PGMPool.cpp revision e64031e20c39650a7bc902a3e1aba613b9415dee
/* $Id$ */
/** @file
* PGM Shadow Page Pool.
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_pgm_pool PGM Shadow Page Pool
*
* Motivations:
* -# Relationship between shadow page tables and physical guest pages. This
* should allow us to skip most of the global flushes now following access
* handler changes. The main expense is flushing shadow pages.
* -# Limit the pool size if necessary (default is kind of limitless).
* -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
* -# Required for 64-bit guests.
* -# Combining the PD cache and page pool in order to simplify caching.
*
*
* @section sec_pgm_pool_outline Design Outline
*
* The shadow page pool tracks pages used for shadowing paging structures (i.e.
* page tables, page directory, page directory pointer table and page map
* level-4). Each page in the pool has an unique identifier. This identifier is
* used to link a guest physical page to a shadow PT. The identifier is a
* non-zero value and has a relativly low max value - say 14 bits. This makes it
* possible to fit it into the upper bits of the of the aHCPhys entries in the
* ram range.
*
* By restricting host physical memory to the first 48 bits (which is the
* announced physical memory range of the K8L chip (scheduled for 2008)), we
* can safely use the upper 16 bits for shadow page ID and reference counting.
*
* Update: The 48 bit assumption will be lifted with the new physical memory
* management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
* into a box in some years.
*
* Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
* or PD. This is solved by creating a list of physical cross reference extents
* when ever this happens. Each node in the list (extent) is can contain 3 page
* pool indexes. The list it self is chained using indexes into the paPhysExt
* array.
*
*
* @section sec_pgm_pool_life Life Cycle of a Shadow Page
*
* -# The SyncPT function requests a page from the pool.
* The request includes the kind of page it is (PT/PD, PAE/legacy), the
* address of the page it's shadowing, and more.
* -# The pool responds to the request by allocating a new page.
* When the cache is enabled, it will first check if it's in the cache.
* Should the pool be exhausted, one of two things can be done:
* -# Flush the whole pool and current CR3.
* -# Use the cache to find a page which can be flushed (~age).
* -# The SyncPT function will sync one or more pages and insert it into the
* shadow PD.
* -# The SyncPage function may sync more pages on a later \#PFs.
* -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
* When caching is enabled, the page isn't flush but remains in the cache.
*
*
* @section sec_pgm_pool_impl Monitoring
*
* We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
* pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
* sharing the monitor get linked using the iMonitoredNext/Prev. The head page
* is the pvUser to the access handlers.
*
*
* @section sec_pgm_pool_impl Implementation
*
* The pool will take pages from the MM page pool. The tracking data
* (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
* pool content can be accessed both by using the page id and the physical
* address (HC). The former is managed by means of an array, the latter by an
* offset based AVL tree.
*
* Flushing of a pool page means that we iterate the content (we know what kind
* it is) and updates the link information in the ram range.
*
* ...
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_POOL
#include <VBox/pgm.h>
#include <VBox/mm.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include "PGMInline.h"
#include <VBox/log.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <VBox/dbg.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
#ifdef VBOX_WITH_DEBUGGER
static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
#endif
#ifdef VBOX_WITH_DEBUGGER
/** Command descriptors. */
static const DBGCCMD g_aCmds[] =
{
/* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
{ "pgmpoolcheck", 0, 0, NULL, 0, NULL, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
};
#endif
/**
* Initalizes the pool
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
int pgmR3PoolInit(PVM pVM)
{
AssertCompile(NIL_PGMPOOL_IDX == 0);
/* pPage->cLocked is an unsigned byte. */
AssertCompile(VMM_MAX_CPU_COUNT <= 255);
/*
* Query Pool config.
*/
PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
/** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, 1024}
* The max size of the shadow page pool in pages. The pool will grow dynamically
* up to this limit.
*/
uint16_t cMaxPages;
int rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, 4*_1M >> PAGE_SHIFT);
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
cMaxPages = RT_ALIGN(cMaxPages, 16);
/** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
* The max number of shadow page user tracking records. Each shadow page has
* zero of other shadow pages (or CR3s) that references it, or uses it if you
* like. The structures describing these relationships are allocated from a
* fixed sized pool. This configuration variable defines the pool size.
*/
uint16_t cMaxUsers;
rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
/** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MAX(MaxPages*2,0x3fff)}
* The max number of extents for tracking aliased guest pages.
*/
uint16_t cMaxPhysExts;
rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MAX(cMaxPages * 2, PGMPOOL_IDX_LAST));
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST,
("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
/** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
* Enables or disabling caching of shadow pages. Chaching means that we will try
* reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
* SyncPage requests one. When reusing a shadow page, we can save time
* reconstructing it and it's children.
*/
bool fCacheEnabled;
rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
AssertLogRelRCReturn(rc, rc);
Log(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
/*
* Allocate the data structures.
*/
uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
cb += cMaxUsers * sizeof(PGMPOOLUSER);
cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
PPGMPOOL pPool;
rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
if (RT_FAILURE(rc))
return rc;
pVM->pgm.s.pPoolR3 = pPool;
pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
/*
* Initialize it.
*/
pPool->pVMR3 = pVM;
pPool->pVMR0 = pVM->pVMR0;
pPool->pVMRC = pVM->pVMRC;
pPool->cMaxPages = cMaxPages;
pPool->cCurPages = PGMPOOL_IDX_FIRST;
pPool->iUserFreeHead = 0;
pPool->cMaxUsers = cMaxUsers;
PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
pPool->paUsersR3 = paUsers;
pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
for (unsigned i = 0; i < cMaxUsers; i++)
{
paUsers[i].iNext = i + 1;
paUsers[i].iUser = NIL_PGMPOOL_IDX;
paUsers[i].iUserTable = 0xfffffffe;
}
paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
pPool->iPhysExtFreeHead = 0;
pPool->cMaxPhysExts = cMaxPhysExts;
PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
pPool->paPhysExtsR3 = paPhysExts;
pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
for (unsigned i = 0; i < cMaxPhysExts; i++)
{
paPhysExts[i].iNext = i + 1;
paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
}
paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
pPool->aiHash[i] = NIL_PGMPOOL_IDX;
pPool->iAgeHead = NIL_PGMPOOL_IDX;
pPool->iAgeTail = NIL_PGMPOOL_IDX;
pPool->fCacheEnabled = fCacheEnabled;
pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
pPool->pszAccessHandler = "Guest Paging Access Handler";
pPool->HCPhysTree = 0;
/* The NIL entry. */
Assert(NIL_PGMPOOL_IDX == 0);
pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
/* The Shadow 32-bit PD. (32 bits guest paging) */
pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS;
pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS;
pPool->aPages[PGMPOOL_IDX_PD].pvPageR3 = 0;
pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
/* The Shadow PDPT. */
pPool->aPages[PGMPOOL_IDX_PDPT].Core.Key = NIL_RTHCPHYS;
pPool->aPages[PGMPOOL_IDX_PDPT].GCPhys = NIL_RTGCPHYS;
pPool->aPages[PGMPOOL_IDX_PDPT].pvPageR3 = 0;
pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
/* The Shadow AMD64 CR3. */
pPool->aPages[PGMPOOL_IDX_AMD64_CR3].Core.Key = NIL_RTHCPHYS;
pPool->aPages[PGMPOOL_IDX_AMD64_CR3].GCPhys = NIL_RTGCPHYS;
pPool->aPages[PGMPOOL_IDX_AMD64_CR3].pvPageR3 = 0;
pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
/* The Nested Paging CR3. */
pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].Core.Key = NIL_RTHCPHYS;
pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].GCPhys = NIL_RTGCPHYS;
pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].pvPageR3 = 0;
pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
/*
* Set common stuff.
*/
for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++)
{
pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
Assert(pPool->aPages[iPage].idx == iPage);
Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
Assert(!pPool->aPages[iPage].fSeenNonGlobal);
Assert(!pPool->aPages[iPage].fMonitored);
Assert(!pPool->aPages[iPage].fCached);
Assert(!pPool->aPages[iPage].fZeroed);
Assert(!pPool->aPages[iPage].fReusedFlushPending);
}
#ifdef VBOX_WITH_STATISTICS
/*
* Register statistics.
*/
STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
#endif /* VBOX_WITH_STATISTICS */
#ifdef VBOX_WITH_DEBUGGER
/*
* Debugger commands.
*/
static bool s_fRegisteredCmds = false;
if (!s_fRegisteredCmds)
{
rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
if (RT_SUCCESS(rc))
s_fRegisteredCmds = true;
}
#endif
return VINF_SUCCESS;
}
/**
* Relocate the page pool data.
*
* @param pVM The VM handle.
*/
void pgmR3PoolRelocate(PVM pVM)
{
pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
AssertReleaseRC(rc);
/* init order hack. */
if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
{
rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
AssertReleaseRC(rc);
}
}
/**
* Grows the shadow page pool.
*
* I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
{
PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR);
pgmLock(pVM);
/*
* How much to grow it by?
*/
uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages.\n", cPages, cPages));
for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
/* Allocate all pages in low (below 4 GB) memory as 32 bits guests need a page table root in low memory. */
pPage->pvPageR3 = MMR3PageAllocLow(pVM);
if (!pPage->pvPageR3)
{
Log(("We're out of memory!! i=%d\n", i));
pgmUnlock(pVM);
return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
}
pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
AssertFatal(pPage->Core.Key < _4G);
pPage->GCPhys = NIL_RTGCPHYS;
pPage->enmKind = PGMPOOLKIND_FREE;
pPage->idx = pPage - &pPool->aPages[0];
LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
pPage->iNext = pPool->iFreeHead;
pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
pPage->iAgeNext = NIL_PGMPOOL_IDX;
pPage->iAgePrev = NIL_PGMPOOL_IDX;
/* commit it */
bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
pPool->iFreeHead = i;
pPool->cCurPages = i + 1;
}
pgmUnlock(pVM);
Assert(pPool->cCurPages <= pPool->cMaxPages);
return VINF_SUCCESS;
}
/**
* Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
*
* @param pPool The pool.
* @param pPage The page.
*/
static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/* for the present this should be safe enough I think... */
pgmLock(pPool->pVMR3);
if ( pPage->fReusedFlushPending
&& pPage->enmKind != PGMPOOLKIND_FREE)
pgmPoolFlushPage(pPool, pPage);
pgmUnlock(pPool->pVMR3);
}
/**
* \#PF Handler callback for PT write accesses.
*
* The handler can not raise any faults, it's mainly for monitoring write access
* to certain pages.
*
* @returns VINF_SUCCESS if the handler has carried out the operation.
* @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
* @param pVM VM Handle.
* @param GCPhys The physical address the guest is writing to.
* @param pvPhys The HC mapping of that address.
* @param pvBuf What the guest is reading/writing.
* @param cbBuf How much it's reading/writing.
* @param enmAccessType The access type.
* @param pvUser User argument.
*/
static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
{
STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
PVMCPU pVCpu = VMMGetCpu(pVM);
/*
* We don't have to be very sophisticated about this since there are relativly few calls here.
* However, we must try our best to detect any non-cpu accesses (disk / networking).
*
* Just to make life more interesting, we'll have to deal with the async threads too.
* We cannot flush a page if we're in an async thread because of REM notifications.
*/
pgmLock(pVM);
if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
{
/* Pool page changed while we were waiting for the lock; ignore. */
Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
pgmUnlock(pVM);
return VINF_PGM_HANDLER_DO_DEFAULT;
}
Assert(pPage->enmKind != PGMPOOLKIND_FREE);
/* @todo this code doesn't make any sense. remove the if (!pVCpu) block */
if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
{
Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
if (!pPage->fReusedFlushPending)
{
pgmUnlock(pVM);
int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
AssertRCReturn(rc, rc);
pgmLock(pVM);
pPage->fReusedFlushPending = true;
pPage->cModifications += 0x1000;
}
pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
/** @todo r=bird: making unsafe assumption about not crossing entries here! */
while (cbBuf > 4)
{
cbBuf -= 4;
pvPhys = (uint8_t *)pvPhys + 4;
GCPhys += 4;
pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
}
STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
}
else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
|| pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
)
&& cbBuf <= 4)
{
/* Clear the shadow entry. */
if (!pPage->cModifications++)
pgmPoolMonitorModifiedInsert(pPool, pPage);
/** @todo r=bird: making unsafe assumption about not crossing entries here! */
pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
}
else
{
pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
}
pgmUnlock(pVM);
return VINF_PGM_HANDLER_DO_DEFAULT;
}
/**
* Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
* and all modification counters.
*
* This is only called on one of the EMTs while the other ones are waiting for
* it to complete this function.
*
* @returns VINF_SUCCESS (VBox strict status code).
* @param pVM The VM handle.
* @param pVCpu The VMCPU for the EMT we're being called on. Unused.
* @param pvUser Unused parameter.
*
*/
DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
STAM_PROFILE_START(&pPool->StatClearAll, c);
pgmLock(pVM);
Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d\n", pPool->cUsedPages));
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
pgmPoolResetDirtyPages(pVM);
#endif
/*
* Iterate all the pages until we've encountered all that are in use.
* This is simple but not quite optimal solution.
*/
unsigned cModifiedPages = 0; NOREF(cModifiedPages);
unsigned cLeft = pPool->cUsedPages;
unsigned iPage = pPool->cCurPages;
while (--iPage >= PGMPOOL_IDX_FIRST)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if (pPage->GCPhys != NIL_RTGCPHYS)
{
switch (pPage->enmKind)
{
/*
* We only care about shadow page tables.
*/
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
case PGMPOOLKIND_EPT_PT_FOR_PHYS:
{
if (pPage->cPresent)
{
void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
STAM_PROFILE_START(&pPool->StatZeroPage, z);
#if 0
/* Useful check for leaking references; *very* expensive though. */
switch (pPage->enmKind)
{
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
{
bool fFoundFirst = false;
PX86PTPAE pPT = (PX86PTPAE)pvShw;
for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
{
if (pPT->a[ptIndex].u)
{
if (!fFoundFirst)
{
AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
if (pPage->iFirstPresent != ptIndex)
Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
fFoundFirst = true;
}
if (pPT->a[ptIndex].n.u1Present)
{
pgmPoolTracDerefGCPhysHint(pPool, pPage, pPT->a[ptIndex].u & X86_PTE_PAE_PG_MASK, NIL_RTGCPHYS);
if (pPage->iFirstPresent == ptIndex)
pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
}
}
}
AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
break;
}
default:
break;
}
#endif
ASMMemZeroPage(pvShw);
STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
pPage->cPresent = 0;
pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
}
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
else
Assert(!pPage->fDirty);
#endif
}
/* fall thru */
default:
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
Assert(!pPage->fDirty);
#endif
Assert(!pPage->cModifications || ++cModifiedPages);
Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
break;
}
if (!--cLeft)
break;
}
}
/* swipe the special pages too. */
for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if (pPage->GCPhys != NIL_RTGCPHYS)
{
Assert(!pPage->cModifications || ++cModifiedPages);
Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
}
}
#ifndef DEBUG_michael
AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
#endif
pPool->iModifiedHead = NIL_PGMPOOL_IDX;
pPool->cModifiedPages = 0;
/*
* Clear all the GCPhys links and rebuild the phys ext free list.
*/
for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
pRam;
pRam = pRam->CTX_SUFF(pNext))
{
iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
}
pPool->iPhysExtFreeHead = 0;
PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
for (unsigned i = 0; i < cMaxPhysExts; i++)
{
paPhysExts[i].iNext = i + 1;
paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
}
paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
/* Clear all dirty pages. */
pPool->idxFreeDirtyPage = 0;
pPool->cDirtyPages = 0;
for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
#endif
/* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
/* Flush job finished. */
VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
pPool->cPresent = 0;
pgmUnlock(pVM);
PGM_INVL_ALL_VCPU_TLBS(pVM);
STAM_PROFILE_STOP(&pPool->StatClearAll, c);
return VINF_SUCCESS;
}
/**
* Clears the shadow page pool.
*
* @param pVM The VM handle.
*/
void pgmR3PoolClearAll(PVM pVM)
{
int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, NULL);
AssertRC(rc);
}
#ifdef VBOX_WITH_DEBUGGER
/**
* The '.pgmpoolcheck' command.
*
* @returns VBox status.
* @param pCmd Pointer to the command descriptor (as registered).
* @param pCmdHlp Pointer to command helper functions.
* @param pVM Pointer to the current VM (if any).
* @param paArgs Pointer to (readonly) array of arguments.
* @param cArgs Number of arguments in the array.
*/
static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
{
/*
* Validate input.
*/
if (!pVM)
return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
for (unsigned i = 0; i < pPool->cCurPages; i++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
bool fFirstMsg = true;
/* Todo: cover other paging modes too. */
if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
{
PX86PTPAE pShwPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
PX86PTPAE pGstPT;
int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pGstPT); AssertReleaseRC(rc);
/* Check if any PTEs are out of sync. */
for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
{
if (pShwPT->a[j].n.u1Present)
{
RTHCPHYS HCPhys = NIL_RTHCPHYS;
rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
if ( rc != VINF_SUCCESS
|| (pShwPT->a[j].u & X86_PTE_PAE_PG_MASK) != HCPhys)
{
if (fFirstMsg)
{
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
fFirstMsg = false;
}
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch HCPhys: rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, pShwPT->a[j].u, HCPhys);
}
else
if ( pShwPT->a[j].n.u1Write
&& !pGstPT->a[j].n.u1Write)
{
if (fFirstMsg)
{
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
fFirstMsg = false;
}
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, pShwPT->a[j].u, HCPhys);
}
}
}
/* Make sure this page table can't be written to from any shadow mapping. */
RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
if (rc == VINF_SUCCESS)
{
for (unsigned j = 0; j < pPool->cCurPages; j++)
{
PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
{
PX86PTPAE pShwPT2 = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
{
if ( pShwPT2->a[k].n.u1Present
&& pShwPT2->a[k].n.u1Write
# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
&& !pPage->fDirty
# endif
&& ((pShwPT2->a[k].u & X86_PTE_PAE_PG_MASK) == HCPhysPT))
{
if (fFirstMsg)
{
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
fFirstMsg = false;
}
pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, pShwPT->a[k].u, pShwPT2->a[k].u);
}
}
}
}
}
}
}
return VINF_SUCCESS;
}
#endif /* VBOX_WITH_DEBUGGER */