "PGMAllShw.h"
/* Guest - real mode */
#define PGM_GST_TYPE PGM_TYPE_REAL
#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
/* Guest - protected mode */
#define PGM_GST_TYPE PGM_TYPE_PROT
#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
/* Guest - 32-bit mode */
#define PGM_GST_TYPE PGM_TYPE_32BIT
#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
/* Guest - PAE mode */
#define PGM_GST_TYPE PGM_TYPE_PAE
#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
#include "PGMAllGst.h"
#include "PGMAllBth.h"
#undef BTH_PGMPOOLKIND_PT_FOR_BIG
#undef BTH_PGMPOOLKIND_PT_FOR_PT
#undef BTH_PGMPOOLKIND_ROOT
#undef PGM_BTH_NAME
#undef PGM_GST_TYPE
#undef PGM_GST_NAME
#undef PGM_SHW_TYPE
#undef PGM_SHW_NAME
#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
/*
* Shadow - AMD64 mode
*/
# define PGM_SHW_TYPE PGM_TYPE_AMD64
# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
# include "PGMAllShw.h"
/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
# define PGM_GST_TYPE PGM_TYPE_PROT
# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef BTH_PGMPOOLKIND_ROOT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# ifdef VBOX_WITH_64_BITS_GUESTS
/* Guest - AMD64 mode */
# define PGM_GST_TYPE PGM_TYPE_AMD64
# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
# include "PGMAllGst.h"
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_BIG
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef BTH_PGMPOOLKIND_ROOT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# endif /* VBOX_WITH_64_BITS_GUESTS */
# undef PGM_SHW_TYPE
# undef PGM_SHW_NAME
/*
* Shadow - Nested paging mode
*/
# define PGM_SHW_TYPE PGM_TYPE_NESTED
# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
# include "PGMAllShw.h"
/* Guest - real mode */
# define PGM_GST_TYPE PGM_TYPE_REAL
# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
# include "PGMAllBth.h"
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
/* Guest - protected mode */
# define PGM_GST_TYPE PGM_TYPE_PROT
# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
# include "PGMAllBth.h"
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
/* Guest - 32-bit mode */
# define PGM_GST_TYPE PGM_TYPE_32BIT
# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
# include "PGMAllBth.h"
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
/* Guest - PAE mode */
# define PGM_GST_TYPE PGM_TYPE_PAE
# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
# include "PGMAllBth.h"
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# ifdef VBOX_WITH_64_BITS_GUESTS
/* Guest - AMD64 mode */
# define PGM_GST_TYPE PGM_TYPE_AMD64
# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
# include "PGMAllBth.h"
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# endif /* VBOX_WITH_64_BITS_GUESTS */
# undef PGM_SHW_TYPE
# undef PGM_SHW_NAME
/*
* Shadow - EPT
*/
# define PGM_SHW_TYPE PGM_TYPE_EPT
# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
# include "PGMAllShw.h"
/* Guest - real mode */
# define PGM_GST_TYPE PGM_TYPE_REAL
# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
/* Guest - protected mode */
# define PGM_GST_TYPE PGM_TYPE_PROT
# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
/* Guest - 32-bit mode */
# define PGM_GST_TYPE PGM_TYPE_32BIT
# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
/* Guest - PAE mode */
# define PGM_GST_TYPE PGM_TYPE_PAE
# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# ifdef VBOX_WITH_64_BITS_GUESTS
/* Guest - AMD64 mode */
# define PGM_GST_TYPE PGM_TYPE_AMD64
# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
# include "PGMAllBth.h"
# undef BTH_PGMPOOLKIND_PT_FOR_PT
# undef PGM_BTH_NAME
# undef PGM_GST_TYPE
# undef PGM_GST_NAME
# endif /* VBOX_WITH_64_BITS_GUESTS */
# undef PGM_SHW_TYPE
# undef PGM_SHW_NAME
#endif /* !IN_RC */
#ifndef IN_RING3
/**
* #PF Handler.
*
* @returns VBox status code (appropriate for trap handling and GC return).
* @param pVM VM Handle.
* @param uErr The trap error code.
* @param pRegFrame Trap register frame.
* @param pvFault The fault address.
*/
VMMDECL(int) PGMTrap0eHandler(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
{
LogFlow(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%RGv\n", uErr, pvFault, (RTGCPTR)pRegFrame->rip));
STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0e, a);
STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
#ifdef VBOX_WITH_STATISTICS
/*
* Error code stats.
*/
if (uErr & X86_TRAP_PF_US)
{
if (!(uErr & X86_TRAP_PF_P))
{
if (uErr & X86_TRAP_PF_RW)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNotPresentWrite);
else
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNotPresentRead);
}
else if (uErr & X86_TRAP_PF_RW)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSWrite);
else if (uErr & X86_TRAP_PF_RSVD)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSReserved);
else if (uErr & X86_TRAP_PF_ID)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNXE);
else
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSRead);
}
else
{ /* Supervisor */
if (!(uErr & X86_TRAP_PF_P))
{
if (uErr & X86_TRAP_PF_RW)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVNotPresentWrite);
else
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVNotPresentRead);
}
else if (uErr & X86_TRAP_PF_RW)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVWrite);
else if (uErr & X86_TRAP_PF_ID)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSNXE);
else if (uErr & X86_TRAP_PF_RSVD)
STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVReserved);
}
#endif /* VBOX_WITH_STATISTICS */
/*
* Call the worker.
*/
int rc = PGM_BTH_PFN(Trap0eHandler, pVM)(pVM, uErr, pRegFrame, pvFault);
if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
rc = VINF_SUCCESS;
STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPF); });
STAM_STATS({ if (!pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2Misc; });
STAM_PROFILE_STOP_EX(&pVM->pgm.s.StatRZTrap0e, pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
return rc;
}
#endif /* !IN_RING3 */
/**
* Prefetch a page
*
* Typically used to sync commonly used pages before entering raw mode
* after a CR3 reload.
*
* @returns VBox status code suitable for scheduling.
* @retval VINF_SUCCESS on success.
* @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
* @param pVM VM handle.
* @param GCPtrPage Page to invalidate.
*/
VMMDECL(int) PGMPrefetchPage(PVM pVM, RTGCPTR GCPtrPage)
{
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
int rc = PGM_BTH_PFN(PrefetchPage, pVM)(pVM, GCPtrPage);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
return rc;
}
/**
* Gets the mapping corresponding to the specified address (if any).
*
* @returns Pointer to the mapping.
* @returns NULL if not
*
* @param pVM The virtual machine.
* @param GCPtr The guest context pointer.
*/
PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
{
PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
while (pMapping)
{
if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
break;
if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
return pMapping;
pMapping = pMapping->CTX_SUFF(pNext);
}
return NULL;
}
/**
* Verifies a range of pages for read or write access
*
* Only checks the guest's page tables
*
* @returns VBox status code.
* @param pVM VM handle.
* @param Addr Guest virtual address to check
* @param cbSize Access size
* @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
* @remarks Current not in use.
*/
VMMDECL(int) PGMIsValidAccess(PVM pVM, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
{
/*
* Validate input.
*/
if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
{
AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
return VERR_INVALID_PARAMETER;
}
uint64_t fPage;
int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPage, NULL);
if (RT_FAILURE(rc))
{
Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
return VINF_EM_RAW_GUEST_TRAP;
}
/*
* Check if the access would cause a page fault
*
* Note that hypervisor page directories are not present in the guest's tables, so this check
* is sufficient.
*/
bool fWrite = !!(fAccess & X86_PTE_RW);
bool fUser = !!(fAccess & X86_PTE_US);
if ( !(fPage & X86_PTE_P)
|| (fWrite && !(fPage & X86_PTE_RW))
|| (fUser && !(fPage & X86_PTE_US)) )
{
Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
return VINF_EM_RAW_GUEST_TRAP;
}
if ( RT_SUCCESS(rc)
&& PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
return PGMIsValidAccess(pVM, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
return rc;
}
/**
* Verifies a range of pages for read or write access
*
* Supports handling of pages marked for dirty bit tracking and CSAM
*
* @returns VBox status code.
* @param pVM VM handle.
* @param Addr Guest virtual address to check
* @param cbSize Access size
* @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
*/
VMMDECL(int) PGMVerifyAccess(PVM pVM, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
{
AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
/*
* Get going.
*/
uint64_t fPageGst;
int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPageGst, NULL);
if (RT_FAILURE(rc))
{
Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
return VINF_EM_RAW_GUEST_TRAP;
}
/*
* Check if the access would cause a page fault
*
* Note that hypervisor page directories are not present in the guest's tables, so this check
* is sufficient.
*/
const bool fWrite = !!(fAccess & X86_PTE_RW);
const bool fUser = !!(fAccess & X86_PTE_US);
if ( !(fPageGst & X86_PTE_P)
|| (fWrite && !(fPageGst & X86_PTE_RW))
|| (fUser && !(fPageGst & X86_PTE_US)) )
{
Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
return VINF_EM_RAW_GUEST_TRAP;
}
if (!HWACCMIsNestedPagingActive(pVM))
{
/*
* Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
*/
rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, NULL, NULL);
if ( rc == VERR_PAGE_NOT_PRESENT
|| rc == VERR_PAGE_TABLE_NOT_PRESENT)
{
/*
* Page is not present in our page tables.
* Try to sync it!
*/
Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVM)(pVM, Addr, fPageGst, uErr);
if (rc != VINF_SUCCESS)
return rc;
}
else
AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
}
#if 0 /* def VBOX_STRICT; triggers too often now */
/*
* This check is a bit paranoid, but useful.
*/
/** @note this will assert when writing to monitored pages (a bit annoying actually) */
uint64_t fPageShw;
rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, &fPageShw, NULL);
if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
|| (fWrite && !(fPageShw & X86_PTE_RW))
|| (fUser && !(fPageShw & X86_PTE_US)) )
{
AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
return VINF_EM_RAW_GUEST_TRAP;
}
#endif
if ( RT_SUCCESS(rc)
&& ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
|| Addr + cbSize < Addr))
{
/* Don't recursively call PGMVerifyAccess as we might run out of stack. */
for (;;)
{
Addr += PAGE_SIZE;
if (cbSize > PAGE_SIZE)
cbSize -= PAGE_SIZE;
else
cbSize = 1;
rc = PGMVerifyAccess(pVM, Addr, 1, fAccess);
if (rc != VINF_SUCCESS)
break;
if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
break;
}
}
return rc;
}
/**
* Emulation of the invlpg instruction (HC only actually).
*
* @returns VBox status code, special care required.
* @retval VINF_PGM_SYNC_CR3 - handled.
* @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
* @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
*
* @param pVM VM handle.
* @param GCPtrPage Page to invalidate.
*
* @remark ASSUMES the page table entry or page directory is valid. Fairly
* safe, but there could be edge cases!
*
* @todo Flush page or page directory only if necessary!
*/
VMMDECL(int) PGMInvalidatePage(PVM pVM, RTGCPTR GCPtrPage)
{
int rc;
Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
#ifndef IN_RING3
/*
* Notify the recompiler so it can record this instruction.
* Failure happens when it's out of space. We'll return to HC in that case.
*/
rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
if (rc != VINF_SUCCESS)
return rc;
#endif /* !IN_RING3 */
#ifdef IN_RC
/*
* Check for conflicts and pending CR3 monitoring updates.
*/
if (!pVM->pgm.s.fMappingsFixed)
{
if ( pgmGetMapping(pVM, GCPtrPage)
&& PGMGstGetPage(pVM, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
{
LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
return VINF_PGM_SYNC_CR3;
}
if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
{
LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
return VINF_EM_RAW_EMULATE_INSTR;
}
}
#endif /* IN_RC */
/*
* Call paging mode specific worker.
*/
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
rc = PGM_BTH_PFN(InvalidatePage, pVM)(pVM, GCPtrPage);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
#ifdef IN_RING3
/*
* Check if we have a pending update of the CR3 monitoring.
*/
if ( RT_SUCCESS(rc)
&& (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
{
pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
Assert(!pVM->pgm.s.fMappingsFixed);
Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
}
/*
* Inform CSAM about the flush
*
* Note: This is to check if monitored pages have been changed; when we implement
* callbacks for virtual handlers, this is no longer required.
*/
CSAMR3FlushPage(pVM, GCPtrPage);
#endif /* IN_RING3 */
return rc;
}
/**
* Executes an instruction using the interpreter.
*
* @returns VBox status code (appropriate for trap handling and GC return).
* @param pVM VM handle.
* @param pRegFrame Register frame.
* @param pvFault Fault address.
*/
VMMDECL(int) PGMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
{
uint32_t cb;
int rc = EMInterpretInstruction(pVM, pRegFrame, pvFault, &cb);
if (rc == VERR_EM_INTERPRETER)
rc = VINF_EM_RAW_EMULATE_INSTR;
if (rc != VINF_SUCCESS)
Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
return rc;
}
/**
* Gets effective page information (from the VMM page directory).
*
* @returns VBox status.
* @param pVM VM Handle.
* @param GCPtr Guest Context virtual address of the page.
* @param pfFlags Where to store the flags. These are X86_PTE_*.
* @param pHCPhys Where to store the HC physical address of the page.
* This is page aligned.
* @remark You should use PGMMapGetPage() for pages in a mapping.
*/
VMMDECL(int) PGMShwGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
{
return PGM_SHW_PFN(GetPage,pVM)(pVM, GCPtr, pfFlags, pHCPhys);
}
/**
* Sets (replaces) the page flags for a range of pages in the shadow context.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtr The address of the first page.
* @param cb The size of the range in bytes.
* @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
* @remark You must use PGMMapSetPage() for pages in a mapping.
*/
VMMDECL(int) PGMShwSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
{
return PGMShwModifyPage(pVM, GCPtr, cb, fFlags, 0);
}
/**
* Modify page flags for a range of pages in the shadow context.
*
* The existing flags are ANDed with the fMask and ORed with the fFlags.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param GCPtr Virtual address of the first page in the range.
* @param cb Size (in bytes) of the range to apply the modification to.
* @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
* @param fMask The AND mask - page flags X86_PTE_*.
* Be very CAREFUL when ~'ing constants which could be 32-bit!
* @remark You must use PGMMapModifyPage() for pages in a mapping.
*/
VMMDECL(int) PGMShwModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
{
AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
Assert(cb);
/*
* Align the input.
*/
cb += GCPtr & PAGE_OFFSET_MASK;
cb = RT_ALIGN_Z(cb, PAGE_SIZE);
GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
/*
* Call worker.
*/
return PGM_SHW_PFN(ModifyPage, pVM)(pVM, GCPtr, cb, fFlags, fMask);
}
/**
* Gets the SHADOW page directory pointer for the specified address.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtr The address.
* @param ppPdpt Receives address of pdpt
* @param ppPD Receives address of page directory
* @remarks Unused.
*/
DECLINLINE(int) pgmShwGetPAEPDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
{
PPGM pPGM = &pVM->pgm.s;
PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
PPGMPOOLPAGE pShwPage;
Assert(!HWACCMIsNestedPagingActive(pVM));
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
PX86PDPE pPdpe = &pPdpt->a[iPdPt];
*ppPdpt = pPdpt;
if (!pPdpe->n.u1Present)
return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
*ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
/**
* Gets the shadow page directory for the specified address, PAE.
*
* @returns Pointer to the shadow PD.
* @param pVM VM handle.
* @param GCPtr The address.
* @param pGstPdpe Guest PDPT entry
* @param ppPD Receives address of page directory
*/
int pgmShwSyncPaePDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
{
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
PX86PDPE pPdpe = &pPdpt->a[iPdPt];
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
PPGMPOOLPAGE pShwPage;
int rc;
/* Allocate page directory if not present. */
if ( !pPdpe->n.u1Present
&& !(pPdpe->u & X86_PDPE_PG_MASK))
{
bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
bool fPaging = !!(CPUMGetGuestCR0(pVM) & X86_CR0_PG);
RTGCPTR64 GCPdPt;
PGMPOOLKIND enmKind;
if (fNestedPaging || !fPaging)
{
/* AMD-V nested paging or real/protected mode without paging */
GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
enmKind = PGMPOOLKIND_PAE_PD_PHYS;
}
else
{
Assert(pGstPdpe);
if (CPUMGetGuestCR4(pVM) & X86_CR4_PAE)
{
GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
}
else
{
GCPdPt = CPUMGetGuestCR3(pVM);
enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
}
}
/* Create a reference back to the PDPT by using the index in its shadow page. */
rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
if (rc == VERR_PGM_POOL_FLUSHED)
{
Log(("pgmShwSyncPaePDPtr: PGM pool flushed -> signal sync cr3\n"));
Assert(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL);
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_PGM_SYNC_CR3;
}
AssertRCReturn(rc, rc);
}
else
{
pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
}
/* The PD was cached or created; hook it up now. */
pPdpe->u |= pShwPage->Core.Key
| (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
*ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
return VINF_SUCCESS;
}
/**
* Gets the pointer to the shadow page directory entry for an address, PAE.
*
* @returns Pointer to the PDE.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
* @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
*/
DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGM pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
{
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
if (!pPdpt->a[iPdPt].n.u1Present)
return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
/* Fetch the pgm pool shadow descriptor. */
PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
*ppShwPde = pShwPde;
return VINF_SUCCESS;
}
#endif
#ifndef IN_RC
/**
* Syncs the SHADOW page directory pointer for the specified address.
*
* Allocates backing pages in case the PDPT or PML4 entry is missing.
*
* The caller is responsible for making sure the guest has a valid PD before
* calling this function.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtr The address.
* @param pGstPml4e Guest PML4 entry
* @param pGstPdpe Guest PDPT entry
* @param ppPD Receives address of page directory
*/
int pgmShwSyncLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
{
PPGM pPGM = &pVM->pgm.s;
PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
bool fPaging = !!(CPUMGetGuestCR0(pVM) & X86_CR0_PG);
#endif
PPGMPOOLPAGE pShwPage;
int rc;
/* Allocate page directory pointer table if not present. */
if ( !pPml4e->n.u1Present
&& !(pPml4e->u & X86_PML4E_PG_MASK))
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
RTGCPTR64 GCPml4;
PGMPOOLKIND enmKind;
Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
if (fNestedPaging || !fPaging)
{
/* AMD-V nested paging or real/protected mode without paging */
GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
}
else
{
Assert(pGstPml4e && pGstPdpe);
GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
}
/* Create a reference back to the PDPT by using the index in its shadow page. */
rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
#else
if (!fNestedPaging)
{
Assert(pGstPml4e && pGstPdpe);
Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
rc = pgmPoolAlloc(pVM, pGstPml4e->u & X86_PML4E_PG_MASK,
PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
}
else
{
/* AMD-V nested paging. (Intel EPT never comes here) */
RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
rc = pgmPoolAlloc(pVM, GCPml4 + RT_BIT_64(63) /* hack: make the address unique */,
PGMPOOLKIND_64BIT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
}
#endif
if (rc == VERR_PGM_POOL_FLUSHED)
{
Log(("PGMShwSyncLongModePDPtr: PGM pool flushed (1) -> signal sync cr3\n"));
Assert(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL);
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_PGM_SYNC_CR3;
}
AssertRCReturn(rc, rc);
}
else
{
pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
}
/* The PDPT was cached or created; hook it up now. */
pPml4e->u |= pShwPage->Core.Key
| (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
PX86PDPE pPdpe = &pPdpt->a[iPdPt];
/* Allocate page directory if not present. */
if ( !pPdpe->n.u1Present
&& !(pPdpe->u & X86_PDPE_PG_MASK))
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
RTGCPTR64 GCPdPt;
PGMPOOLKIND enmKind;
if (fNestedPaging || !fPaging)
{
/* AMD-V nested paging or real/protected mode without paging */
GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
}
else
{
Assert(pGstPdpe);
GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
}
/* Create a reference back to the PDPT by using the index in its shadow page. */
rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
#else
if (!fNestedPaging)
{
Assert(pGstPml4e && pGstPdpe);
Assert(!(pPdpe->u & X86_PDPE_PG_MASK));
/* Create a reference back to the PDPT by using the index in its shadow page. */
rc = pgmPoolAlloc(pVM, pGstPdpe->u & X86_PDPE_PG_MASK, PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD, pShwPage->idx, iPdPt, &pShwPage);
}
else
{
/* AMD-V nested paging. (Intel EPT never comes here) */
RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
rc = pgmPoolAlloc(pVM, GCPdPt + RT_BIT_64(62) /* hack: make the address unique */, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
}
#endif
if (rc == VERR_PGM_POOL_FLUSHED)
{
Log(("PGMShwSyncLongModePDPtr: PGM pool flushed (2) -> signal sync cr3\n"));
Assert(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL);
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_PGM_SYNC_CR3;
}
AssertRCReturn(rc, rc);
}
else
{
pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
}
/* The PD was cached or created; hook it up now. */
pPdpe->u |= pShwPage->Core.Key
| (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
*ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
return VINF_SUCCESS;
}
/**
* Gets the SHADOW page directory pointer for the specified address (long mode).
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtr The address.
* @param ppPdpt Receives address of pdpt
* @param ppPD Receives address of page directory
*/
DECLINLINE(int) pgmShwGetLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
{
PPGM pPGM = &pVM->pgm.s;
const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
if (ppPml4e)
*ppPml4e = (PX86PML4E)pPml4e;
if (!pPml4e->n.u1Present)
return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
if (!pPdpt->a[iPdPt].n.u1Present)
return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
*ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
return VINF_SUCCESS;
}
/**
* Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
* backing pages in case the PDPT or PML4 entry is missing.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtr The address.
* @param ppPdpt Receives address of pdpt
* @param ppPD Receives address of page directory
*/
int pgmShwGetEPTPDPtr(PVM pVM, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
{
PPGM pPGM = &pVM->pgm.s;
const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
PEPTPML4 pPml4;
PEPTPML4E pPml4e;
PPGMPOOLPAGE pShwPage;
int rc;
Assert(HWACCMIsNestedPagingActive(pVM));
# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
rc = PGM_HCPHYS_2_PTR(pVM, pPGM->HCPhysShwNestedRoot, &pPml4);
AssertRCReturn(rc, rc);
# else
pPml4 = (PEPTPML4)pPGM->CTX_SUFF(pShwNestedRoot);
# endif
Assert(pPml4);
/* Allocate page directory pointer table if not present. */
pPml4e = &pPml4->a[iPml4];
if ( !pPml4e->n.u1Present
&& !(pPml4e->u & EPT_PML4E_PG_MASK))
{
Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
#else
rc = pgmPoolAlloc(pVM, GCPml4 + RT_BIT_64(63) /* hack: make the address unique */, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
#endif
if (rc == VERR_PGM_POOL_FLUSHED)
{
Log(("PGMShwSyncEPTPDPtr: PGM pool flushed (1) -> signal sync cr3\n"));
Assert(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL);
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_PGM_SYNC_CR3;
}
AssertRCReturn(rc, rc);
}
else
{
pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
}
/* The PDPT was cached or created; hook it up now and fill with the default value. */
pPml4e->u = pShwPage->Core.Key;
pPml4e->n.u1Present = 1;
pPml4e->n.u1Write = 1;
pPml4e->n.u1Execute = 1;
const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
if (ppPdpt)
*ppPdpt = pPdpt;
/* Allocate page directory if not present. */
if ( !pPdpe->n.u1Present
&& !(pPdpe->u & EPT_PDPTE_PG_MASK))
{
RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
#else
rc = pgmPoolAlloc(pVM, GCPdPt + RT_BIT_64(62) /* hack: make the address unique */, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
#endif
if (rc == VERR_PGM_POOL_FLUSHED)
{
Log(("PGMShwSyncEPTPDPtr: PGM pool flushed (2) -> signal sync cr3\n"));
Assert(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL);
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_PGM_SYNC_CR3;
}
AssertRCReturn(rc, rc);
}
else
{
pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
}
/* The PD was cached or created; hook it up now and fill with the default value. */
pPdpe->u = pShwPage->Core.Key;
pPdpe->n.u1Present = 1;
pPdpe->n.u1Write = 1;
pPdpe->n.u1Execute = 1;
*ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
return VINF_SUCCESS;
}
#endif /* IN_RC */
/**
* Gets effective Guest OS page information.
*
* When GCPtr is in a big page, the function will return as if it was a normal
* 4KB page. If the need for distinguishing between big and normal page becomes
* necessary at a later point, a PGMGstGetPage() will be created for that
* purpose.
*
* @returns VBox status.
* @param pVM VM Handle.
* @param GCPtr Guest Context virtual address of the page.
* @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
* @param pGCPhys Where to store the GC physical address of the page.
* This is page aligned. The fact that the
*/
VMMDECL(int) PGMGstGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
{
return PGM_GST_PFN(GetPage,pVM)(pVM, GCPtr, pfFlags, pGCPhys);
}
/**
* Checks if the page is present.
*
* @returns true if the page is present.
* @returns false if the page is not present.
* @param pVM The VM handle.
* @param GCPtr Address within the page.
*/
VMMDECL(bool) PGMGstIsPagePresent(PVM pVM, RTGCPTR GCPtr)
{
int rc = PGMGstGetPage(pVM, GCPtr, NULL, NULL);
return RT_SUCCESS(rc);
}
/**
* Sets (replaces) the page flags for a range of pages in the guest's tables.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtr The address of the first page.
* @param cb The size of the range in bytes.
* @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
*/
VMMDECL(int) PGMGstSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
{
return PGMGstModifyPage(pVM, GCPtr, cb, fFlags, 0);
}
/**
* Modify page flags for a range of pages in the guest's tables
*
* The existing flags are ANDed with the fMask and ORed with the fFlags.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param GCPtr Virtual address of the first page in the range.
* @param cb Size (in bytes) of the range to apply the modification to.
* @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
* @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
* Be very CAREFUL when ~'ing constants which could be 32-bit!
*/
VMMDECL(int) PGMGstModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
{
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
/*
* Validate input.
*/
AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
Assert(cb);
LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
/*
* Adjust input.
*/
cb += GCPtr & PAGE_OFFSET_MASK;
cb = RT_ALIGN_Z(cb, PAGE_SIZE);
GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
/*
* Call worker.
*/
int rc = PGM_GST_PFN(ModifyPage, pVM)(pVM, GCPtr, cb, fFlags, fMask);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
return rc;
}
/**
* Gets the specified page directory pointer table entry.
*
* @returns PDP entry
* @param pPGM Pointer to the PGM instance data.
* @param iPdpt PDPT index
*/
VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVM pVM, unsigned iPdpt)
{
Assert(iPdpt <= 3);
return pgmGstGetPaePDPTPtr(&pVM->pgm.s)->a[iPdpt & 3];
}
/**
* Gets the current CR3 register value for the shadow memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVM pVM)
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
PGMMODE enmShadowMode = pVM->pgm.s.enmShadowMode;
switch (enmShadowMode)
{
case PGMMODE_EPT:
return pVM->pgm.s.HCPhysShwNestedRoot;
default:
return pVM->pgm.s.HCPhysShwCR3;
}
#else
PGMMODE enmShadowMode = pVM->pgm.s.enmShadowMode;
switch (enmShadowMode)
{
case PGMMODE_32_BIT:
return pVM->pgm.s.HCPhysShw32BitPD;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
return pVM->pgm.s.HCPhysShwPaePdpt;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
return pVM->pgm.s.HCPhysShwCR3;
case PGMMODE_EPT:
return pVM->pgm.s.HCPhysShwNestedRoot;
case PGMMODE_NESTED:
return PGMGetNestedCR3(pVM, PGMGetHostMode(pVM));
default:
AssertMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
return ~0;
}
#endif
}
/**
* Gets the current CR3 register value for the nested memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVM pVM, PGMMODE enmShadowMode)
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
return pVM->pgm.s.HCPhysShwCR3;
#else
switch (enmShadowMode)
{
case PGMMODE_32_BIT:
return pVM->pgm.s.HCPhysShw32BitPD;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
return pVM->pgm.s.HCPhysShwPaePdpt;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
return pVM->pgm.s.HCPhysShwCR3;
default:
AssertMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
return ~0;
}
#endif
}
/**
* Gets the current CR3 register value for the EPT paging memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetEPTCR3(PVM pVM)
{
return pVM->pgm.s.HCPhysShwNestedRoot;
}
/**
* Gets the CR3 register value for the 32-Bit shadow memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetHyper32BitCR3(PVM pVM)
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
return pVM->pgm.s.HCPhysShwCR3;
#else
return pVM->pgm.s.HCPhysShw32BitPD;
#endif
}
/**
* Gets the CR3 register value for the PAE shadow memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetHyperPaeCR3(PVM pVM)
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
return pVM->pgm.s.HCPhysShwCR3;
#else
return pVM->pgm.s.HCPhysShwPaePdpt;
#endif
}
/**
* Gets the CR3 register value for the AMD64 shadow memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetHyperAmd64CR3(PVM pVM)
{
return pVM->pgm.s.HCPhysShwCR3;
}
/**
* Gets the current CR3 register value for the HC intermediate memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
{
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
return pVM->pgm.s.HCPhysInterPD;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
return pVM->pgm.s.HCPhysInterPaePDPT;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
return pVM->pgm.s.HCPhysInterPaePDPT;
default:
AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
return ~0;
}
}
/**
* Gets the current CR3 register value for the RC intermediate memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM)
{
switch (pVM->pgm.s.enmShadowMode)
{
case PGMMODE_32_BIT:
return pVM->pgm.s.HCPhysInterPD;
case PGMMODE_PAE:
case PGMMODE_PAE_NX:
return pVM->pgm.s.HCPhysInterPaePDPT;
case PGMMODE_AMD64:
case PGMMODE_AMD64_NX:
return pVM->pgm.s.HCPhysInterPaePML4;
case PGMMODE_EPT:
case PGMMODE_NESTED:
return 0; /* not relevant */
default:
AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
return ~0;
}
}
/**
* Gets the CR3 register value for the 32-Bit intermediate memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
{
return pVM->pgm.s.HCPhysInterPD;
}
/**
* Gets the CR3 register value for the PAE intermediate memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
{
return pVM->pgm.s.HCPhysInterPaePDPT;
}
/**
* Gets the CR3 register value for the AMD64 intermediate memory context.
* @returns CR3 value.
* @param pVM The VM handle.
*/
VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
{
return pVM->pgm.s.HCPhysInterPaePML4;
}
/**
* Performs and schedules necessary updates following a CR3 load or reload.
*
* This will normally involve mapping the guest PD or nPDPT
*
* @returns VBox status code.
* @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
* safely be ignored and overridden since the FF will be set too then.
* @param pVM VM handle.
* @param cr3 The new cr3.
* @param fGlobal Indicates whether this is a global flush or not.
*/
VMMDECL(int) PGMFlushTLB(PVM pVM, uint64_t cr3, bool fGlobal)
{
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
/*
* Always flag the necessary updates; necessary for hardware acceleration
*/
/** @todo optimize this, it shouldn't always be necessary. */
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
if (fGlobal)
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVM->pgm.s.GCPhysCR3, fGlobal));
/*
* Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
*/
int rc = VINF_SUCCESS;
RTGCPHYS GCPhysCR3;
if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
|| pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
|| pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
|| pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
else
GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
{
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
/* Unmap the old CR3 value before activating the new one. */
rc = PGM_BTH_PFN(UnmapCR3, pVM)(pVM);
AssertRC(rc);
#endif
RTGCPHYS GCPhysOldCR3 = pVM->pgm.s.GCPhysCR3;
pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
if (RT_LIKELY(rc == VINF_SUCCESS))
{
if (!pVM->pgm.s.fMappingsFixed)
{
pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
}
}
else
{
AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
Assert(VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL | VM_FF_PGM_SYNC_CR3));
pVM->pgm.s.GCPhysCR3 = GCPhysOldCR3;
pVM->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
if (!pVM->pgm.s.fMappingsFixed)
pVM->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
}
if (fGlobal)
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
else
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
}
else
{
/*
* Check if we have a pending update of the CR3 monitoring.
*/
if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
{
pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
Assert(!pVM->pgm.s.fMappingsFixed);
rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
}
if (fGlobal)
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
else
STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
}
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
return rc;
}
/**
* Performs and schedules necessary updates following a CR3 load or reload when
* using nested or extended paging.
*
* This API is an alterantive to PDMFlushTLB that avoids actually flushing the
* TLB and triggering a SyncCR3.
*
* This will normally involve mapping the guest PD or nPDPT
*
* @returns VBox status code.
* @retval VINF_SUCCESS.
* @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
* requires a CR3 sync. This can safely be ignored and overridden since
* the FF will be set too then.)
* @param pVM VM handle.
* @param cr3 The new cr3.
*/
VMMDECL(int) PGMUpdateCR3(PVM pVM, uint64_t cr3)
{
LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVM->pgm.s.GCPhysCR3));
/* We assume we're only called in nested paging mode. */
Assert(pVM->pgm.s.fMappingsFixed);
Assert(!(pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
Assert(pVM->pgm.s.enmShadowMode == PGMMODE_NESTED || pVM->pgm.s.enmShadowMode == PGMMODE_EPT);
/*
* Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
*/
int rc = VINF_SUCCESS;
RTGCPHYS GCPhysCR3;
if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
|| pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
|| pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
|| pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
else
GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
{
pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */
}
return rc;
}
/**
* Synchronize the paging structures.
*
* This function is called in response to the VM_FF_PGM_SYNC_CR3 and
* VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
* in several places, most importantly whenever the CR3 is loaded.
*
* @returns VBox status code.
* @param pVM The virtual machine.
* @param cr0 Guest context CR0 register
* @param cr3 Guest context CR3 register
* @param cr4 Guest context CR4 register
* @param fGlobal Including global page directories or not
*/
VMMDECL(int) PGMSyncCR3(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
{
int rc;
/*
* We might be called when we shouldn't.
*
* The mode switching will ensure that the PD is resynced
* after every mode switch. So, if we find ourselves here
* when in protected or real mode we can safely disable the
* FF and return immediately.
*/
if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
{
Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
return VINF_SUCCESS;
}
/* If global pages are not supported, then all flushes are global. */
if (!(cr4 & X86_CR4_PGE))
fGlobal = true;
LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)));
#ifdef PGMPOOL_WITH_MONITORING
/*
* The pool may have pending stuff and even require a return to ring-3 to
* clear the whole thing.
*/
rc = pgmPoolSyncCR3(pVM);
if (rc != VINF_SUCCESS)
return rc;
#endif
/*
* Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
* This should be done before SyncCR3.
*/
if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
{
pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
RTGCPHYS GCPhysCR3Old = pVM->pgm.s.GCPhysCR3;
RTGCPHYS GCPhysCR3;
if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
|| pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
|| pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
|| pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
else
GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
{
/* Unmap the old CR3 value before activating the new one. */
rc = PGM_BTH_PFN(UnmapCR3, pVM)(pVM);
AssertRC(rc);
}
#endif
pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
#ifdef IN_RING3
if (rc == VINF_PGM_SYNC_CR3)
rc = pgmPoolSyncCR3(pVM);
#else
if (rc == VINF_PGM_SYNC_CR3)
{
pVM->pgm.s.GCPhysCR3 = GCPhysCR3Old;
return rc;
}
#endif
AssertRCReturn(rc, rc);
AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
}
/*
* Let the 'Bth' function do the work and we'll just keep track of the flags.
*/
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
rc = PGM_BTH_PFN(SyncCR3, pVM)(pVM, cr0, cr3, cr4, fGlobal);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
if (rc == VINF_SUCCESS)
{
if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
{
VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
}
/*
* Check if we have a pending update of the CR3 monitoring.
*/
if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
{
pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
Assert(!pVM->pgm.s.fMappingsFixed);
Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
}
}
/*
* Now flush the CR3 (guest context).
*/
if (rc == VINF_SUCCESS)
PGM_INVL_GUEST_TLBS();
return rc;
}
/**
* Called whenever CR0 or CR4 in a way which may change
* the paging mode.
*
* @returns VBox status code fit for scheduling in GC and R0.
* @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
* @retval VINF_PGM_CHANGE_MODE if we're in GC or R0 and the mode changes.
* @param pVM VM handle.
* @param cr0 The new cr0.
* @param cr4 The new cr4.
* @param efer The new extended feature enable register.
*/
VMMDECL(int) PGMChangeMode(PVM pVM, uint64_t cr0, uint64_t cr4, uint64_t efer)
{
PGMMODE enmGuestMode;
/*
* Calc the new guest mode.
*/
if (!(cr0 & X86_CR0_PE))
enmGuestMode = PGMMODE_REAL;
else if (!(cr0 & X86_CR0_PG))
enmGuestMode = PGMMODE_PROTECTED;
else if (!(cr4 & X86_CR4_PAE))
enmGuestMode = PGMMODE_32_BIT;
else if (!(efer & MSR_K6_EFER_LME))
{
if (!(efer & MSR_K6_EFER_NXE))
enmGuestMode = PGMMODE_PAE;
else
enmGuestMode = PGMMODE_PAE_NX;
}
else
{
if (!(efer & MSR_K6_EFER_NXE))
enmGuestMode = PGMMODE_AMD64;
else
enmGuestMode = PGMMODE_AMD64_NX;
}
/*
* Did it change?
*/
if (pVM->pgm.s.enmGuestMode == enmGuestMode)
return VINF_SUCCESS;
/* Flush the TLB */
PGM_INVL_GUEST_TLBS();
#ifdef IN_RING3
return PGMR3ChangeMode(pVM, enmGuestMode);
#else
LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
return VINF_PGM_CHANGE_MODE;
#endif
}
/**
* Gets the current guest paging mode.
*
* If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
*
* @returns The current paging mode.
* @param pVM The VM handle.
*/
VMMDECL(PGMMODE) PGMGetGuestMode(PVM pVM)
{
return pVM->pgm.s.enmGuestMode;
}
/**
* Gets the current shadow paging mode.
*
* @returns The current paging mode.
* @param pVM The VM handle.
*/
VMMDECL(PGMMODE) PGMGetShadowMode(PVM pVM)
{
return pVM->pgm.s.enmShadowMode;
}
/**
* Gets the current host paging mode.
*
* @returns The current paging mode.
* @param pVM The VM handle.
*/
VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
{
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
return PGMMODE_32_BIT;
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_GLOBAL:
return PGMMODE_PAE;
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
return PGMMODE_PAE_NX;
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
return PGMMODE_AMD64;
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
return PGMMODE_AMD64_NX;
default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
}
return PGMMODE_INVALID;
}
/**
* Get mode name.
*
* @returns read-only name string.
* @param enmMode The mode which name is desired.
*/
VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
{
switch (enmMode)
{
case PGMMODE_REAL: return "Real";
case PGMMODE_PROTECTED: return "Protected";
case PGMMODE_32_BIT: return "32-bit";
case PGMMODE_PAE: return "PAE";
case PGMMODE_PAE_NX: return "PAE+NX";
case PGMMODE_AMD64: return "AMD64";
case PGMMODE_AMD64_NX: return "AMD64+NX";
case PGMMODE_NESTED: return "Nested";
case PGMMODE_EPT: return "EPT";
default: return "unknown mode value";
}
}
/**
* Acquire the PGM lock.
*
* @returns VBox status code
* @param pVM The VM to operate on.
*/
int pgmLock(PVM pVM)
{
int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
#ifdef IN_RC
if (rc == VERR_SEM_BUSY)
rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
#elif defined(IN_RING0)
if (rc == VERR_SEM_BUSY)
rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
#endif
AssertRC(rc);
return rc;
}
/**
* Release the PGM lock.
*
* @returns VBox status code
* @param pVM The VM to operate on.
*/
void pgmUnlock(PVM pVM)
{
PDMCritSectLeave(&pVM->pgm.s.CritSect);
}
#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
/**
* Temporarily maps one guest page specified by GC physical address.
* These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
*
* Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
* reused after 8 mappings (or perhaps a few more if you score with the cache).
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPhys GC Physical address of the page.
* @param ppv Where to store the address of the mapping.
*/
VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
{
AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
/*
* Get the ram range.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
pRam = pRam->CTX_SUFF(pNext);
if (!pRam)
{
AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/*
* Pass it on to PGMDynMapHCPage.
*/
RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
//Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
#else
PGMDynMapHCPage(pVM, HCPhys, ppv);
#endif
return VINF_SUCCESS;
}
/**
* Temporarily maps one guest page specified by unaligned GC physical address.
* These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
*
* Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
* reused after 8 mappings (or perhaps a few more if you score with the cache).
*
* The caller is aware that only the speicifed page is mapped and that really bad things
* will happen if writing beyond the page!
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPhys GC Physical address within the page to be mapped.
* @param ppv Where to store the address of the mapping address corresponding to GCPhys.
*/
VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
{
/*
* Get the ram range.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
pRam = pRam->CTX_SUFF(pNext);
if (!pRam)
{
AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/*
* Pass it on to PGMDynMapHCPage.
*/
RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
#else
PGMDynMapHCPage(pVM, HCPhys, ppv);
#endif
*ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
return VINF_SUCCESS;
}
# ifdef IN_RC
/**
* Temporarily maps one host page specified by HC physical address.
*
* Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
* reused after 8 mappings (or perhaps a few more if you score with the cache).
*
* @returns VINF_SUCCESS, will bail out to ring-3 on failure.
* @param pVM VM handle.
* @param HCPhys HC Physical address of the page.
* @param ppv Where to store the address of the mapping. This is the
* address of the PAGE not the exact address corresponding
* to HCPhys. Use PGMDynMapHCPageOff if you care for the
* page offset.
*/
VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
{
AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
/*
* Check the cache.
*/
register unsigned iCache;
if ( pVM->pgm.s.aHCPhysDynPageMapCache[iCache = 0] == HCPhys
|| pVM->pgm.s.aHCPhysDynPageMapCache[iCache = 1] == HCPhys
|| pVM->pgm.s.aHCPhysDynPageMapCache[iCache = 2] == HCPhys
|| pVM->pgm.s.aHCPhysDynPageMapCache[iCache = 3] == HCPhys)
{
static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
{
{ 0, 5, 6, 7 },
{ 0, 1, 6, 7 },
{ 0, 1, 2, 7 },
{ 0, 1, 2, 3 },
{ 4, 1, 2, 3 },
{ 4, 5, 2, 3 },
{ 4, 5, 6, 3 },
{ 4, 5, 6, 7 },
};
Assert(RT_ELEMENTS(au8Trans) == 8);
Assert(RT_ELEMENTS(au8Trans[0]) == 4);
int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
*ppv = pv;
STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
//Log(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
return VINF_SUCCESS;
}
Assert(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 4);
STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
/*
* Update the page tables.
*/
register unsigned iPage = pVM->pgm.s.iDynPageMapLast;
pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
Assert((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 8);
pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
*ppv = pv;
ASMInvalidatePage(pv);
Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
return VINF_SUCCESS;
}
# endif /* IN_RC */
#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
#ifdef VBOX_STRICT
/**
* Asserts that there are no mapping conflicts.
*
* @returns Number of conflicts.
* @param pVM The VM Handle.
*/
VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
{
unsigned cErrors = 0;
/*
* Check for mapping conflicts.
*/
for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
pMapping;
pMapping = pMapping->CTX_SUFF(pNext))
{
/** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
for (RTGCPTR GCPtr = pMapping->GCPtr;
GCPtr <= pMapping->GCPtrLast;
GCPtr += PAGE_SIZE)
{
int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, NULL, NULL);
if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
{
AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
cErrors++;
break;
}
}
}
return cErrors;
}
/**
* Asserts that everything related to the guest CR3 is correctly shadowed.
*
* This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
* and assert the correctness of the guest CR3 mapping before asserting that the
* shadow page tables is in sync with the guest page tables.
*
* @returns Number of conflicts.
* @param pVM The VM Handle.
* @param cr3 The current guest CR3 register value.
* @param cr4 The current guest CR4 register value.
*/
VMMDECL(unsigned) PGMAssertCR3(PVM pVM, uint64_t cr3, uint64_t cr4)
{
STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVM)(pVM, cr3, cr4, 0, ~(RTGCPTR)0);
STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
return cErrors;
}
#endif /* VBOX_STRICT */