PGMPhys.cpp revision e628b8b264d0b8548e7e988529c719e3069e3f3b
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, Physical Memory Addressing.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_PHYS
#include <VBox/pgm.h>
#include <VBox/iom.h>
#include <VBox/mm.h>
#include <VBox/stam.h>
#include <VBox/rem.h>
#include <VBox/pdmdev.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include "PGMInline.h"
#include <VBox/sup.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <iprt/thread.h>
#include <iprt/string.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The number of pages to free in one batch. */
#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
/*
* PGMR3PhysReadU8-64
* PGMR3PhysWriteU8-64
*/
#define PGMPHYSFN_READNAME PGMR3PhysReadU8
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
#define PGMPHYS_DATASIZE 1
#define PGMPHYS_DATATYPE uint8_t
#include "PGMPhysRWTmpl.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadU16
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
#define PGMPHYS_DATASIZE 2
#define PGMPHYS_DATATYPE uint16_t
#include "PGMPhysRWTmpl.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadU32
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
#define PGMPHYS_DATASIZE 4
#define PGMPHYS_DATATYPE uint32_t
#include "PGMPhysRWTmpl.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadU64
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
#define PGMPHYS_DATASIZE 8
#define PGMPHYS_DATATYPE uint64_t
#include "PGMPhysRWTmpl.h"
/**
* EMT worker for PGMR3PhysReadExternal.
*/
static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
{
PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
return VINF_SUCCESS;
}
/**
* Write to physical memory, external users.
*
* @returns VBox status code.
* @retval VINF_SUCCESS.
*
* @param pVM VM Handle.
* @param GCPhys Physical address to write to.
* @param pvBuf What to write.
* @param cbWrite How many bytes to write.
*
* @thread Any but EMTs.
*/
VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
{
VM_ASSERT_OTHER_THREAD(pVM);
AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
pgmLock(pVM);
/*
* Copy loop on ram ranges.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
for (;;)
{
/* Find range. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPHYS off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
unsigned iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
/*
* If the page has an ALL access handler, we'll have to
* delegate the job to EMT.
*/
if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
{
pgmUnlock(pVM);
return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
pVM, &GCPhys, pvBuf, cbRead);
}
Assert(!PGM_PAGE_IS_MMIO(pPage));
/*
* Simple stuff, go ahead.
*/
size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb > cbRead)
cb = cbRead;
const void *pvSrc;
int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
if (RT_SUCCESS(rc))
memcpy(pvBuf, pvSrc, cb);
else
{
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
pRam->GCPhys + off, pPage, rc));
memset(pvBuf, 0xff, cb);
}
/* next page */
if (cb >= cbRead)
{
pgmUnlock(pVM);
return VINF_SUCCESS;
}
cbRead -= cb;
off += cb;
GCPhys += cb;
pvBuf = (char *)pvBuf + cb;
} /* walk pages in ram range. */
}
else
{
LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
/*
* Unassigned address space.
*/
if (!pRam)
break;
size_t cb = pRam->GCPhys - GCPhys;
if (cb >= cbRead)
{
memset(pvBuf, 0xff, cbRead);
break;
}
memset(pvBuf, 0xff, cb);
cbRead -= cb;
pvBuf = (char *)pvBuf + cb;
GCPhys += cb;
}
} /* Ram range walk */
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* EMT worker for PGMR3PhysWriteExternal.
*/
static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
{
/** @todo VERR_EM_NO_MEMORY */
PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
return VINF_SUCCESS;
}
/**
* Write to physical memory, external users.
*
* @returns VBox status code.
* @retval VINF_SUCCESS.
* @retval VERR_EM_NO_MEMORY.
*
* @param pVM VM Handle.
* @param GCPhys Physical address to write to.
* @param pvBuf What to write.
* @param cbWrite How many bytes to write.
* @param pszWho Who is writing. For tracking down who is writing
* after we've saved the state.
*
* @thread Any but EMTs.
*/
VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
{
VM_ASSERT_OTHER_THREAD(pVM);
AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
GCPhys, cbWrite, pszWho));
AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
pgmLock(pVM);
/*
* Copy loop on ram ranges, stop when we hit something difficult.
*/
PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
for (;;)
{
/* Find range. */
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = pRam->CTX_SUFF(pNext);
/* Inside range or not? */
if (pRam && GCPhys >= pRam->GCPhys)
{
/*
* Must work our way thru this page by page.
*/
RTGCPTR off = GCPhys - pRam->GCPhys;
while (off < pRam->cb)
{
RTGCPTR iPage = off >> PAGE_SHIFT;
PPGMPAGE pPage = &pRam->aPages[iPage];
/*
* Is the page problematic, we have to do the work on the EMT.
*
* Allocating writable pages and access handlers are
* problematic, write monitored pages are simple and can be
* dealth with here.
*/
if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|| PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
{
if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
&& !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
else
{
pgmUnlock(pVM);
return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
pVM, &GCPhys, pvBuf, cbWrite);
}
}
Assert(!PGM_PAGE_IS_MMIO(pPage));
/*
* Simple stuff, go ahead.
*/
size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
if (cb > cbWrite)
cb = cbWrite;
void *pvDst;
int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
if (RT_SUCCESS(rc))
memcpy(pvDst, pvBuf, cb);
else
AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
pRam->GCPhys + off, pPage, rc));
/* next page */
if (cb >= cbWrite)
{
pgmUnlock(pVM);
return VINF_SUCCESS;
}
cbWrite -= cb;
off += cb;
GCPhys += cb;
pvBuf = (const char *)pvBuf + cb;
} /* walk pages in ram range */
}
else
{
/*
* Unassigned address space, skip it.
*/
if (!pRam)
break;
size_t cb = pRam->GCPhys - GCPhys;
if (cb >= cbWrite)
break;
cbWrite -= cb;
pvBuf = (const char *)pvBuf + cb;
GCPhys += cb;
}
} /* Ram range walk */
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
*
* @returns see PGMR3PhysGCPhys2CCPtrExternal
* @param pVM The VM handle.
* @param pGCPhys Pointer to the guest physical address.
* @param ppv Where to store the mapping address.
* @param pLock Where to store the lock.
*/
static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
/*
* Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
* an access handler after it succeeds.
*/
int rc = pgmLock(pVM);
AssertRCReturn(rc, rc);
rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
if (RT_SUCCESS(rc))
{
PPGMPAGEMAPTLBE pTlbe;
int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
AssertFatalRC(rc2);
PPGMPAGE pPage = pTlbe->pPage;
if (PGM_PAGE_IS_MMIO(pPage))
{
PGMPhysReleasePageMappingLock(pVM, pLock);
rc = VERR_PGM_PHYS_PAGE_RESERVED;
}
else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|| pgmPoolIsDirtyPage(pVM, *pGCPhys)
#endif
)
{
/* We *must* flush any corresponding pgm pool page here, otherwise we'll
* not be informed about writes and keep bogus gst->shw mappings around.
*/
pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
/** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
* active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
}
}
pgmUnlock(pVM);
return rc;
}
/**
* Requests the mapping of a guest page into ring-3, external threads.
*
* When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
* release it.
*
* This API will assume your intention is to write to the page, and will
* therefore replace shared and zero pages. If you do not intend to modify the
* page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
* backing or if the page has any active access handlers. The caller
* must fall back on using PGMR3PhysWriteExternal.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than the
* PGM one) because of the deadlock risk when we have to delegating the
* task to an EMT.
* @thread Any.
*/
VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
AssertPtr(ppv);
AssertPtr(pLock);
Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
int rc = pgmLock(pVM);
AssertRCReturn(rc, rc);
/*
* Query the Physical TLB entry for the page (may fail).
*/
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
if (RT_SUCCESS(rc))
{
PPGMPAGE pPage = pTlbe->pPage;
if (PGM_PAGE_IS_MMIO(pPage))
rc = VERR_PGM_PHYS_PAGE_RESERVED;
else
{
/*
* If the page is shared, the zero page, or being write monitored
* it must be converted to an page that's writable if possible.
* We can only deal with write monitored pages here, the rest have
* to be on an EMT.
*/
if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|| PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|| pgmPoolIsDirtyPage(pVM, GCPhys)
#endif
)
{
if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
&& !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
&& !pgmPoolIsDirtyPage(pVM, GCPhys)
#endif
)
pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
else
{
pgmUnlock(pVM);
return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
pVM, &GCPhys, ppv, pLock);
}
}
/*
* Now, just perform the locking and calculate the return address.
*/
PPGMPAGEMAP pMap = pTlbe->pMap;
if (pMap)
pMap->cRefs++;
unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
{
if (cLocks == 0)
pVM->pgm.s.cWriteLockedPages++;
PGM_PAGE_INC_WRITE_LOCKS(pPage);
}
else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
{
PGM_PAGE_INC_WRITE_LOCKS(pPage);
AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
if (pMap)
pMap->cRefs++; /* Extra ref to prevent it from going away. */
}
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
pLock->pvMap = pMap;
}
}
pgmUnlock(pVM);
return rc;
}
/**
* Requests the mapping of a guest page into ring-3, external threads.
*
* When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
* release it.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
* backing or if the page as an active ALL access handler. The caller
* must fall back on using PGMPhysRead.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
*
* @param pVM The VM handle.
* @param GCPhys The guest physical address of the page that should be mapped.
* @param ppv Where to store the address corresponding to GCPhys.
* @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
*
* @remark Avoid calling this API from within critical sections (other than
* the PGM one) because of the deadlock risk.
* @thread Any.
*/
VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
{
int rc = pgmLock(pVM);
AssertRCReturn(rc, rc);
/*
* Query the Physical TLB entry for the page (may fail).
*/
PPGMPAGEMAPTLBE pTlbe;
rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
if (RT_SUCCESS(rc))
{
PPGMPAGE pPage = pTlbe->pPage;
#if 1
/* MMIO pages doesn't have any readable backing. */
if (PGM_PAGE_IS_MMIO(pPage))
rc = VERR_PGM_PHYS_PAGE_RESERVED;
#else
if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
rc = VERR_PGM_PHYS_PAGE_RESERVED;
#endif
else
{
/*
* Now, just perform the locking and calculate the return address.
*/
PPGMPAGEMAP pMap = pTlbe->pMap;
if (pMap)
pMap->cRefs++;
unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
{
if (cLocks == 0)
pVM->pgm.s.cReadLockedPages++;
PGM_PAGE_INC_READ_LOCKS(pPage);
}
else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
{
PGM_PAGE_INC_READ_LOCKS(pPage);
AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
if (pMap)
pMap->cRefs++; /* Extra ref to prevent it from going away. */
}
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
pLock->pvMap = pMap;
}
}
pgmUnlock(pVM);
return rc;
}
/**
* Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
*
* Called when anything was relocated.
*
* @param pVM Pointer to the shared VM structure.
*/
void pgmR3PhysRelinkRamRanges(PVM pVM)
{
PPGMRAMRANGE pCur;
#ifdef VBOX_STRICT
for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
{
Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
Assert( pCur2 == pCur
|| strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
}
#endif
pCur = pVM->pgm.s.pRamRangesR3;
if (pCur)
{
pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
for (; pCur->pNextR3; pCur = pCur->pNextR3)
{
pCur->pNextR0 = pCur->pNextR3->pSelfR0;
pCur->pNextRC = pCur->pNextR3->pSelfRC;
}
Assert(pCur->pNextR0 == NIL_RTR0PTR);
Assert(pCur->pNextRC == NIL_RTRCPTR);
}
else
{
Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
}
ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
}
/**
* Links a new RAM range into the list.
*
* @param pVM Pointer to the shared VM structure.
* @param pNew Pointer to the new list entry.
* @param pPrev Pointer to the previous list entry. If NULL, insert as head.
*/
static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
{
AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
pgmLock(pVM);
PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
pNew->pNextR3 = pRam;
pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
if (pPrev)
{
pPrev->pNextR3 = pNew;
pPrev->pNextR0 = pNew->pSelfR0;
pPrev->pNextRC = pNew->pSelfRC;
}
else
{
pVM->pgm.s.pRamRangesR3 = pNew;
pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
}
ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
pgmUnlock(pVM);
}
/**
* Unlink an existing RAM range from the list.
*
* @param pVM Pointer to the shared VM structure.
* @param pRam Pointer to the new list entry.
* @param pPrev Pointer to the previous list entry. If NULL, insert as head.
*/
static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
{
Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
pgmLock(pVM);
PPGMRAMRANGE pNext = pRam->pNextR3;
if (pPrev)
{
pPrev->pNextR3 = pNext;
pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
}
else
{
Assert(pVM->pgm.s.pRamRangesR3 == pRam);
pVM->pgm.s.pRamRangesR3 = pNext;
pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
}
ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
pgmUnlock(pVM);
}
/**
* Unlink an existing RAM range from the list.
*
* @param pVM Pointer to the shared VM structure.
* @param pRam Pointer to the new list entry.
*/
static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
{
pgmLock(pVM);
/* find prev. */
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
while (pCur != pRam)
{
pPrev = pCur;
pCur = pCur->pNextR3;
}
AssertFatal(pCur);
pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
pgmUnlock(pVM);
}
/**
* Frees a range of pages, replacing them with ZERO pages of the specified type.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pRam The RAM range in which the pages resides.
* @param GCPhys The address of the first page.
* @param GCPhysLast The address of the last page.
* @param uType The page type to replace then with.
*/
static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
{
Assert(PGMIsLockOwner(pVM));
uint32_t cPendingPages = 0;
PGMMFREEPAGESREQ pReq;
int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
AssertLogRelRCReturn(rc, rc);
/* Iterate the pages. */
PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
while (cPagesLeft-- > 0)
{
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
PGM_PAGE_SET_TYPE(pPageDst, uType);
GCPhys += PAGE_SIZE;
pPageDst++;
}
if (cPendingPages)
{
rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
AssertLogRelRCReturn(rc, rc);
}
GMMR3FreePagesCleanup(pReq);
return rc;
}
/**
* Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
*
* This is only called on one of the EMTs while the other ones are waiting for
* it to complete this function.
*
* @returns VINF_SUCCESS (VBox strict status code).
* @param pVM The VM handle.
* @param pVCpu The VMCPU for the EMT we're being called on. Unused.
* @param pvUser User parameter
*/
static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
uintptr_t *paUser = (uintptr_t *)pvUser;
bool fInflate = !!paUser[0];
unsigned cPages = paUser[1];
RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
uint32_t cPendingPages = 0;
PGMMFREEPAGESREQ pReq;
int rc;
pgmLock(pVM);
if (fInflate)
{
/* Replace pages with ZERO pages. */
rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
AssertLogRelRC(rc);
return rc;
}
/* Iterate the pages. */
for (unsigned i = 0; i < cPages; i++)
{
PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
if ( pPage == NULL
|| pPage->uTypeY != PGMPAGETYPE_RAM)
{
Log(("PGMR3PhysFreePageRange: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
break;
}
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
AssertLogRelRC(rc);
return rc;
}
}
if (cPendingPages)
{
rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
AssertLogRelRC(rc);
return rc;
}
}
GMMR3FreePagesCleanup(pReq);
/* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
}
/* Notify GMM about the balloon change. */
rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
pgmUnlock(pVM);
AssertLogRelRC(rc);
return rc;
}
/**
* Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param fInflate Inflate or deflate memory balloon
* @param cPages Number of pages to free
* @param paPhysPage Array of guest physical addresses
*/
static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
{
uintptr_t paUser[3];
paUser[0] = fInflate;
paUser[1] = cPages;
paUser[2] = (uintptr_t)paPhysPage;
int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
AssertRC(rc);
/* Made a copy in PGMR3PhysFreeRamPages; free it here. */
RTMemFree(paPhysPage);
}
/**
* Inflate or deflate a memory balloon
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param fInflate Inflate or deflate memory balloon
* @param cPages Number of pages to free
* @param paPhysPage Array of guest physical addresses
*/
VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
{
int rc;
/* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
* In the SMP case we post a request packet to postpone the job.
*/
if (pVM->cCpus > 1)
{
unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
AssertRC(rc);
}
else
{
uintptr_t paUser[3];
paUser[0] = fInflate;
paUser[1] = cPages;
paUser[2] = (uintptr_t)paPhysPage;
rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
AssertRC(rc);
}
return rc;
}
/**
* PGMR3PhysRegisterRam worker that initializes and links a RAM range.
*
* @param pVM The VM handle.
* @param pNew The new RAM range.
* @param GCPhys The address of the RAM range.
* @param GCPhysLast The last address of the RAM range.
* @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
* if in HMA.
* @param R0PtrNew Ditto for R0.
* @param pszDesc The description.
* @param pPrev The previous RAM range (for linking).
*/
static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
{
/*
* Initialize the range.
*/
pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
pNew->GCPhys = GCPhys;
pNew->GCPhysLast = GCPhysLast;
pNew->cb = GCPhysLast - GCPhys + 1;
pNew->pszDesc = pszDesc;
pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
pNew->pvR3 = NULL;
pNew->paLSPages = NULL;
uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
RTGCPHYS iPage = cPages;
while (iPage-- > 0)
PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
/* Update the page count stats. */
pVM->pgm.s.cZeroPages += cPages;
pVM->pgm.s.cAllPages += cPages;
/*
* Link it.
*/
pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
}
/**
* Relocate a floating RAM range.
*
* @copydoc FNPGMRELOCATE.
*/
static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
{
PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
switch (enmMode)
{
case PGMRELOCATECALL_SUGGEST:
return true;
case PGMRELOCATECALL_RELOCATE:
{
/* Update myself and then relink all the ranges. */
pgmLock(pVM);
pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
pgmR3PhysRelinkRamRanges(pVM);
pgmUnlock(pVM);
return true;
}
default:
AssertFailedReturn(false);
}
}
/**
* PGMR3PhysRegisterRam worker that registers a high chunk.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param GCPhys The address of the RAM.
* @param cRamPages The number of RAM pages to register.
* @param cbChunk The size of the PGMRAMRANGE guest mapping.
* @param iChunk The chunk number.
* @param pszDesc The RAM range description.
* @param ppPrev Previous RAM range pointer. In/Out.
*/
static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
PPGMRAMRANGE *ppPrev)
{
const char *pszDescChunk = iChunk == 0
? pszDesc
: MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
AssertReturn(pszDescChunk, VERR_NO_MEMORY);
/*
* Allocate memory for the new chunk.
*/
size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
RTR0PTR R0PtrChunk = NIL_RTR0PTR;
void *pvChunk = NULL;
int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
#else
NULL,
#endif
paChunkPages);
if (RT_SUCCESS(rc))
{
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
if (!VMMIsHwVirtExtForced(pVM))
R0PtrChunk = NIL_RTR0PTR;
#else
R0PtrChunk = (uintptr_t)pvChunk;
#endif
memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
/*
* Create a mapping and map the pages into it.
* We push these in below the HMA.
*/
RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
if (RT_SUCCESS(rc))
{
pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
RTGCPTR GCPtrPage = GCPtrChunk;
for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
if (RT_SUCCESS(rc))
{
/*
* Ok, init and link the range.
*/
pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
(RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
*ppPrev = pNew;
}
}
if (RT_FAILURE(rc))
SUPR3PageFreeEx(pvChunk, cChunkPages);
}
RTMemTmpFree(paChunkPages);
return rc;
}
/**
* Sets up a range RAM.
*
* This will check for conflicting registrations, make a resource
* reservation for the memory (with GMM), and setup the per-page
* tracking structures (PGMPAGE).
*
* @returns VBox stutus code.
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The physical address of the RAM.
* @param cb The size of the RAM.
* @param pszDesc The description - not copied, so, don't free or change it.
*/
VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
{
/*
* Validate input.
*/
Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
pgmLock(pVM);
/*
* Find range location and check for conflicts.
* (We don't lock here because the locking by EMT is only required on update.)
*/
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhysLast >= pRam->GCPhys
&& GCPhys <= pRam->GCPhysLast)
AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
/* next */
pPrev = pRam;
pRam = pRam->pNextR3;
}
/*
* Register it with GMM (the API bitches).
*/
const RTGCPHYS cPages = cb >> PAGE_SHIFT;
int rc = MMR3IncreaseBaseReservation(pVM, cPages);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
return rc;
}
if ( GCPhys >= _4G
&& cPages > 256)
{
/*
* The PGMRAMRANGE structures for the high memory can get very big.
* In order to avoid SUPR3PageAllocEx allocation failures due to the
* allocation size limit there and also to avoid being unable to find
* guest mapping space for them, we split this memory up into 4MB in
* (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
* mode.
*
* The first and last page of each mapping are guard pages and marked
* not-present. So, we've got 4186112 and 16769024 bytes available for
* the PGMRAMRANGE structure.
*
* Note! The sizes used here will influence the saved state.
*/
uint32_t cbChunk;
uint32_t cPagesPerChunk;
if (VMMIsHwVirtExtForced(pVM))
{
cbChunk = 16U*_1M;
cPagesPerChunk = 1048048; /* max ~1048059 */
AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
}
else
{
cbChunk = 4U*_1M;
cPagesPerChunk = 261616; /* max ~261627 */
AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
}
AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
RTGCPHYS cPagesLeft = cPages;
RTGCPHYS GCPhysChunk = GCPhys;
uint32_t iChunk = 0;
while (cPagesLeft > 0)
{
uint32_t cPagesInChunk = cPagesLeft;
if (cPagesInChunk > cPagesPerChunk)
cPagesInChunk = cPagesPerChunk;
rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
AssertRCReturn(rc, rc);
/* advance */
GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
cPagesLeft -= cPagesInChunk;
iChunk++;
}
}
else
{
/*
* Allocate, initialize and link the new RAM range.
*/
const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
PPGMRAMRANGE pNew;
rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
}
PGMPhysInvalidatePageMapTLB(pVM);
pgmUnlock(pVM);
/*
* Notify REM.
*/
REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
return VINF_SUCCESS;
}
/**
* Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
*
* We do this late in the init process so that all the ROM and MMIO ranges have
* been registered already and we don't go wasting memory on them.
*
* @returns VBox status code.
*
* @param pVM Pointer to the shared VM structure.
*/
int pgmR3PhysRamPreAllocate(PVM pVM)
{
Assert(pVM->pgm.s.fRamPreAlloc);
Log(("pgmR3PhysRamPreAllocate: enter\n"));
/*
* Walk the RAM ranges and allocate all RAM pages, halt at
* the first allocation error.
*/
uint64_t cPages = 0;
uint64_t NanoTS = RTTimeNanoTS();
pgmLock(pVM);
for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
{
PPGMPAGE pPage = &pRam->aPages[0];
RTGCPHYS GCPhys = pRam->GCPhys;
uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
while (cLeft-- > 0)
{
if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
{
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_ZERO:
{
int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
if (RT_FAILURE(rc))
{
LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
pgmUnlock(pVM);
return rc;
}
cPages++;
break;
}
case PGM_PAGE_STATE_ALLOCATED:
case PGM_PAGE_STATE_WRITE_MONITORED:
case PGM_PAGE_STATE_SHARED:
/* nothing to do here. */
break;
}
}
/* next */
pPage++;
GCPhys += PAGE_SIZE;
}
}
pgmUnlock(pVM);
NanoTS = RTTimeNanoTS() - NanoTS;
LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Resets (zeros) the RAM.
*
* ASSUMES that the caller owns the PGM lock.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
*/
int pgmR3PhysRamReset(PVM pVM)
{
Assert(PGMIsLockOwner(pVM));
/* Reset the memory balloon. */
int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
AssertRC(rc);
/*
* We batch up pages that should be freed instead of calling GMM for
* each and every one of them.
*/
uint32_t cPendingPages = 0;
PGMMFREEPAGESREQ pReq;
rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
AssertLogRelRCReturn(rc, rc);
/*
* Walk the ram ranges.
*/
for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
{
uint32_t iPage = pRam->cb >> PAGE_SHIFT;
AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
if (!pVM->pgm.s.fRamPreAlloc)
{
/* Replace all RAM pages by ZERO pages. */
while (iPage-- > 0)
{
PPGMPAGE pPage = &pRam->aPages[iPage];
switch (PGM_PAGE_GET_TYPE(pPage))
{
case PGMPAGETYPE_RAM:
/* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
{
void *pvPage;
rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
AssertLogRelRCReturn(rc, rc);
ASMMemZeroPage(pvPage);
}
else
if (!PGM_PAGE_IS_ZERO(pPage))
{
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
AssertLogRelRCReturn(rc, rc);
}
break;
case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
break;
case PGMPAGETYPE_MMIO2:
case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
case PGMPAGETYPE_ROM:
case PGMPAGETYPE_MMIO:
break;
default:
AssertFailed();
}
} /* for each page */
}
else
{
/* Zero the memory. */
while (iPage-- > 0)
{
PPGMPAGE pPage = &pRam->aPages[iPage];
switch (PGM_PAGE_GET_TYPE(pPage))
{
case PGMPAGETYPE_RAM:
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_ZERO:
break;
case PGM_PAGE_STATE_SHARED:
case PGM_PAGE_STATE_WRITE_MONITORED:
rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
AssertLogRelRCReturn(rc, rc);
case PGM_PAGE_STATE_ALLOCATED:
{
void *pvPage;
rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
AssertLogRelRCReturn(rc, rc);
ASMMemZeroPage(pvPage);
break;
}
}
break;
case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
break;
case PGMPAGETYPE_MMIO2:
case PGMPAGETYPE_ROM_SHADOW:
case PGMPAGETYPE_ROM:
case PGMPAGETYPE_MMIO:
break;
default:
AssertFailed();
}
} /* for each page */
}
}
/*
* Finish off any pages pending freeing.
*/
if (cPendingPages)
{
rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
AssertLogRelRCReturn(rc, rc);
}
GMMR3FreePagesCleanup(pReq);
return VINF_SUCCESS;
}
/**
* This is the interface IOM is using to register an MMIO region.
*
* It will check for conflicts and ensure that a RAM range structure
* is present before calling the PGMR3HandlerPhysicalRegister API to
* register the callbacks.
*
* @returns VBox status code.
*
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The start of the MMIO region.
* @param cb The size of the MMIO region.
* @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
* @param pvUserR3 The user argument for R3.
* @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
* @param pvUserR0 The user argument for R0.
* @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
* @param pvUserRC The user argument for RC.
* @param pszDesc The description of the MMIO region.
*/
VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
R3PTRTYPE(const char *) pszDesc)
{
/*
* Assert on some assumption.
*/
VM_ASSERT_EMT(pVM);
AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
/*
* Make sure there's a RAM range structure for the region.
*/
int rc;
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
bool fRamExists = false;
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhysLast >= pRam->GCPhys
&& GCPhys <= pRam->GCPhysLast)
{
/* Simplification: all within the same range. */
AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
&& GCPhysLast <= pRam->GCPhysLast,
("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
/* Check that it's all RAM or MMIO pages. */
PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cLeft = cb >> PAGE_SHIFT;
while (cLeft-- > 0)
{
AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
pPage++;
}
/* Looks good. */
fRamExists = true;
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
PPGMRAMRANGE pNew;
if (fRamExists)
{
pNew = NULL;
/*
* Make all the pages in the range MMIO/ZERO pages, freeing any
* RAM pages currently mapped here. This might not be 100% correct
* for PCI memory, but we're doing the same thing for MMIO2 pages.
*/
rc = pgmLock(pVM);
if (RT_SUCCESS(rc))
{
rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
pgmUnlock(pVM);
}
AssertRCReturn(rc, rc);
}
else
{
pgmLock(pVM);
/*
* No RAM range, insert an ad hoc one.
*
* Note that we don't have to tell REM about this range because
* PGMHandlerPhysicalRegisterEx will do that for us.
*/
Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
const uint32_t cPages = cb >> PAGE_SHIFT;
const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
/* Initialize the range. */
pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
pNew->GCPhys = GCPhys;
pNew->GCPhysLast = GCPhysLast;
pNew->cb = cb;
pNew->pszDesc = pszDesc;
pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
pNew->pvR3 = NULL;
pNew->paLSPages = NULL;
uint32_t iPage = cPages;
while (iPage-- > 0)
PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
/* update the page count stats. */
pVM->pgm.s.cPureMmioPages += cPages;
pVM->pgm.s.cAllPages += cPages;
/* link it */
pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
pgmUnlock(pVM);
}
/*
* Register the access handler.
*/
rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
pfnHandlerR3, pvUserR3,
pfnHandlerR0, pvUserR0,
pfnHandlerRC, pvUserRC, pszDesc);
if ( RT_FAILURE(rc)
&& !fRamExists)
{
pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
/* remove the ad hoc range. */
pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
MMHyperFree(pVM, pRam);
}
PGMPhysInvalidatePageMapTLB(pVM);
return rc;
}
/**
* This is the interface IOM is using to register an MMIO region.
*
* It will take care of calling PGMHandlerPhysicalDeregister and clean up
* any ad hoc PGMRAMRANGE left behind.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The start of the MMIO region.
* @param cb The size of the MMIO region.
*/
VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
{
VM_ASSERT_EMT(pVM);
/*
* First deregister the handler, then check if we should remove the ram range.
*/
int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
if (RT_SUCCESS(rc))
{
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
/** @todo We're being a bit too careful here. rewrite. */
if ( GCPhysLast == pRam->GCPhysLast
&& GCPhys == pRam->GCPhys)
{
Assert(pRam->cb == cb);
/*
* See if all the pages are dead MMIO pages.
*/
uint32_t const cPages = cb >> PAGE_SHIFT;
bool fAllMMIO = true;
uint32_t iPage = 0;
uint32_t cLeft = cPages;
while (cLeft-- > 0)
{
PPGMPAGE pPage = &pRam->aPages[iPage];
if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
/*|| not-out-of-action later */)
{
fAllMMIO = false;
Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
break;
}
Assert(PGM_PAGE_IS_ZERO(pPage));
pPage++;
}
if (fAllMMIO)
{
/*
* Ad-hoc range, unlink and free it.
*/
Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
GCPhys, GCPhysLast, pRam->pszDesc));
pVM->pgm.s.cAllPages -= cPages;
pVM->pgm.s.cPureMmioPages -= cPages;
pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
MMHyperFree(pVM, pRam);
break;
}
}
/*
* Range match? It will all be within one range (see PGMAllHandler.cpp).
*/
if ( GCPhysLast >= pRam->GCPhys
&& GCPhys <= pRam->GCPhysLast)
{
Assert(GCPhys >= pRam->GCPhys);
Assert(GCPhysLast <= pRam->GCPhysLast);
/*
* Turn the pages back into RAM pages.
*/
uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
uint32_t cLeft = cb >> PAGE_SHIFT;
while (cLeft--)
{
PPGMPAGE pPage = &pRam->aPages[iPage];
AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
}
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
}
PGMPhysInvalidatePageMapTLB(pVM);
return rc;
}
/**
* Locate a MMIO2 range.
*
* @returns Pointer to the MMIO2 range.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device instance owning the region.
* @param iRegion The region.
*/
DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
{
/*
* Search the list.
*/
for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
if ( pCur->pDevInsR3 == pDevIns
&& pCur->iRegion == iRegion)
return pCur;
return NULL;
}
/**
* Allocate and register an MMIO2 region.
*
* As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
* RAM associated with a device. It is also non-shared memory with a
* permanent ring-3 mapping and page backing (presently).
*
* A MMIO2 range may overlap with base memory if a lot of RAM
* is configured for the VM, in which case we'll drop the base
* memory pages. Presently we will make no attempt to preserve
* anything that happens to be present in the base memory that
* is replaced, this is of course incorrectly but it's too much
* effort.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
* @retval VERR_ALREADY_EXISTS if the region already exists.
*
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device instance owning the region.
* @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
* this number has to be the number of that region. Otherwise
* it can be any number safe UINT8_MAX.
* @param cb The size of the region. Must be page aligned.
* @param fFlags Reserved for future use, must be zero.
* @param ppv Where to store the pointer to the ring-3 mapping of the memory.
* @param pszDesc The description.
*/
VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
{
/*
* Validate input.
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
AssertPtrReturn(ppv, VERR_INVALID_POINTER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(cb, VERR_INVALID_PARAMETER);
AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
const uint32_t cPages = cb >> PAGE_SHIFT;
AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
/*
* For the 2nd+ instance, mangle the description string so it's unique.
*/
if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
{
pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
if (!pszDesc)
return VERR_NO_MEMORY;
}
/*
* Try reserve and allocate the backing memory first as this is what is
* most likely to fail.
*/
int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
if (RT_SUCCESS(rc))
{
void *pvPages;
PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
if (RT_SUCCESS(rc))
rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
if (RT_SUCCESS(rc))
{
memset(pvPages, 0, cPages * PAGE_SIZE);
/*
* Create the MMIO2 range record for it.
*/
const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
PPGMMMIO2RANGE pNew;
rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
if (RT_SUCCESS(rc))
{
pNew->pDevInsR3 = pDevIns;
pNew->pvR3 = pvPages;
//pNew->pNext = NULL;
//pNew->fMapped = false;
//pNew->fOverlapping = false;
pNew->iRegion = iRegion;
pNew->idSavedState = UINT8_MAX;
pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
pNew->RamRange.GCPhys = NIL_RTGCPHYS;
pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
pNew->RamRange.pszDesc = pszDesc;
pNew->RamRange.cb = cb;
pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
pNew->RamRange.pvR3 = pvPages;
//pNew->RamRange.paLSPages = NULL;
uint32_t iPage = cPages;
while (iPage-- > 0)
{
PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
paPages[iPage].Phys, NIL_GMM_PAGEID,
PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
}
/* update page count stats */
pVM->pgm.s.cAllPages += cPages;
pVM->pgm.s.cPrivatePages += cPages;
/*
* Link it into the list.
* Since there is no particular order, just push it.
*/
pgmLock(pVM);
pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
pVM->pgm.s.pMmio2RangesR3 = pNew;
pgmUnlock(pVM);
*ppv = pvPages;
RTMemTmpFree(paPages);
PGMPhysInvalidatePageMapTLB(pVM);
return VINF_SUCCESS;
}
SUPR3PageFreeEx(pvPages, cPages);
}
RTMemTmpFree(paPages);
MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
}
if (pDevIns->iInstance > 0)
MMR3HeapFree((void *)pszDesc);
return rc;
}
/**
* Deregisters and frees an MMIO2 region.
*
* Any physical (and virtual) access handlers registered for the region must
* be deregistered before calling this function.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device instance owning the region.
* @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
*/
VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
{
/*
* Validate input.
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
pgmLock(pVM);
int rc = VINF_SUCCESS;
unsigned cFound = 0;
PPGMMMIO2RANGE pPrev = NULL;
PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
while (pCur)
{
if ( pCur->pDevInsR3 == pDevIns
&& ( iRegion == UINT32_MAX
|| pCur->iRegion == iRegion))
{
cFound++;
/*
* Unmap it if it's mapped.
*/
if (pCur->fMapped)
{
int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
}
/*
* Unlink it
*/
PPGMMMIO2RANGE pNext = pCur->pNextR3;
if (pPrev)
pPrev->pNextR3 = pNext;
else
pVM->pgm.s.pMmio2RangesR3 = pNext;
pCur->pNextR3 = NULL;
/*
* Free the memory.
*/
int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
/* we're leaking hyper memory here if done at runtime. */
#ifdef VBOX_STRICT
VMSTATE const enmState = VMR3GetState(pVM);
AssertMsg( enmState == VMSTATE_POWERING_OFF
|| enmState == VMSTATE_POWERING_OFF_LS
|| enmState == VMSTATE_OFF
|| enmState == VMSTATE_OFF_LS
|| enmState == VMSTATE_DESTROYING
|| enmState == VMSTATE_TERMINATED
|| enmState == VMSTATE_CREATING
, ("%s\n", VMR3GetStateName(enmState)));
#endif
/*rc = MMHyperFree(pVM, pCur);
AssertRCReturn(rc, rc); - not safe, see the alloc call. */
/* update page count stats */
pVM->pgm.s.cAllPages -= cPages;
pVM->pgm.s.cPrivatePages -= cPages;
/* next */
pCur = pNext;
}
else
{
pPrev = pCur;
pCur = pCur->pNextR3;
}
}
PGMPhysInvalidatePageMapTLB(pVM);
pgmUnlock(pVM);
return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
}
/**
* Maps a MMIO2 region.
*
* This is done when a guest / the bios / state loading changes the
* PCI config. The replacing of base memory has the same restrictions
* as during registration, of course.
*
* @returns VBox status code.
*
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The
*/
VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
/*
* Find our location in the ram range list, checking for
* restriction we don't bother implementing yet (partially overlapping).
*/
bool fRamExists = false;
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhys <= pRam->GCPhysLast
&& GCPhysLast >= pRam->GCPhys)
{
/* completely within? */
AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
&& GCPhysLast <= pRam->GCPhysLast,
("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
fRamExists = true;
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
if (fRamExists)
{
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
while (cPagesLeft-- > 0)
{
AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
VERR_PGM_RAM_CONFLICT);
pPage++;
}
}
Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
/*
* Make the changes.
*/
pgmLock(pVM);
pCur->RamRange.GCPhys = GCPhys;
pCur->RamRange.GCPhysLast = GCPhysLast;
pCur->fMapped = true;
pCur->fOverlapping = fRamExists;
if (fRamExists)
{
/** @todo use pgmR3PhysFreePageRange here. */
uint32_t cPendingPages = 0;
PGMMFREEPAGESREQ pReq;
int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
AssertLogRelRCReturn(rc, rc);
/* replace the pages, freeing all present RAM pages. */
PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
while (cPagesLeft-- > 0)
{
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
pVM->pgm.s.cZeroPages--;
GCPhys += PAGE_SIZE;
pPageSrc++;
pPageDst++;
}
/* Flush physical page map TLB. */
PGMPhysInvalidatePageMapTLB(pVM);
if (cPendingPages)
{
rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
AssertLogRelRCReturn(rc, rc);
}
GMMR3FreePagesCleanup(pReq);
pgmUnlock(pVM);
}
else
{
RTGCPHYS cb = pCur->RamRange.cb;
/* link in the ram range */
pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
pgmUnlock(pVM);
REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
}
PGMPhysInvalidatePageMapTLB(pVM);
return VINF_SUCCESS;
}
/**
* Unmaps a MMIO2 region.
*
* This is done when a guest / the bios / state loading changes the
* PCI config. The replacing of base memory has the same restrictions
* as during registration, of course.
*/
VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
/*
* Unmap it.
*/
pgmLock(pVM);
RTGCPHYS GCPhysRangeREM;
RTGCPHYS cbRangeREM;
bool fInformREM;
if (pCur->fOverlapping)
{
/* Restore the RAM pages we've replaced. */
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
pRam = pRam->pNextR3;
RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
while (cPagesLeft-- > 0)
{
PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
pVM->pgm.s.cZeroPages++;
pPageDst++;
}
/* Flush physical page map TLB. */
PGMPhysInvalidatePageMapTLB(pVM);
GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
cbRangeREM = RTGCPHYS_MAX; /* ditto */
fInformREM = false;
}
else
{
GCPhysRangeREM = pCur->RamRange.GCPhys;
cbRangeREM = pCur->RamRange.cb;
fInformREM = true;
pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
}
pCur->RamRange.GCPhys = NIL_RTGCPHYS;
pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
pCur->fOverlapping = false;
pCur->fMapped = false;
PGMPhysInvalidatePageMapTLB(pVM);
pgmUnlock(pVM);
if (fInformREM)
REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
return VINF_SUCCESS;
}
/**
* Checks if the given address is an MMIO2 base address or not.
*
* @returns true/false accordingly.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The owner of the memory, optional.
* @param GCPhys The address to check.
*/
VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, false);
AssertPtrReturn(pDevIns, false);
AssertReturn(GCPhys != NIL_RTGCPHYS, false);
AssertReturn(GCPhys != 0, false);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
/*
* Search the list.
*/
pgmLock(pVM);
for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
if (pCur->RamRange.GCPhys == GCPhys)
{
Assert(pCur->fMapped);
pgmUnlock(pVM);
return true;
}
pgmUnlock(pVM);
return false;
}
/**
* Gets the HC physical address of a page in the MMIO2 region.
*
* This is API is intended for MMHyper and shouldn't be called
* by anyone else...
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The owner of the memory, optional.
* @param iRegion The region.
* @param off The page expressed an offset into the MMIO2 region.
* @param pHCPhys Where to store the result.
*/
VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
pgmLock(pVM);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
*pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Maps a portion of an MMIO2 region into kernel space (host).
*
* The kernel mapping will become invalid when the MMIO2 memory is deregistered
* or the VM is terminated.
*
* @return VBox status code.
*
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device owning the MMIO2 memory.
* @param iRegion The region.
* @param off The offset into the region. Must be page aligned.
* @param cb The number of bytes to map. Must be page aligned.
* @param pszDesc Mapping description.
* @param pR0Ptr Where to store the R0 address.
*/
VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
const char *pszDesc, PRTR0PTR pR0Ptr)
{
/*
* Validate input.
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
/*
* Pass the request on to the support library/driver.
*/
int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
return rc;
}
/**
* Registers a ROM image.
*
* Shadowed ROM images requires double the amount of backing memory, so,
* don't use that unless you have to. Shadowing of ROM images is process
* where we can select where the reads go and where the writes go. On real
* hardware the chipset provides means to configure this. We provide
* PGMR3PhysProtectROM() for this purpose.
*
* A read-only copy of the ROM image will always be kept around while we
* will allocate RAM pages for the changes on demand (unless all memory
* is configured to be preallocated).
*
* @returns VBox status.
* @param pVM VM Handle.
* @param pDevIns The device instance owning the ROM.
* @param GCPhys First physical address in the range.
* Must be page aligned!
* @param cbRange The size of the range (in bytes).
* Must be page aligned!
* @param pvBinary Pointer to the binary data backing the ROM image.
* This must be exactly \a cbRange in size.
* @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
* and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
* @param pszDesc Pointer to description string. This must not be freed.
*
* @remark There is no way to remove the rom, automatically on device cleanup or
* manually from the device yet. This isn't difficult in any way, it's
* just not something we expect to be necessary for a while.
*/
VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
const void *pvBinary, uint32_t fFlags, const char *pszDesc)
{
Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
/*
* Validate input.
*/
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
const uint32_t cPages = cb >> PAGE_SHIFT;
/*
* Find the ROM location in the ROM list first.
*/
PPGMROMRANGE pRomPrev = NULL;
PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
while (pRom && GCPhysLast >= pRom->GCPhys)
{
if ( GCPhys <= pRom->GCPhysLast
&& GCPhysLast >= pRom->GCPhys)
AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
VERR_PGM_RAM_CONFLICT);
/* next */
pRomPrev = pRom;
pRom = pRom->pNextR3;
}
/*
* Find the RAM location and check for conflicts.
*
* Conflict detection is a bit different than for RAM
* registration since a ROM can be located within a RAM
* range. So, what we have to check for is other memory
* types (other than RAM that is) and that we don't span
* more than one RAM range (layz).
*/
bool fRamExists = false;
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhys <= pRam->GCPhysLast
&& GCPhysLast >= pRam->GCPhys)
{
/* completely within? */
AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
&& GCPhysLast <= pRam->GCPhysLast,
("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
fRamExists = true;
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
if (fRamExists)
{
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = cPages;
while (cPagesLeft-- > 0)
{
AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
Assert(PGM_PAGE_IS_ZERO(pPage));
pPage++;
}
}
/*
* Update the base memory reservation if necessary.
*/
uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
cExtraBaseCost += cPages;
if (cExtraBaseCost)
{
int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
if (RT_FAILURE(rc))
return rc;
}
/*
* Allocate memory for the virgin copy of the RAM.
*/
PGMMALLOCATEPAGESREQ pReq;
int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
AssertRCReturn(rc, rc);
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
}
pgmLock(pVM);
rc = GMMR3AllocatePagesPerform(pVM, pReq);
pgmUnlock(pVM);
if (RT_FAILURE(rc))
{
GMMR3AllocatePagesCleanup(pReq);
return rc;
}
/*
* Allocate the new ROM range and RAM range (if necessary).
*/
PPGMROMRANGE pRomNew;
rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
if (RT_SUCCESS(rc))
{
PPGMRAMRANGE pRamNew = NULL;
if (!fRamExists)
rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
if (RT_SUCCESS(rc))
{
pgmLock(pVM);
/*
* Initialize and insert the RAM range (if required).
*/
PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
if (!fRamExists)
{
pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
pRamNew->GCPhys = GCPhys;
pRamNew->GCPhysLast = GCPhysLast;
pRamNew->cb = cb;
pRamNew->pszDesc = pszDesc;
pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
pRamNew->pvR3 = NULL;
pRamNew->paLSPages = NULL;
PPGMPAGE pPage = &pRamNew->aPages[0];
for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
{
PGM_PAGE_INIT(pPage,
pReq->aPages[iPage].HCPhysGCPhys,
pReq->aPages[iPage].idPage,
PGMPAGETYPE_ROM,
PGM_PAGE_STATE_ALLOCATED);
pRomPage->Virgin = *pPage;
}
pVM->pgm.s.cAllPages += cPages;
pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
}
else
{
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
{
PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
pRomPage->Virgin = *pPage;
}
pRamNew = pRam;
pVM->pgm.s.cZeroPages -= cPages;
}
pVM->pgm.s.cPrivatePages += cPages;
/* Flush physical page map TLB. */
PGMPhysInvalidatePageMapTLB(pVM);
pgmUnlock(pVM);
/*
* !HACK ALERT! REM + (Shadowed) ROM ==> mess.
*
* If it's shadowed we'll register the handler after the ROM notification
* so we get the access handler callbacks that we should. If it isn't
* shadowed we'll do it the other way around to make REM use the built-in
* ROM behavior and not the handler behavior (which is to route all access
* to PGM atm).
*/
if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
{
REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
rc = PGMR3HandlerPhysicalRegister(pVM,
fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
: PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
GCPhys, GCPhysLast,
pgmR3PhysRomWriteHandler, pRomNew,
NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
}
else
{
rc = PGMR3HandlerPhysicalRegister(pVM,
fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
: PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
GCPhys, GCPhysLast,
pgmR3PhysRomWriteHandler, pRomNew,
NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
}
if (RT_SUCCESS(rc))
{
pgmLock(pVM);
/*
* Copy the image over to the virgin pages.
* This must be done after linking in the RAM range.
*/
PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
{
void *pvDstPage;
rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
if (RT_FAILURE(rc))
{
VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
break;
}
memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
}
if (RT_SUCCESS(rc))
{
/*
* Initialize the ROM range.
* Note that the Virgin member of the pages has already been initialized above.
*/
pRomNew->GCPhys = GCPhys;
pRomNew->GCPhysLast = GCPhysLast;
pRomNew->cb = cb;
pRomNew->fFlags = fFlags;
pRomNew->idSavedState = UINT8_MAX;
pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
pRomNew->pszDesc = pszDesc;
for (unsigned iPage = 0; iPage < cPages; iPage++)
{
PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
}
/* update the page count stats for the shadow pages. */
if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
{
pVM->pgm.s.cZeroPages += cPages;
pVM->pgm.s.cAllPages += cPages;
}
/*
* Insert the ROM range, tell REM and return successfully.
*/
pRomNew->pNextR3 = pRom;
pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
if (pRomPrev)
{
pRomPrev->pNextR3 = pRomNew;
pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
}
else
{
pVM->pgm.s.pRomRangesR3 = pRomNew;
pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
}
PGMPhysInvalidatePageMapTLB(pVM);
GMMR3AllocatePagesCleanup(pReq);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/* bail out */
pgmUnlock(pVM);
int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
AssertRC(rc2);
pgmLock(pVM);
}
if (!fRamExists)
{
pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
MMHyperFree(pVM, pRamNew);
}
}
MMHyperFree(pVM, pRomNew);
}
/** @todo Purge the mapping cache or something... */
GMMR3FreeAllocatedPages(pVM, pReq);
GMMR3AllocatePagesCleanup(pReq);
pgmUnlock(pVM);
return rc;
}
/**
* \#PF Handler callback for ROM write accesses.
*
* @returns VINF_SUCCESS if the handler have carried out the operation.
* @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
* @param pVM VM Handle.
* @param GCPhys The physical address the guest is writing to.
* @param pvPhys The HC mapping of that address.
* @param pvBuf What the guest is reading/writing.
* @param cbBuf How much it's reading/writing.
* @param enmAccessType The access type.
* @param pvUser User argument.
*/
static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
{
PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
Assert(iPage < (pRom->cb >> PAGE_SHIFT));
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
if (enmAccessType == PGMACCESSTYPE_READ)
{
switch (pRomPage->enmProt)
{
/*
* Take the default action.
*/
case PGMROMPROT_READ_ROM_WRITE_IGNORE:
case PGMROMPROT_READ_RAM_WRITE_IGNORE:
case PGMROMPROT_READ_ROM_WRITE_RAM:
case PGMROMPROT_READ_RAM_WRITE_RAM:
return VINF_PGM_HANDLER_DO_DEFAULT;
default:
AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
pRom->aPages[iPage].enmProt, iPage, GCPhys),
VERR_INTERNAL_ERROR);
}
}
else
{
Assert(enmAccessType == PGMACCESSTYPE_WRITE);
switch (pRomPage->enmProt)
{
/*
* Ignore writes.
*/
case PGMROMPROT_READ_ROM_WRITE_IGNORE:
case PGMROMPROT_READ_RAM_WRITE_IGNORE:
return VINF_SUCCESS;
/*
* Write to the ram page.
*/
case PGMROMPROT_READ_ROM_WRITE_RAM:
case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
{
/* This should be impossible now, pvPhys doesn't work cross page anylonger. */
Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
/*
* Take the lock, do lazy allocation, map the page and copy the data.
*
* Note that we have to bypass the mapping TLB since it works on
* guest physical addresses and entering the shadow page would
* kind of screw things up...
*/
int rc = pgmLock(pVM);
AssertRC(rc);
PPGMPAGE pShadowPage = &pRomPage->Shadow;
if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
{
pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
}
void *pvDstPage;
rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
if (RT_SUCCESS(rc))
{
memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
pRomPage->LiveSave.fWrittenTo = true;
}
pgmUnlock(pVM);
return rc;
}
default:
AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
pRom->aPages[iPage].enmProt, iPage, GCPhys),
VERR_INTERNAL_ERROR);
}
}
}
/**
* Called by PGMR3Reset to reset the shadow, switch to the virgin,
* and verify that the virgin part is untouched.
*
* This is done after the normal memory has been cleared.
*
* ASSUMES that the caller owns the PGM lock.
*
* @param pVM The VM handle.
*/
int pgmR3PhysRomReset(PVM pVM)
{
Assert(PGMIsLockOwner(pVM));
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
{
/*
* Reset the physical handler.
*/
int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
AssertRCReturn(rc, rc);
/*
* What we do with the shadow pages depends on the memory
* preallocation option. If not enabled, we'll just throw
* out all the dirty pages and replace them by the zero page.
*/
if (!pVM->pgm.s.fRamPreAlloc)
{
/* Free the dirty pages. */
uint32_t cPendingPages = 0;
PGMMFREEPAGESREQ pReq;
rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
AssertRCReturn(rc, rc);
for (uint32_t iPage = 0; iPage < cPages; iPage++)
if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
{
Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
AssertLogRelRCReturn(rc, rc);
}
if (cPendingPages)
{
rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
AssertLogRelRCReturn(rc, rc);
}
GMMR3FreePagesCleanup(pReq);
}
else
{
/* clear all the shadow pages. */
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
void *pvDstPage;
const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
if (RT_FAILURE(rc))
break;
ASMMemZeroPage(pvDstPage);
}
AssertRCReturn(rc, rc);
}
}
#ifdef VBOX_STRICT
/*
* Verify that the virgin page is unchanged if possible.
*/
if (pRom->pvOriginal)
{
uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
{
const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
void const *pvDstPage;
int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
if (RT_FAILURE(rc))
break;
if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
GCPhys, pRom->pszDesc));
}
}
#endif
}
return VINF_SUCCESS;
}
/**
* Change the shadowing of a range of ROM pages.
*
* This is intended for implementing chipset specific memory registers
* and will not be very strict about the input. It will silently ignore
* any pages that are not the part of a shadowed ROM.
*
* @returns VBox status code.
* @retval VINF_PGM_SYNC_CR3
*
* @param pVM Pointer to the shared VM structure.
* @param GCPhys Where to start. Page aligned.
* @param cb How much to change. Page aligned.
* @param enmProt The new ROM protection.
*/
VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
{
/*
* Check input
*/
if (!cb)
return VINF_SUCCESS;
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
/*
* Process the request.
*/
pgmLock(pVM);
int rc = VINF_SUCCESS;
bool fFlushTLB = false;
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
if ( GCPhys <= pRom->GCPhysLast
&& GCPhysLast >= pRom->GCPhys
&& (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
{
/*
* Iterate the relevant pages and make necessary the changes.
*/
bool fChanges = false;
uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
? pRom->cb >> PAGE_SHIFT
: (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
iPage < cPages;
iPage++)
{
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
{
fChanges = true;
/* flush references to the page. */
PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
rc = rc2;
PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
*pOld = *pRamPage;
*pRamPage = *pNew;
/** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
}
pRomPage->enmProt = enmProt;
}
/*
* Reset the access handler if we made changes, no need
* to optimize this.
*/
if (fChanges)
{
int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
if (RT_FAILURE(rc2))
{
pgmUnlock(pVM);
AssertRC(rc);
return rc2;
}
}
/* Advance - cb isn't updated. */
GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
}
}
pgmUnlock(pVM);
if (fFlushTLB)
PGM_INVL_ALL_VCPU_TLBS(pVM);
return rc;
}
/**
* Sets the Address Gate 20 state.
*
* @param pVCpu The VCPU to operate on.
* @param fEnable True if the gate should be enabled.
* False if the gate should be disabled.
*/
VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
{
LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
if (pVCpu->pgm.s.fA20Enabled != fEnable)
{
pVCpu->pgm.s.fA20Enabled = fEnable;
pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
/** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
}
}
/**
* Tree enumeration callback for dealing with age rollover.
* It will perform a simple compression of the current age.
*/
static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
{
Assert(PGMIsLockOwner((PVM)pvUser));
/* Age compression - ASSUMES iNow == 4. */
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
if (pChunk->iAge >= UINT32_C(0xffffff00))
pChunk->iAge = 3;
else if (pChunk->iAge >= UINT32_C(0xfffff000))
pChunk->iAge = 2;
else if (pChunk->iAge)
pChunk->iAge = 1;
else /* iAge = 0 */
pChunk->iAge = 4;
/* reinsert */
PVM pVM = (PVM)pvUser;
RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
pChunk->AgeCore.Key = pChunk->iAge;
RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
return 0;
}
/**
* Tree enumeration callback that updates the chunks that have
* been used since the last
*/
static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
{
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
if (!pChunk->iAge)
{
PVM pVM = (PVM)pvUser;
RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
}
return 0;
}
/**
* Performs ageing of the ring-3 chunk mappings.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
{
pgmLock(pVM);
pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
pVM->pgm.s.ChunkR3Map.iNow++;
if (pVM->pgm.s.ChunkR3Map.iNow == 0)
{
pVM->pgm.s.ChunkR3Map.iNow = 4;
RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
}
else
RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
pgmUnlock(pVM);
}
/**
* The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
*/
typedef struct PGMR3PHYSCHUNKUNMAPCB
{
PVM pVM; /**< The VM handle. */
PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
/**
* Callback used to find the mapping that's been unused for
* the longest time.
*/
static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
{
do
{
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
if ( pChunk->iAge
&& !pChunk->cRefs)
{
/*
* Check that it's not in any of the TLBs.
*/
PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
{
pChunk = NULL;
break;
}
if (pChunk)
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
{
pChunk = NULL;
break;
}
if (pChunk)
{
((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
return 1; /* done */
}
}
/* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
pNode = pNode->pList;
} while (pNode);
return 0;
}
/**
* Finds a good candidate for unmapping when the ring-3 mapping cache is full.
*
* The candidate will not be part of any TLBs, so no need to flush
* anything afterwards.
*
* @returns Chunk id.
* @param pVM The VM handle.
*/
static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
{
Assert(PGMIsLockOwner(pVM));
/*
* Do tree ageing first?
*/
if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
PGMR3PhysChunkAgeing(pVM);
/*
* Enumerate the age tree starting with the left most node.
*/
PGMR3PHYSCHUNKUNMAPCB Args;
Args.pVM = pVM;
Args.pChunk = NULL;
if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
return Args.pChunk->Core.Key;
return INT32_MAX;
}
/**
* Maps the given chunk into the ring-3 mapping cache.
*
* This will call ring-0.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param idChunk The chunk in question.
* @param ppChunk Where to store the chunk tracking structure.
*
* @remarks Called from within the PGM critical section.
*/
int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
{
int rc;
Assert(PGMIsLockOwner(pVM));
/*
* Allocate a new tracking structure first.
*/
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
#else
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
#endif
AssertReturn(pChunk, VERR_NO_MEMORY);
pChunk->Core.Key = idChunk;
pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
pChunk->iAge = 0;
pChunk->cRefs = 0;
pChunk->cPermRefs = 0;
pChunk->pv = NULL;
/*
* Request the ring-0 part to map the chunk in question and if
* necessary unmap another one to make space in the mapping cache.
*/
GMMMAPUNMAPCHUNKREQ Req;
Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
Req.Hdr.cbReq = sizeof(Req);
Req.pvR3 = NULL;
Req.idChunkMap = idChunk;
Req.idChunkUnmap = NIL_GMM_CHUNKID;
if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
/** @todo This is wrong. Any thread in the VM process should be able to do this,
* there are depenenecies on this. What currently saves the day is that
* we don't unmap anything and that all non-zero memory will therefore
* be present when non-EMTs tries to access it. */
rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
if (RT_SUCCESS(rc))
{
/*
* Update the tree.
*/
/* insert the new one. */
AssertPtr(Req.pvR3);
pChunk->pv = Req.pvR3;
bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
AssertRelease(fRc);
pVM->pgm.s.ChunkR3Map.c++;
fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
AssertRelease(fRc);
/* remove the unmapped one. */
if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
{
PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
AssertRelease(pUnmappedChunk);
pUnmappedChunk->pv = NULL;
pUnmappedChunk->Core.Key = UINT32_MAX;
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
MMR3HeapFree(pUnmappedChunk);
#else
MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
#endif
pVM->pgm.s.ChunkR3Map.c--;
/* Chunk removed, so clear the page map TBL as well (might still be referenced). */
PGMPhysInvalidatePageMapTLB(pVM);
}
}
else
{
AssertRC(rc);
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
MMR3HeapFree(pChunk);
#else
MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
#endif
pChunk = NULL;
}
*ppChunk = pChunk;
return rc;
}
/**
* For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
*
* @returns see pgmR3PhysChunkMap.
* @param pVM The VM handle.
* @param idChunk The chunk to map.
*/
VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
{
PPGMCHUNKR3MAP pChunk;
int rc;
pgmLock(pVM);
rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
pgmUnlock(pVM);
return rc;
}
/**
* Invalidates the TLB for the ring-3 mapping cache.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
{
pgmLock(pVM);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
{
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
}
/* The page map TLB references chunks, so invalidate that one too. */
PGMPhysInvalidatePageMapTLB(pVM);
pgmUnlock(pVM);
}
/**
* Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
* for use with a nested paging PDE.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success.
* @retval VINF_EM_NO_MEMORY if we're out of memory.
*
* @param pVM The VM handle.
* @param GCPhys GC physical start address of the 2 MB range
*/
VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
{
pgmLock(pVM);
int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
if (RT_SUCCESS(rc))
{
Assert(pVM->pgm.s.cLargeHandyPages == 1);
uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
void *pv;
/* Map the large page into our address space.
*
* Note: assuming that within the 2 MB range:
* - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
* - user space mapping is continuous as well
* - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
*/
rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
if (RT_SUCCESS(rc))
{
/*
* Clear the pages.
*/
for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
{
ASMMemZeroPage(pv);
PPGMPAGE pPage;
rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
AssertRC(rc);
Assert(PGM_PAGE_IS_ZERO(pPage));
STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
pVM->pgm.s.cZeroPages--;
/*
* Do the PGMPAGE modifications.
*/
pVM->pgm.s.cPrivatePages++;
PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
PGM_PAGE_SET_PAGEID(pPage, idPage);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
/* Somewhat dirty assumption that page ids are increasing. */
idPage++;
HCPhys += PAGE_SIZE;
GCPhys += PAGE_SIZE;
pv = (void *)((uintptr_t)pv + PAGE_SIZE);
Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
}
/* Flush all TLBs. */
PGM_INVL_ALL_VCPU_TLBS(pVM);
PGMPhysInvalidatePageMapTLB(pVM);
}
pVM->pgm.s.cLargeHandyPages = 0;
}
pgmUnlock(pVM);
return rc;
}
/**
* Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
*
* This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
* signal and clear the out of memory condition. When contracted, this API is
* used to try clear the condition when the user wants to resume.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success. FFs cleared.
* @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
* this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
*
* @param pVM The VM handle.
*
* @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
* in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
* pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
* handler.
*/
VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
{
pgmLock(pVM);
/*
* Allocate more pages, noting down the index of the first new page.
*/
uint32_t iClear = pVM->pgm.s.cHandyPages;
AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
int rcAlloc = VINF_SUCCESS;
int rcSeed = VINF_SUCCESS;
int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
while (rc == VERR_GMM_SEED_ME)
{
void *pvChunk;
rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
if (RT_SUCCESS(rc))
{
rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
if (RT_FAILURE(rc))
SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
}
if (RT_SUCCESS(rc))
rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
}
if (RT_SUCCESS(rc))
{
AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
Assert(pVM->pgm.s.cHandyPages > 0);
VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
/*
* Clear the pages.
*/
while (iClear < pVM->pgm.s.cHandyPages)
{
PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
void *pv;
rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
ASMMemZeroPage(pv);
iClear++;
Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
}
}
else
{
/*
* We should never get here unless there is a genuine shortage of
* memory (or some internal error). Flag the error so the VM can be
* suspended ASAP and the user informed. If we're totally out of
* handy pages we will return failure.
*/
/* Report the failure. */
LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
" cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
rc, rcAlloc, rcSeed,
pVM->pgm.s.cHandyPages,
pVM->pgm.s.cAllPages,
pVM->pgm.s.cPrivatePages,
pVM->pgm.s.cSharedPages,
pVM->pgm.s.cZeroPages));
if ( rc != VERR_NO_MEMORY
&& rc != VERR_LOCK_FAILED)
{
for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
{
LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
pVM->pgm.s.aHandyPages[i].idSharedPage));
uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
if (idPage != NIL_GMM_PAGEID)
{
for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
pRam;
pRam = pRam->pNextR3)
{
uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
}
}
}
}
/* Set the FFs and adjust rc. */
VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
if ( rc == VERR_NO_MEMORY
|| rc == VERR_LOCK_FAILED)
rc = VINF_EM_NO_MEMORY;
}
pgmUnlock(pVM);
return rc;
}
/**
* Frees the specified RAM page and replaces it with the ZERO page.
*
* This is used by ballooning, remapping MMIO2 and RAM reset.
*
* @param pVM Pointer to the shared VM structure.
* @param pReq Pointer to the request.
* @param pPage Pointer to the page structure.
* @param GCPhys The guest physical address of the page, if applicable.
*
* @remarks The caller must own the PGM lock.
*/
static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
{
/*
* Assert sanity.
*/
Assert(PGMIsLockOwner(pVM));
if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
&& PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
{
AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
}
if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
return VINF_SUCCESS;
const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
|| idPage > GMM_PAGEID_LAST
|| PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
{
AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
}
/* update page count stats. */
if (PGM_PAGE_IS_SHARED(pPage))
pVM->pgm.s.cSharedPages--;
else
pVM->pgm.s.cPrivatePages--;
pVM->pgm.s.cZeroPages++;
/* Deal with write monitored pages. */
if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
{
PGM_PAGE_SET_WRITTEN_TO(pPage);
pVM->pgm.s.cWrittenToPages++;
}
/*
* pPage = ZERO page.
*/
PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
/* Flush physical page map TLB entry. */
PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
/*
* Make sure it's not in the handy page array.
*/
for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
{
if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
{
pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
break;
}
if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
{
pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
break;
}
}
/*
* Push it onto the page array.
*/
uint32_t iPage = *pcPendingPages;
Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
*pcPendingPages += 1;
pReq->aPages[iPage].idPage = idPage;
if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
return VINF_SUCCESS;
/*
* Flush the pages.
*/
int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
if (RT_SUCCESS(rc))
{
GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
*pcPendingPages = 0;
}
return rc;
}
/**
* Converts a GC physical address to a HC ring-3 pointer, with some
* additional checks.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success.
* @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
* access handler of some kind.
* @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
* accesses or is odd in any way.
* @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
*
* @param pVM The VM handle.
* @param GCPhys The GC physical address to convert.
* @param fWritable Whether write access is required.
* @param ppv Where to store the pointer corresponding to GCPhys on
* success.
*/
VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
{
pgmLock(pVM);
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
if (RT_SUCCESS(rc))
{
if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
rc = VINF_SUCCESS;
else
{
if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
{
/** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
* in -norawr0 mode. */
if (fWritable)
rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
}
else
{
/* Temporarily disabled physical handler(s), since the recompiler
doesn't get notified when it's reset we'll have to pretend it's
operating normally. */
if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
else
rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
}
}
if (RT_SUCCESS(rc))
{
int rc2;
/* Make sure what we return is writable. */
if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_ALLOCATED:
break;
case PGM_PAGE_STATE_ZERO:
case PGM_PAGE_STATE_SHARED:
case PGM_PAGE_STATE_WRITE_MONITORED:
rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
AssertLogRelRCReturn(rc2, rc2);
break;
}
/* Get a ring-3 mapping of the address. */
PPGMPAGER3MAPTLBE pTlbe;
rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
AssertLogRelRCReturn(rc2, rc2);
*ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
/** @todo mapping/locking hell; this isn't horribly efficient since
* pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
}
else
Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
/* else: handler catching all access, no pointer returned. */
}
else
rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
pgmUnlock(pVM);
return rc;
}