MM.cpp revision 52194993b9d83198a057fea598ec8506e1a3bbaa
/* $Id$ */
/** @file
* MM - Memory Manager.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/** @page pg_mm MM - The Memory Manager
*
* The memory manager is in charge of the following memory:
* - Hypervisor Memory Area (HMA) - Address space management.
* - Hypervisor Heap - A memory heap that lives in all contexts.
* - Tagged ring-3 heap.
* - Page pools - Primarily used by PGM for shadow page tables.
* - Locked process memory - Guest RAM and other. (reduce/obsolete this)
* - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this)
*
* The global memory manager (GMM) is the global counter part / partner of MM.
* MM will provide therefore ring-3 callable interfaces for some of the GMM APIs
* related to resource tracking (PGM is the user).
*
* @see grp_mm
*
*
* @section sec_mm_hma Hypervisor Memory Area
*
* The HMA is used when executing in raw-mode. We borrow, with the help of
* PGMMap, some unused space (one or more page directory entries to be precise)
* in the guest's virtual memory context. PGM will monitor the guest's virtual
* address space for changes and relocate the HMA when required.
*
* To give some idea what's in the HMA, study the 'info hma' output:
* @verbatim
VBoxDbg> info hma
Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes
00000000a05cc000-00000000a05cd000 DYNAMIC fence
00000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping
00000000a05c3000-00000000a05c4000 DYNAMIC fence
00000000a05b8000-00000000a05c3000 DYNAMIC Paging
00000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem
00000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam
00000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE)
00000000a0522000-00000000a0523000 DYNAMIC fence
00000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2GC.gc
00000000a051d000-00000000a051e000 DYNAMIC fence
00000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDGC.gc
00000000a04ea000-00000000a04eb000 DYNAMIC fence
00000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region)
00000000a04e8000-00000000a04e9000 DYNAMIC fence
00000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMGC.gc
00000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM)
00000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM)
00000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM)
00000000a01e6000-00000000a01e7000 DYNAMIC fence
00000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code
00000000a01e4000-00000000a01e5000 DYNAMIC fence
00000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP
00000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS)
00000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL)
00000000a016a000-00000000a016b000 DYNAMIC fence
00000000a0165000-00000000a016a000 DYNAMIC CR3 mapping
00000000a0164000-00000000a0165000 DYNAMIC fence
00000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap
00000000a0023000-00000000a0024000 DYNAMIC fence
00000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM
00000000a0000000-00000000a0001000 DYNAMIC fence
@endverbatim
*
*
* @section sec_mm_hyperheap Hypervisor Heap
*
* The heap is accessible from ring-3, ring-0 and the raw-mode context. That
* said, it's not necessarily mapped into ring-0 on if that's possible since we
* don't wish to waste kernel address space without a good reason.
*
* Allocations within the heap are always in the same relative position in all
* contexts, so, it's possible to use offset based linking. In fact, the heap is
* internally using offset based linked lists tracking heap blocks. We use
* offset linked AVL trees and lists in a lot of places where share structures
* between RC, R3 and R0, so this is a strict requirement of the heap. However
* this means that we cannot easily extend the heap since the extension won't
* necessarily be in the continuation of the current heap memory in all (or any)
* context.
*
* All allocations are tagged. Per tag allocation statistics will be maintaing
* and exposed thru STAM when VBOX_WITH_STATISTICS is defined.
*
*
* @section sec_mm_r3heap Tagged Ring-3 Heap
*
* The ring-3 heap is a wrapper around the RTMem API adding allocation
* statistics and automatic cleanup on VM destruction.
*
* Per tag allocation statistics will be maintaing and exposed thru STAM when
* VBOX_WITH_STATISTICS is defined.
*
*
* @section sec_mm_page Page Pool
*
* The MM manages a page pool from which other components can allocate locked,
* page aligned and page sized memory objects. The pool provides facilities to
* convert back and forth between (host) physical and virtual addresses (within
* the pool of course). Several specialized interfaces are provided for the most
* common alloctions and convertions to save the caller from bothersome casting
* and extra parameter passing.
*
*
* @section sec_mm_locked Locked Process Memory
*
* MM manages the locked process memory. This is used for a bunch of things
* (count the LOCKED entries in the'info hma' output found in @ref sec_mm_hma),
* but the main consumer of memory is currently for guest RAM. There is an
* ongoing rewrite that will move all the guest RAM allocation to PGM and
* GMM.
*
* The locking of memory is something doing in cooperation with the VirtualBox
* support driver, SUPDrv (aka. VBoxDrv), thru the support library API,
* SUPR3 (aka. SUPLib).
*
*
* @section sec_mm_phys Physical Guest Memory
*
* MM is currently managing the physical memory for the guest. It relies heavily
* on PGM for this. There is an ongoing rewrite that will move this to PGM. (The
* rewrite is driven by the need for more flexible guest ram allocation, but
* also motivated by the fact that MMPhys is just adding stupid bureaucracy and
* that MMR3PhysReserve is a totally weird artifact that must go away.)
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_MM
#include <VBox/mm.h>
#include <VBox/pgm.h>
#include <VBox/cfgm.h>
#include <VBox/ssm.h>
#include <VBox/gmm.h>
#include "MMInternal.h"
#include <VBox/vm.h>
#include <VBox/uvm.h>
#include <VBox/err.h>
#include <VBox/param.h>
#include <VBox/log.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/string.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The current saved state versino of MM. */
#define MM_SAVED_STATE_VERSION 2
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
/**
* Initializes the MM members of the UVM.
*
* This is currently only the ring-3 heap.
*
* @returns VBox status code.
* @param pUVM Pointer to the user mode VM structure.
*/
VMMR3DECL(int) MMR3InitUVM(PUVM pUVM)
{
/*
* Assert sizes and order.
*/
AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
Assert(!pUVM->mm.s.pHeap);
/*
* Init the heap.
*/
int rc = mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
if (RT_SUCCESS(rc))
{
rc = mmR3UkHeapCreateU(pUVM, &pUVM->mm.s.pUkHeap);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
mmR3HeapDestroy(pUVM->mm.s.pHeap);
pUVM->mm.s.pHeap = NULL;
}
return rc;
}
/**
* Initializes the MM.
*
* MM is managing the virtual address space (among other things) and
* setup the hypvervisor memory area mapping in the VM structure and
* the hypvervisor alloc-only-heap. Assuming the current init order
* and components the hypvervisor memory area looks like this:
* -# VM Structure.
* -# Hypervisor alloc only heap (also call Hypervisor memory region).
* -# Core code.
*
* MM determins the virtual address of the hypvervisor memory area by
* checking for location at previous run. If that property isn't available
* it will choose a default starting location, currently 0xa0000000.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) MMR3Init(PVM pVM)
{
LogFlow(("MMR3Init\n"));
/*
* Assert alignment, sizes and order.
*/
AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
/*
* Init the structure.
*/
pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
pVM->mm.s.offLookupHyper = NIL_OFFSET;
/*
* Init the page pool.
*/
int rc = mmR3PagePoolInit(pVM);
if (RT_SUCCESS(rc))
{
/*
* Init the hypervisor related stuff.
*/
rc = mmR3HyperInit(pVM);
if (RT_SUCCESS(rc))
{
/*
* Register the saved state data unit.
*/
rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
NULL, mmR3Save, NULL,
NULL, mmR3Load, NULL);
if (RT_SUCCESS(rc))
return rc;
/* .... failure .... */
}
}
MMR3Term(pVM);
return rc;
}
/**
* Initializes the MM parts which depends on PGM being initialized.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @remark No cleanup necessary since MMR3Term() will be called on failure.
*/
VMMR3DECL(int) MMR3InitPaging(PVM pVM)
{
LogFlow(("MMR3InitPaging:\n"));
/*
* Query the CFGM values.
*/
int rc;
PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
if (!pMMCfg)
{
rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
AssertRCReturn(rc, rc);
}
/** @cfgm{RamSize, uint64_t, 0, 16TB, 0}
* Specifies the size of the base RAM that is to be set up during
* VM initialization.
*/
uint64_t cbRam;
rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
cbRam = 0;
else
AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc);
AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK));
AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE);
cbRam &= X86_PTE_PAE_PG_MASK;
pVM->mm.s.cbRamBase = cbRam;
/** @cfgm{RamHoleSize, uint32_t, 0, 4032MB, 512MB}
* Specifies the size of the memory hole. The memory hole is used
* to avoid mapping RAM to the range normally used for PCI memory regions.
* Must be aligned on a 4MB boundrary. */
uint32_t cbRamHole;
rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc);
AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M,
("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
AssertLogRelMsgReturn(cbRamHole > 16 * _1M,
("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)),
("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE);
uint64_t const offRamHole = _4G - cbRamHole;
if (cbRam < offRamHole)
Log(("MM: %RU64 bytes of RAM\n", cbRam));
else
Log(("MM: %RU64 bytes of RAM with a hole at %RU64 up to 4GB.\n", cbRam, offRamHole));
/** @cfgm{MM/Policy, string, no overcommitment}
* Specifies the policy to use when reserving memory for this VM. The recognized
* value is 'no overcommitment' (default). See GMMPOLICY.
*/
GMMOCPOLICY enmOcPolicy;
char sz[64];
rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
if (RT_SUCCESS(rc))
{
if ( !RTStrICmp(sz, "no_oc")
|| !RTStrICmp(sz, "no overcommitment"))
enmOcPolicy = GMMOCPOLICY_NO_OC;
else
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
}
else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
enmOcPolicy = GMMOCPOLICY_NO_OC;
else
AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc);
/** @cfgm{MM/Priority, string, normal}
* Specifies the memory priority of this VM. The priority comes into play when the
* system is overcommitted and the VMs needs to be milked for memory. The recognized
* values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
*/
GMMPRIORITY enmPriority;
rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
if (RT_SUCCESS(rc))
{
if (!RTStrICmp(sz, "low"))
enmPriority = GMMPRIORITY_LOW;
else if (!RTStrICmp(sz, "normal"))
enmPriority = GMMPRIORITY_NORMAL;
else if (!RTStrICmp(sz, "high"))
enmPriority = GMMPRIORITY_HIGH;
else
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
}
else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
enmPriority = GMMPRIORITY_NORMAL;
else
AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc);
/*
* Make the initial memory reservation with GMM.
*/
uint64_t cBasePages = (cbRam >> PAGE_SHIFT) + pVM->mm.s.cBasePages;
rc = GMMR3InitialReservation(pVM,
RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1),
RT_MAX(pVM->mm.s.cShadowPages, 1),
RT_MAX(pVM->mm.s.cFixedPages, 1),
enmOcPolicy,
enmPriority);
if (RT_FAILURE(rc))
{
if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"),
cbRam, enmOcPolicy, enmPriority);
return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
cbRam >> PAGE_SHIFT, enmOcPolicy, enmPriority);
}
/*
* If RamSize is 0 we're done now.
*/
if (cbRam < PAGE_SIZE)
{
Log(("MM: No RAM configured\n"));
return VINF_SUCCESS;
}
/*
* Setup the base ram (PGM).
*/
if (cbRam > offRamHole)
{
rc = PGMR3PhysRegisterRam(pVM, 0, offRamHole, "Base RAM");
if (RT_SUCCESS(rc))
rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM");
}
else
rc = PGMR3PhysRegisterRam(pVM, 0, RT_MIN(cbRam, offRamHole), "Base RAM");
/*
* Enabled mmR3UpdateReservation here since we don't want the
* PGMR3PhysRegisterRam calls above mess things up.
*/
pVM->mm.s.fDoneMMR3InitPaging = true;
AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages));
LogFlow(("MMR3InitPaging: returns %Rrc\n", rc));
return rc;
}
/**
* Terminates the MM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) MMR3Term(PVM pVM)
{
/*
* Destroy the page pool. (first as it used the hyper heap)
*/
mmR3PagePoolTerm(pVM);
/* Clean up the hypervisor heap. */
mmR3HyperTerm(pVM);
/*
* Zero stuff to detect after termination use of the MM interface
*/
pVM->mm.s.offLookupHyper = NIL_OFFSET;
pVM->mm.s.pHyperHeapR3 = NULL; /* freed above. */
pVM->mm.s.pHyperHeapR0 = NIL_RTR0PTR; /* freed above. */
pVM->mm.s.pHyperHeapRC = NIL_RTRCPTR; /* freed above. */
pVM->mm.s.offVM = 0; /* init assertion on this */
/*
* Destroy the User-kernel heap here since the support driver session
* may have been terminated by the time we get to MMR3TermUVM.
*/
mmR3UkHeapDestroy(pVM->pUVM->mm.s.pUkHeap);
pVM->pUVM->mm.s.pUkHeap = NULL;
return VINF_SUCCESS;
}
/**
* Terminates the UVM part of MM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pUVM Pointer to the user mode VM structure.
*/
VMMR3DECL(void) MMR3TermUVM(PUVM pUVM)
{
/*
* Destroy the heaps.
*/
if (pUVM->mm.s.pUkHeap)
{
mmR3UkHeapDestroy(pUVM->mm.s.pUkHeap);
pUVM->mm.s.pUkHeap = NULL;
}
mmR3HeapDestroy(pUVM->mm.s.pHeap);
pUVM->mm.s.pHeap = NULL;
}
/**
* Reset notification.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) MMR3Reset(PVM pVM)
{
/* nothing to do anylonger. */
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("mmR3Save:\n"));
/* (PGM saves the physical memory.) */
SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
LogFlow(("mmR3Load:\n"));
/*
* Validate version.
*/
if ( SSM_VERSION_MAJOR_CHANGED(u32Version, MM_SAVED_STATE_VERSION)
|| !u32Version)
{
AssertMsgFailed(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Check the cBasePages and cbRamBase values.
*/
int rc;
RTUINT cb1;
/* cBasePages (ignored) */
uint64_t cPages;
if (u32Version >= 2)
rc = SSMR3GetU64(pSSM, &cPages);
else
{
rc = SSMR3GetUInt(pSSM, &cb1);
cPages = cb1 >> PAGE_SHIFT;
}
if (RT_FAILURE(rc))
return rc;
/* cbRamBase */
uint64_t cb;
if (u32Version != 1)
rc = SSMR3GetU64(pSSM, &cb);
else
{
rc = SSMR3GetUInt(pSSM, &cb1);
cb = cb1;
}
if (RT_FAILURE(rc))
return rc;
AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase,
("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb),
VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
/* (PGM restores the physical memory.) */
return rc;
}
/**
* Updates GMM with memory reservation changes.
*
* Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
*
* @returns VBox status code - see GMMR0UpdateReservation.
* @param pVM The shared VM structure.
*/
int mmR3UpdateReservation(PVM pVM)
{
VM_ASSERT_EMT(pVM);
if (pVM->mm.s.fDoneMMR3InitPaging)
return GMMR3UpdateReservation(pVM,
RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1),
RT_MAX(pVM->mm.s.cShadowPages, 1),
RT_MAX(pVM->mm.s.cFixedPages, 1));
return VINF_SUCCESS;
}
/**
* Interface for PGM to increase the reservation of RAM and ROM pages.
*
* This can be called before MMR3InitPaging.
*
* @returns VBox status code. Will set VM error on failure.
* @param pVM The shared VM structure.
* @param cAddBasePages The number of pages to add.
*/
VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
{
uint64_t cOld = pVM->mm.s.cBasePages;
pVM->mm.s.cBasePages += cAddBasePages;
LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
int rc = mmR3UpdateReservation(pVM);
if (RT_FAILURE(rc))
{
VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"),
cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
pVM->mm.s.cBasePages = cOld;
}
return rc;
}
/**
* Interface for PGM to make reservations for handy pages in addition to the
* base memory.
*
* This can be called before MMR3InitPaging.
*
* @returns VBox status code. Will set VM error on failure.
* @param pVM The shared VM structure.
* @param cHandyPages The number of handy pages.
*/
VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages)
{
AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER);
pVM->mm.s.cHandyPages = cHandyPages;
LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages));
int rc = mmR3UpdateReservation(pVM);
if (RT_FAILURE(rc))
{
VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"),
pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
pVM->mm.s.cHandyPages = 0;
}
return rc;
}
/**
* Interface for PGM to adjust the reservation of fixed pages.
*
* This can be called before MMR3InitPaging.
*
* @returns VBox status code. Will set VM error on failure.
* @param pVM The shared VM structure.
* @param cDeltaFixedPages The number of pages to add (positive) or subtract (negative).
* @param pszDesc Some description associated with the reservation.
*/
VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
{
const uint32_t cOld = pVM->mm.s.cFixedPages;
pVM->mm.s.cFixedPages += cDeltaFixedPages;
LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
int rc = mmR3UpdateReservation(pVM);
if (RT_FAILURE(rc))
{
VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
cOld, pVM->mm.s.cFixedPages, pszDesc);
pVM->mm.s.cFixedPages = cOld;
}
return rc;
}
/**
* Interface for PGM to update the reservation of shadow pages.
*
* This can be called before MMR3InitPaging.
*
* @returns VBox status code. Will set VM error on failure.
* @param pVM The shared VM structure.
* @param cShadowPages The new page count.
*/
VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
{
const uint32_t cOld = pVM->mm.s.cShadowPages;
pVM->mm.s.cShadowPages = cShadowPages;
LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
int rc = mmR3UpdateReservation(pVM);
if (RT_FAILURE(rc))
{
VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
pVM->mm.s.cShadowPages = cOld;
}
return rc;
}
/**
* Convert HC Physical address to HC Virtual address.
*
* @returns VBox status.
* @param pVM VM handle.
* @param HCPhys The host context virtual address.
* @param ppv Where to store the resulting address.
* @thread The Emulation Thread.
*
* @remarks Avoid whenever possible.
* Intended for the debugger facility only.
* @todo Rename to indicate the special usage.
*/
VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
{
/*
* Try page tables.
*/
int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
if (RT_SUCCESS(rc))
return rc;
/*
* Iterate thru the lookup records for HMA.
*/
uint32_t off = HCPhys & PAGE_OFFSET_MASK;
HCPhys &= X86_PTE_PAE_PG_MASK;
PMMLOOKUPHYPER pCur = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.CTX_SUFF(pHyperHeap) + pVM->mm.s.offLookupHyper);
for (;;)
{
switch (pCur->enmType)
{
case MMLOOKUPHYPERTYPE_LOCKED:
{
PCRTHCPHYS paHCPhysPages = pCur->u.Locked.paHCPhysPages;
size_t iPage = pCur->cb >> PAGE_SHIFT;
while (iPage-- > 0)
if (paHCPhysPages[iPage] == HCPhys)
{
*ppv = (char *)pCur->u.Locked.pvR3 + (iPage << PAGE_SHIFT) + off;
return VINF_SUCCESS;
}
break;
}
case MMLOOKUPHYPERTYPE_HCPHYS:
if (pCur->u.HCPhys.HCPhys - HCPhys < pCur->cb)
{
*ppv = (uint8_t *)pCur->u.HCPhys.pvR3 + pCur->u.HCPhys.HCPhys - HCPhys + off;
return VINF_SUCCESS;
}
break;
case MMLOOKUPHYPERTYPE_GCPHYS: /* (for now we'll not allow these kind of conversions) */
case MMLOOKUPHYPERTYPE_MMIO2:
case MMLOOKUPHYPERTYPE_DYNAMIC:
break;
default:
AssertMsgFailed(("enmType=%d\n", pCur->enmType));
break;
}
/* next */
if (pCur->offNext == (int32_t)NIL_OFFSET)
break;
pCur = (PMMLOOKUPHYPER)((uint8_t *)pCur + pCur->offNext);
}
/* give up */
return VERR_INVALID_POINTER;
}
/**
* Get the size of the base RAM.
* This usually means the size of the first contigous block of physical memory.
*
* @returns The guest base RAM size.
* @param pVM The VM handle.
* @thread Any.
*
* @deprecated
*/
VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM)
{
return pVM->mm.s.cbRamBase;
}