PGMMap.cpp revision 95d69bacc6bbca7a047193301e80e1511625946e
/* $Id$ */
/** @file
* PGM - Page Manager, Guest Context Mappings.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#include <VBox/dbgf.h>
#include <VBox/pgm.h>
#include "PGMInternal.h"
#include <VBox/vm.h>
#include <VBox/log.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/string.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void pgmR3MapClearPDEs(PPGM pPGM, PPGMMAPPING pMap, int iOldPDE);
static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, int iNewPDE);
static DECLCALLBACK(int) pgmR3DumpMappingsPhysicalCB(PAVLROGCPHYSNODECORE pNode, void *pvUser);
static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault);
static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault);
/**
* Creates a page table based mapping in GC.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param GCPtr Virtual Address. (Page table aligned!)
* @param cb Size of the range. Must be a 4MB aligned!
* @param pfnRelocate Relocation callback function.
* @param pvUser User argument to the callback.
* @param pszDesc Pointer to description string. This must not be freed.
*/
PGMR3DECL(int) PGMR3MapPT(PVM pVM, RTGCPTR GCPtr, size_t cb, PFNPGMRELOCATE pfnRelocate, void *pvUser, const char *pszDesc)
{
LogFlow(("PGMR3MapPT: GCPtr=%#x cb=%d pfnRelocate=%p pvUser=%p pszDesc=%s\n", GCPtr, cb, pfnRelocate, pvUser, pszDesc));
AssertMsg(pVM->pgm.s.pInterPD && pVM->pgm.s.pHC32BitPD, ("Paging isn't initialized, init order problems!\n"));
/*
* Validate input.
*/
if (cb < _2M || cb > 64 * _1M)
{
AssertMsgFailed(("Serious? cb=%d\n", cb));
return VERR_INVALID_PARAMETER;
}
cb = RT_ALIGN_Z(cb, _4M);
RTGCPTR GCPtrLast = GCPtr + cb - 1;
if (GCPtrLast < GCPtr)
{
AssertMsgFailed(("Range wraps! GCPtr=%x GCPtrLast=%x\n", GCPtr, GCPtrLast));
return VERR_INVALID_PARAMETER;
}
if (pVM->pgm.s.fMappingsFixed)
{
AssertMsgFailed(("Mappings are fixed! It's not possible to add new mappings at this time!\n"));
return VERR_PGM_MAPPINGS_FIXED;
}
if (!pfnRelocate)
{
AssertMsgFailed(("Callback is required\n"));
return VERR_INVALID_PARAMETER;
}
/*
* Find list location.
*/
PPGMMAPPING pPrev = NULL;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (pCur->GCPtrLast >= GCPtr && pCur->GCPtr <= GCPtrLast)
{
AssertMsgFailed(("Address is already in use by %s. req %#x-%#x take %#x-%#x\n",
pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast));
LogRel(("VERR_PGM_MAPPING_CONFLICT: Address is already in use by %s. req %#x-%#x take %#x-%#x\n",
pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast));
return VERR_PGM_MAPPING_CONFLICT;
}
if (pCur->GCPtr > GCPtr)
break;
pPrev = pCur;
pCur = pCur->pNextR3;
}
/*
* Check for conflicts with intermediate mappings.
*/
const unsigned iPageDir = GCPtr >> X86_PD_SHIFT;
const unsigned cPTs = cb >> X86_PD_SHIFT;
unsigned i;
for (i = 0; i < cPTs; i++)
{
if (pVM->pgm.s.pInterPD->a[iPageDir + i].n.u1Present)
{
AssertMsgFailed(("Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT)));
LogRel(("VERR_PGM_MAPPING_CONFLICT: Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT)));
return VERR_PGM_MAPPING_CONFLICT;
}
}
/** @todo AMD64: add check in PAE structures too, so we can remove all the 32-Bit paging stuff there. */
/*
* Allocate and initialize the new list node.
*/
PPGMMAPPING pNew;
int rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMMAPPING, aPTs[cPTs]), 0, MM_TAG_PGM, (void **)&pNew);
if (VBOX_FAILURE(rc))
return rc;
pNew->GCPtr = GCPtr;
pNew->GCPtrLast = GCPtrLast;
pNew->cb = cb;
pNew->pszDesc = pszDesc;
pNew->pfnRelocate = pfnRelocate;
pNew->pvUser = pvUser;
pNew->cPTs = cPTs;
/*
* Allocate page tables and insert them into the page directories.
* (One 32-bit PT and two PAE PTs.)
*/
uint8_t *pbPTs;
rc = MMHyperAlloc(pVM, PAGE_SIZE * 3 * cPTs, PAGE_SIZE, MM_TAG_PGM, (void **)&pbPTs);
if (VBOX_FAILURE(rc))
{
MMHyperFree(pVM, pNew);
return VERR_NO_MEMORY;
}
/*
* Init the page tables and insert them into the page directories.
*/
Log4(("PGMR3MapPT: GCPtr=%VGv cPTs=%u pbPTs=%p\n", GCPtr, cPTs, pbPTs));
for (i = 0; i < cPTs; i++)
{
/*
* 32-bit.
*/
pNew->aPTs[i].pPTR3 = (PVBOXPT)pbPTs;
pNew->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pNew->aPTs[i].pPTR3);
pNew->aPTs[i].pPTR0 = MMHyperR3ToR0(pVM, pNew->aPTs[i].pPTR3);
pNew->aPTs[i].HCPhysPT = MMR3HyperHCVirt2HCPhys(pVM, pNew->aPTs[i].pPTR3);
pbPTs += PAGE_SIZE;
Log4(("PGMR3MapPT: i=%d: pPTHC=%p pPTGC=%p HCPhysPT=%RHp\n",
i, pNew->aPTs[i].pPTR3, pNew->aPTs[i].pPTGC, pNew->aPTs[i].HCPhysPT));
/*
* PAE.
*/
pNew->aPTs[i].HCPhysPaePT0 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs);
pNew->aPTs[i].HCPhysPaePT1 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs + PAGE_SIZE);
pNew->aPTs[i].paPaePTsR3 = (PX86PTPAE)pbPTs;
pNew->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pbPTs);
pNew->aPTs[i].paPaePTsR0 = MMHyperR3ToR0(pVM, pbPTs);
pbPTs += PAGE_SIZE * 2;
Log4(("PGMR3MapPT: i=%d: paPaePTsHC=%p paPaePTsGC=%p HCPhysPaePT0=%RHp HCPhysPaePT1=%RHp\n",
i, pNew->aPTs[i].paPaePTsR3, pNew->aPTs[i].paPaePTsGC, pNew->aPTs[i].HCPhysPaePT0, pNew->aPTs[i].HCPhysPaePT1));
}
pgmR3MapSetPDEs(pVM, pNew, iPageDir);
/*
* Insert the new mapping.
*/
pNew->pNextR3 = pCur;
pNew->pNextGC = pCur ? MMHyperR3ToGC(pVM, pCur) : 0;
pNew->pNextR0 = pCur ? MMHyperR3ToR0(pVM, pCur) : 0;
if (pPrev)
{
pPrev->pNextR3 = pNew;
pPrev->pNextGC = MMHyperR3ToGC(pVM, pNew);
pPrev->pNextR0 = MMHyperR3ToR0(pVM, pNew);
}
else
{
pVM->pgm.s.pMappingsR3 = pNew;
pVM->pgm.s.pMappingsGC = MMHyperR3ToGC(pVM, pNew);
pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pNew);
}
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_SUCCESS;
}
/**
* Removes a page table based mapping.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param GCPtr Virtual Address. (Page table aligned!)
*/
PGMR3DECL(int) PGMR3UnmapPT(PVM pVM, RTGCPTR GCPtr)
{
LogFlow(("PGMR3UnmapPT: GCPtr=%#x\n", GCPtr));
/*
* Find it.
*/
PPGMMAPPING pPrev = NULL;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (pCur->GCPtr == GCPtr)
{
/*
* Unlink it.
*/
if (pPrev)
{
pPrev->pNextR3 = pCur->pNextR3;
pPrev->pNextGC = pCur->pNextGC;
pPrev->pNextR0 = pCur->pNextR0;
}
else
{
pVM->pgm.s.pMappingsR3 = pCur->pNextR3;
pVM->pgm.s.pMappingsGC = pCur->pNextGC;
pVM->pgm.s.pMappingsR0 = pCur->pNextR0;
}
/*
* Free the page table memory, clear page directory entries
* and free the page tables and node memory.
*/
MMHyperFree(pVM, pCur->aPTs[0].pPTR3);
pgmR3MapClearPDEs(&pVM->pgm.s, pCur, pCur->GCPtr >> X86_PD_SHIFT);
MMHyperFree(pVM, pCur);
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_SUCCESS;
}
/* done? */
if (pCur->GCPtr > GCPtr)
break;
/* next */
pPrev = pCur;
pCur = pCur->pNextR3;
}
AssertMsgFailed(("No mapping for %#x found!\n", GCPtr));
return VERR_INVALID_PARAMETER;
}
/**
* Gets the size of the current guest mappings if they were to be
* put next to oneanother.
*
* @returns VBox status code.
* @param pVM The VM.
* @param pcb Where to store the size.
*/
PGMR3DECL(int) PGMR3MappingsSize(PVM pVM, size_t *pcb)
{
size_t cb = 0;
for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
cb += pCur->cb;
*pcb = cb;
Log(("PGMR3MappingsSize: return %d (%#x) bytes\n", cb, cb));
return VINF_SUCCESS;
}
/**
* Fixes the guest context mappings in a range reserved from the Guest OS.
*
* @returns VBox status code.
* @param pVM The VM.
* @param GCPtrBase The address of the reserved range of guest memory.
* @param cb The size of the range starting at GCPtrBase.
*/
PGMR3DECL(int) PGMR3MappingsFix(PVM pVM, RTGCPTR GCPtrBase, size_t cb)
{
Log(("PGMR3MappingsFix: GCPtrBase=%#x cb=%#x\n", GCPtrBase, cb));
/*
* This is all or nothing at all. So, a tiny bit of paranoia first.
*/
if (GCPtrBase & X86_PAGE_4M_OFFSET_MASK)
{
AssertMsgFailed(("GCPtrBase (%#x) has to be aligned on a 4MB address!\n", GCPtrBase));
return VERR_INVALID_PARAMETER;
}
if (!cb || (cb & X86_PAGE_4M_OFFSET_MASK))
{
AssertMsgFailed(("cb (%#x) is 0 or not aligned on a 4MB address!\n", cb));
return VERR_INVALID_PARAMETER;
}
/*
* Before we do anything we'll do a forced PD sync to try make sure any
* pending relocations because of these mappings have been resolved.
*/
PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), true);
/*
* Check that it's not conflicting with a core code mapping in the intermediate page table.
*/
unsigned iPDNew = GCPtrBase >> X86_PD_SHIFT;
unsigned i = cb >> X86_PD_SHIFT;
while (i-- > 0)
{
if (pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present)
{
/* Check that it's not one or our mappings. */
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (iPDNew + i - (pCur->GCPtr >> X86_PD_SHIFT) < (pCur->cb >> X86_PD_SHIFT))
break;
pCur = pCur->pNextR3;
}
if (!pCur)
{
LogRel(("PGMR3MappingsFix: Conflicts with intermediate PDE %#x (GCPtrBase=%VGv cb=%#zx). The guest should retry.\n",
iPDNew + i, GCPtrBase, cb));
return VERR_PGM_MAPPINGS_FIX_CONFLICT;
}
}
}
/*
* Loop the mappings and check that they all agree on their new locations.
*/
RTGCPTR GCPtrCur = GCPtrBase;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
if (!pCur->pfnRelocate(pVM, pCur->GCPtr, GCPtrCur, PGMRELOCATECALL_SUGGEST, pCur->pvUser))
{
AssertMsgFailed(("The suggested fixed address %#x was rejected by '%s'!\n", GCPtrCur, pCur->pszDesc));
return VERR_PGM_MAPPINGS_FIX_REJECTED;
}
/* next */
GCPtrCur += pCur->cb;
pCur = pCur->pNextR3;
}
if (GCPtrCur > GCPtrBase + cb)
{
AssertMsgFailed(("cb (%#x) is less than the required range %#x!\n", cb, GCPtrCur - GCPtrBase));
return VERR_PGM_MAPPINGS_FIX_TOO_SMALL;
}
/*
* Loop the table assigning the mappings to the passed in memory
* and call their relocator callback.
*/
GCPtrCur = GCPtrBase;
pCur = pVM->pgm.s.pMappingsR3;
while (pCur)
{
unsigned iPDOld = pCur->GCPtr >> X86_PD_SHIFT;
iPDNew = GCPtrCur >> X86_PD_SHIFT;
/*
* Relocate the page table(s).
*/
pgmR3MapClearPDEs(&pVM->pgm.s, pCur, iPDOld);
pgmR3MapSetPDEs(pVM, pCur, iPDNew);
/*
* Update the entry.
*/
pCur->GCPtr = GCPtrCur;
pCur->GCPtrLast = GCPtrCur + pCur->cb - 1;
/*
* Callback to execute the relocation.
*/
pCur->pfnRelocate(pVM, iPDOld << X86_PD_SHIFT, iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_RELOCATE, pCur->pvUser);
/*
* Advance.
*/
GCPtrCur += pCur->cb;
pCur = pCur->pNextR3;
}
/*
* Turn off CR3 updating monitoring.
*/
int rc2 = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM);
AssertRC(rc2);
/*
* Mark the mappings as fixed and return.
*/
pVM->pgm.s.fMappingsFixed = true;
pVM->pgm.s.GCPtrMappingFixed = GCPtrBase;
pVM->pgm.s.cbMappingFixed = cb;
pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
return VINF_SUCCESS;
}
/**
* Unfixes the mappings.
* After calling this function mapping conflict detection will be enabled.
*
* @returns VBox status code.
* @param pVM The VM.
*/
PGMR3DECL(int) PGMR3MappingsUnfix(PVM pVM)
{
Log(("PGMR3MappingsUnfix: fMappingsFixed=%d\n", pVM->pgm.s.fMappingsFixed));
pVM->pgm.s.fMappingsFixed = false;
pVM->pgm.s.GCPtrMappingFixed = 0;
pVM->pgm.s.cbMappingFixed = 0;
VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
/*
* Re-enable the CR3 monitoring.
*
* Paranoia: We flush the page pool before doing that because Windows
* is using the CR3 page both as a PD and a PT, e.g. the pool may
* be monitoring it.
*/
#ifdef PGMPOOL_WITH_MONITORING
pgmPoolFlushAll(pVM);
#endif
int rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
AssertRC(rc);
return VINF_SUCCESS;
}
/**
* Map pages into the intermediate context (switcher code).
* These pages are mapped at both the give virtual address and at
* the physical address (for identity mapping).
*
* @returns VBox status code.
* @param pVM The virtual machine.
* @param Addr Intermediate context address of the mapping.
* @param HCPhys Start of the range of physical pages. This must be entriely below 4GB!
* @param cbPages Number of bytes to map.
*
* @remark This API shall not be used to anything but mapping the switcher code.
*/
PGMR3DECL(int) PGMR3MapIntermediate(PVM pVM, RTUINTPTR Addr, RTHCPHYS HCPhys, unsigned cbPages)
{
LogFlow(("PGMR3MapIntermediate: Addr=%RTptr HCPhys=%VHp cbPages=%#x\n", Addr, HCPhys, cbPages));
/*
* Adjust input.
*/
cbPages += (uint32_t)HCPhys & PAGE_OFFSET_MASK;
cbPages = RT_ALIGN(cbPages, PAGE_SIZE);
HCPhys &= X86_PTE_PAE_PG_MASK;
Addr &= PAGE_BASE_MASK;
/* We only care about the first 4GB, because on AMD64 we'll be repeating them all over the address space. */
uint32_t uAddress = (uint32_t)Addr;
/*
* Assert input and state.
*/
AssertMsg(pVM->pgm.s.offVM, ("Bad init order\n"));
AssertMsg(pVM->pgm.s.pInterPD, ("Bad init order, paging.\n"));
AssertMsg(cbPages <= (512 << PAGE_SHIFT), ("The mapping is too big %d bytes\n", cbPages));
AssertMsg(HCPhys < _4G && HCPhys + cbPages < _4G, ("Addr=%RTptr HCPhys=%VHp cbPages=%d\n", Addr, HCPhys, cbPages));
/*
* Check for internal conflicts between the virtual address and the physical address.
*/
if ( uAddress != HCPhys
&& ( uAddress < HCPhys
? HCPhys - uAddress < cbPages
: uAddress - HCPhys < cbPages
)
)
{
AssertMsgFailed(("Addr=%RTptr HCPhys=%VHp cbPages=%d\n", Addr, HCPhys, cbPages));
LogRel(("Addr=%RTptr HCPhys=%VHp cbPages=%d\n", Addr, HCPhys, cbPages));
return VERR_PGM_MAPPINGS_FIX_CONFLICT; /** @todo new error code */
}
/* The intermediate mapping must not conflict with our default hypervisor address. */
size_t cbHyper;
RTGCPTR pvHyperGC = MMHyperGetArea(pVM, &cbHyper);
if (uAddress < pvHyperGC
? uAddress + cbPages > pvHyperGC
: pvHyperGC + cbHyper > uAddress
)
{
AssertMsgFailed(("Addr=%RTptr HyperGC=%VGv cbPages=%zu\n", Addr, pvHyperGC, cbPages));
LogRel(("Addr=%RTptr HyperGC=%VGv cbPages=%zu\n", Addr, pvHyperGC, cbPages));
return VERR_PGM_MAPPINGS_FIX_CONFLICT; /** @todo new error code */
}
const unsigned cPages = cbPages >> PAGE_SHIFT;
int rc = pgmR3MapIntermediateCheckOne(pVM, uAddress, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]);
if (VBOX_FAILURE(rc))
return rc;
rc = pgmR3MapIntermediateCheckOne(pVM, (uintptr_t)HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]);
if (VBOX_FAILURE(rc))
return rc;
/*
* Everythings fine, do the mapping.
*/
pgmR3MapIntermediateDoOne(pVM, uAddress, HCPhys, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]);
pgmR3MapIntermediateDoOne(pVM, (uintptr_t)HCPhys, HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]);
return VINF_SUCCESS;
}
/**
* Validates that there are no conflicts for this mapping into the intermediate context.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param uAddress Address of the mapping.
* @param cPages Number of pages.
* @param pPTDefault Pointer to the default page table for this mapping.
* @param pPTPaeDefault Pointer to the default page table for this mapping.
*/
static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault)
{
AssertMsg((uAddress >> X86_PD_SHIFT) + cPages <= 1024, ("64-bit fixme\n"));
/*
* Check that the ranges are available.
* (This codes doesn't have to be fast.)
*/
while (cPages > 0)
{
/*
* 32-Bit.
*/
unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK;
unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK;
PX86PT pPT = pPTDefault;
if (pVM->pgm.s.pInterPD->a[iPDE].u)
{
RTHCPHYS HCPhysPT = pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK;
if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]))
pPT = pVM->pgm.s.apInterPTs[0];
else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]))
pPT = pVM->pgm.s.apInterPTs[1];
else
{
/** @todo this must be handled with a relocation of the conflicting mapping!
* Which of course cannot be done because we're in the middle of the initialization. bad design! */
AssertMsgFailed(("Conflict between core code and PGMR3Mapping(). uAddress=%VHv\n", uAddress));
LogRel(("Conflict between core code and PGMR3Mapping(). uAddress=%VHv\n", uAddress));
return VERR_PGM_MAPPINGS_FIX_CONFLICT; /** @todo error codes! */
}
}
if (pPT->a[iPTE].u)
{
AssertMsgFailed(("Conflict iPTE=%#x iPDE=%#x uAddress=%VHv pPT->a[iPTE].u=%RX32\n", iPTE, iPDE, uAddress, pPT->a[iPTE].u));
LogRel(("Conflict iPTE=%#x iPDE=%#x uAddress=%VHv pPT->a[iPTE].u=%RX32\n",
iPTE, iPDE, uAddress, pPT->a[iPTE].u));
return VERR_PGM_MAPPINGS_FIX_CONFLICT; /** @todo error codes! */
}
/*
* PAE.
*/
const unsigned iPDPE= (uAddress >> X86_PDPTR_SHIFT) & X86_PDPTR_MASK;
iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
Assert(iPDPE < 4);
Assert(pVM->pgm.s.apInterPaePDs[iPDPE]);
PX86PTPAE pPTPae = pPTPaeDefault;
if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u)
{
RTHCPHYS HCPhysPT = pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK;
if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]))
pPTPae = pVM->pgm.s.apInterPaePTs[0];
else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]))
pPTPae = pVM->pgm.s.apInterPaePTs[1];
else
{
/** @todo this must be handled with a relocation of the conflicting mapping!
* Which of course cannot be done because we're in the middle of the initialization. bad design! */
AssertMsgFailed(("Conflict between core code and PGMR3Mapping(). uAddress=%VHv\n", uAddress));
LogRel(("Conflict between core code and PGMR3Mapping(). uAddress=%VHv\n", uAddress));
return VERR_PGM_MAPPINGS_FIX_CONFLICT; /** @todo error codes! */
}
}
if (pPTPae->a[iPTE].u)
{
AssertMsgFailed(("Conflict iPTE=%#x iPDE=%#x uAddress=%VHv pPTPae->a[iPTE].u=%#RX64\n", iPTE, iPDE, uAddress, pPTPae->a[iPTE].u));
LogRel(("Conflict iPTE=%#x iPDE=%#x uAddress=%VHv pPTPae->a[iPTE].u=%#RX64\n",
iPTE, iPDE, uAddress, pPTPae->a[iPTE].u));
return VERR_PGM_MAPPINGS_FIX_CONFLICT; /** @todo error codes! */
}
/* next */
uAddress += PAGE_SIZE;
cPages--;
}
return VINF_SUCCESS;
}
/**
* Sets up the intermediate page tables for a verified mapping.
*
* @param pVM VM handle.
* @param uAddress Address of the mapping.
* @param HCPhys The physical address of the page range.
* @param cPages Number of pages.
* @param pPTDefault Pointer to the default page table for this mapping.
* @param pPTPaeDefault Pointer to the default page table for this mapping.
*/
static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault)
{
while (cPages > 0)
{
/*
* 32-Bit.
*/
unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK;
unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK;
PX86PT pPT;
if (pVM->pgm.s.pInterPD->a[iPDE].u)
pPT = (PX86PT)MMPagePhys2Page(pVM, pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK);
else
{
pVM->pgm.s.pInterPD->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW
| (uint32_t)MMPage2Phys(pVM, pPTDefault);
pPT = pPTDefault;
}
pPT->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | (uint32_t)HCPhys;
/*
* PAE
*/
const unsigned iPDPE= (uAddress >> X86_PDPTR_SHIFT) & X86_PDPTR_MASK;
iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
Assert(iPDPE < 4);
Assert(pVM->pgm.s.apInterPaePDs[iPDPE]);
PX86PTPAE pPTPae;
if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u)
pPTPae = (PX86PTPAE)MMPagePhys2Page(pVM, pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK);
else
{
pPTPae = pPTPaeDefault;
pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW
| MMPage2Phys(pVM, pPTPaeDefault);
}
pPTPae->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | HCPhys;
/* next */
cPages--;
HCPhys += PAGE_SIZE;
uAddress += PAGE_SIZE;
}
}
/**
* Clears all PDEs involved with the mapping.
*
* @param pPGM Pointer to the PGM instance data.
* @param pMap Pointer to the mapping in question.
* @param iOldPDE The index of the 32-bit PDE corresponding to the base of the mapping.
*/
static void pgmR3MapClearPDEs(PPGM pPGM, PPGMMAPPING pMap, int iOldPDE)
{
unsigned i = pMap->cPTs;
iOldPDE += i;
while (i-- > 0)
{
iOldPDE--;
/*
* 32-bit.
*/
pPGM->pInterPD->a[iOldPDE].u = 0;
pPGM->pHC32BitPD->a[iOldPDE].u = 0;
/*
* PAE.
*/
const int iPD = iOldPDE / 256;
int iPDE = iOldPDE * 2 % 512;
pPGM->apInterPaePDs[iPD]->a[iPDE].u = 0;
pPGM->apHCPaePDs[iPD]->a[iPDE].u = 0;
iPDE++;
pPGM->apInterPaePDs[iPD]->a[iPDE].u = 0;
pPGM->apHCPaePDs[iPD]->a[iPDE].u = 0;
}
}
/**
* Sets all PDEs involved with the mapping.
*
* @param pVM The VM handle.
* @param pMap Pointer to the mapping in question.
* @param iNewPDE The index of the 32-bit PDE corresponding to the base of the mapping.
*/
static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, int iNewPDE)
{
PPGM pPGM = &pVM->pgm.s;
/* If mappings are not supposed to be put in the shadow page table, then this function is a nop. */
if (!pgmMapAreMappingsEnabled(&pVM->pgm.s))
return;
/*
* Init the page tables and insert them into the page directories.
*/
unsigned i = pMap->cPTs;
iNewPDE += i;
while (i-- > 0)
{
iNewPDE--;
/*
* 32-bit.
*/
if (pPGM->pHC32BitPD->a[iNewPDE].n.u1Present)
pgmPoolFree(pVM, pPGM->pHC32BitPD->a[iNewPDE].u & X86_PDE_PG_MASK, PGMPOOL_IDX_PD, iNewPDE);
X86PDE Pde;
/* Default mapping page directory flags are read/write and supervisor; individual page attributes determine the final flags */
Pde.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | (uint32_t)pMap->aPTs[i].HCPhysPT;
pPGM->pInterPD->a[iNewPDE] = Pde;
pPGM->pHC32BitPD->a[iNewPDE] = Pde;
/*
* PAE.
*/
const int iPD = iNewPDE / 256;
int iPDE = iNewPDE * 2 % 512;
if (pPGM->apHCPaePDs[iPD]->a[iPDE].n.u1Present)
pgmPoolFree(pVM, pPGM->apHCPaePDs[iPD]->a[iPDE].u & X86_PDE_PAE_PG_MASK, PGMPOOL_IDX_PAE_PD, iNewPDE * 2);
X86PDEPAE PdePae0;
PdePae0.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT0;
pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae0;
pPGM->apHCPaePDs[iPD]->a[iPDE] = PdePae0;
iPDE++;
if (pPGM->apHCPaePDs[iPD]->a[iPDE].n.u1Present)
pgmPoolFree(pVM, pPGM->apHCPaePDs[iPD]->a[iPDE].u & X86_PDE_PAE_PG_MASK, PGMPOOL_IDX_PAE_PD, iNewPDE * 2 + 1);
X86PDEPAE PdePae1;
PdePae1.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT1;
pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae1;
pPGM->apHCPaePDs[iPD]->a[iPDE] = PdePae1;
}
}
/**
* Relocates a mapping to a new address.
*
* @param pVM VM handle.
* @param pMapping The mapping to relocate.
* @param iPDOld Old page directory index.
* @param iPDNew New page directory index.
*/
void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, int iPDOld, int iPDNew)
{
Log(("PGM: Relocating %s from %#x to %#x\n", pMapping->pszDesc, iPDOld << X86_PD_SHIFT, iPDNew << X86_PD_SHIFT));
Assert(((unsigned)iPDOld << X86_PD_SHIFT) == pMapping->GCPtr);
/*
* Relocate the page table(s).
*/
pgmR3MapClearPDEs(&pVM->pgm.s, pMapping, iPDOld);
pgmR3MapSetPDEs(pVM, pMapping, iPDNew);
/*
* Update and resort the mapping list.
*/
/* Find previous mapping for pMapping, put result into pPrevMap. */
PPGMMAPPING pPrevMap = NULL;
PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
while (pCur && pCur != pMapping)
{
/* next */
pPrevMap = pCur;
pCur = pCur->pNextR3;
}
Assert(pCur);
/* Find mapping which >= than pMapping. */
RTGCPTR GCPtrNew = iPDNew << X86_PD_SHIFT;
PPGMMAPPING pPrev = NULL;
pCur = pVM->pgm.s.pMappingsR3;
while (pCur && pCur->GCPtr < GCPtrNew)
{
/* next */
pPrev = pCur;
pCur = pCur->pNextR3;
}
if (pCur != pMapping && pPrev != pMapping)
{
/*
* Unlink.
*/
if (pPrevMap)
{
pPrevMap->pNextR3 = pMapping->pNextR3;
pPrevMap->pNextGC = pMapping->pNextGC;
pPrevMap->pNextR0 = pMapping->pNextR0;
}
else
{
pVM->pgm.s.pMappingsR3 = pMapping->pNextR3;
pVM->pgm.s.pMappingsGC = pMapping->pNextGC;
pVM->pgm.s.pMappingsR0 = pMapping->pNextR0;
}
/*
* Link
*/
pMapping->pNextR3 = pCur;
if (pPrev)
{
pMapping->pNextGC = pPrev->pNextGC;
pMapping->pNextR0 = pPrev->pNextR0;
pPrev->pNextR3 = pMapping;
pPrev->pNextGC = MMHyperR3ToGC(pVM, pMapping);
pPrev->pNextR0 = MMHyperR3ToR0(pVM, pMapping);
}
else
{
pMapping->pNextGC = pVM->pgm.s.pMappingsGC;
pMapping->pNextR0 = pVM->pgm.s.pMappingsR0;
pVM->pgm.s.pMappingsR3 = pMapping;
pVM->pgm.s.pMappingsGC = MMHyperR3ToGC(pVM, pMapping);
pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pMapping);
}
}
/*
* Update the entry.
*/
pMapping->GCPtr = GCPtrNew;
pMapping->GCPtrLast = GCPtrNew + pMapping->cb - 1;
/*
* Callback to execute the relocation.
*/
pMapping->pfnRelocate(pVM, iPDOld << X86_PD_SHIFT, iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_RELOCATE, pMapping->pvUser);
}
/**
* Resolves a conflict between a page table based GC mapping and
* the Guest OS page tables.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pMapping The mapping which conflicts.
* @param pPDSrc The page directory of the guest OS.
* @param iPDOld The index to the start of the current mapping.
*/
int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PVBOXPD pPDSrc, int iPDOld)
{
STAM_PROFILE_START(&pVM->pgm.s.StatHCResolveConflict, a);
/*
* Scan for free page directory entries.
*
* Note that we do not support mappings at the very end of the
* address space since that will break our GCPtrEnd assumptions.
*/
const unsigned cPTs = pMapping->cPTs;
unsigned iPDNew = ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */
while (iPDNew-- > 0)
{
if (pPDSrc->a[iPDNew].n.u1Present)
continue;
if (cPTs > 1)
{
bool fOk = true;
for (unsigned i = 1; fOk && i < cPTs; i++)
if (pPDSrc->a[iPDNew + i].n.u1Present)
fOk = false;
if (!fOk)
continue;
}
/*
* Check that it's not conflicting with an intermediate page table mapping.
*/
bool fOk = true;
unsigned i = cPTs;
while (fOk && i-- > 0)
fOk = !pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present;
if (!fOk)
continue;
/** @todo AMD64 should check the PAE directories and skip the 32bit stuff. */
/*
* Ask the mapping.
*/
if (pMapping->pfnRelocate(pVM, iPDOld << X86_PD_SHIFT, iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_SUGGEST, pMapping->pvUser))
{
pgmR3MapRelocate(pVM, pMapping, iPDOld, iPDNew);
STAM_PROFILE_STOP(&pVM->pgm.s.StatHCResolveConflict, a);
return VINF_SUCCESS;
}
}
STAM_PROFILE_STOP(&pVM->pgm.s.StatHCResolveConflict, a);
AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, iPDOld << X86_PD_SHIFT, cPTs));
return VERR_PGM_NO_HYPERVISOR_ADDRESS;
}
/**
* Checks guest PD for conflicts with VMM GC mappings.
*
* @returns true if conflict detected.
* @returns false if not.
* @param pVM The virtual machine.
* @param cr3 Guest context CR3 register.
* @param fRawR0 Whether RawR0 is enabled or not.
*/
PGMR3DECL(bool) PGMR3MapHasConflicts(PVM pVM, uint32_t cr3, bool fRawR0) /** @todo how many HasConflict constructs do we really need? */
{
/*
* Can skip this if mappings are safely fixed.
*/
if (pVM->pgm.s.fMappingsFixed)
return false;
/*
* Resolve the page directory.
*/
PVBOXPD pPD = pVM->pgm.s.pGuestPDHC; /** @todo Fix PAE! */
Assert(pPD);
Assert(pPD == (PVBOXPD)MMPhysGCPhys2HCVirt(pVM, cr3 & X86_CR3_PAGE_MASK, sizeof(*pPD)));
/*
* Iterate mappings.
*/
for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
{
unsigned iPDE = pCur->GCPtr >> X86_PD_SHIFT;
unsigned iPT = pCur->cPTs;
while (iPT-- > 0)
if ( pPD->a[iPDE + iPT].n.u1Present /** @todo PGMGstGetPDE. */
&& (fRawR0 || pPD->a[iPDE + iPT].n.u1User))
{
STAM_COUNTER_INC(&pVM->pgm.s.StatHCDetectedConflicts);
#if 1
Log(("PGMR3HasMappingConflicts: Conflict was detected at %VGv for mapping %s\n"
" iPDE=%#x iPT=%#x PDE=%VGp.\n",
(iPT + iPDE) << X86_PD_SHIFT, pCur->pszDesc,
iPDE, iPT, pPD->a[iPDE + iPT].au32[0]));
#else
AssertMsgFailed(("PGMR3HasMappingConflicts: Conflict was detected at %VGv for mapping %s\n"
" iPDE=%#x iPT=%#x PDE=%VGp.\n",
(iPT + iPDE) << X86_PD_SHIFT, pCur->pszDesc,
iPDE, iPT, pPD->a[iPDE + iPT].au32[0]));
#endif
return true;
}
}
return false;
}
/**
* Read memory from the guest mappings.
*
* This will use the page tables associated with the mappings to
* read the memory. This means that not all kind of memory is readable
* since we don't necessarily know how to convert that physical address
* to a HC virtual one.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst The destination address (HC of course).
* @param GCPtrSrc The source address (GC virtual address).
* @param cb Number of bytes to read.
*/
PGMR3DECL(int) PGMR3MapRead(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
{
/** @todo remove this simplicity hack */
/*
* Simplicity over speed... Chop the request up into chunks
* which don't cross pages.
*/
if (cb + (GCPtrSrc & PAGE_OFFSET_MASK) > PAGE_SIZE)
{
for (;;)
{
unsigned cbRead = RT_MIN(cb, PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK));
int rc = PGMR3MapRead(pVM, pvDst, GCPtrSrc, cbRead);
if (VBOX_FAILURE(rc))
return rc;
cb -= cbRead;
if (!cb)
break;
pvDst = (char *)pvDst + cbRead;
GCPtrSrc += cbRead;
}
return VINF_SUCCESS;
}
/*
* Find the mapping.
*/
PPGMMAPPING pCur = CTXALLSUFF(pVM->pgm.s.pMappings);
while (pCur)
{
RTGCUINTPTR off = (RTGCUINTPTR)GCPtrSrc - (RTGCUINTPTR)pCur->GCPtr;
if (off < pCur->cb)
{
if (off + cb > pCur->cb)
{
AssertMsgFailed(("Invalid page range %VGv LB%#x. mapping '%s' %VGv to %VGv\n",
GCPtrSrc, cb, pCur->pszDesc, pCur->GCPtr, pCur->GCPtrLast));
return VERR_INVALID_PARAMETER;
}
unsigned iPT = off >> X86_PD_SHIFT;
unsigned iPTE = (off >> PAGE_SHIFT) & X86_PT_MASK;
while (cb > 0 && iPTE < ELEMENTS(CTXALLSUFF(pCur->aPTs[iPT].pPT)->a))
{
if (!CTXALLSUFF(pCur->aPTs[iPT].paPaePTs)[iPTE / 512].a[iPTE % 512].n.u1Present)
return VERR_PAGE_NOT_PRESENT;
RTHCPHYS HCPhys = CTXALLSUFF(pCur->aPTs[iPT].paPaePTs)[iPTE / 512].a[iPTE % 512].u & X86_PTE_PAE_PG_MASK;
/*
* Get the virtual page from the physical one.
*/
void *pvPage;
int rc = MMR3HCPhys2HCVirt(pVM, HCPhys, &pvPage);
if (VBOX_FAILURE(rc))
return rc;
memcpy(pvDst, (char *)pvPage + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
return VINF_SUCCESS;
}
}
/* next */
pCur = CTXALLSUFF(pCur->pNext);
}
return VERR_INVALID_POINTER;
}
/**
* Dumps one virtual handler range.
*
* @returns 0
* @param pNode Pointer to a PGMVIRTHANDLER.
* @param pvUser Pointer to command helper functions.
*/
static DECLCALLBACK(int) pgmVirtHandlerDump(PAVLROGCPTRNODECORE pNode, void *pvUser)
{
PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
switch (pCur->enmType)
{
case PGMVIRTHANDLERTYPE_EIP:
RTLogPrintf("EIP %RGv-%RGv size %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->cb, pCur->pszDesc);
break;
case PGMVIRTHANDLERTYPE_NORMAL:
RTLogPrintf("NORMAL %RGv-%RGv size %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->cb, pCur->pszDesc);
break;
case PGMVIRTHANDLERTYPE_WRITE:
RTLogPrintf("WRITE %RGv-%RGv size %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->cb, pCur->pszDesc);
break;
case PGMVIRTHANDLERTYPE_HYPERVISOR:
RTLogPrintf("WRITEHYP %RGv-%RGv size %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->cb, pCur->pszDesc);
break;
case PGMVIRTHANDLERTYPE_ALL:
RTLogPrintf("ALL %RGv-%RGv size %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->cb, pCur->pszDesc);
break;
}
if (pCur->enmType != PGMVIRTHANDLERTYPE_HYPERVISOR)
for (unsigned i = 0; i < pCur->cPages; i++)
RTLogPrintf("Physical page %#05d %VGp\n", i, pCur->aPhysToVirt[i].Core.Key);
return 0;
}
/**
* Dumps the current mappings to the log
*
* @returns VBox status.
* @param pVM Pointer to the current VM (if any).
*
*/
PGMR3DECL(void) PGMR3DumpMappings(PVM pVM)
{
/*
* Print message about the fixedness of the mappings and dump them.
*/
RTLogPrintf(pVM->pgm.s.fMappingsFixed ? "\nThe mappings are FIXED.\n" : "\nThe mappings are FLOATING.\n");
PPGMMAPPING pCur;
for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
RTLogPrintf("%VGv - %VGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
/** @todo The handler stuff is totally alien here. This should be converted into a 'info' function. */
RTLogPrintf("\nVirtual handlers:\n");
RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmVirtHandlerDump, pVM);
RTLogPrintf("\n"
"Physical handlers: (PhysHandlers=%d (%#x))\n"
"From - To (incl) HandlerHC UserHC HandlerHC UserHC HandlerGC UserGC Type Description\n",
pVM->pgm.s.pTreesHC->PhysHandlers, pVM->pgm.s.pTreesHC->PhysHandlers);
RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3DumpMappingsPhysicalCB, NULL);
}
/**
* Dumps one physical handler range.
*
* @returns 0
* @param pNode Pointer to a PGMPHYSHANDLER.
* @param pvUser Ignored.
*/
static DECLCALLBACK(int) pgmR3DumpMappingsPhysicalCB(PAVLROGCPHYSNODECORE pNode, void *pvUser)
{
PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode; NOREF(pvUser);
const char *pszType;
switch (pCur->enmType)
{
case PGMPHYSHANDLERTYPE_MMIO: pszType = "MMIO "; break;
case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE: pszType = "Write "; break;
case PGMPHYSHANDLERTYPE_PHYSICAL_ALL: pszType = "All "; break;
default: pszType = "????"; break;
}
RTLogPrintf("%VGp - %VGp %VHv %VHv %VHv %VHv %VGv %VGv %s %s\n",
pCur->Core.Key, pCur->Core.KeyLast, pCur->pfnHandlerR3, pCur->pvUserR3, pCur->pfnHandlerR0, pCur->pvUserR0,
pCur->pfnHandlerGC, pCur->pvUserGC, pszType, pCur->pszDesc);
return 0;
}