PGMPhys.cpp revision 9ad5e3912962c3dbccc1afc4e7d62890fe906814
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, Physical Memory Addressing.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/pgm.h>
#include <VBox/cpum.h>
#include <VBox/iom.h>
#include <VBox/sup.h>
#include <VBox/mm.h>
#include <VBox/stam.h>
#include <VBox/rem.h>
#include <VBox/csam.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/dbg.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <VBox/log.h>
#include <iprt/thread.h>
#include <iprt/string.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
/*static - shut up warning */
DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
/*
* PGMR3PhysReadU8-64
* PGMR3PhysWriteU8-64
*/
#define PGMPHYSFN_READNAME PGMR3PhysReadU8
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
#define PGMPHYS_DATASIZE 1
#define PGMPHYS_DATATYPE uint8_t
#include "PGMPhysRWTmpl.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadU16
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
#define PGMPHYS_DATASIZE 2
#define PGMPHYS_DATATYPE uint16_t
#include "PGMPhysRWTmpl.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadU32
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
#define PGMPHYS_DATASIZE 4
#define PGMPHYS_DATATYPE uint32_t
#include "PGMPhysRWTmpl.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadU64
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
#define PGMPHYS_DATASIZE 8
#define PGMPHYS_DATATYPE uint64_t
#include "PGMPhysRWTmpl.h"
/**
* Links a new RAM range into the list.
*
* @param pVM Pointer to the shared VM structure.
* @param pNew Pointer to the new list entry.
* @param pPrev Pointer to the previous list entry. If NULL, insert as head.
*/
static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
{
pgmLock(pVM);
PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
pNew->pNextR3 = pRam;
pNew->pNextR0 = pRam ? MMHyperCCToR0(pVM, pRam) : NIL_RTR0PTR;
pNew->pNextGC = pRam ? MMHyperCCToRC(pVM, pRam) : NIL_RTGCPTR;
if (pPrev)
{
pPrev->pNextR3 = pNew;
pPrev->pNextR0 = MMHyperCCToR0(pVM, pNew);
pPrev->pNextGC = MMHyperCCToRC(pVM, pNew);
}
else
{
pVM->pgm.s.pRamRangesR3 = pNew;
pVM->pgm.s.pRamRangesR0 = MMHyperCCToR0(pVM, pNew);
pVM->pgm.s.pRamRangesGC = MMHyperCCToRC(pVM, pNew);
}
pgmUnlock(pVM);
}
/**
* Unlink an existing RAM range from the list.
*
* @param pVM Pointer to the shared VM structure.
* @param pRam Pointer to the new list entry.
* @param pPrev Pointer to the previous list entry. If NULL, insert as head.
*/
static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
{
Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
pgmLock(pVM);
PPGMRAMRANGE pNext = pRam->pNextR3;
if (pPrev)
{
pPrev->pNextR3 = pNext;
pPrev->pNextR0 = pNext ? MMHyperCCToR0(pVM, pNext) : NIL_RTR0PTR;
pPrev->pNextGC = pNext ? MMHyperCCToRC(pVM, pNext) : NIL_RTGCPTR;
}
else
{
Assert(pVM->pgm.s.pRamRangesR3 == pRam);
pVM->pgm.s.pRamRangesR3 = pNext;
pVM->pgm.s.pRamRangesR0 = pNext ? MMHyperCCToR0(pVM, pNext) : NIL_RTR0PTR;
pVM->pgm.s.pRamRangesGC = pNext ? MMHyperCCToRC(pVM, pNext) : NIL_RTGCPTR;
}
pgmUnlock(pVM);
}
/**
* Unlink an existing RAM range from the list.
*
* @param pVM Pointer to the shared VM structure.
* @param pRam Pointer to the new list entry.
*/
static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
{
/* find prev. */
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
while (pCur != pRam)
{
pPrev = pCur;
pCur = pCur->pNextR3;
}
AssertFatal(pCur);
pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
}
/**
* Sets up a range RAM.
*
* This will check for conflicting registrations, make a resource
* reservation for the memory (with GMM), and setup the per-page
* tracking structures (PGMPAGE).
*
* @returns VBox stutus code.
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The physical address of the RAM.
* @param cb The size of the RAM.
* @param pszDesc The description - not copied, so, don't free or change it.
*/
VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
{
/*
* Validate input.
*/
Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
/*
* Find range location and check for conflicts.
* (We don't lock here because the locking by EMT is only required on update.)
*/
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhysLast >= pRam->GCPhys
&& GCPhys <= pRam->GCPhysLast)
AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
/* next */
pPrev = pRam;
pRam = pRam->pNextR3;
}
/*
* Register it with GMM (the API bitches).
*/
const RTGCPHYS cPages = cb >> PAGE_SHIFT;
int rc = MMR3IncreaseBaseReservation(pVM, cPages);
if (RT_FAILURE(rc))
return rc;
/*
* Allocate RAM range.
*/
const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
PPGMRAMRANGE pNew;
rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
/*
* Initialize the range.
*/
pNew->GCPhys = GCPhys;
pNew->GCPhysLast = GCPhysLast;
pNew->pszDesc = pszDesc;
pNew->cb = cb;
pNew->fFlags = 0;
pNew->pvHC = NULL;
pNew->pavHCChunkHC = NULL;
pNew->pavHCChunkGC = 0;
#ifndef VBOX_WITH_NEW_PHYS_CODE
/* Allocate memory for chunk to HC ptr lookup array. */
rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
AssertRCReturn(rc, rc);
pNew->pavHCChunkGC = MMHyperCCToRC(pVM, pNew->pavHCChunkHC);
pNew->fFlags |= MM_RAM_FLAGS_DYNAMIC_ALLOC;
#endif
RTGCPHYS iPage = cPages;
while (iPage-- > 0)
PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
/*
* Insert the new RAM range.
*/
pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
/*
* Notify REM.
*/
#ifdef VBOX_WITH_NEW_PHYS_CODE
REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, 0);
#else
REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, MM_RAM_FLAGS_DYNAMIC_ALLOC);
#endif
return VINF_SUCCESS;
}
/**
* Resets (zeros) the RAM.
*
* ASSUMES that the caller owns the PGM lock.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
*/
int pgmR3PhysRamReset(PVM pVM)
{
/*
* Walk the ram ranges.
*/
for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
{
uint32_t iPage = pRam->cb >> PAGE_SHIFT; Assert((RTGCPHYS)iPage << PAGE_SHIFT == pRam->cb);
#ifdef VBOX_WITH_NEW_PHYS_CODE
if (!pVM->pgm.f.fRamPreAlloc)
{
/* Replace all RAM pages by ZERO pages. */
while (iPage-- > 0)
{
PPGMPAGE pPage = &pRam->aPages[iPage];
switch (PGM_PAGE_GET_TYPE(pPage))
{
case PGMPAGETYPE_RAM:
if (!PGM_PAGE_IS_ZERO(pPage))
pgmPhysFreePage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)i << PAGE_SHIFT));
break;
case PGMPAGETYPE_MMIO2:
case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
case PGMPAGETYPE_ROM:
case PGMPAGETYPE_MMIO:
break;
default:
AssertFailed();
}
} /* for each page */
}
else
#endif
{
/* Zero the memory. */
while (iPage-- > 0)
{
PPGMPAGE pPage = &pRam->aPages[iPage];
switch (PGM_PAGE_GET_TYPE(pPage))
{
#ifndef VBOX_WITH_NEW_PHYS_CODE
case PGMPAGETYPE_INVALID:
case PGMPAGETYPE_RAM:
if (pRam->aPages[iPage].HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
{
/* shadow ram is reloaded elsewhere. */
Log4(("PGMR3Reset: not clearing phys page %RGp due to flags %RHp\n", pRam->GCPhys + (iPage << PAGE_SHIFT), pRam->aPages[iPage].HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO))); /** @todo PAGE FLAGS */
continue;
}
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned iChunk = iPage >> (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
if (pRam->pavHCChunkHC[iChunk])
ASMMemZero32((char *)pRam->pavHCChunkHC[iChunk] + ((iPage << PAGE_SHIFT) & PGM_DYNAMIC_CHUNK_OFFSET_MASK), PAGE_SIZE);
}
else
ASMMemZero32((char *)pRam->pvHC + (iPage << PAGE_SHIFT), PAGE_SIZE);
break;
#else /* VBOX_WITH_NEW_PHYS_CODE */
case PGMPAGETYPE_RAM:
switch (PGM_PAGE_GET_STATE(pPage))
{
case PGM_PAGE_STATE_ZERO:
break;
case PGM_PAGE_STATE_SHARED:
case PGM_PAGE_STATE_WRITE_MONITORED:
rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)i << PAGE_SHIFT));
AssertLogRelRCReturn(rc, rc);
case PGM_PAGE_STATE_ALLOCATED:
{
void *pvPage;
PPGMPAGEMAP pMapIgnored;
rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)i << PAGE_SHIFT), &pMapIgnored, &pvPage);
AssertLogRelRCReturn(rc, rc);
ASMMemZeroPage(pvPage);
break;
}
}
break;
#endif /* VBOX_WITH_NEW_PHYS_CODE */
case PGMPAGETYPE_MMIO2:
case PGMPAGETYPE_ROM_SHADOW:
case PGMPAGETYPE_ROM:
case PGMPAGETYPE_MMIO:
break;
default:
AssertFailed();
}
} /* for each page */
}
}
return VINF_SUCCESS;
}
/**
* This is the interface IOM is using to register an MMIO region.
*
* It will check for conflicts and ensure that a RAM range structure
* is present before calling the PGMR3HandlerPhysicalRegister API to
* register the callbacks.
*
* @returns VBox status code.
*
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The start of the MMIO region.
* @param cb The size of the MMIO region.
* @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
* @param pvUserR3 The user argument for R3.
* @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
* @param pvUserR0 The user argument for R0.
* @param pfnHandlerGC The address of the GC handler. (IOMMMIOHandler)
* @param pvUserGC The user argument for GC.
* @param pszDesc The description of the MMIO region.
*/
VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC, RTGCPTR pvUserGC,
R3PTRTYPE(const char *) pszDesc)
{
/*
* Assert on some assumption.
*/
VM_ASSERT_EMT(pVM);
AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
/*
* Make sure there's a RAM range structure for the region.
*/
int rc;
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
bool fRamExists = false;
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhysLast >= pRam->GCPhys
&& GCPhys <= pRam->GCPhysLast)
{
/* Simplification: all within the same range. */
AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
&& GCPhysLast <= pRam->GCPhysLast,
("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
/* Check that it's all RAM or MMIO pages. */
PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cLeft = cb >> PAGE_SHIFT;
while (cLeft-- > 0)
{
AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
pPage++;
}
/* Looks good. */
fRamExists = true;
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
PPGMRAMRANGE pNew;
if (fRamExists)
pNew = NULL;
else
{
/*
* No RAM range, insert an ad-hoc one.
*
* Note that we don't have to tell REM about this range because
* PGMHandlerPhysicalRegisterEx will do that for us.
*/
Log(("PGMR3PhysMMIORegister: Adding ad-hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
const uint32_t cPages = cb >> PAGE_SHIFT;
const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
/* Initialize the range. */
pNew->GCPhys = GCPhys;
pNew->GCPhysLast = GCPhysLast;
pNew->pszDesc = pszDesc;
pNew->cb = cb;
pNew->fFlags = 0; /* Some MMIO flag here? */
pNew->pvHC = NULL;
pNew->pavHCChunkHC = NULL;
pNew->pavHCChunkGC = 0;
uint32_t iPage = cPages;
while (iPage-- > 0)
PGM_PAGE_INIT_ZERO_REAL(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
/* link it */
pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
}
/*
* Register the access handler.
*/
rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
pfnHandlerR3, pvUserR3,
pfnHandlerR0, pvUserR0,
pfnHandlerGC, pvUserGC, pszDesc);
if ( RT_FAILURE(rc)
&& !fRamExists)
{
/* remove the ad-hoc range. */
pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
MMHyperFree(pVM, pRam);
}
return rc;
}
/**
* This is the interface IOM is using to register an MMIO region.
*
* It will take care of calling PGMHandlerPhysicalDeregister and clean up
* any ad-hoc PGMRAMRANGE left behind.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param GCPhys The start of the MMIO region.
* @param cb The size of the MMIO region.
*/
VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
{
VM_ASSERT_EMT(pVM);
/*
* First deregister the handler, then check if we should remove the ram range.
*/
int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
if (RT_SUCCESS(rc))
{
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
/*if ( GCPhysLast >= pRam->GCPhys
&& GCPhys <= pRam->GCPhysLast) - later */
if ( GCPhysLast == pRam->GCPhysLast
&& GCPhys == pRam->GCPhys)
{
Assert(pRam->cb == cb);
/*
* See if all the pages are dead MMIO pages.
*/
bool fAllMMIO = true;
PPGMPAGE pPage = &pRam->aPages[0];
uint32_t cLeft = cb >> PAGE_SHIFT;
while (cLeft-- > 0)
{
if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
/*|| not-out-of-action later */)
{
fAllMMIO = false;
break;
}
pPage++;
}
/*
* Unlink it and free if it's all MMIO.
*/
if (fAllMMIO)
{
Log(("PGMR3PhysMMIODeregister: Freeing ad-hoc MMIO range for %RGp-%RGp %s\n",
GCPhys, GCPhysLast, pRam->pszDesc));
pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
MMHyperFree(pVM, pRam);
}
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
}
return rc;
}
/**
* Locate a MMIO2 range.
*
* @returns Pointer to the MMIO2 range.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device instance owning the region.
* @param iRegion The region.
*/
DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
{
/*
* Search the list.
*/
for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
if ( pCur->pDevInsR3 == pDevIns
&& pCur->iRegion == iRegion)
return pCur;
return NULL;
}
/**
* Allocate and register a MMIO2 region.
*
* As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
* RAM associated with a device. It is also non-shared memory with a
* permanent ring-3 mapping and page backing (presently).
*
* A MMIO2 range may overlap with base memory if a lot of RAM
* is configured for the VM, in which case we'll drop the base
* memory pages. Presently we will make no attempt to preserve
* anything that happens to be present in the base memory that
* is replaced, this is of course incorrectly but it's too much
* effort.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
* @retval VERR_ALREADY_EXISTS if the region already exists.
*
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device instance owning the region.
* @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
* this number has to be the number of that region. Otherwise
* it can be any number safe UINT8_MAX.
* @param cb The size of the region. Must be page aligned.
* @param fFlags Reserved for future use, must be zero.
* @param ppv Where to store the pointer to the ring-3 mapping of the memory.
* @param pszDesc The description.
*/
VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
{
/*
* Validate input.
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
AssertPtrReturn(ppv, VERR_INVALID_POINTER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(cb, VERR_INVALID_PARAMETER);
AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
const uint32_t cPages = cb >> PAGE_SHIFT;
AssertLogRelReturn((RTGCPHYS)cPages << PAGE_SHIFT == cb, VERR_INVALID_PARAMETER);
AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
/*
* Try reserve and allocate the backing memory first as this is what is
* most likely to fail.
*/
int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
if (RT_FAILURE(rc))
return rc;
void *pvPages;
PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
if (RT_SUCCESS(rc))
rc = SUPPageAllocLockedEx(cPages, &pvPages, paPages);
if (RT_SUCCESS(rc))
{
/*
* Create the MMIO2 range record for it.
*/
const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
PPGMMMIO2RANGE pNew;
rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
if (RT_SUCCESS(rc))
{
pNew->pDevInsR3 = pDevIns;
pNew->pvR3 = pvPages;
//pNew->pNext = NULL;
//pNew->fMapped = false;
//pNew->fOverlapping = false;
pNew->iRegion = iRegion;
pNew->RamRange.GCPhys = NIL_RTGCPHYS;
pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
pNew->RamRange.pszDesc = pszDesc;
pNew->RamRange.cb = cb;
//pNew->RamRange.fFlags = 0;
pNew->RamRange.pvHC = pvPages; ///@todo remove this
pNew->RamRange.pavHCChunkHC = NULL; ///@todo remove this
pNew->RamRange.pavHCChunkGC = 0; ///@todo remove this
uint32_t iPage = cPages;
while (iPage-- > 0)
{
PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
paPages[iPage].Phys & X86_PTE_PAE_PG_MASK, NIL_GMM_PAGEID,
PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
}
/*
* Link it into the list.
* Since there is no particular order, just push it.
*/
pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
pVM->pgm.s.pMmio2RangesR3 = pNew;
*ppv = pvPages;
RTMemTmpFree(paPages);
return VINF_SUCCESS;
}
SUPPageFreeLocked(pvPages, cPages);
}
RTMemTmpFree(paPages);
MMR3AdjustFixedReservation(pVM, -cPages, pszDesc);
return rc;
}
/**
* Deregisters and frees a MMIO2 region.
*
* Any physical (and virtual) access handlers registered for the region must
* be deregistered before calling this function.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The device instance owning the region.
* @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
*/
VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
{
/*
* Validate input.
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
int rc = VINF_SUCCESS;
unsigned cFound = 0;
PPGMMMIO2RANGE pPrev = NULL;
PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
while (pCur)
{
if ( pCur->pDevInsR3 == pDevIns
&& ( iRegion == UINT32_MAX
|| pCur->iRegion == iRegion))
{
cFound++;
/*
* Unmap it if it's mapped.
*/
if (pCur->fMapped)
{
int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
}
/*
* Unlink it
*/
PPGMMMIO2RANGE pNext = pCur->pNextR3;
if (pPrev)
pPrev->pNextR3 = pNext;
else
pVM->pgm.s.pMmio2RangesR3 = pNext;
pCur->pNextR3 = NULL;
/*
* Free the memory.
*/
int rc2 = SUPPageFreeLocked(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
rc2 = MMR3AdjustFixedReservation(pVM, -(pCur->RamRange.cb >> PAGE_SHIFT), pCur->RamRange.pszDesc);
AssertRC(rc2);
if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
rc = rc2;
/* we're leaking hyper memory here if done at runtime. */
Assert( VMR3GetState(pVM) == VMSTATE_OFF
|| VMR3GetState(pVM) == VMSTATE_DESTROYING
|| VMR3GetState(pVM) == VMSTATE_TERMINATED
|| VMR3GetState(pVM) == VMSTATE_CREATING);
/*rc = MMHyperFree(pVM, pCur);
AssertRCReturn(rc, rc); - not safe, see the alloc call. */
/* next */
pCur = pNext;
}
else
{
pPrev = pCur;
pCur = pCur->pNextR3;
}
}
return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
}
/**
* Maps a MMIO2 region.
*
* This is done when a guest / the bios / state loading changes the
* PCI config. The replacing of base memory has the same restrictions
* as during registration, of course.
*
* @returns VBox status code.
*
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The
*/
VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
/*
* Find our location in the ram range list, checking for
* restriction we don't bother implementing yet (partially overlapping).
*/
bool fRamExists = false;
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhys <= pRam->GCPhysLast
&& GCPhysLast >= pRam->GCPhys)
{
/* completely within? */
AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
&& GCPhysLast <= pRam->GCPhysLast,
("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
fRamExists = true;
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
if (fRamExists)
{
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
while (cPagesLeft-- > 0)
{
AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
VERR_PGM_RAM_CONFLICT);
pPage++;
}
}
Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
/*
* Make the changes.
*/
pgmLock(pVM);
pCur->RamRange.GCPhys = GCPhys;
pCur->RamRange.GCPhysLast = GCPhysLast;
pCur->fMapped = true;
pCur->fOverlapping = fRamExists;
if (fRamExists)
{
/* replace the pages, freeing all present RAM pages. */
PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
while (cPagesLeft-- > 0)
{
pgmPhysFreePage(pVM, pPageDst, GCPhys);
RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
GCPhys += PAGE_SIZE;
pPageSrc++;
pPageDst++;
}
}
else
{
/* link in the ram range */
pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
REMR3NotifyPhysRamRegister(pVM, GCPhys, pCur->RamRange.cb, 0);
}
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Unmaps a MMIO2 region.
*
* This is done when a guest / the bios / state loading changes the
* PCI config. The replacing of base memory has the same restrictions
* as during registration, of course.
*/
VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
/*
* Unmap it.
*/
pgmLock(pVM);
if (pCur->fOverlapping)
{
/* Restore the RAM pages we've replaced. */
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
pRam = pRam->pNextR3;
#ifdef RT_STRICT
RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
#endif
Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
while (cPagesLeft-- > 0)
{
PGM_PAGE_SET_HCPHYS(pPageDst, pVM->pgm.s.HCPhysZeroPg);
PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
pPageDst++;
}
}
else
{
REMR3NotifyPhysReserve(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb);
pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
}
pCur->RamRange.GCPhys = NIL_RTGCPHYS;
pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
pCur->fOverlapping = false;
pCur->fMapped = false;
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Checks if the given address is an MMIO2 base address or not.
*
* @returns true/false accordingly.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The owner of the memory, optional.
* @param GCPhys The address to check.
*/
VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, false);
AssertPtrReturn(pDevIns, false);
AssertReturn(GCPhys != NIL_RTGCPHYS, false);
AssertReturn(GCPhys != 0, false);
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
/*
* Search the list.
*/
for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
if (pCur->RamRange.GCPhys == GCPhys)
{
Assert(pCur->fMapped);
return true;
}
return false;
}
/**
* Gets the HC physical address of a page in the MMIO2 region.
*
* This is API is intended for MMHyper and shouldn't be called
* by anyone else...
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param pDevIns The owner of the memory, optional.
* @param iRegion The region.
* @param off The page expressed an offset into the MMIO2 region.
* @param pHCPhys Where to store the result.
*/
VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
{
/*
* Validate input
*/
VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
AssertReturn(pCur, VERR_NOT_FOUND);
AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
*pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
return VINF_SUCCESS;
}
/**
* Registers a ROM image.
*
* Shadowed ROM images requires double the amount of backing memory, so,
* don't use that unless you have to. Shadowing of ROM images is process
* where we can select where the reads go and where the writes go. On real
* hardware the chipset provides means to configure this. We provide
* PGMR3PhysProtectROM() for this purpose.
*
* A read-only copy of the ROM image will always be kept around while we
* will allocate RAM pages for the changes on demand (unless all memory
* is configured to be preallocated).
*
* @returns VBox status.
* @param pVM VM Handle.
* @param pDevIns The device instance owning the ROM.
* @param GCPhys First physical address in the range.
* Must be page aligned!
* @param cbRange The size of the range (in bytes).
* Must be page aligned!
* @param pvBinary Pointer to the binary data backing the ROM image.
* This must be exactly \a cbRange in size.
* @param fFlags Mask of flags. PGMPHYS_ROM_FLAG_SHADOWED
* and/or PGMPHYS_ROM_FLAG_PERMANENT_BINARY.
* @param pszDesc Pointer to description string. This must not be freed.
*
* @remark There is no way to remove the rom, automatically on device cleanup or
* manually from the device yet. This isn't difficult in any way, it's
* just not something we expect to be necessary for a while.
*/
VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
const void *pvBinary, uint32_t fFlags, const char *pszDesc)
{
Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
/*
* Validate input.
*/
AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAG_SHADOWED | PGMPHYS_ROM_FLAG_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
const uint32_t cPages = cb >> PAGE_SHIFT;
/*
* Find the ROM location in the ROM list first.
*/
PPGMROMRANGE pRomPrev = NULL;
PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
while (pRom && GCPhysLast >= pRom->GCPhys)
{
if ( GCPhys <= pRom->GCPhysLast
&& GCPhysLast >= pRom->GCPhys)
AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
VERR_PGM_RAM_CONFLICT);
/* next */
pRomPrev = pRom;
pRom = pRom->pNextR3;
}
/*
* Find the RAM location and check for conflicts.
*
* Conflict detection is a bit different than for RAM
* registration since a ROM can be located within a RAM
* range. So, what we have to check for is other memory
* types (other than RAM that is) and that we don't span
* more than one RAM range (layz).
*/
bool fRamExists = false;
PPGMRAMRANGE pRamPrev = NULL;
PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
while (pRam && GCPhysLast >= pRam->GCPhys)
{
if ( GCPhys <= pRam->GCPhysLast
&& GCPhysLast >= pRam->GCPhys)
{
/* completely within? */
AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
&& GCPhysLast <= pRam->GCPhysLast,
("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
GCPhys, GCPhysLast, pszDesc,
pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
VERR_PGM_RAM_CONFLICT);
fRamExists = true;
break;
}
/* next */
pRamPrev = pRam;
pRam = pRam->pNextR3;
}
if (fRamExists)
{
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
uint32_t cPagesLeft = cPages;
while (cPagesLeft-- > 0)
{
AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
("%RGp isn't a RAM page (%d) - registering %RGp-%RGp (%s).\n",
GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pszDesc),
VERR_PGM_RAM_CONFLICT);
Assert(PGM_PAGE_IS_ZERO(pPage));
pPage++;
}
}
/*
* Update the base memory reservation if necessary.
*/
uint32_t cExtraBaseCost = fRamExists ? cPages : 0;
if (fFlags & PGMPHYS_ROM_FLAG_SHADOWED)
cExtraBaseCost += cPages;
if (cExtraBaseCost)
{
int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
if (RT_FAILURE(rc))
return rc;
}
/*
* Allocate memory for the virgin copy of the RAM.
*/
PGMMALLOCATEPAGESREQ pReq;
int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
AssertRCReturn(rc, rc);
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
}
pgmLock(pVM);
rc = GMMR3AllocatePagesPerform(pVM, pReq);
pgmUnlock(pVM);
if (RT_FAILURE(rc))
{
GMMR3AllocatePagesCleanup(pReq);
return rc;
}
/*
* Allocate the new ROM range and RAM range (if necessary).
*/
PPGMROMRANGE pRomNew;
rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
if (RT_SUCCESS(rc))
{
PPGMRAMRANGE pRamNew = NULL;
if (!fRamExists)
rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
if (RT_SUCCESS(rc))
{
pgmLock(pVM);
/*
* Initialize and insert the RAM range (if required).
*/
PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
if (!fRamExists)
{
pRamNew->GCPhys = GCPhys;
pRamNew->GCPhysLast = GCPhysLast;
pRamNew->pszDesc = pszDesc;
pRamNew->cb = cb;
pRamNew->fFlags = 0;
pRamNew->pvHC = NULL;
PPGMPAGE pPage = &pRamNew->aPages[0];
for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
{
PGM_PAGE_INIT(pPage,
pReq->aPages[iPage].HCPhysGCPhys,
pReq->aPages[iPage].idPage,
PGMPAGETYPE_ROM,
PGM_PAGE_STATE_ALLOCATED);
pRomPage->Virgin = *pPage;
}
pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
}
else
{
PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
{
PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
pRomPage->Virgin = *pPage;
}
pRamNew = pRam;
}
pgmUnlock(pVM);
/*
* Register the write access handler for the range (PGMROMPROT_READ_ROM_WRITE_IGNORE).
*/
rc = PGMR3HandlerPhysicalRegister(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhys, GCPhysLast,
#if 0 /** @todo we actually need a ring-3 write handler here for shadowed ROMs, so hack REM! */
pgmR3PhysRomWriteHandler, pRomNew,
#else
NULL, NULL,
#endif
NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
if (RT_SUCCESS(rc))
{
pgmLock(pVM);
/*
* Copy the image over to the virgin pages.
* This must be done after linking in the RAM range.
*/
PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
{
void *pvDstPage;
PPGMPAGEMAP pMapIgnored;
rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pMapIgnored, &pvDstPage);
if (RT_FAILURE(rc))
{
VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
break;
}
memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
}
if (RT_SUCCESS(rc))
{
/*
* Initialize the ROM range.
* Note that the Virgin member of the pages has already been initialized above.
*/
pRomNew->GCPhys = GCPhys;
pRomNew->GCPhysLast = GCPhysLast;
pRomNew->cb = cb;
pRomNew->fFlags = fFlags;
pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAG_PERMANENT_BINARY ? pvBinary : NULL;
pRomNew->pszDesc = pszDesc;
for (unsigned iPage = 0; iPage < cPages; iPage++)
{
PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
PGM_PAGE_INIT_ZERO_REAL(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
}
/*
* Insert the ROM range, tell REM and return successfully.
*/
pRomNew->pNextR3 = pRom;
pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
pRomNew->pNextGC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTGCPTR;
if (pRomPrev)
{
pRomPrev->pNextR3 = pRomNew;
pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
pRomPrev->pNextGC = MMHyperCCToRC(pVM, pRomNew);
}
else
{
pVM->pgm.s.pRomRangesR3 = pRomNew;
pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
pVM->pgm.s.pRomRangesGC = MMHyperCCToRC(pVM, pRomNew);
}
REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false); /** @todo fix shadowing and REM. */
GMMR3AllocatePagesCleanup(pReq);
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/* bail out */
pgmUnlock(pVM);
int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
AssertRC(rc2);
pgmLock(pVM);
}
pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
if (pRamNew)
MMHyperFree(pVM, pRamNew);
}
MMHyperFree(pVM, pRomNew);
}
/** @todo Purge the mapping cache or something... */
GMMR3FreeAllocatedPages(pVM, pReq);
GMMR3AllocatePagesCleanup(pReq);
pgmUnlock(pVM);
return rc;
}
/**
* \#PF Handler callback for ROM write accesses.
*
* @returns VINF_SUCCESS if the handler have carried out the operation.
* @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
* @param pVM VM Handle.
* @param GCPhys The physical address the guest is writing to.
* @param pvPhys The HC mapping of that address.
* @param pvBuf What the guest is reading/writing.
* @param cbBuf How much it's reading/writing.
* @param enmAccessType The access type.
* @param pvUser User argument.
*/
/*static - shut up warning */
DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
{
PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
const uint32_t iPage = GCPhys - pRom->GCPhys;
Assert(iPage < (pRom->cb >> PAGE_SHIFT));
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
switch (pRomPage->enmProt)
{
/*
* Ignore.
*/
case PGMROMPROT_READ_ROM_WRITE_IGNORE:
case PGMROMPROT_READ_RAM_WRITE_IGNORE:
return VINF_SUCCESS;
/*
* Write to the ram page.
*/
case PGMROMPROT_READ_ROM_WRITE_RAM:
case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
{
/* This should be impossible now, pvPhys doesn't work cross page anylonger. */
Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
/*
* Take the lock, do lazy allocation, map the page and copy the data.
*
* Note that we have to bypass the mapping TLB since it works on
* guest physical addresses and entering the shadow page would
* kind of screw things up...
*/
int rc = pgmLock(pVM);
AssertRC(rc);
if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pRomPage->Shadow) != PGM_PAGE_STATE_ALLOCATED))
{
rc = pgmPhysPageMakeWritable(pVM, &pRomPage->Shadow, GCPhys);
if (RT_FAILURE(rc))
{
pgmUnlock(pVM);
return rc;
}
}
void *pvDstPage;
PPGMPAGEMAP pMapIgnored;
rc = pgmPhysPageMap(pVM, &pRomPage->Shadow, GCPhys & X86_PTE_PG_MASK, &pMapIgnored, &pvDstPage);
if (RT_SUCCESS(rc))
memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
pgmUnlock(pVM);
return rc;
}
default:
AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
pRom->aPages[iPage].enmProt, iPage, GCPhys),
VERR_INTERNAL_ERROR);
}
}
/**
* Called by PGMR3Reset to reset the shadow, switch to the virgin,
* and verify that the virgin part is untouched.
*
* This is done after the normal memory has been cleared.
*
* ASSUMES that the caller owns the PGM lock.
*
* @param pVM The VM handle.
*/
int pgmR3PhysRomReset(PVM pVM)
{
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
{
const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
if (pRom->fFlags & PGMPHYS_ROM_FLAG_SHADOWED)
{
/*
* Reset the physical handler.
*/
int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
AssertRCReturn(rc, rc);
/*
* What we do with the shadow pages depends on the memory
* preallocation option. If not enabled, we'll just throw
* out all the dirty pages and replace them by the zero page.
*/
if (1)///@todo !pVM->pgm.f.fRamPreAlloc)
{
/* Count dirty shadow pages. */
uint32_t cDirty = 0;
uint32_t iPage = cPages;
while (iPage-- > 0)
if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
cDirty++;
if (cDirty)
{
/* Free the dirty pages. */
PGMMFREEPAGESREQ pReq;
rc = GMMR3FreePagesPrepare(pVM, &pReq, cDirty, GMMACCOUNT_BASE);
AssertRCReturn(rc, rc);
uint32_t iReqPage = 0;
for (iPage = 0; iPage < cPages; iPage++)
if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
{
pReq->aPages[iReqPage].idPage = PGM_PAGE_GET_PAGEID(&pRom->aPages[iPage].Shadow);
iReqPage++;
}
rc = GMMR3FreePagesPerform(pVM, pReq);
GMMR3FreePagesCleanup(pReq);
AssertRCReturn(rc, rc);
/* setup the zero page. */
for (iPage = 0; iPage < cPages; iPage++)
if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
PGM_PAGE_INIT_ZERO_REAL(&pRom->aPages[iPage].Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
}
}
else
{
/* clear all the pages. */
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
rc = pgmPhysPageMakeWritable(pVM, &pRom->aPages[iPage].Shadow, GCPhys);
if (RT_FAILURE(rc))
break;
void *pvDstPage;
PPGMPAGEMAP pMapIgnored;
rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pMapIgnored, &pvDstPage);
if (RT_FAILURE(rc))
break;
ASMMemZeroPage(pvDstPage);
}
AssertRCReturn(rc, rc);
}
}
#ifdef VBOX_STRICT
/*
* Verify that the virgin page is unchanged if possible.
*/
if (pRom->pvOriginal)
{
uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
{
const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
PPGMPAGEMAP pMapIgnored;
void *pvDstPage;
int rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pMapIgnored, &pvDstPage);
if (RT_FAILURE(rc))
break;
if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
GCPhys, pRom->pszDesc));
}
}
#endif
}
return VINF_SUCCESS;
}
/**
* Change the shadowing of a range of ROM pages.
*
* This is intended for implementing chipset specific memory registers
* and will not be very strict about the input. It will silently ignore
* any pages that are not the part of a shadowed ROM.
*
* @returns VBox status code.
* @param pVM Pointer to the shared VM structure.
* @param GCPhys Where to start. Page aligned.
* @param cb How much to change. Page aligned.
* @param enmProt The new ROM protection.
*/
VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
{
/*
* Check input
*/
if (!cb)
return VINF_SUCCESS;
AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
/*
* Process the request.
*/
bool fFlushedPool = false;
for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
if ( GCPhys <= pRom->GCPhysLast
&& GCPhysLast >= pRom->GCPhys)
{
/*
* Iterate the relevant pages and the ncessary make changes.
*/
bool fChanges = false;
uint32_t const cPages = pRom->GCPhysLast > GCPhysLast
? pRom->cb >> PAGE_SHIFT
: (GCPhysLast - pRom->GCPhys) >> PAGE_SHIFT;
for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
iPage < cPages;
iPage++)
{
PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
{
fChanges = true;
/* flush the page pool first so we don't leave any usage references dangling. */
if (!fFlushedPool)
{
pgmPoolFlushAll(pVM);
fFlushedPool = true;
}
PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
*pOld = *pRamPage;
*pRamPage = *pNew;
/** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
}
}
/*
* Reset the access handler if we made changes, no need
* to optimize this.
*/
if (fChanges)
{
int rc = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
AssertRCReturn(rc, rc);
}
/* Advance - cb isn't updated. */
GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
}
return VINF_SUCCESS;
}
/**
* Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
* registration APIs calls to inform PGM about memory registrations.
*
* It registers the physical memory range with PGM. MM is responsible
* for the toplevel things - allocation and locking - while PGM is taking
* care of all the details and implements the physical address space virtualization.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param pvRam HC virtual address of the RAM range. (page aligned)
* @param GCPhys GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
* @param fFlags Flags, MM_RAM_*.
* @param paPages Pointer an array of physical page descriptors.
* @param pszDesc Description string.
*/
VMMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
{
/*
* Validate input.
* (Not so important because callers are only MMR3PhysRegister()
* and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
*/
Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
/*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
/*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
Assert(!(fFlags & ~0xfff));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
if (GCPhysLast < GCPhys)
{
AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
return VERR_INVALID_PARAMETER;
}
/*
* Find range location and check for conflicts.
*/
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
while (pCur)
{
if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
{
AssertMsgFailed(("Conflict! This cannot happen!\n"));
return VERR_PGM_RAM_CONFLICT;
}
if (GCPhysLast < pCur->GCPhys)
break;
/* next */
pPrev = pCur;
pCur = pCur->pNextR3;
}
/*
* Allocate RAM range.
* Small ranges are allocated from the heap, big ones have separate mappings.
*/
size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aPages[cb >> PAGE_SHIFT]);
PPGMRAMRANGE pNew;
RTGCPTR GCPtrNew;
int rc = VERR_NO_MEMORY;
if (cbRam > PAGE_SIZE / 2)
{ /* large */
cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
if (VBOX_SUCCESS(rc))
{
rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true,
MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "ram range (%s)", pszDesc),
&GCPtrNew);
if (VBOX_SUCCESS(rc))
{
Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
}
else
{
AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
}
}
else
AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
}
/** @todo Make VGA and VMMDev register their memory at init time before the hma size is fixated. */
if (RT_FAILURE(rc))
{ /* small + fallback (vga) */
rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
if (VBOX_SUCCESS(rc))
GCPtrNew = MMHyperHC2GC(pVM, pNew);
else
AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
}
if (VBOX_SUCCESS(rc))
{
/*
* Initialize the range.
*/
pNew->pvHC = pvRam;
pNew->GCPhys = GCPhys;
pNew->GCPhysLast = GCPhysLast;
pNew->cb = cb;
pNew->fFlags = fFlags;
pNew->pavHCChunkHC = NULL;
pNew->pavHCChunkGC = 0;
unsigned iPage = cb >> PAGE_SHIFT;
if (paPages)
{
while (iPage-- > 0)
{
PGM_PAGE_INIT(&pNew->aPages[iPage], paPages[iPage].Phys & X86_PTE_PAE_PG_MASK, NIL_GMM_PAGEID,
fFlags & MM_RAM_FLAGS_MMIO2 ? PGMPAGETYPE_MMIO2 : PGMPAGETYPE_RAM,
PGM_PAGE_STATE_ALLOCATED);
pNew->aPages[iPage].HCPhys |= fFlags; /** @todo PAGE FLAGS*/
}
}
else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/* Allocate memory for chunk to HC ptr lookup array. */
rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
Assert(pNew->pavHCChunkGC);
/* Physical memory will be allocated on demand. */
while (iPage-- > 0)
{
PGM_PAGE_INIT(&pNew->aPages[iPage], 0, NIL_GMM_PAGEID, PGMPAGETYPE_RAM, PGM_PAGE_STATE_ZERO);
pNew->aPages[iPage].HCPhys = fFlags; /** @todo PAGE FLAGS */
}
}
else
{
Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
RTHCPHYS HCPhysDummyPage = MMR3PageDummyHCPhys(pVM);
while (iPage-- > 0)
{
PGM_PAGE_INIT(&pNew->aPages[iPage], HCPhysDummyPage, NIL_GMM_PAGEID, PGMPAGETYPE_MMIO, PGM_PAGE_STATE_ZERO);
pNew->aPages[iPage].HCPhys |= fFlags; /** @todo PAGE FLAGS*/
}
}
/*
* Insert the new RAM range.
*/
pgmLock(pVM);
pNew->pNextR3 = pCur;
pNew->pNextR0 = pCur ? MMHyperCCToR0(pVM, pCur) : NIL_RTR0PTR;
pNew->pNextGC = pCur ? MMHyperCCToRC(pVM, pCur) : NIL_RTGCPTR;
if (pPrev)
{
pPrev->pNextR3 = pNew;
pPrev->pNextR0 = MMHyperCCToR0(pVM, pNew);
pPrev->pNextGC = GCPtrNew;
}
else
{
pVM->pgm.s.pRamRangesR3 = pNew;
pVM->pgm.s.pRamRangesR0 = MMHyperCCToR0(pVM, pNew);
pVM->pgm.s.pRamRangesGC = GCPtrNew;
}
pgmUnlock(pVM);
}
return rc;
}
#ifndef VBOX_WITH_NEW_PHYS_CODE
/**
* Register a chunk of a the physical memory range with PGM. MM is responsible
* for the toplevel things - allocation and locking - while PGM is taking
* care of all the details and implements the physical address space virtualization.
*
*
* @returns VBox status.
* @param pVM The VM handle.
* @param pvRam HC virtual address of the RAM range. (page aligned)
* @param GCPhys GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
* @param fFlags Flags, MM_RAM_*.
* @param paPages Pointer an array of physical page descriptors.
* @param pszDesc Description string.
*/
VMMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
{
NOREF(pszDesc);
/*
* Validate input.
* (Not so important because callers are only MMR3PhysRegister()
* and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
*/
Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
Assert(paPages);
Assert(pvRam);
Assert(!(fFlags & ~0xfff));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(VM_IS_EMT(pVM));
Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
if (GCPhysLast < GCPhys)
{
AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
return VERR_INVALID_PARAMETER;
}
/*
* Find existing range location.
*/
PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if ( off < pRam->cb
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
break;
pRam = CTXALLSUFF(pRam->pNext);
}
AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
unsigned iPage = cb >> PAGE_SHIFT;
if (paPages)
{
while (iPage-- > 0)
pRam->aPages[off + iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
}
off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
pRam->pavHCChunkHC[off] = pvRam;
/* Notify the recompiler. */
REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
return VINF_SUCCESS;
}
/**
* Allocate missing physical pages for an existing guest RAM range.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param GCPhys GC physical address of the RAM range. (page aligned)
*/
VMMR3DECL(int) PGM3PhysGrowRange(PVM pVM, PCRTGCPHYS pGCPhys)
{
RTGCPHYS GCPhys = *pGCPhys;
/*
* Walk range list.
*/
pgmLock(pVM);
PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if ( off < pRam->cb
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
{
bool fRangeExists = false;
unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
/** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
if (pRam->pavHCChunkHC[off])
fRangeExists = true;
pgmUnlock(pVM);
if (fRangeExists)
return VINF_SUCCESS;
return pgmr3PhysGrowRange(pVM, GCPhys);
}
pRam = CTXALLSUFF(pRam->pNext);
}
pgmUnlock(pVM);
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Allocate missing physical pages for an existing guest RAM range.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param pRamRange RAM range
* @param GCPhys GC physical address of the RAM range. (page aligned)
*/
int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
{
void *pvRam;
int rc;
/* We must execute this function in the EMT thread, otherwise we'll run into problems. */
if (!VM_IS_EMT(pVM))
{
PVMREQ pReq;
const RTGCPHYS GCPhysParam = GCPhys;
AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, &GCPhysParam);
if (VBOX_SUCCESS(rc))
{
rc = pReq->iStatus;
VMR3ReqFree(pReq);
}
return rc;
}
/* Round down to chunk boundary */
GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
for (;;)
{
rc = SUPPageAlloc(cPages, &pvRam);
if (VBOX_SUCCESS(rc))
{
rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
if (VBOX_SUCCESS(rc))
return rc;
SUPPageFree(pvRam, cPages);
}
VMSTATE enmVMState = VMR3GetState(pVM);
if (enmVMState != VMSTATE_RUNNING)
{
AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
return rc;
}
LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
/* Pause first, then inform Main. */
rc = VMR3SuspendNoSave(pVM);
AssertRC(rc);
VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM");
/* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
rc = VMR3WaitForResume(pVM);
/* Retry */
LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
}
}
#endif /* !VBOX_WITH_NEW_PHYS_CODE */
/**
* Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
* flags of existing RAM ranges.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param GCPhys GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
* @param fFlags The Or flags, MM_RAM_* \#defines.
* @param fMask The and mask for the flags.
*/
VMMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
{
Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
/*
* Validate input.
* (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
*/
Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
/*
* Lookup the range.
*/
PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = CTXALLSUFF(pRam->pNext);
if ( !pRam
|| GCPhys > pRam->GCPhysLast
|| GCPhysLast < pRam->GCPhys)
{
AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
return VERR_INVALID_PARAMETER;
}
/*
* Update the requested flags.
*/
RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
| fMask;
unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
for ( ; iPage < iPageEnd; iPage++)
pRam->aPages[iPage].HCPhys = (pRam->aPages[iPage].HCPhys & fFullMask) | fFlags; /** @todo PAGE FLAGS */
return VINF_SUCCESS;
}
/**
* Sets the Address Gate 20 state.
*
* @param pVM VM handle.
* @param fEnable True if the gate should be enabled.
* False if the gate should be disabled.
*/
VMMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
{
LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
{
pVM->pgm.s.fA20Enabled = fEnable;
pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
REMR3A20Set(pVM, fEnable);
/** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
}
}
/**
* Tree enumeration callback for dealing with age rollover.
* It will perform a simple compression of the current age.
*/
static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
{
/* Age compression - ASSUMES iNow == 4. */
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
if (pChunk->iAge >= UINT32_C(0xffffff00))
pChunk->iAge = 3;
else if (pChunk->iAge >= UINT32_C(0xfffff000))
pChunk->iAge = 2;
else if (pChunk->iAge)
pChunk->iAge = 1;
else /* iAge = 0 */
pChunk->iAge = 4;
/* reinsert */
PVM pVM = (PVM)pvUser;
RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
pChunk->AgeCore.Key = pChunk->iAge;
RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
return 0;
}
/**
* Tree enumeration callback that updates the chunks that have
* been used since the last
*/
static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
{
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
if (!pChunk->iAge)
{
PVM pVM = (PVM)pvUser;
RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
}
return 0;
}
/**
* Performs ageing of the ring-3 chunk mappings.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
{
pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
pVM->pgm.s.ChunkR3Map.iNow++;
if (pVM->pgm.s.ChunkR3Map.iNow == 0)
{
pVM->pgm.s.ChunkR3Map.iNow = 4;
RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
}
else
RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
}
/**
* The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
*/
typedef struct PGMR3PHYSCHUNKUNMAPCB
{
PVM pVM; /**< The VM handle. */
PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
/**
* Callback used to find the mapping that's been unused for
* the longest time.
*/
static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
{
do
{
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
if ( pChunk->iAge
&& !pChunk->cRefs)
{
/*
* Check that it's not in any of the TLBs.
*/
PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
{
pChunk = NULL;
break;
}
if (pChunk)
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
{
pChunk = NULL;
break;
}
if (pChunk)
{
((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
return 1; /* done */
}
}
/* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
pNode = pNode->pList;
} while (pNode);
return 0;
}
/**
* Finds a good candidate for unmapping when the ring-3 mapping cache is full.
*
* The candidate will not be part of any TLBs, so no need to flush
* anything afterwards.
*
* @returns Chunk id.
* @param pVM The VM handle.
*/
static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
{
/*
* Do tree ageing first?
*/
if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
PGMR3PhysChunkAgeing(pVM);
/*
* Enumerate the age tree starting with the left most node.
*/
PGMR3PHYSCHUNKUNMAPCB Args;
Args.pVM = pVM;
Args.pChunk = NULL;
if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
return Args.pChunk->Core.Key;
return INT32_MAX;
}
/**
* Maps the given chunk into the ring-3 mapping cache.
*
* This will call ring-0.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param idChunk The chunk in question.
* @param ppChunk Where to store the chunk tracking structure.
*
* @remarks Called from within the PGM critical section.
*/
int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
{
int rc;
/*
* Allocate a new tracking structure first.
*/
#if 0 /* for later when we've got a separate mapping method for ring-0. */
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
AssertReturn(pChunk, VERR_NO_MEMORY);
#else
PPGMCHUNKR3MAP pChunk;
rc = MMHyperAlloc(pVM, sizeof(*pChunk), 0, MM_TAG_PGM_CHUNK_MAPPING, (void **)&pChunk);
AssertRCReturn(rc, rc);
#endif
pChunk->Core.Key = idChunk;
pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
pChunk->iAge = 0;
pChunk->cRefs = 0;
pChunk->cPermRefs = 0;
pChunk->pv = NULL;
/*
* Request the ring-0 part to map the chunk in question and if
* necessary unmap another one to make space in the mapping cache.
*/
GMMMAPUNMAPCHUNKREQ Req;
Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
Req.Hdr.cbReq = sizeof(Req);
Req.pvR3 = NULL;
Req.idChunkMap = idChunk;
Req.idChunkUnmap = INT32_MAX;
if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
if (VBOX_SUCCESS(rc))
{
/*
* Update the tree.
*/
/* insert the new one. */
AssertPtr(Req.pvR3);
pChunk->pv = Req.pvR3;
bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
AssertRelease(fRc);
pVM->pgm.s.ChunkR3Map.c++;
fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
AssertRelease(fRc);
/* remove the unmapped one. */
if (Req.idChunkUnmap != INT32_MAX)
{
PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
AssertRelease(pUnmappedChunk);
pUnmappedChunk->pv = NULL;
pUnmappedChunk->Core.Key = UINT32_MAX;
#if 0 /* for later when we've got a separate mapping method for ring-0. */
MMR3HeapFree(pUnmappedChunk);
#else
MMHyperFree(pVM, pUnmappedChunk);
#endif
pVM->pgm.s.ChunkR3Map.c--;
}
}
else
{
AssertRC(rc);
#if 0 /* for later when we've got a separate mapping method for ring-0. */
MMR3HeapFree(pChunk);
#else
MMHyperFree(pVM, pChunk);
#endif
pChunk = NULL;
}
*ppChunk = pChunk;
return rc;
}
/**
* For VMMCALLHOST_PGM_MAP_CHUNK, considered internal.
*
* @returns see pgmR3PhysChunkMap.
* @param pVM The VM handle.
* @param idChunk The chunk to map.
*/
VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
{
PPGMCHUNKR3MAP pChunk;
return pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
}
/**
* Invalidates the TLB for the ring-3 mapping cache.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
{
pgmLock(pVM);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
{
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
}
pgmUnlock(pVM);
}
/**
* Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success. FF cleared.
* @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in this case.
*
* @param pVM The VM handle.
*/
VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
{
pgmLock(pVM);
int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
if (rc == VERR_GMM_SEED_ME)
{
void *pvChunk;
rc = SUPPageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
if (VBOX_SUCCESS(rc))
rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
if (VBOX_FAILURE(rc))
{
LogRel(("PGM: GMM Seeding failed, rc=%Vrc\n", rc));
rc = VINF_EM_NO_MEMORY;
}
}
pgmUnlock(pVM);
Assert(rc == VINF_SUCCESS || rc == VINF_EM_NO_MEMORY);
return rc;
}