MM.cpp revision 1aec4ae89b05a42150ea3fd5cabbb31b0510c45a
/* $Id$ */
/** @file
* MM - Memory Monitor(/Manager).
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_mm MM - The Memory Monitor/Manager
*
* It seems like this is going to be the entity taking care of memory allocations
* and the locking of physical memory for a VM. MM will track these allocations and
* pinnings so pointer conversions, memory read and write, and correct clean up can
* be done.
*
* Memory types:
* - Hypervisor Memory Area (HMA).
* - Page tables.
* - Physical pages.
*
* The first two types are not accessible using the generic conversion functions
* for GC memory, there are special functions for these.
*
*
* A decent structure for this component need to be eveloped as we see usage. One
* or two rewrites is probabaly needed to get it right...
*
*
*
* @section Hypervisor Memory Area
*
* The hypervisor is give 4MB of space inside the guest, we assume that we can
* steal an page directory entry from the guest OS without cause trouble. In
* addition to these 4MB we'll be mapping memory for the graphics emulation,
* but that will be an independant mapping.
*
* The 4MBs are divided into two main parts:
* -# The static code and data
* -# The shortlived page mappings.
*
* The first part is used for the VM structure, the core code (VMMSwitch),
* GC modules, and the alloc-only-heap. The size will be determined at a
* later point but initially we'll say 2MB of locked memory, most of which
* is non contiguous physically.
*
* The second part is used for mapping pages to the hypervisor. We'll be using
* a simple round robin when doing these mappings. This means that no-one can
* assume that a mapping hangs around for very long, while the managing of the
* pages are very simple.
*
*
*
* @section Page Pool
*
* The MM manages a per VM page pool from which other components can allocate
* locked, page aligned and page granular memory objects. The pool provides
* facilities to convert back and forth between physical and virtual addresses
* (within the pool of course). Several specialized interfaces are provided
* for the most common alloctions and convertions to save the caller from
* bothersome casting and extra parameter passing.
*
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_MM
#include <VBox/mm.h>
#include <VBox/pgm.h>
#include <VBox/cfgm.h>
#include <VBox/ssm.h>
#include "MMInternal.h"
#include <VBox/vm.h>
#include <VBox/err.h>
#include <VBox/param.h>
#include <VBox/log.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/string.h>
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static int mmR3Term(PVM pVM, bool fKeepTheHeap);
static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
/**
* Initializes the MM.
*
* MM is managing the virtual address space (among other things) and
* setup the hypvervisor memory area mapping in the VM structure and
* the hypvervisor alloc-only-heap. Assuming the current init order
* and components the hypvervisor memory area looks like this:
* -# VM Structure.
* -# Hypervisor alloc only heap (also call Hypervisor memory region).
* -# Core code.
*
* MM determins the virtual address of the hypvervisor memory area by
* checking for location at previous run. If that property isn't available
* it will choose a default starting location, currently 0xe0000000.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
MMR3DECL(int) MMR3Init(PVM pVM)
{
LogFlow(("MMR3Init\n"));
/*
* Assert alignment, sizes and order.
*/
AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
/*
* Init the structure.
*/
pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
pVM->mm.s.offLookupHyper = NIL_OFFSET;
/*
* Init the heap (may already be initialized already if someone used it).
*/
if (!pVM->mm.s.pHeap)
{
int rc = mmr3HeapCreate(pVM, &pVM->mm.s.pHeap);
if (!VBOX_SUCCESS(rc))
return rc;
}
/*
* Init the page pool.
*/
int rc = mmr3PagePoolInit(pVM);
if (VBOX_SUCCESS(rc))
{
/*
* Init the hypervisor related stuff.
*/
rc = mmr3HyperInit(pVM);
if (VBOX_SUCCESS(rc))
{
/*
* Register the saved state data unit.
*/
rc = SSMR3RegisterInternal(pVM, "mm", 1, 1, sizeof(uint32_t) * 2,
NULL, mmR3Save, NULL,
NULL, mmR3Load, NULL);
if (VBOX_SUCCESS(rc))
return rc;
/* .... failure .... */
}
}
mmR3Term(pVM, true /* keep the heap */);
return rc;
}
/**
* Initializes the MM parts which depends on PGM being initialized.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @remark No cleanup necessary since MMR3Term() will be called on failure.
*/
MMR3DECL(int) MMR3InitPaging(PVM pVM)
{
LogFlow(("MMR3InitPaging:\n"));
bool fPreAlloc;
int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RamPreAlloc", &fPreAlloc);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
fPreAlloc = true;
#else
fPreAlloc = false;
#endif
else
AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamPreAlloc\", rc=%Vrc.\n", rc), rc);
uint64_t cbRam;
rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
cbRam = 0;
if (VBOX_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND)
{
if (cbRam < PAGE_SIZE)
{
Log(("MM: No RAM configured\n"));
return VINF_SUCCESS;
}
#ifdef PGM_DYNAMIC_RAM_ALLOC
Log(("MM: %llu bytes of RAM%s\n", cbRam, fPreAlloc ? " (PreAlloc)" : ""));
pVM->mm.s.pvRamBaseHC = 0; /** @todo obsolete */
pVM->mm.s.cbRamBase = cbRam & PAGE_BASE_GC_MASK;
rc = MMR3PhysRegister(pVM, pVM->mm.s.pvRamBaseHC, 0, pVM->mm.s.cbRamBase, MM_RAM_FLAGS_DYNAMIC_ALLOC, "Main Memory");
if (VBOX_SUCCESS(rc))
{
/* Allocate the first chunk, as we'll map ROM ranges there. */
rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)0);
if (VBOX_SUCCESS(rc))
{
/* Should we preallocate the entire guest RAM? */
if (fPreAlloc)
{
for (RTGCPHYS GCPhys = PGM_DYNAMIC_CHUNK_SIZE; GCPhys < cbRam; GCPhys += PGM_DYNAMIC_CHUNK_SIZE)
{
rc = PGM3PhysGrowRange(pVM, GCPhys);
if (VBOX_FAILURE(rc))
return rc;
}
}
return rc;
}
}
#else
unsigned cPages = cbRam >> PAGE_SHIFT;
Log(("MM: %llu bytes of RAM (%d pages)\n", cbRam, cPages));
rc = SUPPageAlloc(cPages, &pVM->mm.s.pvRamBaseHC);
if (VBOX_SUCCESS(rc))
{
pVM->mm.s.cbRamBase = cPages << PAGE_SHIFT;
rc = MMR3PhysRegister(pVM, pVM->mm.s.pvRamBaseHC, 0, pVM->mm.s.cbRamBase, 0, "Main Memory");
if (VBOX_SUCCESS(rc))
return rc;
SUPPageFree(pVM->mm.s.pvRamBaseHC);
}
else
LogRel(("MMR3InitPage: Failed to allocate %u bytes of RAM! rc=%Vrc\n", cPages << PAGE_SHIFT));
#endif
}
else
AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
LogFlow(("MMR3InitPaging: returns %Vrc\n", rc));
return rc;
}
/**
* Terminates the MM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
MMR3DECL(int) MMR3Term(PVM pVM)
{
return mmR3Term(pVM, false /* free the heap */);
}
/**
* Worker for MMR3Term and MMR3Init.
*
* The tricky bit here is that we must not destroy the heap if we're
* called from MMR3Init, otherwise we'll get into trouble when
* CFGMR3Term is called later in the bailout process.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
* @param fKeepTheHeap Whether or not to keep the heap.
*/
static int mmR3Term(PVM pVM, bool fKeepTheHeap)
{
/*
* Destroy the page pool. (first as it used the hyper heap)
*/
mmr3PagePoolTerm(pVM);
/*
* Release locked memory.
* (Associated record are released by the heap.)
*/
PMMLOCKEDMEM pLockedMem = pVM->mm.s.pLockedMem;
while (pLockedMem)
{
int rc = SUPPageUnlock(pLockedMem->pv);
AssertMsgRC(rc, ("SUPPageUnlock(%p) -> rc=%d\n", pLockedMem->pv, rc));
switch (pLockedMem->eType)
{
case MM_LOCKED_TYPE_HYPER:
rc = SUPPageFree(pLockedMem->pv, pLockedMem->cb >> PAGE_SHIFT);
AssertMsgRC(rc, ("SUPPageFree(%p) -> rc=%d\n", pLockedMem->pv, rc));
break;
case MM_LOCKED_TYPE_HYPER_NOFREE:
case MM_LOCKED_TYPE_HYPER_PAGES:
case MM_LOCKED_TYPE_PHYS:
/* nothing to do. */
break;
}
/* next */
pLockedMem = pLockedMem->pNext;
}
/*
* Destroy the heap if requested.
*/
if (!fKeepTheHeap)
{
mmr3HeapDestroy(pVM->mm.s.pHeap);
pVM->mm.s.pHeap = NULL;
}
/*
* Zero stuff to detect after termination use of the MM interface
*/
pVM->mm.s.offLookupHyper = NIL_OFFSET;
pVM->mm.s.pLockedMem = NULL;
pVM->mm.s.pHyperHeapHC = NULL; /* freed above. */
pVM->mm.s.pHyperHeapGC = 0; /* freed above. */
pVM->mm.s.offVM = 0; /* init assertion on this */
return 0;
}
/**
* Reset notification.
*
* MM will reload shadow ROMs into RAM at this point and make
* the ROM writable.
*
* @param pVM The VM handle.
*/
MMR3DECL(void) MMR3Reset(PVM pVM)
{
mmR3PhysRomReset(pVM);
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("mmR3Save:\n"));
/* (PGM saves the physical memory.) */
SSMR3PutUInt(pSSM, pVM->mm.s.cbRAMSize);
return SSMR3PutUInt(pSSM, pVM->mm.s.cbRamBase);
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
LogFlow(("mmR3Load:\n"));
/*
* Validate version.
*/
if (u32Version != 1)
{
Log(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Check the cbRAMSize and cbRamBase values.
*/
RTUINT cb;
int rc = SSMR3GetUInt(pSSM, &cb);
if (VBOX_FAILURE(rc))
return rc;
if (cb != pVM->mm.s.cbRAMSize)
{
Log(("mmR3Load: Memory configuration has changed. cbRAMSize=%#x save %#x\n", pVM->mm.s.cbRAMSize, cb));
return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
}
rc = SSMR3GetUInt(pSSM, &cb);
if (VBOX_FAILURE(rc))
return rc;
if (cb != pVM->mm.s.cbRamBase)
{
Log(("mmR3Load: Memory configuration has changed. cbRamBase=%#x save %#x\n", pVM->mm.s.cbRamBase, cb));
return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
}
/* PGM restores the physical memory. */
return rc;
}
/**
* Locks physical memory which backs a virtual memory range (HC) adding
* the required records to the pLockedMem list.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pv Pointer to memory range which shall be locked down.
* This pointer is page aligned.
* @param cb Size of memory range (in bytes). This size is page aligned.
* @param eType Memory type.
* @param ppLockedMem Where to store the pointer to the created locked memory record.
* This is optional, pass NULL if not used.
* @param fSilentFailure Don't raise an error when unsuccessful. Upper layer with deal with it.
*/
int mmr3LockMem(PVM pVM, void *pv, size_t cb, MMLOCKEDTYPE eType, PMMLOCKEDMEM *ppLockedMem, bool fSilentFailure)
{
Assert(RT_ALIGN_P(pv, PAGE_SIZE) == pv);
Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
if (ppLockedMem)
*ppLockedMem = NULL;
/*
* Allocate locked mem structure.
*/
unsigned cPages = cb >> PAGE_SHIFT;
AssertReturn(cPages == (cb >> PAGE_SHIFT), VERR_OUT_OF_RANGE);
PMMLOCKEDMEM pLockedMem = (PMMLOCKEDMEM)MMR3HeapAlloc(pVM, MM_TAG_MM, RT_OFFSETOF(MMLOCKEDMEM, aPhysPages[cPages]));
if (!pLockedMem)
return VERR_NO_MEMORY;
pLockedMem->pv = pv;
pLockedMem->cb = cb;
pLockedMem->eType = eType;
memset(&pLockedMem->u, 0, sizeof(pLockedMem->u));
/*
* Lock the memory.
*/
int rc = SUPPageLock(pv, cPages, &pLockedMem->aPhysPages[0]);
if (VBOX_SUCCESS(rc))
{
/*
* Setup the reserved field.
*/
PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[0];
for (unsigned c = cPages; c > 0; c--, pPhysPage++)
pPhysPage->uReserved = (RTHCUINTPTR)pLockedMem;
/*
* Insert into the list.
*
* ASSUME no protected needed here as only one thread in the system can possibly
* be doing this. No other threads will walk this list either we assume.
*/
pLockedMem->pNext = pVM->mm.s.pLockedMem;
pVM->mm.s.pLockedMem = pLockedMem;
/* Set return value. */
if (ppLockedMem)
*ppLockedMem = pLockedMem;
}
else
{
AssertMsgFailed(("SUPPageLock failed with rc=%d\n", rc));
MMR3HeapFree(pLockedMem);
if (!fSilentFailure)
rc = VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to lock %d bytes of host memory (out of memory)"), cb);
}
return rc;
}
/**
* Maps a part of or an entire locked memory region into the guest context.
*
* @returns VBox status.
* God knows what happens if we fail...
* @param pVM VM handle.
* @param pLockedMem Locked memory structure.
* @param Addr GC Address where to start the mapping.
* @param iPage Page number in the locked memory region.
* @param cPages Number of pages to map.
* @param fFlags See the fFlags argument of PGR3Map().
*/
int mmr3MapLocked(PVM pVM, PMMLOCKEDMEM pLockedMem, RTGCPTR Addr, unsigned iPage, size_t cPages, unsigned fFlags)
{
/*
* Adjust ~0 argument
*/
if (cPages == ~(size_t)0)
cPages = (pLockedMem->cb >> PAGE_SHIFT) - iPage;
Assert(cPages != ~0U);
/* no incorrect arguments are accepted */
Assert(RT_ALIGN_GCPT(Addr, PAGE_SIZE, RTGCPTR) == Addr);
AssertMsg(iPage < (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad iPage(=%d)\n", iPage));
AssertMsg(iPage + cPages <= (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad cPages(=%d)\n", cPages));
/*
* Map the the pages.
*/
PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[iPage];
while (cPages)
{
RTHCPHYS HCPhys = pPhysPage->Phys;
int rc = PGMMap(pVM, Addr, HCPhys, PAGE_SIZE, fFlags);
if (VBOX_FAILURE(rc))
{
/** @todo how the hell can we do a proper bailout here. */
return rc;
}
/* next */
cPages--;
iPage++;
pPhysPage++;
Addr += PAGE_SIZE;
}
return VINF_SUCCESS;
}
/**
* Convert HC Physical address to HC Virtual address.
*
* @returns VBox status.
* @param pVM VM handle.
* @param HCPhys The host context virtual address.
* @param ppv Where to store the resulting address.
* @thread The Emulation Thread.
*/
MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
{
/*
* Try page tables.
*/
int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
if (VBOX_SUCCESS(rc))
return rc;
/*
* Iterate the locked memory - very slow.
*/
uint32_t off = HCPhys & PAGE_OFFSET_MASK;
HCPhys &= X86_PTE_PAE_PG_MASK;
for (PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; pCur; pCur = pCur->pNext)
{
size_t iPage = pCur->cb >> PAGE_SHIFT;
while (iPage-- > 0)
if ((pCur->aPhysPages[iPage].Phys & X86_PTE_PAE_PG_MASK) == HCPhys)
{
*ppv = (char *)pCur->pv + (iPage << PAGE_SHIFT) + off;
return VINF_SUCCESS;
}
}
/* give up */
return VERR_INVALID_POINTER;
}
/**
* Read memory from GC virtual address using the current guest CR3.
*
* @returns VBox status.
* @param pVM VM handle.
* @param pvDst Destination address (HC of course).
* @param GCPtr GC virtual address.
* @param cb Number of bytes to read.
*/
MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb)
{
if (GCPtr - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
return MMR3HyperReadGCVirt(pVM, pvDst, GCPtr, cb);
return PGMPhysReadGCPtr(pVM, pvDst, GCPtr, cb);
}
/**
* Write to memory at GC virtual address translated using the current guest CR3.
*
* @returns VBox status.
* @param pVM VM handle.
* @param GCPtrDst GC virtual address.
* @param pvSrc The source address (HC of course).
* @param cb Number of bytes to read.
*/
MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
{
if (GCPtrDst - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
return VERR_ACCESS_DENIED;
return PGMPhysWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
}