PGMInternal.h revision a54b39668ee07bfc7d30ff54243b9ee423cfd917
/* $Id$ */
/** @file
* PGM - Internal header file.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
#ifndef ___PGMInternal_h
#define ___PGMInternal_h
#include <VBox/cdefs.h>
#include <VBox/types.h>
#include <VBox/err.h>
#include <VBox/stam.h>
#include <VBox/param.h>
#include <VBox/vmm.h>
#include <VBox/mm.h>
#include <VBox/pdmcritsect.h>
#include <VBox/pdmapi.h>
#include <VBox/dis.h>
#include <VBox/dbgf.h>
#include <VBox/log.h>
#include <VBox/gmm.h>
#include <VBox/hwaccm.h>
#include <iprt/avl.h>
#include <iprt/assert.h>
#include <iprt/critsect.h>
/** @defgroup grp_pgm_int Internals
* @ingroup grp_pgm
* @internal
* @{
*/
/** @name PGM Compile Time Config
* @{
*/
/**
* Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
* Comment it if it will break something.
*/
#define PGM_OUT_OF_SYNC_IN_GC
/**
* Check and skip global PDEs for non-global flushes
*/
#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
/**
* Sync N pages instead of a whole page table
*/
#define PGM_SYNC_N_PAGES
/**
* Number of pages to sync during a page fault
*
* When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
* causes a lot of unnecessary extents and also is slower than taking more \#PFs.
*/
#define PGM_SYNC_NR_PAGES 8
/**
* Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
*/
#define PGM_MAX_PHYSCACHE_ENTRIES 64
#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
/**
* Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
*/
#define PGM_PHYSMEMACCESS_CACHING
/** @def PGMPOOL_WITH_CACHE
* Enable agressive caching using the page pool.
*
* This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
*/
#define PGMPOOL_WITH_CACHE
/** @def PGMPOOL_WITH_MIXED_PT_CR3
* When defined, we'll deal with 'uncachable' pages.
*/
#ifdef PGMPOOL_WITH_CACHE
# define PGMPOOL_WITH_MIXED_PT_CR3
#endif
/** @def PGMPOOL_WITH_MONITORING
* Monitor the guest pages which are shadowed.
* When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
* be enabled as well.
* @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
*/
#ifdef PGMPOOL_WITH_CACHE
# define PGMPOOL_WITH_MONITORING
#endif
/** @def PGMPOOL_WITH_GCPHYS_TRACKING
* Tracking the of shadow pages mapping guest physical pages.
*
* This is very expensive, the current cache prototype is trying to figure out
* whether it will be acceptable with an agressive caching policy.
*/
#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
# define PGMPOOL_WITH_GCPHYS_TRACKING
#endif
/** @def PGMPOOL_WITH_USER_TRACKING
* Tracking users of shadow pages. This is required for the linking of shadow page
* tables and physical guest addresses.
*/
#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
# define PGMPOOL_WITH_USER_TRACKING
#endif
/** @def PGMPOOL_CFG_MAX_GROW
* The maximum number of pages to add to the pool in one go.
*/
#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
* Enables some extra assertions for virtual handlers (mainly phys2virt related).
*/
#ifdef VBOX_STRICT
# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
#endif
/** @} */
/** @name PDPT and PML4 flags.
* These are placed in the three bits available for system programs in
* the PDPT and PML4 entries.
* @{ */
/** The entry is a permanent one and it's must always be present.
* Never free such an entry. */
#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
/** Mapping (hypervisor allocated pagetable). */
#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
/** @} */
/** @name Page directory flags.
* These are placed in the three bits available for system programs in
* the page directory entries.
* @{ */
/** Mapping (hypervisor allocated pagetable). */
#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
/** Made read-only to facilitate dirty bit tracking. */
#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
/** @} */
/** @name Page flags.
* These are placed in the three bits available for system programs in
* the page entries.
* @{ */
/** Made read-only to facilitate dirty bit tracking. */
#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
#ifndef PGM_PTFLAGS_CSAM_VALIDATED
/** Scanned and approved by CSAM (tm).
* NOTE: Must be identical to the one defined in CSAMInternal.h!!
* @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
#endif
/** @} */
/** @name Defines used to indicate the shadow and guest paging in the templates.
* @{ */
#define PGM_TYPE_REAL 1
#define PGM_TYPE_PROT 2
#define PGM_TYPE_32BIT 3
#define PGM_TYPE_PAE 4
#define PGM_TYPE_AMD64 5
#define PGM_TYPE_NESTED 6
#define PGM_TYPE_EPT 7
#define PGM_TYPE_MAX PGM_TYPE_EPT
/** @} */
/** Macro for checking if the guest is using paging.
* @param uGstType PGM_TYPE_*
* @param uShwType PGM_TYPE_*
* @remark ASSUMES certain order of the PGM_TYPE_* values.
*/
#define PGM_WITH_PAGING(uGstType, uShwType) ((uGstType) >= PGM_TYPE_32BIT && (uShwType) != PGM_TYPE_NESTED && (uShwType) != PGM_TYPE_EPT)
/** Macro for checking if the guest supports the NX bit.
* @param uGstType PGM_TYPE_*
* @param uShwType PGM_TYPE_*
* @remark ASSUMES certain order of the PGM_TYPE_* values.
*/
#define PGM_WITH_NX(uGstType, uShwType) ((uGstType) >= PGM_TYPE_PAE && (uShwType) != PGM_TYPE_NESTED && (uShwType) != PGM_TYPE_EPT)
/** @def PGM_HCPHYS_2_PTR
* Maps a HC physical page pool address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param HCPhys The HC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
* small page window employeed by that function. Be careful.
* @remark There is no need to assert on the result.
*/
#ifdef IN_GC
# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMGCDynMapHCPage(pVM, HCPhys, (void **)(ppv))
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMR0DynMapHCPage(pVM, HCPhys, (void **)(ppv))
#else
# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
#endif
/** @def PGM_GCPHYS_2_PTR
* Maps a GC physical page address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param GCPhys The GC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
* small page window employeed by that function. Be careful.
* @remark There is no need to assert on the result.
*/
#ifdef IN_GC
# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMGCDynMapGCPage(pVM, GCPhys, (void **)(ppv))
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMR0DynMapGCPage(pVM, GCPhys, (void **)(ppv))
#else
# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
#endif
/** @def PGM_GCPHYS_2_PTR_EX
* Maps a unaligned GC physical page address to a virtual address.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param GCPhys The GC physical address to map to a virtual one.
* @param ppv Where to store the virtual address. No need to cast this.
*
* @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
* small page window employeed by that function. Be careful.
* @remark There is no need to assert on the result.
*/
#ifdef IN_GC
# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMGCDynMapGCPageEx(pVM, GCPhys, (void **)(ppv))
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMR0DynMapGCPageEx(pVM, GCPhys, (void **)(ppv))
#else
# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
#endif
/** @def PGM_INVL_PG
* Invalidates a page when in GC does nothing in HC.
*
* @param GCVirt The virtual address of the page to invalidate.
*/
#ifdef IN_GC
# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
#elif defined(IN_RING0)
# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
#else
# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
#endif
/** @def PGM_INVL_BIG_PG
* Invalidates a 4MB page directory entry when in GC does nothing in HC.
*
* @param GCVirt The virtual address within the page directory to invalidate.
*/
#ifdef IN_GC
# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
#elif defined(IN_RING0)
# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
#else
# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
#endif
/** @def PGM_INVL_GUEST_TLBS()
* Invalidates all guest TLBs.
*/
#ifdef IN_GC
# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
#elif defined(IN_RING0)
# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
#else
# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
#endif
/**
* Structure for tracking GC Mappings.
*
* This structure is used by linked list in both GC and HC.
*/
typedef struct PGMMAPPING
{
/** Pointer to next entry. */
R3PTRTYPE(struct PGMMAPPING *) pNextR3;
/** Pointer to next entry. */
R0PTRTYPE(struct PGMMAPPING *) pNextR0;
/** Pointer to next entry. */
RCPTRTYPE(struct PGMMAPPING *) pNextRC;
#if GC_ARCH_BITS == 64
RTRCPTR padding0;
#endif
/** Start Virtual address. */
RTGCUINTPTR GCPtr;
/** Last Virtual address (inclusive). */
RTGCUINTPTR GCPtrLast;
/** Range size (bytes). */
RTGCUINTPTR cb;
/** Pointer to relocation callback function. */
R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
/** User argument to the callback. */
R3PTRTYPE(void *) pvUser;
/** Mapping description / name. For easing debugging. */
R3PTRTYPE(const char *) pszDesc;
/** Number of page tables. */
RTUINT cPTs;
#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
RTUINT uPadding1; /**< Alignment padding. */
#endif
/** Array of page table mapping data. Each entry
* describes one page table. The array can be longer
* than the declared length.
*/
struct
{
/** The HC physical address of the page table. */
RTHCPHYS HCPhysPT;
/** The HC physical address of the first PAE page table. */
RTHCPHYS HCPhysPaePT0;
/** The HC physical address of the second PAE page table. */
RTHCPHYS HCPhysPaePT1;
/** The HC virtual address of the 32-bit page table. */
R3PTRTYPE(PX86PT) pPTR3;
/** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
R3PTRTYPE(PX86PTPAE) paPaePTsR3;
/** The GC virtual address of the 32-bit page table. */
RCPTRTYPE(PX86PT) pPTRC;
/** The GC virtual address of the two PAE page table. */
RCPTRTYPE(PX86PTPAE) paPaePTsRC;
/** The GC virtual address of the 32-bit page table. */
R0PTRTYPE(PX86PT) pPTR0;
/** The GC virtual address of the two PAE page table. */
R0PTRTYPE(PX86PTPAE) paPaePTsR0;
} aPTs[1];
} PGMMAPPING;
/** Pointer to structure for tracking GC Mappings. */
typedef struct PGMMAPPING *PPGMMAPPING;
/**
* Physical page access handler structure.
*
* This is used to keep track of physical address ranges
* which are being monitored in some kind of way.
*/
typedef struct PGMPHYSHANDLER
{
AVLROGCPHYSNODECORE Core;
/** Access type. */
PGMPHYSHANDLERTYPE enmType;
/** Number of pages to update. */
uint32_t cPages;
/** Pointer to R3 callback function. */
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
/** User argument for R3 handlers. */
R3PTRTYPE(void *) pvUserR3;
/** Pointer to R0 callback function. */
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
/** User argument for R0 handlers. */
R0PTRTYPE(void *) pvUserR0;
/** Pointer to GC callback function. */
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
/** User argument for RC handlers. */
RCPTRTYPE(void *) pvUserRC;
/** Description / Name. For easing debugging. */
R3PTRTYPE(const char *) pszDesc;
#ifdef VBOX_WITH_STATISTICS
/** Profiling of this handler. */
STAMPROFILE Stat;
#endif
} PGMPHYSHANDLER;
/** Pointer to a physical page access handler structure. */
typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
/**
* Cache node for the physical addresses covered by a virtual handler.
*/
typedef struct PGMPHYS2VIRTHANDLER
{
/** Core node for the tree based on physical ranges. */
AVLROGCPHYSNODECORE Core;
/** Offset from this struct to the PGMVIRTHANDLER structure. */
int32_t offVirtHandler;
/** Offset of the next alias relative to this one.
* Bit 0 is used for indicating whether we're in the tree.
* Bit 1 is used for indicating that we're the head node.
*/
int32_t offNextAlias;
} PGMPHYS2VIRTHANDLER;
/** Pointer to a phys to virtual handler structure. */
typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
* node is in the tree. */
#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
* node is in the head of an alias chain.
* The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
/**
* Virtual page access handler structure.
*
* This is used to keep track of virtual address ranges
* which are being monitored in some kind of way.
*/
typedef struct PGMVIRTHANDLER
{
/** Core node for the tree based on virtual ranges. */
AVLROGCPTRNODECORE Core;
#if GC_ARCH_BITS == 32
/** Alignment padding. */
uint32_t u32Padding;
#endif
/** Access type. */
PGMVIRTHANDLERTYPE enmType;
/** Number of cache pages. */
uint32_t cPages;
/** @todo The next two members are redundant. It adds some readability though. */
/** Start of the range. */
RTGCPTR GCPtr;
/** End of the range (exclusive). */
RTGCPTR GCPtrLast;
/** Size of the range (in bytes). */
RTGCUINTPTR cb;
/** Pointer to the RC callback function. */
RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
#if GC_ARCH_BITS == 64
RTRCPTR padding1;
#endif
/** Pointer to the R3 callback function for invalidation. */
R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
/** Pointer to the R3 callback function. */
R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
/** Description / Name. For easing debugging. */
R3PTRTYPE(const char *) pszDesc;
#ifdef VBOX_WITH_STATISTICS
/** Profiling of this handler. */
STAMPROFILE Stat;
#endif
/** Array of cached physical addresses for the monitored ranged. */
PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
} PGMVIRTHANDLER;
/** Pointer to a virtual page access handler structure. */
typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
/**
* Page type.
* @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
* @todo convert to \#defines.
*/
typedef enum PGMPAGETYPE
{
/** The usual invalid zero entry. */
PGMPAGETYPE_INVALID = 0,
/** RAM page. (RWX) */
PGMPAGETYPE_RAM,
/** MMIO2 page. (RWX) */
PGMPAGETYPE_MMIO2,
/** Shadowed ROM. (RWX) */
PGMPAGETYPE_ROM_SHADOW,
/** ROM page. (R-X) */
PGMPAGETYPE_ROM,
/** MMIO page. (---) */
PGMPAGETYPE_MMIO,
/** End of valid entries. */
PGMPAGETYPE_END
} PGMPAGETYPE;
AssertCompile(PGMPAGETYPE_END < 7);
/** @name Page type predicates.
* @{ */
#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
/** @} */
/**
* A Physical Guest Page tracking structure.
*
* The format of this structure is complicated because we have to fit a lot
* of information into as few bits as possible. The format is also subject
* to change (there is one comming up soon). Which means that for we'll be
* using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
* accessess to the structure.
*/
typedef struct PGMPAGE
{
/** The physical address and a whole lot of other stuff. All bits are used! */
RTHCPHYS HCPhys;
/** The page state. */
uint32_t u2StateX : 2;
/** Flag indicating that a write monitored page was written to when set. */
uint32_t fWrittenToX : 1;
/** For later. */
uint32_t fSomethingElse : 1;
/** The Page ID.
* @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
* The HCPhys will be 100% static. */
uint32_t idPageX : 28;
/** The page type (PGMPAGETYPE). */
uint32_t u3Type : 3;
/** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
uint32_t u2HandlerPhysStateX : 2;
/** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
uint32_t u2HandlerVirtStateX : 2;
uint32_t u29B : 25;
} PGMPAGE;
AssertCompileSize(PGMPAGE, 16);
/** Pointer to a physical guest page. */
typedef PGMPAGE *PPGMPAGE;
/** Pointer to a const physical guest page. */
typedef const PGMPAGE *PCPGMPAGE;
/** Pointer to a physical guest page pointer. */
typedef PPGMPAGE *PPPGMPAGE;
/**
* Clears the page structure.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_CLEAR(pPage) \
do { \
(pPage)->HCPhys = 0; \
(pPage)->u2StateX = 0; \
(pPage)->fWrittenToX = 0; \
(pPage)->fSomethingElse = 0; \
(pPage)->idPageX = 0; \
(pPage)->u3Type = 0; \
(pPage)->u29B = 0; \
} while (0)
/**
* Initializes the page structure.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
do { \
(pPage)->HCPhys = (_HCPhys); \
(pPage)->u2StateX = (_uState); \
(pPage)->fWrittenToX = 0; \
(pPage)->fSomethingElse = 0; \
(pPage)->idPageX = (_idPage); \
/*(pPage)->u3Type = (_uType); - later */ \
PGM_PAGE_SET_TYPE(pPage, _uType); \
(pPage)->u29B = 0; \
} while (0)
/**
* Initializes the page structure of a ZERO page.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#ifdef VBOX_WITH_NEW_PHYS_CODE
# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
#else
# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
#endif
/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
/** @name The Page state, PGMPAGE::u2StateX.
* @{ */
/** The zero page.
* This is a per-VM page that's never ever mapped writable. */
#define PGM_PAGE_STATE_ZERO 0
/** A allocated page.
* This is a per-VM page allocated from the page pool (or wherever
* we get MMIO2 pages from if the type is MMIO2).
*/
#define PGM_PAGE_STATE_ALLOCATED 1
/** A allocated page that's being monitored for writes.
* The shadow page table mappings are read-only. When a write occurs, the
* fWrittenTo member is set, the page remapped as read-write and the state
* moved back to allocated. */
#define PGM_PAGE_STATE_WRITE_MONITORED 2
/** The page is shared, aka. copy-on-write.
* This is a page that's shared with other VMs. */
#define PGM_PAGE_STATE_SHARED 3
/** @} */
/**
* Gets the page state.
* @returns page state (PGM_PAGE_STATE_*).
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
/**
* Sets the page state.
* @param pPage Pointer to the physical guest page tracking structure.
* @param _uState The new page state.
*/
#define PGM_PAGE_SET_STATE(pPage, _uState) \
do { (pPage)->u2StateX = (_uState); } while (0)
/**
* Gets the host physical address of the guest page.
* @returns host physical address (RTHCPHYS).
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
/**
* Sets the host physical address of the guest page.
* @param pPage Pointer to the physical guest page tracking structure.
* @param _HCPhys The new host physical address.
*/
#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
| ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
/**
* Get the Page ID.
* @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
/* later:
#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
| ((uint32_t)(pPage)->HCPhys & 0xfff) )
*/
/**
* Sets the Page ID.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
/* later:
#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
| ((_idPage) & 0xfff) \
| (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
*/
/**
* Get the Chunk ID.
* @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
/* later:
#if GMM_CHUNKID_SHIFT == 12
# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
#elif GMM_CHUNKID_SHIFT > 12
# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
#elif GMM_CHUNKID_SHIFT < 12
# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
| ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
#else
# error "GMM_CHUNKID_SHIFT isn't defined or something."
#endif
*/
/**
* Get the index of the page within the allocaiton chunk.
* @returns The page index.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
/* later:
#if GMM_CHUNKID_SHIFT <= 12
# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
#else
# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
| ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
#endif
*/
/**
* Gets the page type.
* @returns The page type.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
/**
* Sets the page type.
* @param pPage Pointer to the physical guest page tracking structure.
* @param _enmType The new page type (PGMPAGETYPE).
*/
#ifdef VBOX_WITH_NEW_PHYS_CODE
#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
do { (pPage)->u3Type = (_enmType); } while (0)
#else
#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
do { \
(pPage)->u3Type = (_enmType); \
if ((_enmType) == PGMPAGETYPE_ROM) \
(pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
(pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
else if ((_enmType) == PGMPAGETYPE_MMIO2) \
(pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
} while (0)
#endif
/**
* Checks if the page is 'reserved'.
* @returns true/false.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
/**
* Checks if the page is marked for MMIO.
* @returns true/false.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
/**
* Checks if the page is backed by the ZERO page.
* @returns true/false.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
/**
* Checks if the page is backed by a SHARED page.
* @returns true/false.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
/**
* Marks the paget as written to (for GMM change monitoring).
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
/**
* Clears the written-to indicator.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
/**
* Checks if the page was marked as written-to.
* @returns true/false.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
*
* @remarks The values are assigned in order of priority, so we can calculate
* the correct state for a page with different handlers installed.
* @{ */
/** No handler installed. */
#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
/** Monitoring is temporarily disabled. */
#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
/** Write access is monitored. */
#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
/** All access is monitored. */
#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
/** @} */
/**
* Gets the physical access handler state of a page.
* @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
/**
* Sets the physical access handler state of a page.
* @param pPage Pointer to the physical guest page tracking structure.
* @param _uState The new state value.
*/
#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
/**
* Checks if the page has any physical access handlers, including temporariliy disabled ones.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
/**
* Checks if the page has any active physical access handlers.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
*
* @remarks The values are assigned in order of priority, so we can calculate
* the correct state for a page with different handlers installed.
* @{ */
/** No handler installed. */
#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
/* 1 is reserved so the lineup is identical with the physical ones. */
/** Write access is monitored. */
#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
/** All access is monitored. */
#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
/** @} */
/**
* Gets the virtual access handler state of a page.
* @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
/**
* Sets the virtual access handler state of a page.
* @param pPage Pointer to the physical guest page tracking structure.
* @param _uState The new state value.
*/
#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
/**
* Checks if the page has any virtual access handlers.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
/**
* Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
* virtual handlers.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
/**
* Checks if the page has any access handlers, including temporarily disabled ones.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
|| (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
/**
* Checks if the page has any active access handlers.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
|| (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
/**
* Checks if the page has any active access handlers catching all accesses.
* @returns true/false
* @param pPage Pointer to the physical guest page tracking structure.
*/
#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
|| (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
/**
* Ram range for GC Phys to HC Phys conversion.
*
* Can be used for HC Virt to GC Phys and HC Virt to HC Phys
* conversions too, but we'll let MM handle that for now.
*
* This structure is used by linked lists in both GC and HC.
*/
typedef struct PGMRAMRANGE
{
/** Pointer to the next RAM range - for R3. */
R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
/** Pointer to the next RAM range - for R0. */
R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
/** Pointer to the next RAM range - for RC. */
RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
/** Pointer alignment. */
RTRCPTR RCPtrAlignment;
/** Start of the range. Page aligned. */
RTGCPHYS GCPhys;
/** Last address in the range (inclusive). Page aligned (-1). */
RTGCPHYS GCPhysLast;
/** Size of the range. (Page aligned of course). */
RTGCPHYS cb;
/** MM_RAM_* flags */
uint32_t fFlags;
uint32_t u32Alignment; /**< alignment. */
#ifndef VBOX_WITH_NEW_PHYS_CODE
/** HC virtual lookup ranges for chunks - R3/R0 Ptr.
* Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
#endif
/** Start of the HC mapping of the range. This is only used for MMIO2. */
R3PTRTYPE(void *) pvR3;
/** The range description. */
R3PTRTYPE(const char *) pszDesc;
/** Padding to make aPage aligned on sizeof(PGMPAGE). */
#ifdef VBOX_WITH_NEW_PHYS_CODE
uint32_t au32Reserved[2];
#elif HC_ARCH_BITS == 32
uint32_t au32Reserved[1];
#endif
/** Array of physical guest page tracking structures. */
PGMPAGE aPages[1];
} PGMRAMRANGE;
/** Pointer to Ram range for GC Phys to HC Phys conversion. */
typedef PGMRAMRANGE *PPGMRAMRANGE;
/** Return hc ptr corresponding to the ram range and physical offset */
#define PGMRAMRANGE_GETHCPTR(pRam, off) \
(pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
: (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
/**
* Per page tracking structure for ROM image.
*
* A ROM image may have a shadow page, in which case we may have
* two pages backing it. This structure contains the PGMPAGE for
* both while PGMRAMRANGE have a copy of the active one. It is
* important that these aren't out of sync in any regard other
* than page pool tracking data.
*/
typedef struct PGMROMPAGE
{
/** The page structure for the virgin ROM page. */
PGMPAGE Virgin;
/** The page structure for the shadow RAM page. */
PGMPAGE Shadow;
/** The current protection setting. */
PGMROMPROT enmProt;
/** Pad the structure size to a multiple of 8. */
uint32_t u32Padding;
} PGMROMPAGE;
/** Pointer to a ROM page tracking structure. */
typedef PGMROMPAGE *PPGMROMPAGE;
/**
* A registered ROM image.
*
* This is needed to keep track of ROM image since they generally
* intrude into a PGMRAMRANGE. It also keeps track of additional
* info like the two page sets (read-only virgin and read-write shadow),
* the current state of each page.
*
* Because access handlers cannot easily be executed in a different
* context, the ROM ranges needs to be accessible and in all contexts.
*/
typedef struct PGMROMRANGE
{
/** Pointer to the next range - R3. */
R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
/** Pointer to the next range - R0. */
R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
/** Pointer to the next range - GC. */
RCPTRTYPE(struct PGMROMRANGE *) pNextGC;
/** Pointer alignment */
RTRCPTR GCPtrAlignment;
/** Address of the range. */
RTGCPHYS GCPhys;
/** Address of the last byte in the range. */
RTGCPHYS GCPhysLast;
/** Size of the range. */
RTGCPHYS cb;
/** The flags (PGMPHYS_ROM_FLAG_*). */
uint32_t fFlags;
/**< Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
/** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
* This is used for strictness checks. */
R3PTRTYPE(const void *) pvOriginal;
/** The ROM description. */
R3PTRTYPE(const char *) pszDesc;
/** The per page tracking structures. */
PGMROMPAGE aPages[1];
} PGMROMRANGE;
/** Pointer to a ROM range. */
typedef PGMROMRANGE *PPGMROMRANGE;
/**
* A registered MMIO2 (= Device RAM) range.
*
* There are a few reason why we need to keep track of these
* registrations. One of them is the deregistration & cleanup
* stuff, while another is that the PGMRAMRANGE associated with
* such a region may have to be removed from the ram range list.
*
* Overlapping with a RAM range has to be 100% or none at all. The
* pages in the existing RAM range must not be ROM nor MMIO. A guru
* meditation will be raised if a partial overlap or an overlap of
* ROM pages is encountered. On an overlap we will free all the
* existing RAM pages and put in the ram range pages instead.
*/
typedef struct PGMMMIO2RANGE
{
/** The owner of the range. (a device) */
PPDMDEVINSR3 pDevInsR3;
/** Pointer to the ring-3 mapping of the allocation. */
RTR3PTR pvR3;
/** Pointer to the next range - R3. */
R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
/** Whether it's mapped or not. */
bool fMapped;
/** Whether it's overlapping or not. */
bool fOverlapping;
/** The PCI region number.
* @remarks This ASSUMES that nobody will ever really need to have multiple
* PCI devices with matching MMIO region numbers on a single device. */
uint8_t iRegion;
/**< Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
/** The associated RAM range. */
PGMRAMRANGE RamRange;
} PGMMMIO2RANGE;
/** Pointer to a MMIO2 range. */
typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
/** @todo r=bird: fix typename. */
/**
* PGMPhysRead/Write cache entry
*/
typedef struct PGMPHYSCACHE_ENTRY
{
/** HC pointer to physical page */
R3PTRTYPE(uint8_t *) pbHC;
/** GC Physical address for cache entry */
RTGCPHYS GCPhys;
#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
RTGCPHYS u32Padding0; /**< alignment padding. */
#endif
} PGMPHYSCACHE_ENTRY;
/**
* PGMPhysRead/Write cache to reduce REM memory access overhead
*/
typedef struct PGMPHYSCACHE
{
/** Bitmap of valid cache entries */
uint64_t aEntries;
/** Cache entries */
PGMPHYSCACHE_ENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
} PGMPHYSCACHE;
/** Pointer to an allocation chunk ring-3 mapping. */
typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
/** Pointer to an allocation chunk ring-3 mapping pointer. */
typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
/**
* Ring-3 tracking structore for an allocation chunk ring-3 mapping.
*
* The primary tree (Core) uses the chunk id as key.
* The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
*/
typedef struct PGMCHUNKR3MAP
{
/** The key is the chunk id. */
AVLU32NODECORE Core;
/** The key is the ageing sequence number. */
AVLLU32NODECORE AgeCore;
/** The current age thingy. */
uint32_t iAge;
/** The current reference count. */
uint32_t volatile cRefs;
/** The current permanent reference count. */
uint32_t volatile cPermRefs;
/** The mapping address. */
void *pv;
} PGMCHUNKR3MAP;
/**
* Allocation chunk ring-3 mapping TLB entry.
*/
typedef struct PGMCHUNKR3MAPTLBE
{
/** The chunk id. */
uint32_t volatile idChunk;
#if HC_ARCH_BITS == 64
uint32_t u32Padding; /**< alignment padding. */
#endif
/** The chunk map. */
R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
} PGMCHUNKR3MAPTLBE;
/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
/** The number of TLB entries in PGMCHUNKR3MAPTLB.
* @remark Must be a power of two value. */
#define PGM_CHUNKR3MAPTLB_ENTRIES 32
/**
* Allocation chunk ring-3 mapping TLB.
*
* @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
* At first glance this might look kinda odd since AVL trees are
* supposed to give the most optimial lookup times of all trees
* due to their balancing. However, take a tree with 1023 nodes
* in it, that's 10 levels, meaning that most searches has to go
* down 9 levels before they find what they want. This isn't fast
* compared to a TLB hit. There is the factor of cache misses,
* and of course the problem with trees and branch prediction.
* This is why we use TLBs in front of most of the trees.
*
* @todo Generalize this TLB + AVL stuff, shouldn't be all that
* difficult when we switch to inlined AVL trees (from kStuff).
*/
typedef struct PGMCHUNKR3MAPTLB
{
/** The TLB entries. */
PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
} PGMCHUNKR3MAPTLB;
/**
* Calculates the index of a guest page in the Ring-3 Chunk TLB.
* @returns Chunk TLB index.
* @param idChunk The Chunk ID.
*/
#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
/**
* Ring-3 guest page mapping TLB entry.
* @remarks used in ring-0 as well at the moment.
*/
typedef struct PGMPAGER3MAPTLBE
{
/** Address of the page. */
RTGCPHYS volatile GCPhys;
/** The guest page. */
R3R0PTRTYPE(PPGMPAGE) volatile pPage;
/** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
/** The address */
R3R0PTRTYPE(void *) volatile pv;
#if HC_ARCH_BITS == 32
uint32_t u32Padding; /**< alignment padding. */
#endif
} PGMPAGER3MAPTLBE;
/** Pointer to an entry in the HC physical TLB. */
typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
/** The number of entries in the ring-3 guest page mapping TLB.
* @remarks The value must be a power of two. */
#define PGM_PAGER3MAPTLB_ENTRIES 64
/**
* Ring-3 guest page mapping TLB.
* @remarks used in ring-0 as well at the moment.
*/
typedef struct PGMPAGER3MAPTLB
{
/** The TLB entries. */
PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
} PGMPAGER3MAPTLB;
/** Pointer to the ring-3 guest page mapping TLB. */
typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
/**
* Calculates the index of the TLB entry for the specified guest page.
* @returns Physical TLB index.
* @param GCPhys The guest physical address.
*/
#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
/** @name Context neutrual page mapper TLB.
*
* Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
* code is writting in a kind of context neutrual way. Time will show whether
* this actually makes sense or not...
*
* @{ */
/** @typedef PPGMPAGEMAPTLB
* The page mapper TLB pointer type for the current context. */
/** @typedef PPGMPAGEMAPTLB
* The page mapper TLB entry pointer type for the current context. */
/** @typedef PPGMPAGEMAPTLB
* The page mapper TLB entry pointer pointer type for the current context. */
/** @def PGM_PAGEMAPTLB_ENTRIES
* The number of TLB entries in the page mapper TLB for the current context. */
/** @def PGM_PAGEMAPTLB_IDX
* Calculate the TLB index for a guest physical address.
* @returns The TLB index.
* @param GCPhys The guest physical address. */
/** @typedef PPGMPAGEMAP
* Pointer to a page mapper unit for current context. */
/** @typedef PPPGMPAGEMAP
* Pointer to a page mapper unit pointer for current context. */
#ifdef IN_GC
// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
typedef void * PPGMPAGEMAP;
typedef void ** PPPGMPAGEMAP;
//#elif IN_RING0
// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
#else
typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
#endif
/** @} */
/** @name PGM Pool Indexes.
* Aka. the unique shadow page identifier.
* @{ */
/** NIL page pool IDX. */
#define NIL_PGMPOOL_IDX 0
/** The first normal index. */
#define PGMPOOL_IDX_FIRST_SPECIAL 1
/** Page directory (32-bit root). */
#define PGMPOOL_IDX_PD 1
/** The extended PAE page directory (2048 entries, works as root currently). */
#define PGMPOOL_IDX_PAE_PD 2
/** PAE Page Directory Table 0. */
#define PGMPOOL_IDX_PAE_PD_0 3
/** PAE Page Directory Table 1. */
#define PGMPOOL_IDX_PAE_PD_1 4
/** PAE Page Directory Table 2. */
#define PGMPOOL_IDX_PAE_PD_2 5
/** PAE Page Directory Table 3. */
#define PGMPOOL_IDX_PAE_PD_3 6
/** Page Directory Pointer Table (PAE root, not currently used). */
#define PGMPOOL_IDX_PDPT 7
/** AMD64 CR3 level index.*/
#define PGMPOOL_IDX_AMD64_CR3 8
/** Nested paging root.*/
#define PGMPOOL_IDX_NESTED_ROOT 9
/** The first normal index. */
#define PGMPOOL_IDX_FIRST 10
/** The last valid index. (inclusive, 14 bits) */
#define PGMPOOL_IDX_LAST 0x3fff
/** @} */
/** The NIL index for the parent chain. */
#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
/**
* Node in the chain linking a shadowed page to it's parent (user).
*/
#pragma pack(1)
typedef struct PGMPOOLUSER
{
/** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
uint16_t iNext;
/** The user page index. */
uint16_t iUser;
/** Index into the user table. */
uint32_t iUserTable;
} PGMPOOLUSER, *PPGMPOOLUSER;
typedef const PGMPOOLUSER *PCPGMPOOLUSER;
#pragma pack()
/** The NIL index for the phys ext chain. */
#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
/**
* Node in the chain of physical cross reference extents.
*/
#pragma pack(1)
typedef struct PGMPOOLPHYSEXT
{
/** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
uint16_t iNext;
/** The user page index. */
uint16_t aidx[3];
} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
#pragma pack()
/**
* The kind of page that's being shadowed.
*/
typedef enum PGMPOOLKIND
{
/** The virtual invalid 0 entry. */
PGMPOOLKIND_INVALID = 0,
/** The entry is free (=unused). */
PGMPOOLKIND_FREE,
/** Shw: 32-bit page table; Gst: no paging */
PGMPOOLKIND_32BIT_PT_FOR_PHYS,
/** Shw: 32-bit page table; Gst: 32-bit page table. */
PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
/** Shw: 32-bit page table; Gst: 4MB page. */
PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
/** Shw: PAE page table; Gst: no paging */
PGMPOOLKIND_PAE_PT_FOR_PHYS,
/** Shw: PAE page table; Gst: 32-bit page table. */
PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
/** Shw: PAE page table; Gst: Half of a 4MB page. */
PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
/** Shw: PAE page table; Gst: PAE page table. */
PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
/** Shw: PAE page table; Gst: 2MB page. */
PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
/** Shw: PAE page directory; Gst: 32-bit page directory. */
PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
/** Shw: PAE page directory; Gst: PAE page directory. */
PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
/** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
/** Shw: 64-bit page directory pointer table; Gst: no paging */
PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
/** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
/** Shw: 64-bit page directory table; Gst: no paging */
PGMPOOLKIND_64BIT_PD_FOR_PHYS,
/** Shw: 64-bit PML4; Gst: 64-bit PML4. */
PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
/** Shw: EPT page directory pointer table; Gst: no paging */
PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
/** Shw: EPT page directory table; Gst: no paging */
PGMPOOLKIND_EPT_PD_FOR_PHYS,
/** Shw: EPT page table; Gst: no paging */
PGMPOOLKIND_EPT_PT_FOR_PHYS,
/** Shw: Root 32-bit page directory. */
PGMPOOLKIND_ROOT_32BIT_PD,
/** Shw: Root PAE page directory */
PGMPOOLKIND_ROOT_PAE_PD,
/** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
PGMPOOLKIND_ROOT_PDPT,
/** Shw: Root Nested paging table. */
PGMPOOLKIND_ROOT_NESTED,
/** The last valid entry. */
PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
} PGMPOOLKIND;
/**
* The tracking data for a page in the pool.
*/
typedef struct PGMPOOLPAGE
{
/** AVL node code with the (HC) physical address of this page. */
AVLOHCPHYSNODECORE Core;
/** Pointer to the HC mapping of the page. */
R3R0PTRTYPE(void *) pvPageHC;
/** The guest physical address. */
#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
uint32_t Alignment0;
#endif
RTGCPHYS GCPhys;
/** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
uint8_t enmKind;
uint8_t bPadding;
/** The index of this page. */
uint16_t idx;
/** The next entry in the list this page currently resides in.
* It's either in the free list or in the GCPhys hash. */
uint16_t iNext;
#ifdef PGMPOOL_WITH_USER_TRACKING
/** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
uint16_t iUserHead;
/** The number of present entries. */
uint16_t cPresent;
/** The first entry in the table which is present. */
uint16_t iFirstPresent;
#endif
#ifdef PGMPOOL_WITH_MONITORING
/** The number of modifications to the monitored page. */
uint16_t cModifications;
/** The next modified page. NIL_PGMPOOL_IDX if tail. */
uint16_t iModifiedNext;
/** The previous modified page. NIL_PGMPOOL_IDX if head. */
uint16_t iModifiedPrev;
/** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
uint16_t iMonitoredNext;
/** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
uint16_t iMonitoredPrev;
#endif
#ifdef PGMPOOL_WITH_CACHE
/** The next page in the age list. */
uint16_t iAgeNext;
/** The previous page in the age list. */
uint16_t iAgePrev;
#endif /* PGMPOOL_WITH_CACHE */
/** Used to indicate that the page is zeroed. */
bool fZeroed;
/** Used to indicate that a PT has non-global entries. */
bool fSeenNonGlobal;
/** Used to indicate that we're monitoring writes to the guest page. */
bool fMonitored;
/** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
* (All pages are in the age list.) */
bool fCached;
/** This is used by the R3 access handlers when invoked by an async thread.
* It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
bool volatile fReusedFlushPending;
/** Used to indicate that the guest is mapping the page is also used as a CR3.
* In these cases the access handler acts differently and will check
* for mapping conflicts like the normal CR3 handler.
* @todo When we change the CR3 shadowing to use pool pages, this flag can be
* replaced by a list of pages which share access handler.
*/
bool fCR3Mix;
} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
#ifdef PGMPOOL_WITH_CACHE
/** The hash table size. */
# define PGMPOOL_HASH_SIZE 0x40
/** The hash function. */
# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
#endif
/**
* The shadow page pool instance data.
*
* It's all one big allocation made at init time, except for the
* pages that is. The user nodes follows immediatly after the
* page structures.
*/
typedef struct PGMPOOL
{
/** The VM handle - HC Ptr. */
R3R0PTRTYPE(PVM) pVMHC;
/** The VM handle - GC Ptr. */
RCPTRTYPE(PVM) pVMGC;
/** The max pool size. This includes the special IDs. */
uint16_t cMaxPages;
/** The current pool size. */
uint16_t cCurPages;
/** The head of the free page list. */
uint16_t iFreeHead;
/* Padding. */
uint16_t u16Padding;
#ifdef PGMPOOL_WITH_USER_TRACKING
/** Head of the chain of free user nodes. */
uint16_t iUserFreeHead;
/** The number of user nodes we've allocated. */
uint16_t cMaxUsers;
/** The number of present page table entries in the entire pool. */
uint32_t cPresent;
/** Pointer to the array of user nodes - GC pointer. */
RCPTRTYPE(PPGMPOOLUSER) paUsersGC;
/** Pointer to the array of user nodes - HC pointer. */
R3R0PTRTYPE(PPGMPOOLUSER) paUsersHC;
#endif /* PGMPOOL_WITH_USER_TRACKING */
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/** Head of the chain of free phys ext nodes. */
uint16_t iPhysExtFreeHead;
/** The number of user nodes we've allocated. */
uint16_t cMaxPhysExts;
/** Pointer to the array of physical xref extent - GC pointer. */
RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsGC;
/** Pointer to the array of physical xref extent nodes - HC pointer. */
R3R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsHC;
#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
#ifdef PGMPOOL_WITH_CACHE
/** Hash table for GCPhys addresses. */
uint16_t aiHash[PGMPOOL_HASH_SIZE];
/** The head of the age list. */
uint16_t iAgeHead;
/** The tail of the age list. */
uint16_t iAgeTail;
/** Set if the cache is enabled. */
bool fCacheEnabled;
#endif /* PGMPOOL_WITH_CACHE */
#ifdef PGMPOOL_WITH_MONITORING
/** Head of the list of modified pages. */
uint16_t iModifiedHead;
/** The current number of modified pages. */
uint16_t cModifiedPages;
/** Access handler, RC. */
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
/** Access handler, R0. */
R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
/** Access handler, R3. */
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
/** The access handler description (HC ptr). */
R3PTRTYPE(const char *) pszAccessHandler;
#endif /* PGMPOOL_WITH_MONITORING */
/** The number of pages currently in use. */
uint16_t cUsedPages;
#ifdef VBOX_WITH_STATISTICS
/** The high wather mark for cUsedPages. */
uint16_t cUsedPagesHigh;
uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
/** Profiling pgmPoolAlloc(). */
STAMPROFILEADV StatAlloc;
/** Profiling pgmPoolClearAll(). */
STAMPROFILE StatClearAll;
/** Profiling pgmPoolFlushAllInt(). */
STAMPROFILE StatFlushAllInt;
/** Profiling pgmPoolFlushPage(). */
STAMPROFILE StatFlushPage;
/** Profiling pgmPoolFree(). */
STAMPROFILE StatFree;
/** Profiling time spent zeroing pages. */
STAMPROFILE StatZeroPage;
# ifdef PGMPOOL_WITH_USER_TRACKING
/** Profiling of pgmPoolTrackDeref. */
STAMPROFILE StatTrackDeref;
/** Profiling pgmTrackFlushGCPhysPT. */
STAMPROFILE StatTrackFlushGCPhysPT;
/** Profiling pgmTrackFlushGCPhysPTs. */
STAMPROFILE StatTrackFlushGCPhysPTs;
/** Profiling pgmTrackFlushGCPhysPTsSlow. */
STAMPROFILE StatTrackFlushGCPhysPTsSlow;
/** Number of times we've been out of user records. */
STAMCOUNTER StatTrackFreeUpOneUser;
# endif
# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/** Profiling deref activity related tracking GC physical pages. */
STAMPROFILE StatTrackDerefGCPhys;
/** Number of linear searches for a HCPhys in the ram ranges. */
STAMCOUNTER StatTrackLinearRamSearches;
/** The number of failing pgmPoolTrackPhysExtAlloc calls. */
STAMCOUNTER StamTrackPhysExtAllocFailures;
# endif
# ifdef PGMPOOL_WITH_MONITORING
/** Profiling the GC PT access handler. */
STAMPROFILE StatMonitorGC;
/** Times we've failed interpreting the instruction. */
STAMCOUNTER StatMonitorGCEmulateInstr;
/** Profiling the pgmPoolFlushPage calls made from the GC PT access handler. */
STAMPROFILE StatMonitorGCFlushPage;
/** Times we've detected fork(). */
STAMCOUNTER StatMonitorGCFork;
/** Profiling the GC access we've handled (except REP STOSD). */
STAMPROFILE StatMonitorGCHandled;
/** Times we've failed interpreting a patch code instruction. */
STAMCOUNTER StatMonitorGCIntrFailPatch1;
/** Times we've failed interpreting a patch code instruction during flushing. */
STAMCOUNTER StatMonitorGCIntrFailPatch2;
/** The number of times we've seen rep prefixes we can't handle. */
STAMCOUNTER StatMonitorGCRepPrefix;
/** Profiling the REP STOSD cases we've handled. */
STAMPROFILE StatMonitorGCRepStosd;
/** Profiling the HC PT access handler. */
STAMPROFILE StatMonitorHC;
/** Times we've failed interpreting the instruction. */
STAMCOUNTER StatMonitorHCEmulateInstr;
/** Profiling the pgmPoolFlushPage calls made from the HC PT access handler. */
STAMPROFILE StatMonitorHCFlushPage;
/** Times we've detected fork(). */
STAMCOUNTER StatMonitorHCFork;
/** Profiling the HC access we've handled (except REP STOSD). */
STAMPROFILE StatMonitorHCHandled;
/** The number of times we've seen rep prefixes we can't handle. */
STAMCOUNTER StatMonitorHCRepPrefix;
/** Profiling the REP STOSD cases we've handled. */
STAMPROFILE StatMonitorHCRepStosd;
/** The number of times we're called in an async thread an need to flush. */
STAMCOUNTER StatMonitorHCAsync;
/** The high wather mark for cModifiedPages. */
uint16_t cModifiedPagesHigh;
uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
# endif
# ifdef PGMPOOL_WITH_CACHE
/** The number of cache hits. */
STAMCOUNTER StatCacheHits;
/** The number of cache misses. */
STAMCOUNTER StatCacheMisses;
/** The number of times we've got a conflict of 'kind' in the cache. */
STAMCOUNTER StatCacheKindMismatches;
/** Number of times we've been out of pages. */
STAMCOUNTER StatCacheFreeUpOne;
/** The number of cacheable allocations. */
STAMCOUNTER StatCacheCacheable;
/** The number of uncacheable allocations. */
STAMCOUNTER StatCacheUncacheable;
# endif
#elif HC_ARCH_BITS == 64
uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
#endif
/** The AVL tree for looking up a page by its HC physical address. */
AVLOHCPHYSTREE HCPhysTree;
uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
/** Array of pages. (cMaxPages in length)
* The Id is the index into thist array.
*/
PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
/** @def PGMPOOL_PAGE_2_PTR
* Maps a pool page pool into the current context.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pPage The pool page.
*
* @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the
* small page window employeed by that function. Be careful.
* @remark There is no need to assert on the result.
*/
#ifdef IN_GC
# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmGCPoolMapPage((pVM), (pPage))
#else
# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageHC)
#endif
/**
* Trees are using self relative offsets as pointers.
* So, all its data, including the root pointer, must be in the heap for HC and GC
* to have the same layout.
*/
typedef struct PGMTREES
{
/** Physical access handlers (AVL range+offsetptr tree). */
AVLROGCPHYSTREE PhysHandlers;
/** Virtual access handlers (AVL range + GC ptr tree). */
AVLROGCPTRTREE VirtHandlers;
/** Virtual access handlers (Phys range AVL range + offsetptr tree). */
AVLROGCPHYSTREE PhysToVirtHandlers;
/** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
AVLROGCPTRTREE HyperVirtHandlers;
} PGMTREES;
/** Pointer to PGM trees. */
typedef PGMTREES *PPGMTREES;
/** @name Paging mode macros
* @{ */
#ifdef IN_GC
# define PGM_CTX(a,b) a##GC##b
# define PGM_CTX_STR(a,b) a "GC" b
# define PGM_CTX_DECL(type) VMMRCDECL(type)
#else
# ifdef IN_RING3
# define PGM_CTX(a,b) a##R3##b
# define PGM_CTX_STR(a,b) a "R3" b
# define PGM_CTX_DECL(type) DECLCALLBACK(type)
# else
# define PGM_CTX(a,b) a##R0##b
# define PGM_CTX_STR(a,b) a "R0" b
# define PGM_CTX_DECL(type) VMMDECL(type)
# endif
#endif
#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
#define PGM_GST_NAME_GC_REAL_STR(name) "pgmGCGstReal" #name
#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
#define PGM_GST_NAME_GC_PROT_STR(name) "pgmGCGstProt" #name
#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
#define PGM_GST_NAME_GC_32BIT_STR(name) "pgmGCGst32Bit" #name
#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
#define PGM_GST_NAME_GC_PAE_STR(name) "pgmGCGstPAE" #name
#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
#define PGM_GST_NAME_GC_AMD64_STR(name) "pgmGCGstAMD64" #name
#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
#define PGM_SHW_NAME_GC_32BIT_STR(name) "pgmGCShw32Bit" #name
#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
#define PGM_SHW_NAME_GC_PAE_STR(name) "pgmGCShwPAE" #name
#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
#define PGM_SHW_NAME_GC_AMD64_STR(name) "pgmGCShwAMD64" #name
#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
#define PGM_SHW_NAME_GC_NESTED_STR(name) "pgmGCShwNested" #name
#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
#define PGM_SHW_NAME_GC_EPT_STR(name) "pgmGCShwEPT" #name
#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
/* Shw_Gst */
#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
#define PGM_BTH_NAME_GC_32BIT_REAL_STR(name) "pgmGCBth32BitReal" #name
#define PGM_BTH_NAME_GC_32BIT_PROT_STR(name) "pgmGCBth32BitProt" #name
#define PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) "pgmGCBth32Bit32Bit" #name
#define PGM_BTH_NAME_GC_PAE_REAL_STR(name) "pgmGCBthPAEReal" #name
#define PGM_BTH_NAME_GC_PAE_PROT_STR(name) "pgmGCBthPAEProt" #name
#define PGM_BTH_NAME_GC_PAE_32BIT_STR(name) "pgmGCBthPAE32Bit" #name
#define PGM_BTH_NAME_GC_PAE_PAE_STR(name) "pgmGCBthPAEPAE" #name
#define PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) "pgmGCBthAMD64AMD64" #name
#define PGM_BTH_NAME_GC_NESTED_REAL_STR(name) "pgmGCBthNestedReal" #name
#define PGM_BTH_NAME_GC_NESTED_PROT_STR(name) "pgmGCBthNestedProt" #name
#define PGM_BTH_NAME_GC_NESTED_32BIT_STR(name) "pgmGCBthNested32Bit" #name
#define PGM_BTH_NAME_GC_NESTED_PAE_STR(name) "pgmGCBthNestedPAE" #name
#define PGM_BTH_NAME_GC_NESTED_AMD64_STR(name) "pgmGCBthNestedAMD64" #name
#define PGM_BTH_NAME_GC_EPT_REAL_STR(name) "pgmGCBthEPTReal" #name
#define PGM_BTH_NAME_GC_EPT_PROT_STR(name) "pgmGCBthEPTProt" #name
#define PGM_BTH_NAME_GC_EPT_32BIT_STR(name) "pgmGCBthEPT32Bit" #name
#define PGM_BTH_NAME_GC_EPT_PAE_STR(name) "pgmGCBthEPTPAE" #name
#define PGM_BTH_NAME_GC_EPT_AMD64_STR(name) "pgmGCBthEPTAMD64" #name
#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
/** @} */
/**
* Data for each paging mode.
*/
typedef struct PGMMODEDATA
{
/** The guest mode type. */
uint32_t uGstType;
/** The shadow mode type. */
uint32_t uShwType;
/** @name Function pointers for Shadow paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLRCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLRCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
/** @} */
/** @name Function pointers for Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
DECLRCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLRCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLRCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
DECLRCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLRCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
DECLRCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLRCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
/** @} */
/** @name Function pointers for Both Shadow and Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
#ifdef VBOX_STRICT
DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
#endif
DECLRCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
DECLRCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLRCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
DECLRCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
#ifdef VBOX_STRICT
DECLRCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
#endif
DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
#ifdef VBOX_STRICT
DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
#endif
/** @} */
} PGMMODEDATA, *PPGMMODEDATA;
/**
* Converts a PGM pointer into a VM pointer.
* @returns Pointer to the VM structure the PGM is part of.
* @param pPGM Pointer to PGM instance data.
*/
#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
/**
* PGM Data (part of VM)
*/
typedef struct PGM
{
/** Offset to the VM structure. */
RTINT offVM;
/*
* This will be redefined at least two more times before we're done, I'm sure.
* The current code is only to get on with the coding.
* - 2004-06-10: initial version, bird.
* - 2004-07-02: 1st time, bird.
* - 2004-10-18: 2nd time, bird.
* - 2005-07-xx: 3rd time, bird.
*/
/** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
/** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
/** The host paging mode. (This is what SUPLib reports.) */
SUPPAGINGMODE enmHostMode;
/** The shadow paging mode. */
PGMMODE enmShadowMode;
/** The guest paging mode. */
PGMMODE enmGuestMode;
/** The current physical address representing in the guest CR3 register. */
RTGCPHYS GCPhysCR3;
/** Pointer to the 5 page CR3 content mapping.
* The first page is always the CR3 (in some form) while the 4 other pages
* are used of the PDs in PAE mode. */
RTGCPTR GCPtrCR3Mapping;
#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
uint32_t u32Alignment;
#endif
/** The physical address of the currently monitored guest CR3 page.
* When this value is NIL_RTGCPHYS no page is being monitored. */
RTGCPHYS GCPhysGstCR3Monitored;
/** @name 32-bit Guest Paging.
* @{ */
/** The guest's page directory, HC pointer. */
R3R0PTRTYPE(PX86PD) pGuestPDHC;
/** The guest's page directory, static GC mapping. */
RCPTRTYPE(PX86PD) pGuestPDGC;
/** @} */
/** @name PAE Guest Paging.
* @{ */
/** The guest's page directory pointer table, static GC mapping. */
RCPTRTYPE(PX86PDPT) pGstPaePDPTGC;
/** The guest's page directory pointer table, HC pointer. */
R3R0PTRTYPE(PX86PDPT) pGstPaePDPTHC;
/** The guest's page directories, HC pointers.
* These are individual pointers and don't have to be adjecent.
* These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
R3R0PTRTYPE(PX86PDPAE) apGstPaePDsHC[4];
/** The guest's page directories, static GC mapping.
* Unlike the HC array the first entry can be accessed as a 2048 entry PD.
* These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
RCPTRTYPE(PX86PDPAE) apGstPaePDsGC[4];
/** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
RTGCPHYS aGCPhysGstPaePDs[4];
/** The physical addresses of the monitored guest page directories (PAE). */
RTGCPHYS aGCPhysGstPaePDsMonitored[4];
/** @} */
/** @name AMD64 Guest Paging.
* @{ */
/** The guest's page directory pointer table, HC pointer. */
R3R0PTRTYPE(PX86PML4) pGstPaePML4HC;
/** @} */
/** @name 32-bit Shadow Paging
* @{ */
/** The 32-Bit PD - HC Ptr. */
R3R0PTRTYPE(PX86PD) pHC32BitPD;
/** The 32-Bit PD - GC Ptr. */
RCPTRTYPE(PX86PD) pGC32BitPD;
#if HC_ARCH_BITS == 64
uint32_t u32Padding1; /**< alignment padding. */
#endif
/** The Physical Address (HC) of the 32-Bit PD. */
RTHCPHYS HCPhys32BitPD;
/** @} */
/** @name PAE Shadow Paging
* @{ */
/** The four PDs for the low 4GB - HC Ptr.
* Even though these are 4 pointers, what they point at is a single table.
* Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
R3R0PTRTYPE(PX86PDPAE) apHCPaePDs[4];
/** The four PDs for the low 4GB - GC Ptr.
* Same kind of mapping as apHCPaePDs. */
RCPTRTYPE(PX86PDPAE) apGCPaePDs[4];
/** The Physical Address (HC) of the four PDs for the low 4GB.
* These are *NOT* 4 contiguous pages. */
RTHCPHYS aHCPhysPaePDs[4];
/** The PAE PDP - HC Ptr. */
R3R0PTRTYPE(PX86PDPT) pHCPaePDPT;
/** The Physical Address (HC) of the PAE PDPT. */
RTHCPHYS HCPhysPaePDPT;
/** The PAE PDPT - GC Ptr. */
RCPTRTYPE(PX86PDPT) pGCPaePDPT;
/** @} */
/** @name AMD64 Shadow Paging
* Extends PAE Paging.
* @{ */
#if HC_ARCH_BITS == 64
RTRCPTR alignment5; /**< structure size alignment. */
#endif
/** The Page Map Level 4 table - HC Ptr. */
R3R0PTRTYPE(PX86PML4) pHCPaePML4;
/** The Physical Address (HC) of the Page Map Level 4 table. */
RTHCPHYS HCPhysPaePML4;
/** The pgm pool page descriptor for the current active CR3. */
R3R0PTRTYPE(PPGMPOOLPAGE) pHCShwAmd64CR3;
/** @}*/
/** @name Nested Shadow Paging
* @{ */
/** Root table; format depends on the host paging mode (AMD-V) or EPT */
R3R0PTRTYPE(void *) pHCNestedRoot;
/** The Physical Address (HC) of the nested paging root. */
RTHCPHYS HCPhysNestedRoot;
/** @name Function pointers for Shadow paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLRCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLRCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
/** @} */
/** @name Function pointers for Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
DECLRCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLRCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLRCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
DECLRCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLRCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
DECLRCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLRCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
#if HC_ARCH_BITS == 64
RTRCPTR alignment3; /**< structure size alignment. */
#endif
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
/** @} */
/** @name Function pointers for Both Shadow and Guest paging.
* @{
*/
DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
DECLRCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
DECLRCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
DECLRCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
DECLRCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
DECLRCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
DECLRCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
#if HC_ARCH_BITS == 64
RTRCPTR alignment2; /**< structure size alignment. */
#endif
/** @} */
/** Pointer to SHW+GST mode data (function pointers).
* The index into this table is made up from */
R3PTRTYPE(PPGMMODEDATA) paModeData;
/** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
* This is sorted by physical address and contains no overlapping ranges. */
R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
/** R0 pointer corresponding to PGM::pRamRangesR3. */
R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
/** RC pointer corresponding to PGM::pRamRangesR3. */
RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
/** The configured RAM size. */
RTUINT cbRamSize;
/** Pointer to the list of ROM ranges - for R3.
* This is sorted by physical address and contains no overlapping ranges. */
R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
/** R0 pointer corresponding to PGM::pRomRangesR3. */
R0PTRTYPE(PPGMRAMRANGE) pRomRangesR0;
/** GC pointer corresponding to PGM::pRomRangesR3. */
RCPTRTYPE(PPGMRAMRANGE) pRomRangesGC;
/** Alignment padding. */
RTRCPTR GCPtrPadding2;
/** Pointer to the list of MMIO2 ranges - for R3.
* Registration order. */
R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
/** PGM offset based trees - HC Ptr. */
R3R0PTRTYPE(PPGMTREES) pTreesHC;
/** PGM offset based trees - GC Ptr. */
RCPTRTYPE(PPGMTREES) pTreesGC;
/** Linked list of GC mappings - for GC.
* The list is sorted ascending on address.
*/
RCPTRTYPE(PPGMMAPPING) pMappingsRC;
/** Linked list of GC mappings - for HC.
* The list is sorted ascending on address.
*/
R3PTRTYPE(PPGMMAPPING) pMappingsR3;
/** Linked list of GC mappings - for R0.
* The list is sorted ascending on address.
*/
R0PTRTYPE(PPGMMAPPING) pMappingsR0;
/** If set no conflict checks are required. (boolean) */
bool fMappingsFixed;
/** If set, then no mappings are put into the shadow page table. (boolean) */
bool fDisableMappings;
/** Size of fixed mapping */
uint32_t cbMappingFixed;
/** Base address (GC) of fixed mapping */
RTGCPTR GCPtrMappingFixed;
#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
uint32_t u32Padding0; /**< alignment padding. */
#endif
/** @name Intermediate Context
* @{ */
/** Pointer to the intermediate page directory - Normal. */
R3PTRTYPE(PX86PD) pInterPD;
/** Pointer to the intermedate page tables - Normal.
* There are two page tables, one for the identity mapping and one for
* the host context mapping (of the core code). */
R3PTRTYPE(PX86PT) apInterPTs[2];
/** Pointer to the intermedate page tables - PAE. */
R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
/** Pointer to the intermedate page directory - PAE. */
R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
/** Pointer to the intermedate page directory - PAE. */
R3PTRTYPE(PX86PDPT) pInterPaePDPT;
/** Pointer to the intermedate page-map level 4 - AMD64. */
R3PTRTYPE(PX86PML4) pInterPaePML4;
/** Pointer to the intermedate page directory - AMD64. */
R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
/** The Physical Address (HC) of the intermediate Page Directory - Normal. */
RTHCPHYS HCPhysInterPD;
/** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
RTHCPHYS HCPhysInterPaePDPT;
/** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
RTHCPHYS HCPhysInterPaePML4;
/** @} */
/** Base address of the dynamic page mapping area.
* The array is MM_HYPER_DYNAMIC_SIZE bytes big.
*/
RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
/** The index of the last entry used in the dynamic page mapping area. */
RTUINT iDynPageMapLast;
/** Cache containing the last entries in the dynamic page mapping area.
* The cache size is covering half of the mapping area. */
RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
/** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
RTGCPHYS GCPhys4MBPSEMask;
/** A20 gate mask.
* Our current approach to A20 emulation is to let REM do it and don't bother
* anywhere else. The interesting Guests will be operating with it enabled anyway.
* But whould need arrise, we'll subject physical addresses to this mask. */
RTGCPHYS GCPhysA20Mask;
/** A20 gate state - boolean! */
RTUINT fA20Enabled;
/** What needs syncing (PGM_SYNC_*).
* This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
* PGMFlushTLB, and PGMR3Load. */
RTUINT fSyncFlags;
/** PGM critical section.
* This protects the physical & virtual access handlers, ram ranges,
* and the page flag updating (some of it anyway).
*/
PDMCRITSECT CritSect;
/** Shadow Page Pool - HC Ptr. */
R3R0PTRTYPE(PPGMPOOL) pPoolHC;
/** Shadow Page Pool - GC Ptr. */
RCPTRTYPE(PPGMPOOL) pPoolGC;
/** We're not in a state which permits writes to guest memory.
* (Only used in strict builds.) */
bool fNoMorePhysWrites;
/** Flush the cache on the next access. */
bool fPhysCacheFlushPending;
/** @todo r=bird: Fix member names!*/
/** PGMPhysRead cache */
PGMPHYSCACHE pgmphysreadcache;
/** PGMPhysWrite cache */
PGMPHYSCACHE pgmphyswritecache;
/**
* Data associated with managing the ring-3 mappings of the allocation chunks.
*/
struct
{
/** The chunk tree, ordered by chunk id. */
R3R0PTRTYPE(PAVLU32NODECORE) pTree;
/** The chunk mapping TLB. */
PGMCHUNKR3MAPTLB Tlb;
/** The number of mapped chunks. */
uint32_t c;
/** The maximum number of mapped chunks.
* @cfgm PGM/MaxRing3Chunks */
uint32_t cMax;
/** The chunk age tree, ordered by ageing sequence number. */
R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
/** The current time. */
uint32_t iNow;
/** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
uint32_t AgeingCountdown;
} ChunkR3Map;
/**
* The page mapping TLB for ring-3 and (for the time being) ring-0.
*/
PGMPAGER3MAPTLB PhysTlbHC;
/** @name The zero page.
* @{ */
/** The host physical address of the zero page. */
RTHCPHYS HCPhysZeroPg;
/** The ring-3 mapping of the zero page. */
RTR3PTR pvZeroPgR3;
/** The ring-0 mapping of the zero page. */
RTR0PTR pvZeroPgR0;
/** The GC mapping of the zero page. */
RTGCPTR pvZeroPgGC;
#if GC_ARCH_BITS != 32
uint32_t u32ZeroAlignment; /**< Alignment padding. */
#endif
/** @}*/
/** The number of handy pages. */
uint32_t cHandyPages;
/**
* Array of handy pages.
*
* This array is used in a two way communication between pgmPhysAllocPage
* and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
* an intermediary.
*
* The size of this array is important, see pgmPhysEnsureHandyPage for details.
* (The current size of 32 pages, means 128 KB of handy memory.)
*/
GMMPAGEDESC aHandyPages[32];
/** @name Release Statistics
* @{ */
uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
uint32_t cPrivatePages; /**< The number of private pages. */
uint32_t cSharedPages; /**< The number of shared pages. */
uint32_t cZeroPages; /**< The number of zero backed pages. */
/** The number of times the guest has switched mode since last reset or statistics reset. */
STAMCOUNTER cGuestModeChanges;
/** @} */
#ifdef VBOX_WITH_STATISTICS
/** GC: Which statistic this \#PF should be attributed to. */
RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionGC;
RTRCPTR padding0;
/** HC: Which statistic this \#PF should be attributed to. */
R3R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionHC;
RTHCPTR padding1;
STAMPROFILE StatGCTrap0e; /**< GC: PGMGCTrap0eHandler() profiling. */
STAMPROFILE StatTrap0eCSAM; /**< Profiling of the Trap0eHandler body when the cause is CSAM. */
STAMPROFILE StatTrap0eDirtyAndAccessedBits; /**< Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
STAMPROFILE StatTrap0eGuestTrap; /**< Profiling of the Trap0eHandler body when the cause is a guest trap. */
STAMPROFILE StatTrap0eHndPhys; /**< Profiling of the Trap0eHandler body when the cause is a physical handler. */
STAMPROFILE StatTrap0eHndVirt; /**< Profiling of the Trap0eHandler body when the cause is a virtual handler. */
STAMPROFILE StatTrap0eHndUnhandled; /**< Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
STAMPROFILE StatTrap0eMisc; /**< Profiling of the Trap0eHandler body when the cause is not known. */
STAMPROFILE StatTrap0eOutOfSync; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
STAMPROFILE StatTrap0eOutOfSyncHndPhys; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
STAMPROFILE StatTrap0eOutOfSyncHndVirt; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
STAMPROFILE StatTrap0eOutOfSyncObsHnd; /**< Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
STAMPROFILE StatTrap0eSyncPT; /**< Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
STAMCOUNTER StatTrap0eMapHandler; /**< Number of traps due to access handlers in mappings. */
STAMCOUNTER StatGCTrap0eConflicts; /**< GC: The number of times \#PF was caused by an undetected conflict. */
STAMCOUNTER StatGCTrap0eUSNotPresentRead;
STAMCOUNTER StatGCTrap0eUSNotPresentWrite;
STAMCOUNTER StatGCTrap0eUSWrite;
STAMCOUNTER StatGCTrap0eUSReserved;
STAMCOUNTER StatGCTrap0eUSNXE;
STAMCOUNTER StatGCTrap0eUSRead;
STAMCOUNTER StatGCTrap0eSVNotPresentRead;
STAMCOUNTER StatGCTrap0eSVNotPresentWrite;
STAMCOUNTER StatGCTrap0eSVWrite;
STAMCOUNTER StatGCTrap0eSVReserved;
STAMCOUNTER StatGCTrap0eSNXE;
STAMCOUNTER StatTrap0eWPEmulGC;
STAMCOUNTER StatTrap0eWPEmulR3;
STAMCOUNTER StatGCTrap0eUnhandled;
STAMCOUNTER StatGCTrap0eMap;
/** GC: PGMSyncPT() profiling. */
STAMPROFILE StatGCSyncPT;
/** GC: The number of times PGMSyncPT() needed to allocate page tables. */
STAMCOUNTER StatGCSyncPTAlloc;
/** GC: The number of times PGMSyncPT() detected conflicts. */
STAMCOUNTER StatGCSyncPTConflict;
/** GC: The number of times PGMSyncPT() failed. */
STAMCOUNTER StatGCSyncPTFailed;
/** GC: PGMGCInvalidatePage() profiling. */
STAMPROFILE StatGCInvalidatePage;
/** GC: The number of times PGMGCInvalidatePage() was called for a 4KB page. */
STAMCOUNTER StatGCInvalidatePage4KBPages;
/** GC: The number of times PGMGCInvalidatePage() was called for a 4MB page. */
STAMCOUNTER StatGCInvalidatePage4MBPages;
/** GC: The number of times PGMGCInvalidatePage() skipped a 4MB page. */
STAMCOUNTER StatGCInvalidatePage4MBPagesSkip;
/** GC: The number of times PGMGCInvalidatePage() was called for a not accessed page directory. */
STAMCOUNTER StatGCInvalidatePagePDNAs;
/** GC: The number of times PGMGCInvalidatePage() was called for a not present page directory. */
STAMCOUNTER StatGCInvalidatePagePDNPs;
/** GC: The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict). */
STAMCOUNTER StatGCInvalidatePagePDMappings;
/** GC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
STAMCOUNTER StatGCInvalidatePagePDOutOfSync;
/** HC: The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
STAMCOUNTER StatGCInvalidatePageSkipped;
/** GC: The number of times user page is out of sync was detected in GC. */
STAMCOUNTER StatGCPageOutOfSyncUser;
/** GC: The number of times supervisor page is out of sync was detected in GC. */
STAMCOUNTER StatGCPageOutOfSyncSupervisor;
/** GC: The number of dynamic page mapping cache hits */
STAMCOUNTER StatDynMapCacheMisses;
/** GC: The number of dynamic page mapping cache misses */
STAMCOUNTER StatDynMapCacheHits;
/** GC: The number of times pgmGCGuestPDWriteHandler() was successfully called. */
STAMCOUNTER StatGCGuestCR3WriteHandled;
/** GC: The number of times pgmGCGuestPDWriteHandler() was called and we had to fall back to the recompiler. */
STAMCOUNTER StatGCGuestCR3WriteUnhandled;
/** GC: The number of times pgmGCGuestPDWriteHandler() was called and a conflict was detected. */
STAMCOUNTER StatGCGuestCR3WriteConflict;
/** GC: Number of out-of-sync handled pages. */
STAMCOUNTER StatHandlersOutOfSync;
/** GC: Number of traps due to physical access handlers. */
STAMCOUNTER StatHandlersPhysical;
/** GC: Number of traps due to virtual access handlers. */
STAMCOUNTER StatHandlersVirtual;
/** GC: Number of traps due to virtual access handlers found by physical address. */
STAMCOUNTER StatHandlersVirtualByPhys;
/** GC: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
STAMCOUNTER StatHandlersVirtualUnmarked;
/** GC: Number of traps due to access outside range of monitored page(s). */
STAMCOUNTER StatHandlersUnhandled;
/** GC: Number of traps due to access to invalid physical memory. */
STAMCOUNTER StatHandlersInvalid;
/** GC: The number of times pgmGCGuestROMWriteHandler() was successfully called. */
STAMCOUNTER StatGCGuestROMWriteHandled;
/** GC: The number of times pgmGCGuestROMWriteHandler() was called and we had to fall back to the recompiler */
STAMCOUNTER StatGCGuestROMWriteUnhandled;
/** HC: PGMR3InvalidatePage() profiling. */
STAMPROFILE StatHCInvalidatePage;
/** HC: The number of times PGMR3InvalidatePage() was called for a 4KB page. */
STAMCOUNTER StatHCInvalidatePage4KBPages;
/** HC: The number of times PGMR3InvalidatePage() was called for a 4MB page. */
STAMCOUNTER StatHCInvalidatePage4MBPages;
/** HC: The number of times PGMR3InvalidatePage() skipped a 4MB page. */
STAMCOUNTER StatHCInvalidatePage4MBPagesSkip;
/** HC: The number of times PGMR3InvalidatePage() was called for a not accessed page directory. */
STAMCOUNTER StatHCInvalidatePagePDNAs;
/** HC: The number of times PGMR3InvalidatePage() was called for a not present page directory. */
STAMCOUNTER StatHCInvalidatePagePDNPs;
/** HC: The number of times PGMR3InvalidatePage() was called for a page directory containing mappings (no conflict). */
STAMCOUNTER StatHCInvalidatePagePDMappings;
/** HC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
STAMCOUNTER StatHCInvalidatePagePDOutOfSync;
/** HC: The number of times PGMR3InvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
STAMCOUNTER StatHCInvalidatePageSkipped;
/** HC: PGMR3SyncPT() profiling. */
STAMPROFILE StatHCSyncPT;
/** HC: pgmr3SyncPTResolveConflict() profiling (includes the entire relocation). */
STAMPROFILE StatHCResolveConflict;
/** HC: Number of times PGMR3CheckMappingConflicts() detected a conflict. */
STAMCOUNTER StatHCDetectedConflicts;
/** HC: The total number of times pgmHCGuestPDWriteHandler() was called. */
STAMCOUNTER StatHCGuestPDWrite;
/** HC: The number of times pgmHCGuestPDWriteHandler() detected a conflict */
STAMCOUNTER StatHCGuestPDWriteConflict;
/** HC: The number of pages marked not present for accessed bit emulation. */
STAMCOUNTER StatHCAccessedPage;
/** HC: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatHCDirtyPage;
/** HC: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatHCDirtyPageBig;
/** HC: The number of traps generated for dirty bit tracking. */
STAMCOUNTER StatHCDirtyPageTrap;
/** HC: The number of pages already dirty or readonly. */
STAMCOUNTER StatHCDirtyPageSkipped;
/** GC: The number of pages marked not present for accessed bit emulation. */
STAMCOUNTER StatGCAccessedPage;
/** GC: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatGCDirtyPage;
/** GC: The number of pages marked read-only for dirty bit tracking. */
STAMCOUNTER StatGCDirtyPageBig;
/** GC: The number of traps generated for dirty bit tracking. */
STAMCOUNTER StatGCDirtyPageTrap;
/** GC: The number of pages already dirty or readonly. */
STAMCOUNTER StatGCDirtyPageSkipped;
/** GC: The number of pages marked dirty because of write accesses. */
STAMCOUNTER StatGCDirtiedPage;
/** GC: The number of pages already marked dirty because of write accesses. */
STAMCOUNTER StatGCPageAlreadyDirty;
/** GC: The number of real pages faults during dirty bit tracking. */
STAMCOUNTER StatGCDirtyTrackRealPF;
/** GC: Profiling of the PGMTrackDirtyBit() body */
STAMPROFILE StatGCDirtyBitTracking;
/** HC: Profiling of the PGMTrackDirtyBit() body */
STAMPROFILE StatHCDirtyBitTracking;
/** GC: Profiling of the PGMGstModifyPage() body */
STAMPROFILE StatGCGstModifyPage;
/** HC: Profiling of the PGMGstModifyPage() body */
STAMPROFILE StatHCGstModifyPage;
/** GC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
STAMCOUNTER StatGCSyncPagePDNAs;
/** GC: The number of time we've encountered an out-of-sync PD in SyncPage. */
STAMCOUNTER StatGCSyncPagePDOutOfSync;
/** HC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
STAMCOUNTER StatHCSyncPagePDNAs;
/** HC: The number of time we've encountered an out-of-sync PD in SyncPage. */
STAMCOUNTER StatHCSyncPagePDOutOfSync;
STAMCOUNTER StatSynPT4kGC;
STAMCOUNTER StatSynPT4kHC;
STAMCOUNTER StatSynPT4MGC;
STAMCOUNTER StatSynPT4MHC;
/** Profiling of the PGMFlushTLB() body. */
STAMPROFILE StatFlushTLB;
/** The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
STAMCOUNTER StatFlushTLBNewCR3;
/** The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
STAMCOUNTER StatFlushTLBNewCR3Global;
/** The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
STAMCOUNTER StatFlushTLBSameCR3;
/** The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
STAMCOUNTER StatFlushTLBSameCR3Global;
STAMPROFILE StatGCSyncCR3; /**< GC: PGMSyncCR3() profiling. */
STAMPROFILE StatGCSyncCR3Handlers; /**< GC: Profiling of the PGMSyncCR3() update handler section. */
STAMPROFILE StatGCSyncCR3HandlerVirtualReset; /**< GC: Profiling of the virtual handler resets. */
STAMPROFILE StatGCSyncCR3HandlerVirtualUpdate; /**< GC: Profiling of the virtual handler updates. */
STAMCOUNTER StatGCSyncCR3Global; /**< GC: The number of global CR3 syncs. */
STAMCOUNTER StatGCSyncCR3NotGlobal; /**< GC: The number of non-global CR3 syncs. */
STAMCOUNTER StatGCSyncCR3DstFreed; /**< GC: The number of times we've had to free a shadow entry. */
STAMCOUNTER StatGCSyncCR3DstFreedSrcNP; /**< GC: The number of times we've had to free a shadow entry for which the source entry was not present. */
STAMCOUNTER StatGCSyncCR3DstNotPresent; /**< GC: The number of times we've encountered a not present shadow entry for a present guest entry. */
STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPD; /**< GC: The number of times a global page directory wasn't flushed. */
STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPT; /**< GC: The number of times a page table with only global entries wasn't flushed. */
STAMCOUNTER StatGCSyncCR3DstCacheHit; /**< GC: The number of times we got some kind of cache hit on a page table. */
STAMPROFILE StatHCSyncCR3; /**< HC: PGMSyncCR3() profiling. */
STAMPROFILE StatHCSyncCR3Handlers; /**< HC: Profiling of the PGMSyncCR3() update handler section. */
STAMPROFILE StatHCSyncCR3HandlerVirtualReset; /**< HC: Profiling of the virtual handler resets. */
STAMPROFILE StatHCSyncCR3HandlerVirtualUpdate; /**< HC: Profiling of the virtual handler updates. */
STAMCOUNTER StatHCSyncCR3Global; /**< HC: The number of global CR3 syncs. */
STAMCOUNTER StatHCSyncCR3NotGlobal; /**< HC: The number of non-global CR3 syncs. */
STAMCOUNTER StatHCSyncCR3DstFreed; /**< HC: The number of times we've had to free a shadow entry. */
STAMCOUNTER StatHCSyncCR3DstFreedSrcNP; /**< HC: The number of times we've had to free a shadow entry for which the source entry was not present. */
STAMCOUNTER StatHCSyncCR3DstNotPresent; /**< HC: The number of times we've encountered a not present shadow entry for a present guest entry. */
STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPD; /**< HC: The number of times a global page directory wasn't flushed. */
STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPT; /**< HC: The number of times a page table with only global entries wasn't flushed. */
STAMCOUNTER StatHCSyncCR3DstCacheHit; /**< HC: The number of times we got some kind of cache hit on a page table. */
/** GC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
STAMPROFILE StatVirtHandleSearchByPhysGC;
/** HC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
STAMPROFILE StatVirtHandleSearchByPhysHC;
/** HC: The number of times PGMR3HandlerPhysicalReset is called. */
STAMCOUNTER StatHandlePhysicalReset;
STAMPROFILE StatCheckPageFault;
STAMPROFILE StatLazySyncPT;
STAMPROFILE StatMapping;
STAMPROFILE StatOutOfSync;
STAMPROFILE StatHandlers;
STAMPROFILE StatEIPHandlers;
STAMPROFILE StatHCPrefetch;
# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/** The number of first time shadowings. */
STAMCOUNTER StatTrackVirgin;
/** The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
STAMCOUNTER StatTrackAliased;
/** The number of times we're tracking using cRef2. */
STAMCOUNTER StatTrackAliasedMany;
/** The number of times we're hitting pages which has overflowed cRef2. */
STAMCOUNTER StatTrackAliasedLots;
/** The number of times the extent list grows to long. */
STAMCOUNTER StatTrackOverflows;
/** Profiling of SyncPageWorkerTrackDeref (expensive). */
STAMPROFILE StatTrackDeref;
# endif
/** Ring-3/0 page mapper TLB hits. */
STAMCOUNTER StatPageHCMapTlbHits;
/** Ring-3/0 page mapper TLB misses. */
STAMCOUNTER StatPageHCMapTlbMisses;
/** Ring-3/0 chunk mapper TLB hits. */
STAMCOUNTER StatChunkR3MapTlbHits;
/** Ring-3/0 chunk mapper TLB misses. */
STAMCOUNTER StatChunkR3MapTlbMisses;
/** Times a shared page has been replaced by a private one. */
STAMCOUNTER StatPageReplaceShared;
/** Times the zero page has been replaced by a private one. */
STAMCOUNTER StatPageReplaceZero;
/** The number of times we've executed GMMR3AllocateHandyPages. */
STAMCOUNTER StatPageHandyAllocs;
/** Allocated mbs of guest ram */
STAMCOUNTER StatDynRamTotal;
/** Nr of pgmr3PhysGrowRange calls. */
STAMCOUNTER StatDynRamGrow;
STAMCOUNTER StatGCTrap0ePD[X86_PG_ENTRIES];
STAMCOUNTER StatGCSyncPtPD[X86_PG_ENTRIES];
STAMCOUNTER StatGCSyncPagePD[X86_PG_ENTRIES];
#endif
} PGM, *PPGM;
/** @name PGM::fSyncFlags Flags
* @{
*/
/** Updates the virtual access handler state bit in PGMPAGE. */
#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
/** Always sync CR3. */
#define PGM_SYNC_ALWAYS RT_BIT(1)
/** Check monitoring on next CR3 (re)load and invalidate page. */
#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
/** Clear the page pool (a light weight flush). */
#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
/** @} */
__BEGIN_DECLS
int pgmLock(PVM pVM);
void pgmUnlock(PVM pVM);
VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
void pgmHandlerVirtualDumpPhysPages(PVM pVM);
#else
# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
#endif
DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
#ifdef IN_RING3
int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
int pgmR3PhysRamReset(PVM pVM);
int pgmR3PhysRomReset(PVM pVM);
#ifndef VBOX_WITH_NEW_PHYS_CODE
int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
#endif
int pgmR3PoolInit(PVM pVM);
void pgmR3PoolRelocate(PVM pVM);
void pgmR3PoolReset(PVM pVM);
#endif /* IN_RING3 */
#ifdef IN_GC
void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage);
#endif
int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
void pgmPoolFlushAll(PVM pVM);
void pgmPoolClearAll(PVM pVM);
int pgmPoolSyncCR3(PVM pVM);
void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
#ifdef PGMPOOL_WITH_MONITORING
# ifdef IN_RING3
void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
# else
void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
# endif
int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
void pgmPoolMonitorModifiedClearAll(PVM pVM);
int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
#endif
__END_DECLS
/**
* Gets the PGMRAMRANGE structure for a guest page.
*
* @returns Pointer to the RAM range on success.
* @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
*
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
*/
DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
{
/*
* Optimize for the first range.
*/
PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (RT_UNLIKELY(!pRam))
break;
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
return pRam;
}
/**
* Gets the PGMPAGE structure for a guest page.
*
* @returns Pointer to the page on success.
* @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
*
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
*/
DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
{
/*
* Optimize for the first range.
*/
PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (RT_UNLIKELY(!pRam))
return NULL;
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
return &pRam->aPages[off >> PAGE_SHIFT];
}
/**
* Gets the PGMPAGE structure for a guest page.
*
* Old Phys code: Will make sure the page is present.
*
* @returns VBox status code.
* @retval VINF_SUCCESS and a valid *ppPage on success.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
*
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param ppPage Where to store the page poitner on success.
*/
DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
{
/*
* Optimize for the first range.
*/
PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (RT_UNLIKELY(!pRam))
{
*ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
*ppPage = &pRam->aPages[off >> PAGE_SHIFT];
#ifndef VBOX_WITH_NEW_PHYS_CODE
/*
* Make sure it's present.
*/
if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
{
#ifdef IN_RING3
int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
#else
int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (VBOX_FAILURE(rc))
{
*ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
return rc;
}
Assert(rc == VINF_SUCCESS);
}
#endif
return VINF_SUCCESS;
}
/**
* Gets the PGMPAGE structure for a guest page.
*
* Old Phys code: Will make sure the page is present.
*
* @returns VBox status code.
* @retval VINF_SUCCESS and a valid *ppPage on success.
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
*
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param ppPage Where to store the page poitner on success.
* @param ppRamHint Where to read and store the ram list hint.
* The caller initializes this to NULL before the call.
*/
DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
{
RTGCPHYS off;
PPGMRAMRANGE pRam = *ppRamHint;
if ( !pRam
|| RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
{
pRam = pPGM->CTX_SUFF(pRamRanges);
off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (RT_UNLIKELY(!pRam))
{
*ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
*ppRamHint = pRam;
}
*ppPage = &pRam->aPages[off >> PAGE_SHIFT];
#ifndef VBOX_WITH_NEW_PHYS_CODE
/*
* Make sure it's present.
*/
if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
{
#ifdef IN_RING3
int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
#else
int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (VBOX_FAILURE(rc))
{
*ppPage = NULL; /* Shut up annoying smart ass. */
return rc;
}
Assert(rc == VINF_SUCCESS);
}
#endif
return VINF_SUCCESS;
}
/**
* Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
*
* @returns Pointer to the page on success.
* @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
*
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param ppRam Where to store the pointer to the PGMRAMRANGE.
*/
DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
{
/*
* Optimize for the first range.
*/
PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (RT_UNLIKELY(!pRam))
return NULL;
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
*ppRam = pRam;
return &pRam->aPages[off >> PAGE_SHIFT];
}
/**
* Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
*
* @returns Pointer to the page on success.
* @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
*
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param ppPage Where to store the pointer to the PGMPAGE structure.
* @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
*/
DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
{
/*
* Optimize for the first range.
*/
PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (RT_UNLIKELY(off >= pRam->cb))
{
do
{
pRam = pRam->CTX_SUFF(pNext);
if (RT_UNLIKELY(!pRam))
{
*ppRam = NULL; /* Shut up silly GCC warnings. */
*ppPage = NULL; /* ditto */
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
off = GCPhys - pRam->GCPhys;
} while (off >= pRam->cb);
}
*ppRam = pRam;
*ppPage = &pRam->aPages[off >> PAGE_SHIFT];
#ifndef VBOX_WITH_NEW_PHYS_CODE
/*
* Make sure it's present.
*/
if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
&& (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
{
#ifdef IN_RING3
int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
#else
int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (VBOX_FAILURE(rc))
{
*ppPage = NULL; /* Shut up silly GCC warnings. */
*ppPage = NULL; /* ditto */
return rc;
}
Assert(rc == VINF_SUCCESS);
}
#endif
return VINF_SUCCESS;
}
/**
* Convert GC Phys to HC Phys.
*
* @returns VBox status.
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param pHCPhys Where to store the corresponding HC physical address.
*
* @deprecated Doesn't deal with zero, shared or write monitored pages.
* Avoid when writing new code!
*/
DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
if (VBOX_FAILURE(rc))
return rc;
*pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
return VINF_SUCCESS;
}
#ifndef IN_GC
/**
* Queries the Physical TLB entry for a physical guest page,
* attemting to load the TLB entry if necessary.
*
* @returns VBox status code.
* @retval VINF_SUCCESS on success
* @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
* @param pPGM The PGM instance handle.
* @param GCPhys The address of the guest page.
* @param ppTlbe Where to store the pointer to the TLB entry.
*/
DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
{
int rc;
PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
{
STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbHits));
rc = VINF_SUCCESS;
}
else
rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
*ppTlbe = pTlbe;
return rc;
}
#endif /* !IN_GC */
#if !defined(IN_GC) /** @todo && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
# ifndef VBOX_WITH_NEW_PHYS_CODE
/**
* Convert GC Phys to HC Virt.
*
* @returns VBox status.
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param pHCPtr Where to store the corresponding HC virtual address.
*
* @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr.
*/
DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
{
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
if (VBOX_FAILURE(rc))
{
*pHCPtr = 0; /* Shut up silly GCC warnings. */
return rc;
}
RTGCPHYS off = GCPhys - pRam->GCPhys;
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
*pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
return VINF_SUCCESS;
}
if (pRam->pvR3)
{
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off); /** @todo @bugref{1865,3202}: Code is converting R3 pointer and maybe using it in R0! */
return VINF_SUCCESS;
}
*pHCPtr = 0; /* Shut up silly GCC warnings. */
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
# endif /* !VBOX_WITH_NEW_PHYS_CODE */
/**
* Convert GC Phys to HC Virt.
*
* @returns VBox status.
* @param PVM VM handle.
* @param pRam Ram range
* @param GCPhys The GC physical address.
* @param pHCPtr Where to store the corresponding HC virtual address.
*
* @deprecated This will be eliminated. Don't use it.
*/
DECLINLINE(int) pgmRamGCPhys2HCPtrWithRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
{
RTGCPHYS off = GCPhys - pRam->GCPhys;
Assert(off < pRam->cb);
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
/* Physical chunk in dynamically allocated range not present? */
if (RT_UNLIKELY(!pRam->paChunkR3Ptrs[idx]))
{
#ifdef IN_RING3
int rc = pgmr3PhysGrowRange(pVM, GCPhys);
#else
int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
#endif
if (rc != VINF_SUCCESS)
{
*pHCPtr = 0; /* GCC crap */
return rc;
}
}
*pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
return VINF_SUCCESS;
}
if (pRam->pvR3)
{
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off); /** @todo @bugref{1865,3202}: Code is converting R3 pointer and maybe using it in R0! */
return VINF_SUCCESS;
}
*pHCPtr = 0; /* GCC crap */
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
#endif /* !IN_GC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
/**
* Convert GC Phys to HC Virt and HC Phys.
*
* @returns VBox status.
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param pHCPtr Where to store the corresponding HC virtual address.
* @param pHCPhys Where to store the HC Physical address and its flags.
*
* @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
* and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
*/
DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
{
PPGMRAMRANGE pRam;
PPGMPAGE pPage;
int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
if (VBOX_FAILURE(rc))
{
*pHCPtr = 0; /* Shut up crappy GCC warnings */
*pHCPhys = 0; /* ditto */
return rc;
}
RTGCPHYS off = GCPhys - pRam->GCPhys;
*pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
{
unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
*pHCPtr = paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK);
#else
*pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
#endif
return VINF_SUCCESS;
}
if (pRam->pvR3)
{
*pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off); /** @todo @bugref{1865,3202}: Code is converting R3 pointer and maybe using it in R0! */
return VINF_SUCCESS;
}
*pHCPtr = 0;
return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
}
/**
* Clears flags associated with a RAM address.
*
* @returns VBox status code.
* @param pPGM PGM handle.
* @param GCPhys Guest context physical address.
* @param fFlags fFlags to clear. (Bits 0-11.)
*/
DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
if (VBOX_FAILURE(rc))
return rc;
fFlags &= ~X86_PTE_PAE_PG_MASK;
pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
return VINF_SUCCESS;
}
/**
* Clears flags associated with a RAM address.
*
* @returns VBox status code.
* @param pPGM PGM handle.
* @param GCPhys Guest context physical address.
* @param fFlags fFlags to clear. (Bits 0-11.)
* @param ppRamHint Where to read and store the ram list hint.
* The caller initializes this to NULL before the call.
*/
DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
if (VBOX_FAILURE(rc))
return rc;
fFlags &= ~X86_PTE_PAE_PG_MASK;
pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
return VINF_SUCCESS;
}
/**
* Sets (bitwise OR) flags associated with a RAM address.
*
* @returns VBox status code.
* @param pPGM PGM handle.
* @param GCPhys Guest context physical address.
* @param fFlags fFlags to set clear. (Bits 0-11.)
*/
DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
if (VBOX_FAILURE(rc))
return rc;
fFlags &= ~X86_PTE_PAE_PG_MASK;
pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
return VINF_SUCCESS;
}
/**
* Sets (bitwise OR) flags associated with a RAM address.
*
* @returns VBox status code.
* @param pPGM PGM handle.
* @param GCPhys Guest context physical address.
* @param fFlags fFlags to set clear. (Bits 0-11.)
* @param ppRamHint Where to read and store the ram list hint.
* The caller initializes this to NULL before the call.
*/
DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
{
PPGMPAGE pPage;
int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
if (VBOX_FAILURE(rc))
return rc;
fFlags &= ~X86_PTE_PAE_PG_MASK;
pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
return VINF_SUCCESS;
}
/**
* Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
* Takes PSE-36 into account.
*
* @returns guest physical address
* @param pPGM Pointer to the PGM instance data.
* @param Pde Guest Pde
*/
DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
{
RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
return GCPhys & pPGM->GCPhys4MBPSEMask;
}
/**
* Gets the page directory for the specified address.
*
* @returns Pointer to the page directory in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
*/
DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCUINTPTR GCPtr)
{
const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
{
if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
/* cache is out-of-sync. */
PX86PDPAE pPD;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_SUCCESS(rc))
return pPD;
AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
/* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
}
return NULL;
}
/**
* Gets the page directory entry for the specified address.
*
* @returns Pointer to the page directory entry in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
*/
DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCUINTPTR GCPtr)
{
const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
{
const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
return &CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD];
/* The cache is out-of-sync. */
PX86PDPAE pPD;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_SUCCESS(rc))
return &pPD->a[iPD];
AssertMsgFailed(("Impossible! rc=%Vrc PDPE=%RX64\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
/* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. */
}
return NULL;
}
/**
* Gets the page directory entry for the specified address.
*
* @returns The page directory entry in question.
* @returns A non-present entry if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
*/
DECLINLINE(uint64_t) pgmGstGetPaePDE(PPGM pPGM, RTGCUINTPTR GCPtr)
{
const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
{
const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
return CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD].u;
/* cache is out-of-sync. */
PX86PDPAE pPD;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_SUCCESS(rc))
return pPD->a[iPD].u;
AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
}
return 0ULL;
}
/**
* Gets the page directory pointer table entry for the specified address
* and returns the index into the page directory
*
* @returns Pointer to the page directory in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
* @param piPD Receives the index into the returned page directory
*/
DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCUINTPTR GCPtr, unsigned *piPD)
{
const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
{
const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
{
*piPD = iPD;
return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
}
/* cache is out-of-sync. */
PX86PDPAE pPD;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_SUCCESS(rc))
{
*piPD = iPD;
return pPD;
}
AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
/* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
}
return NULL;
}
#ifndef IN_GC
/**
* Gets the page directory pointer entry for the specified address.
*
* @returns Pointer to the page directory pointer entry in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
* @param ppPml4e Page Map Level-4 Entry (out)
*/
DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e)
{
const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
Assert(pPGM->pGstPaePML4HC);
*ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
if ((*ppPml4e)->n.u1Present)
{
PX86PDPT pPdpt;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdpt);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return NULL;
}
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
return &pPdpt->a[iPdPt];
}
return NULL;
}
/**
* Gets the page directory entry for the specified address.
*
* @returns The page directory entry in question.
* @returns A non-present entry if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
* @param ppPml4e Page Map Level-4 Entry (out)
* @param pPdpe Page directory pointer table entry (out)
*/
DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
{
const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
Assert(pPGM->pGstPaePML4HC);
*ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
if ((*ppPml4e)->n.u1Present)
{
PX86PDPT pPdptTemp;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
*pPdpe = pPdptTemp->a[iPdPt];
if (pPdpe->n.u1Present)
{
PX86PDPAE pPD;
rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
return pPD->a[iPD].u;
}
}
return 0ULL;
}
/**
* Gets the page directory entry for the specified address.
*
* @returns The page directory entry in question.
* @returns A non-present entry if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
*/
DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr)
{
const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
Assert(pPGM->pGstPaePML4HC);
if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
{
PX86PDPT pPdptTemp;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
if (pPdptTemp->a[iPdPt].n.u1Present)
{
PX86PDPAE pPD;
rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
return pPD->a[iPD].u;
}
}
return 0ULL;
}
/**
* Gets the page directory entry for the specified address.
*
* @returns Pointer to the page directory entry in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
*/
DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr)
{
const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
Assert(pPGM->pGstPaePML4HC);
if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
{
PX86PDPT pPdptTemp;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return NULL;
}
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
if (pPdptTemp->a[iPdPt].n.u1Present)
{
PX86PDPAE pPD;
rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return NULL;
}
const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
return &pPD->a[iPD];
}
}
return NULL;
}
/**
* Gets the GUEST page directory pointer for the specified address.
*
* @returns The page directory in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
* @param ppPml4e Page Map Level-4 Entry (out)
* @param pPdpe Page directory pointer table entry (out)
* @param piPD Receives the index into the returned page directory
*/
DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
{
const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
Assert(pPGM->pGstPaePML4HC);
*ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
if ((*ppPml4e)->n.u1Present)
{
PX86PDPT pPdptTemp;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
*pPdpe = pPdptTemp->a[iPdPt];
if (pPdpe->n.u1Present)
{
PX86PDPAE pPD;
rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
*piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
return pPD;
}
}
return 0ULL;
}
/**
* Gets the GUEST page directory pointer for the specified address.
*
* @returns The page directory in question.
* @returns NULL if the page directory is not present or on an invalid page.
* @param pPGM Pointer to the PGM instance data.
* @param GCPtr The address.
* @param piPD Receives the index into the returned page directory
*/
DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, unsigned *piPD)
{
PX86PML4E pPml4e;
PX86PDPE pPdpe;
const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
Assert(pPGM->pGstPaePML4HC);
pPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
if (pPml4e->n.u1Present)
{
PX86PDPT pPdptTemp;
int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
pPdpe = &pPdptTemp->a[iPdPt];
if (pPdpe->n.u1Present)
{
PX86PDPAE pPD;
rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
if (VBOX_FAILURE(rc))
{
AssertFailed();
return 0ULL;
}
*piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
return pPD;
}
}
return 0ULL;
}
#endif /* !IN_GC */
/**
* Checks if any of the specified page flags are set for the given page.
*
* @returns true if any of the flags are set.
* @returns false if all the flags are clear.
* @param pPGM PGM handle.
* @param GCPhys The GC physical address.
* @param fFlags The flags to check for.
*/
DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
{
PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
return pPage
&& (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
}
/**
* Gets the page state for a physical handler.
*
* @returns The physical handler page state.
* @param pCur The physical handler in question.
*/
DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
{
switch (pCur->enmType)
{
case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
case PGMPHYSHANDLERTYPE_MMIO:
case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
return PGM_PAGE_HNDL_PHYS_STATE_ALL;
default:
AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
}
}
/**
* Gets the page state for a virtual handler.
*
* @returns The virtual handler page state.
* @param pCur The virtual handler in question.
* @remarks This should never be used on a hypervisor access handler.
*/
DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
{
switch (pCur->enmType)
{
case PGMVIRTHANDLERTYPE_WRITE:
return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
case PGMVIRTHANDLERTYPE_ALL:
return PGM_PAGE_HNDL_VIRT_STATE_ALL;
default:
AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
}
}
/**
* Clears one physical page of a virtual handler
*
* @param pPGM Pointer to the PGM instance.
* @param pCur Virtual handler structure
* @param iPage Physical page index
*
* @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
* need to care about other handlers in the same page.
*/
DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
{
const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
/*
* Remove the node from the tree (it's supposed to be in the tree if we get here!).
*/
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
#endif
if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
{
/* We're the head of the alias chain. */
PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertReleaseMsg(pRemove != NULL,
("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
AssertReleaseMsg(pRemove == pPhys2Virt,
("wanted: pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
" got: pRemove=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
#endif
if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
{
/* Insert the next list in the alias chain into the tree. */
PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
("pNext=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
#endif
pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
bool fRc = RTAvlroGCPhysInsert(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
AssertRelease(fRc);
}
}
else
{
/* Locate the previous node in the alias chain. */
PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertReleaseMsg(pPrev != pPhys2Virt,
("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
#endif
for (;;)
{
PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
if (pNext == pPhys2Virt)
{
/* unlink. */
LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%VGp-%VGp]\n",
pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
else
{
PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
| (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
}
break;
}
/* next */
if (pNext == pPrev)
{
#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
AssertReleaseMsg(pNext != pPrev,
("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
#endif
break;
}
pPrev = pNext;
}
}
Log2(("PHYS2VIRT: Removing %VGp-%VGp %#RX32 %s\n",
pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
pPhys2Virt->offNextAlias = 0;
pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
/*
* Clear the ram flags for this page.
*/
PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
AssertReturnVoid(pPage);
PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
}
/**
* Internal worker for finding a 'in-use' shadow page give by it's physical address.
*
* @returns Pointer to the shadow page structure.
* @param pPool The pool.
* @param HCPhys The HC physical address of the shadow page.
*/
DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
{
/*
* Look up the page.
*/
PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%VHp pPage=%p type=%d\n", HCPhys, pPage, (pPage) ? pPage->enmKind : 0));
return pPage;
}
/**
* Internal worker for finding a 'in-use' shadow page give by it's physical address.
*
* @returns Pointer to the shadow page structure.
* @param pPool The pool.
* @param idx The pool page index.
*/
DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
{
AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
return &pPool->aPages[idx];
}
#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
/**
* Clear references to guest physical memory.
*
* @param pPool The pool.
* @param pPoolPage The pool page.
* @param pPhysPage The physical guest page tracking structure.
*/
DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
{
/*
* Just deal with the simple case here.
*/
#ifdef LOG_ENABLED
const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
#endif
const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
if (cRefs == 1)
{
Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
}
else
pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
}
#endif
#ifdef PGMPOOL_WITH_CACHE
/**
* Moves the page to the head of the age list.
*
* This is done when the cached page is used in one way or another.
*
* @param pPool The pool.
* @param pPage The cached page.
* @todo inline in PGMInternal.h!
*/
DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
{
/*
* Move to the head of the age list.
*/
if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
{
/* unlink */
pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
else
pPool->iAgeTail = pPage->iAgePrev;
/* insert at head */
pPage->iAgePrev = NIL_PGMPOOL_IDX;
pPage->iAgeNext = pPool->iAgeHead;
Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
pPool->iAgeHead = pPage->idx;
pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
}
}
#endif /* PGMPOOL_WITH_CACHE */
/**
* Tells if mappings are to be put into the shadow page table or not
*
* @returns boolean result
* @param pVM VM handle.
*/
DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
{
#ifdef IN_RING0
/* There are no mappings in VT-x and AMD-V mode. */
Assert(pPGM->fDisableMappings);
return false;
#else
return !pPGM->fDisableMappings;
#endif
}
/** @} */
#endif