PGMPhys.cpp revision 12fcc878a631e75b88a82cebc92d1cd57b09c8e7
/* $Id$ */
/** @file
* PGM - Page Manager and Monitor, Physical Memory Addressing.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/pgm.h>
#include <VBox/cpum.h>
#include <VBox/iom.h>
#include <VBox/sup.h>
#include <VBox/mm.h>
#include <VBox/stam.h>
#include <VBox/rem.h>
#include <VBox/csam.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/dbg.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <VBox/log.h>
#include <iprt/thread.h>
#include <iprt/string.h>
/*
* PGMR3PhysReadByte/Word/Dword
* PGMR3PhysWriteByte/Word/Dword
*/
#define PGMPHYSFN_READNAME PGMR3PhysReadByte
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteByte
#define PGMPHYS_DATASIZE 1
#define PGMPHYS_DATATYPE uint8_t
#include "PGMPhys.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadWord
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteWord
#define PGMPHYS_DATASIZE 2
#define PGMPHYS_DATATYPE uint16_t
#include "PGMPhys.h"
#define PGMPHYSFN_READNAME PGMR3PhysReadDword
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteDword
#define PGMPHYS_DATASIZE 4
#define PGMPHYS_DATATYPE uint32_t
#include "PGMPhys.h"
/**
* Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
* registration APIs calls to inform PGM about memory registrations.
*
* It registers the physical memory range with PGM. MM is responsible
* for the toplevel things - allocation and locking - while PGM is taking
* care of all the details and implements the physical address space virtualization.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param pvRam HC virtual address of the RAM range. (page aligned)
* @param GCPhys GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
* @param fFlags Flags, MM_RAM_*.
* @param paPages Pointer an array of physical page descriptors.
* @param pszDesc Description string.
*/
PGMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
{
/*
* Validate input.
* (Not so important because callers are only MMR3PhysRegister()
* and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
*/
Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
/*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
/*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
Assert(!(fFlags & ~0xfff));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
if (GCPhysLast < GCPhys)
{
AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
return VERR_INVALID_PARAMETER;
}
/*
* Find range location and check for conflicts.
*/
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
while (pCur)
{
if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
{
AssertMsgFailed(("Conflict! This cannot happen!\n"));
return VERR_PGM_RAM_CONFLICT;
}
if (GCPhysLast < pCur->GCPhys)
break;
/* next */
pPrev = pCur;
pCur = pCur->pNextHC;
}
/*
* Allocate RAM range.
* Small ranges are allocated from the heap, big ones have separate mappings.
*/
size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aPages[cb >> PAGE_SHIFT]);
PPGMRAMRANGE pNew;
RTGCPTR GCPtrNew;
int rc;
if (cbRam > PAGE_SIZE / 2)
{ /* large */
cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
if (VBOX_SUCCESS(rc))
{
rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true, pszDesc, &GCPtrNew);
if (VBOX_SUCCESS(rc))
{
Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
}
else
{
AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
}
}
else
AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
}
else
{ /* small */
rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
if (VBOX_SUCCESS(rc))
GCPtrNew = MMHyperHC2GC(pVM, pNew);
else
AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
}
if (VBOX_SUCCESS(rc))
{
/*
* Initialize the range.
*/
pNew->pvHC = pvRam;
pNew->GCPhys = GCPhys;
pNew->GCPhysLast = GCPhysLast;
pNew->cb = cb;
pNew->fFlags = fFlags;
pNew->pavHCChunkHC = NULL;
pNew->pavHCChunkGC = 0;
unsigned iPage = cb >> PAGE_SHIFT;
if (paPages)
{
while (iPage-- > 0)
{
pNew->aPages[iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ALLOCATED;
pNew->aPages[iPage].fWrittenTo = 0;
pNew->aPages[iPage].fSomethingElse = 0;
pNew->aPages[iPage].idPage = 0;
pNew->aPages[iPage].u32B = 0;
}
}
else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
/* Allocate memory for chunk to HC ptr lookup array. */
rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
Assert(pNew->pavHCChunkGC);
/* Physical memory will be allocated on demand. */
while (iPage-- > 0)
{
pNew->aPages[iPage].HCPhys = fFlags; /** @todo PAGE FLAGS */
pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
pNew->aPages[iPage].fWrittenTo = 0;
pNew->aPages[iPage].fSomethingElse = 0;
pNew->aPages[iPage].idPage = 0;
pNew->aPages[iPage].u32B = 0;
}
}
else
{
Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
RTHCPHYS HCPhysDummyPage = (MMR3PageDummyHCPhys(pVM) & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
while (iPage-- > 0)
{
pNew->aPages[iPage].HCPhys = HCPhysDummyPage; /** @todo PAGE FLAGS */
pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
pNew->aPages[iPage].fWrittenTo = 0;
pNew->aPages[iPage].fSomethingElse = 0;
pNew->aPages[iPage].idPage = 0;
pNew->aPages[iPage].u32B = 0;
}
}
/*
* Insert the new RAM range.
*/
pgmLock(pVM);
pNew->pNextHC = pCur;
pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
if (pPrev)
{
pPrev->pNextHC = pNew;
pPrev->pNextGC = GCPtrNew;
}
else
{
pVM->pgm.s.pRamRangesHC = pNew;
pVM->pgm.s.pRamRangesGC = GCPtrNew;
}
pgmUnlock(pVM);
}
return rc;
}
/**
* Register a chunk of a the physical memory range with PGM. MM is responsible
* for the toplevel things - allocation and locking - while PGM is taking
* care of all the details and implements the physical address space virtualization.
*
*
* @returns VBox status.
* @param pVM The VM handle.
* @param pvRam HC virtual address of the RAM range. (page aligned)
* @param GCPhys GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
* @param fFlags Flags, MM_RAM_*.
* @param paPages Pointer an array of physical page descriptors.
* @param pszDesc Description string.
*/
PGMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
{
NOREF(pszDesc);
/*
* Validate input.
* (Not so important because callers are only MMR3PhysRegister()
* and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
*/
Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
Assert(paPages);
Assert(pvRam);
Assert(!(fFlags & ~0xfff));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
Assert(VM_IS_EMT(pVM));
Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
if (GCPhysLast < GCPhys)
{
AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
return VERR_INVALID_PARAMETER;
}
/*
* Find existing range location.
*/
PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if ( off < pRam->cb
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
break;
pRam = CTXSUFF(pRam->pNext);
}
AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
unsigned iPage = cb >> PAGE_SHIFT;
if (paPages)
{
while (iPage-- > 0)
pRam->aPages[off + iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
}
off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
pRam->pavHCChunkHC[off] = pvRam;
/* Notify the recompiler. */
REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
return VINF_SUCCESS;
}
/**
* Allocate missing physical pages for an existing guest RAM range.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param GCPhys GC physical address of the RAM range. (page aligned)
*/
PGMR3DECL(int) PGM3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
{
/*
* Walk range list.
*/
pgmLock(pVM);
PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
while (pRam)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
if ( off < pRam->cb
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
{
bool fRangeExists = false;
unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
/** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
if (pRam->pavHCChunkHC[off])
fRangeExists = true;
pgmUnlock(pVM);
if (fRangeExists)
return VINF_SUCCESS;
return pgmr3PhysGrowRange(pVM, GCPhys);
}
pRam = CTXSUFF(pRam->pNext);
}
pgmUnlock(pVM);
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
#ifndef VBOX_WITH_NEW_PHYS_CODE
/**
* Allocate missing physical pages for an existing guest RAM range.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param pRamRange RAM range
* @param GCPhys GC physical address of the RAM range. (page aligned)
*/
int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
{
void *pvRam;
int rc;
/* We must execute this function in the EMT thread, otherwise we'll run into problems. */
if (!VM_IS_EMT(pVM))
{
PVMREQ pReq;
AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, GCPhys);
if (VBOX_SUCCESS(rc))
{
rc = pReq->iStatus;
VMR3ReqFree(pReq);
}
return rc;
}
/* Round down to chunk boundary */
GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
for (;;)
{
rc = SUPPageAlloc(cPages, &pvRam);
if (VBOX_SUCCESS(rc))
{
rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
if (VBOX_SUCCESS(rc))
return rc;
SUPPageFree(pvRam, cPages);
}
VMSTATE enmVMState = VMR3GetState(pVM);
if (enmVMState != VMSTATE_RUNNING)
{
AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
return rc;
}
LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
/* Pause first, then inform Main. */
rc = VMR3SuspendNoSave(pVM);
AssertRC(rc);
VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM.");
/* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
rc = VMR3WaitForResume(pVM);
/* Retry */
LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
}
}
#endif /* !VBOX_WITH_NEW_PHYS_CODE */
/**
* Interface MMIO handler relocation calls.
*
* It relocates an existing physical memory range with PGM.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param GCPhysOld Previous GC physical address of the RAM range. (page aligned)
* @param GCPhysNew New GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
*/
PGMR3DECL(int) PGMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, size_t cb)
{
/*
* Validate input.
* (Not so important because callers are only MMR3PhysRelocate(),
* but anyway...)
*/
Log(("PGMR3PhysRelocate Old %VGp New %VGp (%#x bytes)\n", GCPhysOld, GCPhysNew, cb));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
RTGCPHYS GCPhysLast;
GCPhysLast = GCPhysOld + (cb - 1);
if (GCPhysLast < GCPhysOld)
{
AssertMsgFailed(("The old range wraps! GCPhys=%VGp cb=%#x\n", GCPhysOld, cb));
return VERR_INVALID_PARAMETER;
}
GCPhysLast = GCPhysNew + (cb - 1);
if (GCPhysLast < GCPhysNew)
{
AssertMsgFailed(("The new range wraps! GCPhys=%VGp cb=%#x\n", GCPhysNew, cb));
return VERR_INVALID_PARAMETER;
}
/*
* Find and remove old range location.
*/
pgmLock(pVM);
PPGMRAMRANGE pPrev = NULL;
PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
while (pCur)
{
if (pCur->GCPhys == GCPhysOld && pCur->cb == cb)
break;
/* next */
pPrev = pCur;
pCur = pCur->pNextHC;
}
if (pPrev)
{
pPrev->pNextHC = pCur->pNextHC;
pPrev->pNextGC = pCur->pNextGC;
}
else
{
pVM->pgm.s.pRamRangesHC = pCur->pNextHC;
pVM->pgm.s.pRamRangesGC = pCur->pNextGC;
}
/*
* Update the range.
*/
pCur->GCPhys = GCPhysNew;
pCur->GCPhysLast= GCPhysLast;
PPGMRAMRANGE pNew = pCur;
/*
* Find range location and check for conflicts.
*/
pPrev = NULL;
pCur = pVM->pgm.s.pRamRangesHC;
while (pCur)
{
if (GCPhysNew <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
{
AssertMsgFailed(("Conflict! This cannot happen!\n"));
pgmUnlock(pVM);
return VERR_PGM_RAM_CONFLICT;
}
if (GCPhysLast < pCur->GCPhys)
break;
/* next */
pPrev = pCur;
pCur = pCur->pNextHC;
}
/*
* Reinsert the RAM range.
*/
pNew->pNextHC = pCur;
pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
if (pPrev)
{
pPrev->pNextHC = pNew;
pPrev->pNextGC = MMHyperHC2GC(pVM, pNew);
}
else
{
pVM->pgm.s.pRamRangesHC = pNew;
pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pNew);
}
pgmUnlock(pVM);
return VINF_SUCCESS;
}
/**
* Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
* flags of existing RAM ranges.
*
* @returns VBox status.
* @param pVM The VM handle.
* @param GCPhys GC physical address of the RAM range. (page aligned)
* @param cb Size of the RAM range. (page aligned)
* @param fFlags The Or flags, MM_RAM_* \#defines.
* @param fMask The and mask for the flags.
*/
PGMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
{
Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
/*
* Validate input.
* (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
*/
Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
/*
* Lookup the range.
*/
PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
while (pRam && GCPhys > pRam->GCPhysLast)
pRam = CTXSUFF(pRam->pNext);
if ( !pRam
|| GCPhys > pRam->GCPhysLast
|| GCPhysLast < pRam->GCPhys)
{
AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
return VERR_INVALID_PARAMETER;
}
/*
* Update the requested flags.
*/
RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
| fMask;
unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
for ( ; iPage < iPageEnd; iPage++)
pRam->aPages[iPage].HCPhys = (pRam->aPages[iPage].HCPhys & fFullMask) | fFlags; /** @todo PAGE FLAGS */
return VINF_SUCCESS;
}
/**
* Sets the Address Gate 20 state.
*
* @param pVM VM handle.
* @param fEnable True if the gate should be enabled.
* False if the gate should be disabled.
*/
PGMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
{
LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
{
pVM->pgm.s.fA20Enabled = fEnable;
pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
REMR3A20Set(pVM, fEnable);
}
}
/**
* Tree enumeration callback for dealing with age rollover.
* It will perform a simple compression of the current age.
*/
static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
{
/* Age compression - ASSUMES iNow == 4. */
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
if (pChunk->iAge >= UINT32_C(0xffffff00))
pChunk->iAge = 3;
else if (pChunk->iAge >= UINT32_C(0xfffff000))
pChunk->iAge = 2;
else if (pChunk->iAge)
pChunk->iAge = 1;
else /* iAge = 0 */
pChunk->iAge = 4;
/* reinsert */
PVM pVM = (PVM)pvUser;
RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
pChunk->AgeCore.Key = pChunk->iAge;
RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
return 0;
}
/**
* Tree enumeration callback that updates the chunks that have
* been used since the last
*/
static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
{
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
if (!pChunk->iAge)
{
PVM pVM = (PVM)pvUser;
RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
}
return 0;
}
/**
* Performs ageing of the ring-3 chunk mappings.
*
* @param pVM The VM handle.
*/
PGMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
{
pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
pVM->pgm.s.ChunkR3Map.iNow++;
if (pVM->pgm.s.ChunkR3Map.iNow == 0)
{
pVM->pgm.s.ChunkR3Map.iNow = 4;
RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
}
else
RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
}
/**
* The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
*/
typedef struct PGMR3PHYSCHUNKUNMAPCB
{
PVM pVM; /**< The VM handle. */
PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
/**
* Callback used to find the mapping that's been unused for
* the longest time.
*/
static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
{
do
{
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
if ( pChunk->iAge
&& !pChunk->cRefs)
{
/*
* Check that it's not in any of the TLBs.
*/
PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
{
pChunk = NULL;
break;
}
if (pChunk)
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
{
pChunk = NULL;
break;
}
if (pChunk)
{
((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
return 1; /* done */
}
}
/* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
pNode = pNode->pList;
} while (pNode);
return 0;
}
/**
* Finds a good candidate for unmapping when the ring-3 mapping cache is full.
*
* The candidate will not be part of any TLBs, so no need to flush
* anything afterwards.
*
* @returns Chunk id.
* @param pVM The VM handle.
*/
static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
{
/*
* Do tree ageing first?
*/
if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
PGMR3PhysChunkAgeing(pVM);
/*
* Enumerate the age tree starting with the left most node.
*/
PGMR3PHYSCHUNKUNMAPCB Args;
Args.pVM = pVM;
Args.pChunk = NULL;
if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
return Args.pChunk->Core.Key;
return INT32_MAX;
}
/**
* Maps the given chunk into the ring-3 mapping cache.
*
* This will call ring-0.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param idChunk The chunk in question.
* @param ppChunk Where to store the chunk tracking structure.
*
* @remarks Called from within the PGM critical section.
*/
int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
{
int rc;
/*
* Allocate a new tracking structure first.
*/
#if 0 /* for later when we've got a separate mapping method for ring-0. */
PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
AssertReturn(pChunk, VERR_NO_MEMORY);
#else
PPGMCHUNKR3MAP pChunk;
rc = MMHyperAlloc(pVM, sizeof(*pChunk), 0, MM_TAG_PGM_CHUNK_MAPPING, (void **)&pChunk);
AssertRCReturn(rc, rc);
#endif
pChunk->Core.Key = idChunk;
pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
pChunk->iAge = 0;
pChunk->cRefs = 0;
pChunk->cPermRefs = 0;
pChunk->pv = NULL;
/*
* Request the ring-0 part to map the chunk in question and if
* necessary unmap another one to make space in the mapping cache.
*/
GMMMAPUNMAPCHUNKREQ Req;
Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
Req.Hdr.cbReq = sizeof(Req);
Req.pvR3 = NULL;
Req.idChunkMap = idChunk;
Req.idChunkUnmap = INT32_MAX;
if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
if (VBOX_SUCCESS(rc))
{
/*
* Update the tree.
*/
/* insert the new one. */
AssertPtr(Req.pvR3);
pChunk->pv = Req.pvR3;
bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
AssertRelease(fRc);
pVM->pgm.s.ChunkR3Map.c++;
fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
AssertRelease(fRc);
/* remove the unmapped one. */
if (Req.idChunkUnmap != INT32_MAX)
{
PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
AssertRelease(pUnmappedChunk);
pUnmappedChunk->pv = NULL;
pUnmappedChunk->Core.Key = UINT32_MAX;
#if 0 /* for later when we've got a separate mapping method for ring-0. */
MMR3HeapFree(pUnmappedChunk);
#else
MMHyperFree(pVM, pUnmappedChunk);
#endif
pVM->pgm.s.ChunkR3Map.c--;
}
}
else
{
AssertRC(rc);
#if 0 /* for later when we've got a separate mapping method for ring-0. */
MMR3HeapFree(pChunk);
#else
MMHyperFree(pVM, pChunk);
#endif
pChunk = NULL;
}
*ppChunk = pChunk;
return rc;
}
/**
* For VMMCALLHOST_PGM_MAP_CHUNK, considered internal.
*
* @returns see pgmR3PhysChunkMap.
* @param pVM The VM handle.
* @param idChunk The chunk to map.
*/
PDMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
{
PPGMCHUNKR3MAP pChunk;
return pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
}
/**
* Invalidates the TLB for the ring-3 mapping cache.
*
* @param pVM The VM handle.
*/
PGMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
{
pgmLock(pVM);
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
{
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
}
pgmUnlock(pVM);
}
/**
* Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES.
*
* @returns The following VBox status codes.
* @retval VINF_SUCCESS on success. FF cleared.
* @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in this case.
*
* @param pVM The VM handle.
*/
PDMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
{
pgmLock(pVM);
int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
if (rc == VERR_GMM_SEED_ME)
{
void *pvChunk;
rc = SUPPageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
if (VBOX_SUCCESS(rc))
rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
if (VBOX_FAILURE(rc))
{
LogRel(("PGM: GMM Seeding failed, rc=%Vrc\n", rc));
rc = VINF_EM_NO_MEMORY;
}
}
pgmUnlock(pVM);
Assert(rc == VINF_SUCCESS || rc == VINF_EM_NO_MEMORY);
return rc;
}