TM.cpp revision c98fb3e16fcd571a790eab772c0c66173d225205
/* $Id$ */
/** @file
* TM - Timeout Manager.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_tm TM - The Time Manager
*
* The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
* device and drivers.
*
*
* @section sec_tm_clocks Clocks
*
* There are currently 4 clocks:
* - Virtual (guest).
* - Synchronous virtual (guest).
* - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
* function of the virtual clock.
* - Real (host). The only current use is display updates for not real
* good reason...
*
* The interesting clocks are two first ones, the virtual and synchronous virtual
* clock. The synchronous virtual clock is tied to the virtual clock except that
* it will take into account timer delivery lag caused by host scheduling. It will
* normally never advance beyond the header timer, and when lagging too far behind
* it will gradually speed up to catch up with the virtual clock.
*
* The CPU tick (TSC) is normally virtualized as a function of the virtual time,
* where the frequency defaults to the host cpu frequency (as we measure it). It
* can also use the host TSC as source and either present it with an offset or
* unmodified. It is of course possible to configure the TSC frequency and mode
* of operation.
*
* @subsection subsec_tm_timesync Guest Time Sync / UTC time
*
* Guest time syncing is primarily taken care of by the VMM device. The principle
* is very simple, the guest additions periodically asks the VMM device what the
* current UTC time is and makes adjustments accordingly. Now, because the
* synchronous virtual clock might be doing catchups and we would therefore
* deliver more than the normal rate for a little while, some adjusting of the
* UTC time is required before passing it on to the guest. This is why TM provides
* an API for query the current UTC time.
*
*
* @section sec_tm_timers Timers
*
* The timers can use any of the TM clocks described in the previous section. Each
* clock has its own scheduling facility, or timer queue if you like. There are
* a few factors which makes it a bit complex. First there is the usual R0 vs R3
* vs. GC thing. Then there is multiple threads, and then there is the timer thread
* that periodically checks whether any timers has expired without EMT noticing. On
* the API level, all but the create and save APIs must be mulithreaded. EMT will
* always run the timers.
*
* The design is using a doubly linked list of active timers which is ordered
* by expire date. This list is only modified by the EMT thread. Updates to the
* list are are batched in a singly linked list, which is then process by the EMT
* thread at the first opportunity (immediately, next time EMT modifies a timer
* on that clock, or next timer timeout). Both lists are offset based and all
* the elements therefore allocated from the hyper heap.
*
* For figuring out when there is need to schedule and run timers TM will:
* - Poll whenever somebody queries the virtual clock.
* - Poll the virtual clocks from the EM and REM loops.
* - Poll the virtual clocks from trap exit path.
* - Poll the virtual clocks and calculate first timeout from the halt loop.
* - Employ a thread which periodically (100Hz) polls all the timer queues.
*
*
* @section sec_tm_timer Logging
*
* Level 2: Logs a most of the timer state transitions and queue servicing.
* Level 3: Logs a few oddments.
* Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_TM
#include <VBox/tm.h>
#include <VBox/vmm.h>
#include <VBox/mm.h>
#include <VBox/ssm.h>
#include <VBox/dbgf.h>
#include <VBox/rem.h>
#include "TMInternal.h"
#include <VBox/vm.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include <iprt/timer.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
#include <iprt/env.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The current saved state version.*/
#define TM_SAVED_STATE_VERSION 3
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static bool tmR3HasFixedTSC(void);
static uint64_t tmR3CalibrateTSC(void);
static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser);
static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
static void tmR3TimerQueueRunVirtualSync(PVM pVM);
static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
/**
* Internal function for getting the clock time.
*
* @returns clock time.
* @param pVM The VM handle.
* @param enmClock The clock.
*/
DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
{
switch (enmClock)
{
case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
case TMCLOCK_REAL: return TMRealGet(pVM);
case TMCLOCK_TSC: return TMCpuTickGet(pVM);
default:
AssertMsgFailed(("enmClock=%d\n", enmClock));
return ~(uint64_t)0;
}
}
/**
* Initializes the TM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
TMR3DECL(int) TMR3Init(PVM pVM)
{
LogFlow(("TMR3Init:\n"));
/*
* Assert alignment and sizes.
*/
AssertRelease(!(RT_OFFSETOF(VM, tm.s) & 31));
AssertRelease(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
/*
* Init the structure.
*/
void *pv;
int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
AssertRCReturn(rc, rc);
pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
/*
* We directly use the GIP to calculate the virtual time. We map the
* the GIP into the guest context so we can do this calculation there
* as well and save costly world switches.
*/
pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
RTHCPHYS HCPhysGIP;
rc = SUPGipGetPhys(&HCPhysGIP);
AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, HCPhysGIP, PAGE_SIZE, "GIP", &pVM->tm.s.pvGIPGC);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("Failed to map GIP into GC, rc=%Vrc!\n", rc));
return rc;
}
LogFlow(("TMR3Init: HCPhysGIP=%RHp at %VGv\n", HCPhysGIP, pVM->tm.s.pvGIPGC));
MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
/* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
&& g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)\n"),
g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
/*
* Get our CFGM node, create it if necessary.
*/
PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
if (!pCfgHandle)
{
rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
AssertRCReturn(rc, rc);
}
/*
* Determin the TSC configuration and frequency.
*/
/* mode */
rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc);
/* source */
rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCTicking);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc);
if (!pVM->tm.s.fTSCUseRealTSC)
pVM->tm.s.fTSCVirtualized = true;
/* TSC reliability */
rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
if (!pVM->tm.s.fTSCUseRealTSC)
pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC();
else
pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
}
/* frequency */
rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
if ( !pVM->tm.s.fTSCUseRealTSC
&& pVM->tm.s.cTSCTicksPerSecond >= _4G)
{
pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
}
}
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\". (%Vrc)"), rc);
else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
|| pVM->tm.s.cTSCTicksPerSecond >= _4G)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1!"),
pVM->tm.s.cTSCTicksPerSecond);
else
{
pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
pVM->tm.s.fTSCVirtualized = true;
}
/* setup and report */
if (pVM->tm.s.fTSCVirtualized)
CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
else
CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool fMaybeUseOffsettedHostTSC=%RTbool\n",
pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized,
pVM->tm.s.fTSCUseRealTSC, pVM->tm.s.fMaybeUseOffsettedHostTSC));
/*
* Configure the timer synchronous virtual time.
*/
rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\". (%Vrc)"), rc);
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\". (%Vrc)"), rc);
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\". (%Vrc)"), rc);
#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
do \
{ \
uint64_t u64; \
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
u64 = UINT64_C(DefStart); \
else if (VBOX_FAILURE(rc)) \
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\". (%Vrc)"), rc); \
if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
|| u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %RU64"), u64); \
pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
else if (VBOX_FAILURE(rc)) \
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\". (%Vrc)"), rc); \
} while (0)
/* This needs more tuning. Not sure if we really need so many period and be so gentle. */
TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
#undef TM_CFG_PERIOD
/*
* Configure real world time (UTC).
*/
rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.offUTC = 0; /* ns */
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\". (%Vrc)"), rc);
/*
* Setup the warp drive.
*/
rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\". (%Vrc)"), rc);
else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
|| pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000!"),
pVM->tm.s.u32VirtualWarpDrivePercentage);
pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
if (pVM->tm.s.fVirtualWarpDrive)
LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
/*
* Start the timer (guard against REM not yielding).
*/
uint32_t u32Millies;
rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
u32Millies = 10;
else if (VBOX_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to query uint32_t value \"TimerMillies\", rc=%Vrc.\n"), rc);
rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Vrc.\n", u32Millies, rc));
return rc;
}
Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
pVM->tm.s.u32TimerMillies = u32Millies;
/*
* Register saved state.
*/
rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
NULL, tmR3Save, NULL,
NULL, tmR3Load, NULL);
if (VBOX_FAILURE(rc))
return rc;
/*
* Register statistics.
*/
STAM_REL_REG_USED(pVM, (void *)&pVM->tm.s.c1nsVirtualRawSteps, STAMTYPE_U32, "/TM/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations)");
STAM_REL_REG_USED(pVM, (void *)&pVM->tm.s.cVirtualRawBadRawPrev, STAMTYPE_U32, "/TM/BadPrevTime", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
STAM_REL_REG( pVM, (void *)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
STAM_REL_REG_USED(pVM, (void *)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
#ifdef VBOX_WITH_STATISTICS
STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
STAM_REG(pVM, &pVM->tm.s.StatDoQueuesSchedule, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Schedule",STAMUNIT_TICKS_PER_CALL, "The scheduling part.");
STAM_REG(pVM, &pVM->tm.s.StatDoQueuesRun, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Run", STAMUNIT_TICKS_PER_CALL, "The run part.");
STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/PollAlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/PollHitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/PollHitsVirtualSync",STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/PollMiss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedR0, STAMTYPE_COUNTER, "/TM/PostponedR0", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedGC, STAMTYPE_COUNTER, "/TM/PostponedGC", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in GC.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneGC, STAMTYPE_PROFILE, "/TM/ScheduleOneGC", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR0, STAMTYPE_PROFILE, "/TM/ScheduleOneR0", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetGC, STAMTYPE_PROFILE, "/TM/TimerSetGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in GC.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetR0, STAMTYPE_PROFILE, "/TM/TimerSetR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSetR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopGC, STAMTYPE_PROFILE, "/TM/TimerStopGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in GC.");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopR0, STAMTYPE_PROFILE, "/TM/TimerStopR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0.");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSync, STAMTYPE_COUNTER, "/TM/VirtualGetSync", STAMUNIT_OCCURENCES, "The number of times TMTimerGetSync was called when the clock was running.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSyncSetFF,STAMTYPE_COUNTER, "/TM/VirtualGetSyncSetFF",STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGetSync.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF,STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting,STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
{
STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
}
#endif /* VBOX_WITH_STATISTICS */
/*
* Register info handlers.
*/
DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
return VINF_SUCCESS;
}
/**
* Checks if the host CPU has a fixed TSC frequency.
*
* @returns true if it has, false if it hasn't.
*
* @remark This test doesn't bother with very old CPUs that doesn't do power
* management or any other stuff that might influence the TSC rate.
* This isn't currently relevant.
*/
static bool tmR3HasFixedTSC(void)
{
if (ASMHasCpuId())
{
uint32_t uEAX, uEBX, uECX, uEDX;
ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
if ( uEAX >= 1
&& uEBX == X86_CPUID_VENDOR_AMD_EBX
&& uECX == X86_CPUID_VENDOR_AMD_ECX
&& uEDX == X86_CPUID_VENDOR_AMD_EDX)
{
/*
* AuthenticAMD - Check for APM support and that TscInvariant is set.
*
* This test isn't correct with respect to fixed/non-fixed TSC and
* older models, but this isn't relevant since the result is currently
* only used for making a descision on AMD-V models.
*/
ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
if (uEAX >= 0x80000007)
{
ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
if (uEDX & BIT(8) /* TscInvariant */)
return true;
}
}
else if ( uEAX >= 1
&& uEBX == X86_CPUID_VENDOR_INTEL_EBX
&& uECX == X86_CPUID_VENDOR_INTEL_ECX
&& uEDX == X86_CPUID_VENDOR_INTEL_EDX)
{
/*
* GenuineIntel - Check the model number.
*
* This test is lacking in the same way and for the same reasons
* as the AMD test above.
*/
ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
unsigned uModel = (uEAX >> 4) & 0x0f;
unsigned uFamily = (uEAX >> 8) & 0x0f;
if (uFamily == 0x0f)
uFamily += (uEAX >> 20) & 0xff;
if (uFamily >= 0x06)
uModel += ((uEAX >> 16) & 0x0f) << 4;
if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
|| (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
return true;
}
}
return false;
}
/**
* Calibrate the CPU tick.
*
* @returns Number of ticks per second.
*/
static uint64_t tmR3CalibrateTSC(void)
{
/*
* Use GIP when available present.
*/
uint64_t u64Hz;
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
if ( pGip
&& pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
{
unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
else
{
if (tmR3HasFixedTSC())
/* Sleep a bit to get a more reliable CpuHz value. */
RTThreadSleep(32);
else
{
/* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
const uint64_t u64 = RTTimeMilliTS();
while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
/* nothing */;
}
pGip = g_pSUPGlobalInfoPage;
if ( pGip
&& pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
&& (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
&& u64Hz != ~(uint64_t)0)
return u64Hz;
}
}
/* call this once first to make sure it's initialized. */
RTTimeNanoTS();
/*
* Yield the CPU to increase our chances of getting
* a correct value.
*/
RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
uint64_t au64Samples[5];
unsigned i;
for (i = 0; i < ELEMENTS(au64Samples); i++)
{
unsigned cMillies;
int cTries = 5;
uint64_t u64Start = ASMReadTSC();
uint64_t u64End;
uint64_t StartTS = RTTimeNanoTS();
uint64_t EndTS;
do
{
RTThreadSleep(s_auSleep[i]);
u64End = ASMReadTSC();
EndTS = RTTimeNanoTS();
cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000);
} while ( cMillies == 0 /* the sleep may be interrupted... */
|| (cMillies < 20 && --cTries > 0));
uint64_t u64Diff = u64End - u64Start;
au64Samples[i] = (u64Diff * 1000) / cMillies;
AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
}
/*
* Discard the highest and lowest results and calculate the average.
*/
unsigned iHigh = 0;
unsigned iLow = 0;
for (i = 1; i < ELEMENTS(au64Samples); i++)
{
if (au64Samples[i] < au64Samples[iLow])
iLow = i;
if (au64Samples[i] > au64Samples[iHigh])
iHigh = i;
}
au64Samples[iLow] = 0;
au64Samples[iHigh] = 0;
u64Hz = au64Samples[0];
for (i = 1; i < ELEMENTS(au64Samples); i++)
u64Hz += au64Samples[i];
u64Hz /= ELEMENTS(au64Samples) - 2;
return u64Hz;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* @param pVM The VM.
* @param offDelta Relocation delta relative to old location.
*/
TMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
{
LogFlow(("TMR3Relocate\n"));
pVM->tm.s.pvGIPGC = MMHyperR3ToGC(pVM, pVM->tm.s.pvGIPR3);
pVM->tm.s.paTimerQueuesGC = MMHyperR3ToGC(pVM, pVM->tm.s.paTimerQueuesR3);
pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
/*
* Iterate the timers updating the pVMGC pointers.
*/
for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
{
pTimer->pVMGC = pVM->pVMGC;
pTimer->pVMR0 = (PVMR0)pVM->pVMHC; /// @todo pTimer->pVMR0 = pVM->pVMR0;
}
}
/**
* Terminates the TM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
TMR3DECL(int) TMR3Term(PVM pVM)
{
AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
if (pVM->tm.s.pTimer)
{
int rc = RTTimerDestroy(pVM->tm.s.pTimer);
AssertRC(rc);
pVM->tm.s.pTimer = NULL;
}
return VINF_SUCCESS;
}
/**
* The VM is being reset.
*
* For the TM component this means that a rescheduling is preformed,
* the FF is cleared and but without running the queues. We'll have to
* check if this makes sense or not, but it seems like a good idea now....
*
* @param pVM VM handle.
*/
TMR3DECL(void) TMR3Reset(PVM pVM)
{
LogFlow(("TMR3Reset:\n"));
VM_ASSERT_EMT(pVM);
/*
* Abort any pending catch up.
* This isn't perfect,
*/
if (pVM->tm.s.fVirtualSyncCatchUp)
{
const uint64_t offVirtualNow = TMVirtualGetEx(pVM, false /* don't check timers */);
const uint64_t offVirtualSyncNow = TMVirtualSyncGetEx(pVM, false /* don't check timers */);
if (pVM->tm.s.fVirtualSyncCatchUp)
{
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
Assert(offOld <= offNew);
ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
LogRel(("TM: Aborting catch-up attempt on reset with a %RU64 ns lag on reset; new total: %RU64 ns\n", offNew - offOld, offNew));
}
}
/*
* Process the queues.
*/
for (int i = 0; i < TMCLOCK_MAX; i++)
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
#endif
VM_FF_CLEAR(pVM, VM_FF_TIMER);
}
/**
* Resolve a builtin GC symbol.
* Called by PDM when loading or relocating GC modules.
*
* @returns VBox status
* @param pVM VM Handle.
* @param pszSymbol Symbol to resolv
* @param pGCPtrValue Where to store the symbol value.
* @remark This has to work before TMR3Relocate() is called.
*/
TMR3DECL(int) TMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
{
if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
*pGCPtrValue = MMHyperHC2GC(pVM, &pVM->tm.s.pvGIPGC);
//else if (..)
else
return VERR_SYMBOL_NOT_FOUND;
return VINF_SUCCESS;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("tmR3Save:\n"));
Assert(!pVM->tm.s.fTSCTicking);
Assert(!pVM->tm.s.fVirtualTicking);
Assert(!pVM->tm.s.fVirtualSyncTicking);
/*
* Save the virtual clocks.
*/
/* the virtual clock. */
SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
/* the virtual timer synchronous clock. */
SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
/* real time clock */
SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
/* the cpu tick clock. */
SSMR3PutU64(pSSM, TMCpuTickGet(pVM));
return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
LogFlow(("tmR3Load:\n"));
Assert(!pVM->tm.s.fTSCTicking);
Assert(!pVM->tm.s.fVirtualTicking);
Assert(!pVM->tm.s.fVirtualSyncTicking);
/*
* Validate version.
*/
if (u32Version != TM_SAVED_STATE_VERSION)
{
Log(("tmR3Load: Invalid version u32Version=%d!\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Load the virtual clock.
*/
pVM->tm.s.fVirtualTicking = false;
/* the virtual clock. */
uint64_t u64Hz;
int rc = SSMR3GetU64(pSSM, &u64Hz);
if (VBOX_FAILURE(rc))
return rc;
if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
{
AssertMsgFailed(("The virtual clock frequency differs! Saved: %RU64 Binary: %RU64\n",
u64Hz, TMCLOCK_FREQ_VIRTUAL));
return VERR_SSM_VIRTUAL_CLOCK_HZ;
}
SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
pVM->tm.s.u64VirtualOffset = 0;
/* the virtual timer synchronous clock. */
pVM->tm.s.fVirtualSyncTicking = false;
uint64_t u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.u64VirtualSync = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.offVirtualSync = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.offVirtualSyncGivenUp = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
bool f;
SSMR3GetBool(pSSM, &f);
pVM->tm.s.fVirtualSyncCatchUp = f;
/* the real clock */
rc = SSMR3GetU64(pSSM, &u64Hz);
if (VBOX_FAILURE(rc))
return rc;
if (u64Hz != TMCLOCK_FREQ_REAL)
{
AssertMsgFailed(("The real clock frequency differs! Saved: %RU64 Binary: %RU64\n",
u64Hz, TMCLOCK_FREQ_REAL));
return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
}
/* the cpu tick clock. */
pVM->tm.s.fTSCTicking = false;
SSMR3GetU64(pSSM, &pVM->tm.s.u64TSC);
rc = SSMR3GetU64(pSSM, &u64Hz);
if (VBOX_FAILURE(rc))
return rc;
if (pVM->tm.s.fTSCUseRealTSC)
pVM->tm.s.u64TSCOffset = 0; /** @todo TSC restore stuff and HWACC. */
else
pVM->tm.s.cTSCTicksPerSecond = u64Hz;
LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
/*
* Make sure timers get rescheduled immediately.
*/
VM_FF_SET(pVM, VM_FF_TIMER);
return VINF_SUCCESS;
}
/**
* Internal TMR3TimerCreate worker.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param enmClock The timer clock.
* @param pszDesc The timer description.
* @param ppTimer Where to store the timer pointer on success.
*/
static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
{
VM_ASSERT_EMT(pVM);
/*
* Allocate the timer.
*/
PTMTIMERHC pTimer = NULL;
if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
{
pTimer = pVM->tm.s.pFree;
pVM->tm.s.pFree = pTimer->pBigNext;
Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
}
if (!pTimer)
{
int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
if (VBOX_FAILURE(rc))
return rc;
Log3(("TM: Allocated new timer %p\n", pTimer));
}
/*
* Initialize it.
*/
pTimer->u64Expire = 0;
pTimer->enmClock = enmClock;
pTimer->pVMR3 = pVM;
pTimer->pVMR0 = pVM->pVMR0;
pTimer->pVMGC = pVM->pVMGC;
pTimer->enmState = TMTIMERSTATE_STOPPED;
pTimer->offScheduleNext = 0;
pTimer->offNext = 0;
pTimer->offPrev = 0;
pTimer->pszDesc = pszDesc;
/* insert into the list of created timers. */
pTimer->pBigPrev = NULL;
pTimer->pBigNext = pVM->tm.s.pCreated;
pVM->tm.s.pCreated = pTimer;
if (pTimer->pBigNext)
pTimer->pBigNext->pBigPrev = pTimer;
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
#endif
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/**
* Creates a device timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param pDevIns Device instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
TMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, const char *pszDesc, PPTMTIMERHC ppTimer)
{
/*
* Allocate and init stuff.
*/
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
if (VBOX_SUCCESS(rc))
{
(*ppTimer)->enmType = TMTIMERTYPE_DEV;
(*ppTimer)->u.Dev.pfnTimer = pfnCallback;
(*ppTimer)->u.Dev.pDevIns = pDevIns;
Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates a driver timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param pDrvIns Driver instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
TMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, const char *pszDesc, PPTMTIMERHC ppTimer)
{
/*
* Allocate and init stuff.
*/
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
if (VBOX_SUCCESS(rc))
{
(*ppTimer)->enmType = TMTIMERTYPE_DRV;
(*ppTimer)->u.Drv.pfnTimer = pfnCallback;
(*ppTimer)->u.Drv.pDrvIns = pDrvIns;
Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates an internal timer.
*
* @returns VBox status.
* @param pVM The VM to create the timer in.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser User argument to be passed to the callback.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
* @param ppTimer Where to store the timer on success.
*/
TMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERHC ppTimer)
{
/*
* Allocate and init stuff.
*/
PTMTIMER pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
if (VBOX_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_INTERNAL;
pTimer->u.Internal.pfnTimer = pfnCallback;
pTimer->u.Internal.pvUser = pvUser;
*ppTimer = pTimer;
Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
}
return rc;
}
/**
* Creates an external timer.
*
* @returns Timer handle on success.
* @returns NULL on failure.
* @param pVM The VM to create the timer in.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser User argument.
* @param pszDesc Pointer to description string which must stay around
* until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
*/
TMR3DECL(PTMTIMERHC) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
{
/*
* Allocate and init stuff.
*/
PTMTIMERHC pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
if (VBOX_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_EXTERNAL;
pTimer->u.External.pfnTimer = pfnCallback;
pTimer->u.External.pvUser = pvUser;
Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
return pTimer;
}
return NULL;
}
/**
* Destroy all timers owned by a device.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pDevIns Device which timers should be destroyed.
*/
TMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
{
LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
if (!pDevIns)
return VERR_INVALID_PARAMETER;
PTMTIMER pCur = pVM->tm.s.pCreated;
while (pCur)
{
PTMTIMER pDestroy = pCur;
pCur = pDestroy->pBigNext;
if ( pDestroy->enmType == TMTIMERTYPE_DEV
&& pDestroy->u.Dev.pDevIns == pDevIns)
{
int rc = TMTimerDestroy(pDestroy);
AssertRC(rc);
}
}
LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Destroy all timers owned by a driver.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pDrvIns Driver which timers should be destroyed.
*/
TMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
{
LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
if (!pDrvIns)
return VERR_INVALID_PARAMETER;
PTMTIMER pCur = pVM->tm.s.pCreated;
while (pCur)
{
PTMTIMER pDestroy = pCur;
pCur = pDestroy->pBigNext;
if ( pDestroy->enmType == TMTIMERTYPE_DRV
&& pDestroy->u.Drv.pDrvIns == pDrvIns)
{
int rc = TMTimerDestroy(pDestroy);
AssertRC(rc);
}
}
LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Checks if the sync queue has one or more expired timers.
*
* @returns true / false.
*
* @param pVM The VM handle.
* @param enmClock The queue.
*/
DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
{
const uint64_t u64Expire = pVM->tm.s.CTXALLSUFF(paTimerQueues)[enmClock].u64Expire;
return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
}
/**
* Checks for expired timers in all the queues.
*
* @returns true / false.
* @param pVM The VM handle.
*/
DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
{
/*
* Combine the time calculation for the first two since we're not on EMT
* TMVirtualSyncGet only permits EMT.
*/
uint64_t u64Now = TMVirtualGet(pVM);
if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
return true;
u64Now = pVM->tm.s.fVirtualSyncTicking
? u64Now - pVM->tm.s.offVirtualSync
: pVM->tm.s.u64VirtualSync;
if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
return true;
/*
* The remaining timers.
*/
if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
return true;
if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
return true;
return false;
}
/**
* Schedulation timer callback.
*
* @param pTimer Timer handle.
* @param pvUser VM handle.
* @thread Timer thread.
*
* @remark We cannot do the scheduling and queues running from a timer handler
* since it's not executing in EMT, and even if it was it would be async
* and we wouldn't know the state of the affairs.
* So, we'll just raise the timer FF and force any REM execution to exit.
*/
static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser)
{
PVM pVM = (PVM)pvUser;
AssertCompile(TMCLOCK_MAX == 4);
#ifdef DEBUG_Sander /* very annoying, keep it private. */
if (VM_FF_ISSET(pVM, VM_FF_TIMER))
Log(("tmR3TimerCallback: timer event still pending!!\n"));
#endif
if ( !VM_FF_ISSET(pVM, VM_FF_TIMER)
&& ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule
|| pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
|| pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
|| pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
|| tmR3AnyExpiredTimers(pVM)
)
&& !VM_FF_ISSET(pVM, VM_FF_TIMER)
)
{
VM_FF_SET(pVM, VM_FF_TIMER);
REMR3NotifyTimerPending(pVM);
VMR3NotifyFF(pVM, true);
STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
}
}
/**
* Schedules and runs any pending timers.
*
* This is normally called from a forced action handler in EMT.
*
* @param pVM The VM to run the timers for.
*/
TMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
{
STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
Log2(("TMR3TimerQueuesDo:\n"));
/*
* Process the queues.
*/
AssertCompile(TMCLOCK_MAX == 4);
/* TMCLOCK_VIRTUAL_SYNC */
STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesSchedule, s1);
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s1);
STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesRun, r1);
tmR3TimerQueueRunVirtualSync(pVM);
STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r1);
/* TMCLOCK_VIRTUAL */
STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s1);
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s2);
STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r1);
tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r2);
#if 0 /** @todo if ever used, remove this and fix the stam prefixes on TMCLOCK_REAL below. */
/* TMCLOCK_TSC */
STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2);
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]);
STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s3);
STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2);
tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]);
STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r3);
#endif
/* TMCLOCK_REAL */
STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2);
tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesSchedule, s3);
STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2);
tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesRun, r3);
/* done. */
VM_FF_CLEAR(pVM, VM_FF_TIMER);
#ifdef VBOX_STRICT
/* check that we didn't screwup. */
tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
#endif
Log2(("TMR3TimerQueuesDo: returns void\n"));
STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
}
/**
* Schedules and runs any pending times in the specified queue.
*
* This is normally called from a forced action handler in EMT.
*
* @param pVM The VM to run the timers for.
* @param pQueue The queue to run.
*/
static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
{
VM_ASSERT_EMT(pVM);
/*
* Run timers.
*
* We check the clock once and run all timers which are ACTIVE
* and have an expire time less or equal to the time we read.
*
* N.B. A generic unlink must be applied since other threads
* are allowed to mess with any active timer at any time.
* However, we only allow EMT to handle EXPIRED_PENDING
* timers, thus enabling the timer handler function to
* arm the timer again.
*/
PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
if (!pNext)
return;
const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
while (pNext && pNext->u64Expire <= u64Now)
{
PTMTIMER pTimer = pNext;
pNext = TMTIMER_GET_NEXT(pTimer);
Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
if (fRc)
{
Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
/* unlink */
const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
if (pPrev)
TMTIMER_SET_NEXT(pPrev, pNext);
else
{
TMTIMER_SET_HEAD(pQueue, pNext);
pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
}
if (pNext)
TMTIMER_SET_PREV(pNext, pPrev);
pTimer->offNext = 0;
pTimer->offPrev = 0;
/* fire */
switch (pTimer->enmType)
{
case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
default:
AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
break;
}
/* change the state if it wasn't changed already in the handler. */
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
}
} /* run loop */
}
/**
* Schedules and runs any pending times in the timer queue for the
* synchronous virtual clock.
*
* This scheduling is a bit different from the other queues as it need
* to implement the special requirements of the timer synchronous virtual
* clock, thus this 2nd queue run funcion.
*
* @param pVM The VM to run the timers for.
*/
static void tmR3TimerQueueRunVirtualSync(PVM pVM)
{
PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
VM_ASSERT_EMT(pVM);
/*
* Any timers?
*/
PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
if (RT_UNLIKELY(!pNext))
{
Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.fVirtualTicking);
return;
}
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
/*
* Calculate the time frame for which we will dispatch timers.
*
* We use a time frame ranging from the current sync time (which is most likely the
* same as the head timer) and some configurable period (100000ns) up towards the
* current virtual time. This period might also need to be restricted by the catch-up
* rate so frequent calls to this function won't accelerate the time too much, however
* this will be implemented at a later point if neccessary.
*
* Without this frame we would 1) having to run timers much more frequently
* and 2) lag behind at a steady rate.
*/
const uint64_t u64VirtualNow = TMVirtualGetEx(pVM, false /* don't check timers */);
uint64_t u64Now;
if (!pVM->tm.s.fVirtualSyncTicking)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
u64Now = pVM->tm.s.u64VirtualSync;
Assert(u64Now <= pNext->u64Expire);
}
else
{
/* Calc 'now'. (update order doesn't really matter here) */
uint64_t off = pVM->tm.s.offVirtualSync;
if (pVM->tm.s.fVirtualSyncCatchUp)
{
uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
if (RT_LIKELY(!(u64Delta >> 32)))
{
uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
{
off -= u64Sub;
Log4(("TM: %RU64/%RU64: sub %RU64 (run)\n", u64VirtualNow - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
}
else
{
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
off = pVM->tm.s.offVirtualSyncGivenUp;
Log4(("TM: %RU64/0: caught up (run)\n", u64VirtualNow));
}
}
ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, off);
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow;
}
u64Now = u64VirtualNow - off;
/* Check if stopped by expired timer. */
if (u64Now >= pNext->u64Expire)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
u64Now = pNext->u64Expire;
ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, u64Now);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, false);
Log4(("TM: %RU64/%RU64: exp tmr (run)\n", u64Now, u64VirtualNow - u64Now - pVM->tm.s.offVirtualSyncGivenUp));
}
}
/* calc end of frame. */
uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
if (u64Max > u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp)
u64Max = u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp;
/* assert sanity */
Assert(u64Now <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
Assert(u64Max <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
Assert(u64Now <= u64Max);
/*
* Process the expired timers moving the clock along as we progress.
*/
#ifdef VBOX_STRICT
uint64_t u64Prev = u64Now; NOREF(u64Prev);
#endif
while (pNext && pNext->u64Expire <= u64Max)
{
PTMTIMER pTimer = pNext;
pNext = TMTIMER_GET_NEXT(pTimer);
Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
if (fRc)
{
/* unlink */
const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
if (pPrev)
TMTIMER_SET_NEXT(pPrev, pNext);
else
{
TMTIMER_SET_HEAD(pQueue, pNext);
pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
}
if (pNext)
TMTIMER_SET_PREV(pNext, pPrev);
pTimer->offNext = 0;
pTimer->offPrev = 0;
/* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
#ifdef VBOX_STRICT
AssertMsg(pTimer->u64Expire >= u64Prev, ("%RU64 < %RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
u64Prev = pTimer->u64Expire;
#endif
ASMAtomicXchgSize(&pVM->tm.s.fVirtualSyncTicking, false);
ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
/* fire */
switch (pTimer->enmType)
{
case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
default:
AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
break;
}
/* change the state if it wasn't changed already in the handler. */
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
}
} /* run loop */
/*
* Restart the clock if it was stopped to serve any timers,
* and start/adjust catch-up if necessary.
*/
if ( !pVM->tm.s.fVirtualSyncTicking
&& pVM->tm.s.fVirtualTicking)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
/* calc the slack we've handed out. */
const uint64_t u64VirtualNow2 = TMVirtualGetEx(pVM, false /* don't check timers */);
Assert(u64VirtualNow2 >= u64VirtualNow);
AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%RU64 < %RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
STAM_STATS({
if (offSlack)
{
PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
p->cPeriods++;
p->cTicks += offSlack;
if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
}
});
/* Let the time run a little bit while we were busy running timers(?). */
uint64_t u64Elapsed;
#define MAX_ELAPSED 30000 /* ns */
if (offSlack > MAX_ELAPSED)
u64Elapsed = 0;
else
{
u64Elapsed = u64VirtualNow2 - u64VirtualNow;
if (u64Elapsed > MAX_ELAPSED)
u64Elapsed = MAX_ELAPSED;
u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
}
#undef MAX_ELAPSED
/* Calc the current offset. */
uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
Assert(!(offNew & RT_BIT_64(63)));
uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
Assert(!(offLag & RT_BIT_64(63)));
/*
* Deal with starting, adjusting and stopping catchup.
*/
if (pVM->tm.s.fVirtualSyncCatchUp)
{
if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
{
/* stop */
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %RU64/%RU64: caught up\n", u64VirtualNow2 - offNew, offLag));
}
else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
{
/* adjust */
unsigned i = 0;
while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
&& offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
i++;
if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
{
STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
Log4(("TM: %RU64/%RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
}
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
}
else
{
/* give up */
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %RU64/%RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
LogRel(("TM: Giving up catch-up attempt at a %RU64 ns lag; new total: %RU64 ns\n", offLag, offNew));
}
}
else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
{
if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
{
/* start */
STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
unsigned i = 0;
while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
&& offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
i++;
STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
Log4(("TM: %RU64/%RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
}
else
{
/* don't bother */
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
Log4(("TM: %RU64/%RU64: give up\n", u64VirtualNow2 - offNew, offLag));
LogRel(("TM: Not bothering to attempt catching up a %RU64 ns lag; new total: %RU64\n", offLag, offNew));
}
}
/*
* Update the offset and restart the clock.
*/
Assert(!(offNew & RT_BIT_64(63)));
ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, offNew);
ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, true);
}
}
/**
* Saves the state of a timer to a saved state.
*
* @returns VBox status.
* @param pTimer Timer to save.
* @param pSSM Save State Manager handle.
*/
TMR3DECL(int) TMR3TimerSave(PTMTIMERHC pTimer, PSSMHANDLE pSSM)
{
LogFlow(("TMR3TimerSave: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
switch (pTimer->enmState)
{
case TMTIMERSTATE_STOPPED:
case TMTIMERSTATE_PENDING_STOP:
case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
return SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_STOP);
case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
if (!RTThreadYield())
RTThreadSleep(1);
/* fall thru */
case TMTIMERSTATE_ACTIVE:
case TMTIMERSTATE_PENDING_SCHEDULE:
case TMTIMERSTATE_PENDING_RESCHEDULE:
SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_SCHEDULE);
return SSMR3PutU64(pSSM, pTimer->u64Expire);
case TMTIMERSTATE_EXPIRED:
case TMTIMERSTATE_PENDING_DESTROY:
case TMTIMERSTATE_PENDING_STOP_DESTROY:
case TMTIMERSTATE_FREE:
AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
}
AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
}
/**
* Loads the state of a timer from a saved state.
*
* @returns VBox status.
* @param pTimer Timer to restore.
* @param pSSM Save State Manager handle.
*/
TMR3DECL(int) TMR3TimerLoad(PTMTIMERHC pTimer, PSSMHANDLE pSSM)
{
Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
LogFlow(("TMR3TimerLoad: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
/*
* Load the state and validate it.
*/
uint8_t u8State;
int rc = SSMR3GetU8(pSSM, &u8State);
if (VBOX_FAILURE(rc))
return rc;
TMTIMERSTATE enmState = (TMTIMERSTATE)u8State;
if ( enmState != TMTIMERSTATE_PENDING_STOP
&& enmState != TMTIMERSTATE_PENDING_SCHEDULE
&& enmState != TMTIMERSTATE_PENDING_STOP_SCHEDULE)
{
AssertMsgFailed(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
}
if (enmState == TMTIMERSTATE_PENDING_SCHEDULE)
{
/*
* Load the expire time.
*/
uint64_t u64Expire;
rc = SSMR3GetU64(pSSM, &u64Expire);
if (VBOX_FAILURE(rc))
return rc;
/*
* Set it.
*/
Log(("enmState=%d %s u64Expire=%llu\n", enmState, tmTimerState(enmState), u64Expire));
rc = TMTimerSet(pTimer, u64Expire);
}
else
{
/*
* Stop it.
*/
Log(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
rc = TMTimerStop(pTimer);
}
/*
* On failure set SSM status.
*/
if (VBOX_FAILURE(rc))
rc = SSMR3HandleSetStatus(pSSM, rc);
return rc;
}
/**
* Get the real world UTC time adjusted for VM lag.
*
* @returns pTime.
* @param pVM The VM instance.
* @param pTime Where to store the time.
*/
TMR3DECL(PRTTIMESPEC) TMR3UTCNow(PVM pVM, PRTTIMESPEC pTime)
{
RTTimeNow(pTime);
RTTimeSpecSubNano(pTime, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp);
RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
return pTime;
}
/**
* Display all timers.
*
* @param pVM VM Handle.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"Timers (pVM=%p)\n"
"%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
pVM,
sizeof(RTR3PTR) * 2, "pTimerR3 ",
sizeof(int32_t) * 2, "offNext ",
sizeof(int32_t) * 2, "offPrev ",
sizeof(int32_t) * 2, "offSched ",
"Time",
"Expire",
"State");
for (PTMTIMERHC pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
{
pHlp->pfnPrintf(pHlp,
"%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
pTimer,
pTimer->offNext,
pTimer->offPrev,
pTimer->offScheduleNext,
pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
TMTimerGet(pTimer),
pTimer->u64Expire,
tmTimerState(pTimer->enmState),
pTimer->pszDesc);
}
}
/**
* Display all active timers.
*
* @param pVM VM Handle.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"Active Timers (pVM=%p)\n"
"%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
pVM,
sizeof(RTR3PTR) * 2, "pTimerR3 ",
sizeof(int32_t) * 2, "offNext ",
sizeof(int32_t) * 2, "offPrev ",
sizeof(int32_t) * 2, "offSched ",
"Time",
"Expire",
"State");
for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
{
for (PTMTIMERHC pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
pTimer;
pTimer = TMTIMER_GET_NEXT(pTimer))
{
pHlp->pfnPrintf(pHlp,
"%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
pTimer,
pTimer->offNext,
pTimer->offPrev,
pTimer->offScheduleNext,
pTimer->enmClock == TMCLOCK_REAL
? "Real "
: pTimer->enmClock == TMCLOCK_VIRTUAL
? "Virt "
: pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
? "VrSy "
: "TSC ",
TMTimerGet(pTimer),
pTimer->u64Expire,
tmTimerState(pTimer->enmState),
pTimer->pszDesc);
}
}
}
/**
* Display all clocks.
*
* @param pVM VM Handle.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
/*
* Read the times first to avoid more than necessary time variation.
*/
const uint64_t u64TSC = TMCpuTickGet(pVM);
const uint64_t u64Virtual = TMVirtualGet(pVM);
const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
const uint64_t u64Real = TMRealGet(pVM);
/*
* TSC
*/
pHlp->pfnPrintf(pHlp,
"Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
pVM->tm.s.fTSCTicking ? "ticking" : "paused",
pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
if (pVM->tm.s.fTSCUseRealTSC)
{
pHlp->pfnPrintf(pHlp, " - real tsc");
if (pVM->tm.s.u64TSCOffset)
pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.u64TSCOffset);
}
else
pHlp->pfnPrintf(pHlp, " - virtual clock");
pHlp->pfnPrintf(pHlp, "\n");
/*
* virtual
*/
pHlp->pfnPrintf(pHlp,
" Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
pVM->tm.s.fVirtualTicking ? "ticking" : "paused");
if (pVM->tm.s.fVirtualWarpDrive)
pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
pHlp->pfnPrintf(pHlp, "\n");
/*
* virtual sync
*/
pHlp->pfnPrintf(pHlp,
"VirtSync: %18RU64 (%#016RX64) %s%s",
u64VirtualSync, u64VirtualSync,
pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
if (pVM->tm.s.offVirtualSync)
{
pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
}
pHlp->pfnPrintf(pHlp, "\n");
/*
* real
*/
pHlp->pfnPrintf(pHlp,
" Real: %18RU64 (%#016RX64) %RU64Hz\n",
u64Real, u64Real, TMRealGetFreq(pVM));
}