CPUMAllRegs.cpp revision 8d5210f02ffa3d8f8f21a917c1ee0d83c664e644
/* $Id$ */
/** @file
* CPUM - CPU Monitor(/Manager) - Getters and Setters.
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_CPUM
#include "CPUMInternal.h"
#include <iprt/asm-amd64-x86.h>
#ifdef IN_RING3
#endif
/** Disable stack frame pointer generation here. */
#endif
/**
* Sets or resets an alternative hypervisor context core.
*
* This is called when we get a hypervisor trap set switch the context
* core with the trap frame on the stack. It is called again to reset
* back to the default context core when resuming hypervisor execution.
*
* @param pVCpu The VMCPU handle.
* @param pCtxCore Pointer to the alternative context core or NULL
* to go back to the default context core.
*/
{
if (!pCtxCore)
{
}
else
{
}
}
/**
* Gets the pointer to the internal CPUMCTXCORE structure for the hypervisor.
* This is only for reading in order to save a few calls.
*
* @param pVM Handle to the virtual machine.
*/
{
}
/**
* Queries the pointer to the internal CPUMCTX structure for the hypervisor.
*
* @returns VBox status code.
* @param pVM Handle to the virtual machine.
* @param ppCtx Receives the hyper CPUMCTX pointer when successful.
*
* @deprecated This will *not* (and has never) given the right picture of the
* hypervisor register state. With CPUMHyperSetCtxCore() this is
* getting much worse. So, use the individual functions for getting
* and esp. setting the hypervisor registers.
*/
{
return VINF_SUCCESS;
}
{
}
{
}
{
#ifdef IN_RC
/* Update the current CR3. */
#endif
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
return VINF_SUCCESS;
}
{
}
{
}
{
}
{
/** @todo in GC we must load it! */
}
{
/** @todo in GC we must load it! */
}
{
/** @todo in GC we must load it! */
}
{
/** @todo in GC we must load it! */
}
{
/** @todo in GC we must load it! */
}
{
/** @todo in GC we must load it! */
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
if (pcbLimit)
}
{
if (pcbLimit)
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
/**
* Gets the pointer to the internal CPUMCTXCORE structure.
* This is only for reading in order to save a few calls.
*
* @param pVCpu Handle to the virtual cpu.
*/
{
}
/**
* Sets the guest context core registers.
*
* @param pVCpu Handle to the virtual cpu.
* @param pCtxCore The new context core values.
*/
{
/** @todo #1410 requires selectors to be checked. (huh? 1410?) */
*pCtxCoreDst = *pCtxCore;
/* Mask away invalid parts of the cpu context. */
if (!CPUMIsGuestInLongMode(pVCpu))
{
pCtxCoreDst->r8 = 0;
pCtxCoreDst->r9 = 0;
pCtxCoreDst->r10 = 0;
pCtxCoreDst->r11 = 0;
pCtxCoreDst->r12 = 0;
pCtxCoreDst->r13 = 0;
pCtxCoreDst->r14 = 0;
pCtxCoreDst->r15 = 0;
}
}
/**
* Queries the pointer to the internal CPUMCTX structure
*
* @returns The CPUMCTX pointer.
* @param pVCpu Handle to the virtual cpu.
*/
{
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
AssertMsgFailed(("Need to load the hidden bits too!\n"));
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
/**
* Set the guest CR0.
*
* When called in GC, the hyper CR0 may be updated if that is
* required. The caller only has to take special action if AM,
* WP, PG or PE changes.
*
* @returns VINF_SUCCESS (consider it void).
* @param pVCpu Handle to the virtual cpu.
* @param cr0 The new CR0 value.
*/
{
#ifdef IN_RC
/*
* Check if we need to change hypervisor CR0 because
* of math stuff.
*/
{
{
/*
* We haven't saved the host FPU state yet, so TS and MT are both set
* and EM should be reflecting the guest EM (it always does this).
*/
{
AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
HyperCR0 &= ~X86_CR0_EM;
}
# ifdef VBOX_STRICT
else
{
AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
}
# endif
}
else
{
/*
* Already saved the state, so we're just mirroring
* the guest flags.
*/
}
}
#endif /* IN_RC */
/*
* Check for changes causing TLB flushes (for REM).
* The caller is responsible for calling PGM when appropriate.
*/
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
cr4 &= ~X86_CR4_OSFSXR;
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
return VINF_SUCCESS;
}
{
}
/**
* Query an MSR.
*
* The caller is responsible for checking privilege if the call is the result
* of a RDMSR instruction. We'll do the rest.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_CPUM_RAISE_GP_0 on failure (invalid MSR), the caller is
* expected to take the appropriate actions. @a *puValue is set to 0.
* @param pVCpu The virtual CPU to operate on.
* @param idMsr The MSR.
* @param puValue Where to return the value..
*
* @remarks This will always return the right values, even when we're in the
* recompiler.
*/
{
/*
* If we don't indicate MSR support in the CPUID feature bits, indicate
* that a #GP(0) should be raised.
*/
{
*puValue = 0;
return VERR_CPUM_RAISE_GP_0;
}
int rc = VINF_SUCCESS;
switch (idMsr)
{
case MSR_IA32_TSC:
break;
case MSR_IA32_APICBASE:
if (RT_SUCCESS(rc))
rc = VINF_SUCCESS;
else
{
*puValue = 0;
}
break;
case MSR_IA32_CR_PAT:
break;
case MSR_IA32_SYSENTER_CS:
break;
case MSR_IA32_SYSENTER_EIP:
break;
case MSR_IA32_SYSENTER_ESP:
break;
case MSR_K6_EFER:
break;
case MSR_K8_SF_MASK:
break;
case MSR_K6_STAR:
break;
case MSR_K8_LSTAR:
break;
case MSR_K8_CSTAR:
break;
case MSR_K8_FS_BASE:
break;
case MSR_K8_GS_BASE:
break;
case MSR_K8_KERNEL_GS_BASE:
break;
case MSR_K8_TSC_AUX:
break;
case MSR_IA32_PERF_STATUS:
/** @todo could really be not exactly correct, maybe use host's values */
break;
case MSR_IA32_FSB_CLOCK_STS:
/*
* Encoded as:
* 0 - 266
* 1 - 133
* 2 - 200
* 3 - return 166
* 5 - return 100
*/
break;
case MSR_IA32_PLATFORM_INFO:
break;
case MSR_IA32_THERM_STATUS:
/* CPU temperature reltive to TCC, to actually activate, CPUID leaf 6 EAX[0] must be set */
| (20 << 16) /* degrees till TCC */;
break;
case MSR_IA32_MISC_ENABLE:
#if 0
/* Needs to be tested more before enabling. */
#else
*puValue = 0;
#endif
break;
#if 0 /*def IN_RING0 */
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_BIOS_SIGN_ID:
{
/* Available since the P6 family. VT-x implies that this feature is present. */
if (idMsr == MSR_IA32_PLATFORM_ID)
else if (idMsr == MSR_IA32_BIOS_SIGN_ID)
break;
}
/* no break */
#endif
default:
/* In X2APIC specification this range is reserved for APIC control. */
if ( idMsr >= MSR_IA32_APIC_START
&& idMsr < MSR_IA32_APIC_END)
{
if (RT_SUCCESS(rc))
rc = VINF_SUCCESS;
else
{
*puValue = 0;
}
}
else
{
*puValue = 0;
}
break;
}
return rc;
}
/**
* Sets the MSR.
*
* The caller is responsible for checking privilege if the call is the result
* of a WRMSR instruction. We'll do the rest.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_CPUM_RAISE_GP_0 on failure, the caller is expected to take the
* appropriate actions.
*
* @param pVCpu The virtual CPU to operate on.
* @param idMsr The MSR id.
* @param uValue The value to set.
*
* @remarks Everyone changing MSR values, including the recompiler, shall do it
* by calling this method. This makes sure we have current values and
* that we trigger all the right actions when something changes.
*/
{
/*
* If we don't indicate MSR support in the CPUID feature bits, indicate
* that a #GP(0) should be raised.
*/
return VERR_CPUM_RAISE_GP_0;
int rc = VINF_SUCCESS;
switch (idMsr)
{
case MSR_IA32_MISC_ENABLE:
break;
case MSR_IA32_TSC:
break;
case MSR_IA32_APICBASE:
if (rc != VINF_SUCCESS)
break;
case MSR_IA32_CR_PAT:
break;
case MSR_IA32_SYSENTER_CS:
break;
case MSR_IA32_SYSENTER_EIP:
break;
case MSR_IA32_SYSENTER_ESP:
break;
case MSR_K6_EFER:
{
: 0;
/* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
fMask |= MSR_K6_EFER_NXE;
fMask |= MSR_K6_EFER_LME;
fMask |= MSR_K6_EFER_SCE;
/* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if
paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
{
Log(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
return VERR_CPUM_RAISE_GP_0;
}
/* There are a few more: e.g. MSR_K6_EFER_LMSLE */
AssertMsg(!(uValue & ~(MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA /* ignored anyway */ | MSR_K6_EFER_SCE | MSR_K6_EFER_FFXSR)),
("Unexpected value %RX64\n", uValue));
/* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB
if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
{
/// @todo PGMFlushTLB(pVCpu, cr3, true /*fGlobal*/);
/* Notify PGM about NXE changes. */
if ( (uOldEFER & MSR_K6_EFER_NXE)
}
break;
}
case MSR_K8_SF_MASK:
break;
case MSR_K6_STAR:
break;
case MSR_K8_LSTAR:
break;
case MSR_K8_CSTAR:
break;
case MSR_K8_FS_BASE:
break;
case MSR_K8_GS_BASE:
break;
case MSR_K8_KERNEL_GS_BASE:
break;
case MSR_K8_TSC_AUX:
break;
default:
/* In X2APIC specification this range is reserved for APIC control. */
if ( idMsr >= MSR_IA32_APIC_START
&& idMsr < MSR_IA32_APIC_END)
{
if (rc != VINF_SUCCESS)
}
else
{
/* We should actually trigger a #GP here, but don't as that might cause more trouble. */
/** @todo rc = VERR_CPUM_RAISE_GP_0 */
}
break;
}
return rc;
}
{
if (pcbLimit)
}
{
if (pHidden)
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
if (RT_FAILURE(rc))
u64 = 0;
return u64;
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
}
{
switch (iReg)
{
case USE_REG_CR0:
break;
case USE_REG_CR2:
break;
case USE_REG_CR3:
break;
case USE_REG_CR4:
break;
case USE_REG_CR8:
{
if (RT_FAILURE(rc))
{
*pValue = 0;
return rc;
}
break;
}
default:
return VERR_INVALID_PARAMETER;
}
return VINF_SUCCESS;
}
{
}
{
}
{
}
{
}
{
}
{
}
{
/* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
iReg += 2;
return VINF_SUCCESS;
}
{
}
/**
* Gets a CpuId leaf.
*
* @param pVCpu The VMCPU handle.
* @param iLeaf The CPUID leaf to get.
* @param pEax Where to store the EAX value.
* @param pEbx Where to store the EBX value.
* @param pEcx Where to store the ECX value.
* @param pEdx Where to store the EDX value.
*/
VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t iLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
{
else
if ( iLeaf == 1)
{
/* Bits 31-24: Initial APIC ID */
}
if ( iLeaf == 4
&& cCurrentCacheIndex < 3
{
/* For type: 1 - data cache, 2 - i-cache, 3 - unified */
partitions = 1;
/* Those are only to shut up compiler, as they will always
get overwritten, and compiler should be able to figure that out */
switch (cCurrentCacheIndex)
{
case 0:
type = 1;
level = 1;
sharing = 1;
linesize = 64;
associativity = 8;
sets = 64;
break;
case 1:
level = 1;
type = 2;
sharing = 1;
linesize = 64;
associativity = 8;
sets = 64;
break;
default: /* shut up gcc.*/
AssertFailed();
case 2:
level = 2;
type = 3;
linesize = 64;
associativity = 24;
sets = 4096;
break;
}
(level << 5) |
1;
}
Log2(("CPUMGetGuestCpuId: iLeaf=%#010x %RX32 %RX32 %RX32 %RX32\n", iLeaf, *pEax, *pEbx, *pEcx, *pEdx));
}
/**
* Gets a number of standard CPUID leafs.
*
* @returns Number of leafs.
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
{
}
/**
* Gets a number of extended CPUID leafs.
*
* @returns Number of leafs.
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
{
}
/**
* Gets a number of centaur CPUID leafs.
*
* @returns Number of leafs.
* @param pVM The VM handle.
* @remark Intended for PATM.
*/
{
}
/**
* Sets a CPUID feature bit.
*
* @param pVM The VM Handle.
* @param enmFeature The feature to set.
*/
{
switch (enmFeature)
{
/*
* Set the APIC bit in both feature masks.
*/
case CPUMCPUIDFEATURE_APIC:
LogRel(("CPUMSetGuestCpuIdFeature: Enabled APIC\n"));
break;
/*
* Set the x2APIC bit in the standard feature mask.
*/
case CPUMCPUIDFEATURE_X2APIC:
LogRel(("CPUMSetGuestCpuIdFeature: Enabled x2APIC\n"));
break;
/*
* Assumes the caller knows what it's doing! (host must support these)
*/
case CPUMCPUIDFEATURE_SEP:
{
{
AssertMsgFailed(("ERROR: Can't turn on SEP when the host doesn't support it!!\n"));
return;
}
break;
}
/*
* Assumes the caller knows what it's doing! (host must support these)
*/
case CPUMCPUIDFEATURE_SYSCALL:
{
{
#if HC_ARCH_BITS == 32
/* X86_CPUID_AMD_FEATURE_EDX_SEP not set it seems in 32 bits mode.
* Even when the cpu is capable of doing so in 64 bits mode.
*/
#endif
{
return;
}
}
/* Valid for both Intel and AMD CPUs, although only in 64 bits mode for Intel. */
break;
}
/*
* Set the PAE bit in both feature masks.
* Assumes the caller knows what it's doing! (host must support these)
*/
case CPUMCPUIDFEATURE_PAE:
{
{
LogRel(("WARNING: Can't turn on PAE when the host doesn't support it!!\n"));
return;
}
LogRel(("CPUMSetGuestCpuIdFeature: Enabled PAE\n"));
break;
}
/*
* Set the LONG MODE bit in the extended feature mask.
* Assumes the caller knows what it's doing! (host must support these)
*/
{
{
LogRel(("WARNING: Can't turn on LONG MODE when the host doesn't support it!!\n"));
return;
}
/* Valid for both Intel and AMD. */
LogRel(("CPUMSetGuestCpuIdFeature: Enabled LONG MODE\n"));
break;
}
/*
* Set the NXE bit in the extended feature mask.
* Assumes the caller knows what it's doing! (host must support these)
*/
case CPUMCPUIDFEATURE_NXE:
{
{
LogRel(("WARNING: Can't turn on NXE when the host doesn't support it!!\n"));
return;
}
/* Valid for both Intel and AMD. */
LogRel(("CPUMSetGuestCpuIdFeature: Enabled NXE\n"));
break;
}
case CPUMCPUIDFEATURE_LAHF:
{
{
return;
}
break;
}
case CPUMCPUIDFEATURE_PAT:
{
LogRel(("CPUMClearGuestCpuIdFeature: Enabled PAT\n"));
break;
}
case CPUMCPUIDFEATURE_RDTSCP:
{
{
LogRel(("WARNING: Can't turn on RDTSCP when the host doesn't support it!!\n"));
return;
}
/* Valid for AMD only (for now). */
LogRel(("CPUMSetGuestCpuIdFeature: Enabled RDTSCP.\n"));
break;
}
default:
break;
}
{
}
}
/**
* Queries a CPUID feature bit.
*
* @returns boolean for feature presence
* @param pVM The VM Handle.
* @param enmFeature The feature to query.
*/
{
switch (enmFeature)
{
case CPUMCPUIDFEATURE_PAE:
{
break;
}
case CPUMCPUIDFEATURE_NXE:
{
}
case CPUMCPUIDFEATURE_RDTSCP:
{
break;
}
{
break;
}
default:
break;
}
return false;
}
/**
* Clears a CPUID feature bit.
*
* @param pVM The VM Handle.
* @param enmFeature The feature to clear.
*/
{
switch (enmFeature)
{
/*
* Set the APIC bit in both feature masks.
*/
case CPUMCPUIDFEATURE_APIC:
Log(("CPUMSetGuestCpuIdFeature: Disabled APIC\n"));
break;
/*
* Clear the x2APIC bit in the standard feature mask.
*/
case CPUMCPUIDFEATURE_X2APIC:
LogRel(("CPUMSetGuestCpuIdFeature: Disabled x2APIC\n"));
break;
case CPUMCPUIDFEATURE_PAE:
{
LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAE!\n"));
break;
}
case CPUMCPUIDFEATURE_PAT:
{
LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAT!\n"));
break;
}
{
break;
}
case CPUMCPUIDFEATURE_LAHF:
{
break;
}
default:
break;
}
{
}
}
/**
* Gets the host CPU vendor
*
* @returns CPU vendor
* @param pVM The VM handle.
*/
{
}
/**
* Gets the CPU vendor
*
* @returns CPU vendor
* @param pVM The VM handle.
*/
{
}
{
return CPUMRecalcHyperDRx(pVCpu);
}
{
return CPUMRecalcHyperDRx(pVCpu);
}
{
return CPUMRecalcHyperDRx(pVCpu);
}
{
return CPUMRecalcHyperDRx(pVCpu);
}
{
return CPUMRecalcHyperDRx(pVCpu);
}
{
return CPUMRecalcHyperDRx(pVCpu);
}
{
/* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
iReg += 2;
return CPUMRecalcHyperDRx(pVCpu);
}
/**
* Recalculates the hypvervisor DRx register values based on
* current guest registers and DBGF breakpoints.
*
* This is called whenever a guest DRx register is modified and when DBGF
* sets a hardware breakpoint. In guest context this function will reload
* any (hyper) DRx registers which comes out with a different value.
*
* @returns VINF_SUCCESS.
* @param pVCpu The VMCPU handle.
*/
{
/*
* Compare the DR7s first.
*
* We only care about the enabled flags. The GE and LE flags are always
* set and we don't care if the guest doesn't set them. GD is virtualized
* when we dispatch #DB, we never enable it.
*/
#ifdef CPUM_VIRTUALIZE_DRX
#else
const RTGCUINTREG uGstDr7 = 0;
#endif
{
/*
* Ok, something is enabled. Recalc each of the breakpoints.
*/
/* bp 0 */
{
}
{
}
else
/* bp 1 */
{
}
{
}
else
/* bp 2 */
{
}
{
}
else
/* bp 3 */
{
}
{
}
else
/*
* Apply the updates.
*/
#ifdef IN_RC
{
/** @todo save host DBx registers. */
}
#endif
}
else
{
#ifdef IN_RC
{
/** @todo restore host DBx registers. */
}
#endif
}
Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
return VINF_SUCCESS;
}
/**
* Tests if the guest has No-Execute Page Protection Enabled (NXE).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest has the Page Size Extension enabled (PSE).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
/* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
}
/**
* Tests if the guest has the paging enabled (PG).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest has the paging enabled (PG).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest is running in real mode or not.
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest is running in protected or not.
*
* @returns true if in protected mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest is running in paged protected or not.
*
* @returns true if in paged protected mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest is running in long mode or not.
*
* @returns true if in long mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
/**
* Tests if the guest is running in PAE mode or not.
*
* @returns true if in PAE mode, otherwise false.
* @param pVCpu The virtual CPU handle.
*/
{
}
#ifndef IN_RING0
/**
* Updates the EFLAGS while we're in raw-mode.
*
* @param pVCpu The VMCPU handle.
* @param pCtxCore The context core.
* @param eflags The new EFLAGS value.
*/
{
{
return;
}
}
#endif /* !IN_RING0 */
/**
* Gets the EFLAGS while we're in raw-mode.
*
* @returns The eflags.
* @param pVCpu The VMCPU handle.
* @param pCtxCore The context core.
*/
{
#ifdef IN_RING0
#else
#endif
}
/**
* Sets the specified changed flags (CPUM_CHANGED_*).
*
* @param pVCpu The VMCPU handle.
*/
{
}
/**
* Checks if the CPU supports the FXSAVE and FXRSTOR instruction.
* @returns true if supported.
* @returns false if not supported.
* @param pVM The VM handle.
*/
{
}
/**
* Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
* @returns true if used.
* @returns false if not used.
* @param pVM The VM handle.
*/
{
}
/**
* Checks if the host OS uses the SYSCALL / SYSRET instructions.
* @returns true if used.
* @returns false if not used.
* @param pVM The VM handle.
*/
{
}
#ifndef IN_RING3
/**
*
* @returns VBox status code.
* @param pVCpu VMCPU handle
*/
{
}
#endif /* !IN_RING3 */
/**
* @returns true if we did.
* @returns false if not.
* @param pVCpu The VMCPU handle.
*/
{
}
/**
* @param pVCpu The VMCPU handle.
*/
{
}
/**
* Checks if the guest debug state is active
*
* @returns boolean
* @param pVM VM handle.
*/
{
}
/**
* Checks if the hyper debug state is active
*
* @returns boolean
* @param pVM VM handle.
*/
{
}
/**
* Mark the guest's debug state as inactive.
*
* @returns boolean
* @param pVM VM handle.
*/
{
}
/**
* Mark the hypervisor's debug state as inactive.
*
* @returns boolean
* @param pVM VM handle.
*/
{
}
/**
* Checks if the hidden selector registers are valid for the specified CPU.
*
* @returns true if they are.
* @returns false if not.
* @param pVCpu The VM handle.
*/
{
return fRc;
}
/**
* Get the current privilege level of the guest.
*
* @returns cpl
* @param pVM VM Handle.
* @param pRegFrame Trap register frame.
*/
{
{
/*
* The hidden CS.DPL register is always equal to the CPL, it is
* not affected by loading a conforming coding segment.
*
* This only seems to apply to AMD-V; in the VT-x case we *do* need to look
* at SS. (ACP2 regression during install after a far call to ring 2)
*/
else
cpl = 0; /* CPL set to 3 for VT-x real-mode emulation. */
}
{
{
/*
* The SS RPL is always equal to the CPL, while the CS RPL
* isn't necessarily equal if the segment is conforming.
* See section 4.11.1 in the AMD manual.
*/
#ifndef IN_RING0
if (cpl == 1)
cpl = 0;
#endif
}
else
cpl = 3;
}
else
cpl = 0; /* real mode; cpl is zero */
return cpl;
}
/**
* Gets the current guest CPU mode.
*
* If paging mode is what you need, check out PGMGetGuestMode().
*
* @returns The CPU mode.
* @param pVCpu The VMCPU handle.
*/
{
else
return enmMode;
}