EM.cpp revision 3857503560316b1952243b559dec05f87c561404
/* $Id$ */
/** @file
* EM - Execution Monitor / Manager.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/** @page pg_em EM - The Execution Monitor / Manager
*
* The Execution Monitor/Manager is responsible for running the VM, scheduling
* the right kind of execution (Raw-mode, Hardware Assisted, Recompiled or
* Interpreted), and keeping the CPU states in sync. The function
* EMR3ExecuteVM() is the 'main-loop' of the VM, while each of the execution
* modes has different inner loops (emR3RawExecute, emR3HwAccExecute, and
* emR3RemExecute).
*
* The interpreted execution is only used to avoid switching between
* raw-mode/hwaccm and the recompiler when fielding virtualization traps/faults.
* The interpretation is thus implemented as part of EM.
*
* @see grp_em
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_EM
#include <VBox/em.h>
#include <VBox/vmm.h>
#ifdef VBOX_WITH_VMI
# include <VBox/parav.h>
#endif
#include <VBox/patm.h>
#include <VBox/csam.h>
#include <VBox/selm.h>
#include <VBox/trpm.h>
#include <VBox/iom.h>
#include <VBox/dbgf.h>
#include <VBox/pgm.h>
#include <VBox/rem.h>
#include <VBox/tm.h>
#include <VBox/mm.h>
#include <VBox/ssm.h>
#include <VBox/pdmapi.h>
#include <VBox/pdmcritsect.h>
#include <VBox/pdmqueue.h>
#include <VBox/hwaccm.h>
#include <VBox/patm.h>
#include "EMInternal.h"
#include <VBox/vm.h>
#include <VBox/cpumdis.h>
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/dbgf.h>
#include <VBox/log.h>
#include <iprt/thread.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
#include <iprt/avl.h>
#include <iprt/stream.h>
#include <VBox/param.h>
#include <VBox/err.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#if 0 /* Disabled till after 2.1.0 when we've time to test it. */
#define EM_NOTIFY_HWACCM
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) emR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) emR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
static int emR3Debug(PVM pVM, PVMCPU pVCpu, int rc);
static int emR3RemStep(PVM pVM, PVMCPU pVCpu);
static int emR3RemExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone);
static int emR3RawResumeHyper(PVM pVM, PVMCPU pVCpu);
static int emR3RawStep(PVM pVM, PVMCPU pVCpu);
DECLINLINE(int) emR3RawHandleRC(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc);
DECLINLINE(int) emR3RawUpdateForceFlag(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc);
static int emR3RawForcedActions(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
static int emR3RawExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone);
DECLINLINE(int) emR3RawExecuteInstruction(PVM pVM, PVMCPU pVCpu, const char *pszPrefix, int rcGC = VINF_SUCCESS);
static int emR3HighPriorityPostForcedActions(PVM pVM, PVMCPU pVCpu, int rc);
static int emR3ForcedActions(PVM pVM, PVMCPU pVCpu, int rc);
static int emR3RawGuestTrap(PVM pVM, PVMCPU pVCpu);
static int emR3PatchTrap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int gcret);
static int emR3SingleStepExecRem(PVM pVM, uint32_t cIterations);
static EMSTATE emR3Reschedule(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
static void emR3RemLock(PVM pVM);
static void emR3RemUnlock(PVM pVM);
/**
* Initializes the EM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) EMR3Init(PVM pVM)
{
LogFlow(("EMR3Init\n"));
/*
* Assert alignment and sizes.
*/
AssertCompileMemberAlignment(VM, em.s, 32);
AssertCompile(sizeof(pVM->em.s) <= sizeof(pVM->em.padding));
AssertCompile(sizeof(pVM->aCpus[0].em.s.u.FatalLongJump) <= sizeof(pVM->aCpus[0].em.s.u.achPaddingFatalLongJump));
AssertCompileMemberAlignment(EM, CritSectREM, sizeof(uintptr_t));
/*
* Init the structure.
*/
pVM->em.s.offVM = RT_OFFSETOF(VM, em.s);
int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RawR3Enabled", &pVM->fRawR3Enabled);
if (RT_FAILURE(rc))
pVM->fRawR3Enabled = true;
rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RawR0Enabled", &pVM->fRawR0Enabled);
if (RT_FAILURE(rc))
pVM->fRawR0Enabled = true;
Log(("EMR3Init: fRawR3Enabled=%d fRawR0Enabled=%d\n", pVM->fRawR3Enabled, pVM->fRawR0Enabled));
/*
* Initialize the REM critical section.
*/
rc = PDMR3CritSectInit(pVM, &pVM->em.s.CritSectREM, "EM-REM");
AssertRCReturn(rc, rc);
/*
* Saved state.
*/
rc = SSMR3RegisterInternal(pVM, "em", 0, EM_SAVED_STATE_VERSION, 16,
NULL, emR3Save, NULL,
NULL, emR3Load, NULL);
if (RT_FAILURE(rc))
return rc;
for (unsigned i=0;i<pVM->cCPUs;i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->em.s.offVMCPU = RT_OFFSETOF(VMCPU, em.s);
pVCpu->em.s.enmState = (i == 0) ? EMSTATE_NONE : EMSTATE_WAIT_SIPI;
pVCpu->em.s.enmPrevState = EMSTATE_NONE;
pVCpu->em.s.fForceRAW = false;
pVCpu->em.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
pVCpu->em.s.pPatmGCState = PATMR3QueryGCStateHC(pVM);
AssertMsg(pVCpu->em.s.pPatmGCState, ("PATMR3QueryGCStateHC failed!\n"));
# define EM_REG_COUNTER(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
AssertRC(rc);
# define EM_REG_COUNTER_USED(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, c, b, i); \
AssertRC(rc);
# define EM_REG_PROFILE(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
AssertRC(rc);
# define EM_REG_PROFILE_ADV(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
AssertRC(rc);
/*
* Statistics.
*/
#ifdef VBOX_WITH_STATISTICS
PEMSTATS pStats;
rc = MMHyperAlloc(pVM, sizeof(*pStats), 0, MM_TAG_EM, (void **)&pStats);
if (RT_FAILURE(rc))
return rc;
pVCpu->em.s.pStatsR3 = pStats;
pVCpu->em.s.pStatsR0 = MMHyperR3ToR0(pVM, pStats);
pVCpu->em.s.pStatsRC = MMHyperR3ToRC(pVM, pStats);
EM_REG_PROFILE(&pStats->StatRZEmulate, "/EM/CPU%d/RZ/Interpret", "Profiling of EMInterpretInstruction.");
EM_REG_PROFILE(&pStats->StatR3Emulate, "/EM/CPU%d/R3/Interpret", "Profiling of EMInterpretInstruction.");
EM_REG_PROFILE(&pStats->StatRZInterpretSucceeded, "/EM/CPU%d/RZ/Interpret/Success", "The number of times an instruction was successfully interpreted.");
EM_REG_PROFILE(&pStats->StatR3InterpretSucceeded, "/EM/CPU%d/R3/Interpret/Success", "The number of times an instruction was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZAnd, "/EM/CPU%d/RZ/Interpret/Success/And", "The number of times AND was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3And, "/EM/CPU%d/R3/Interpret/Success/And", "The number of times AND was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZAdd, "/EM/CPU%d/RZ/Interpret/Success/Add", "The number of times ADD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Add, "/EM/CPU%d/R3/Interpret/Success/Add", "The number of times ADD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZAdc, "/EM/CPU%d/RZ/Interpret/Success/Adc", "The number of times ADC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Adc, "/EM/CPU%d/R3/Interpret/Success/Adc", "The number of times ADC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZSub, "/EM/CPU%d/RZ/Interpret/Success/Sub", "The number of times SUB was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Sub, "/EM/CPU%d/R3/Interpret/Success/Sub", "The number of times SUB was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZCpuId, "/EM/CPU%d/RZ/Interpret/Success/CpuId", "The number of times CPUID was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3CpuId, "/EM/CPU%d/R3/Interpret/Success/CpuId", "The number of times CPUID was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZDec, "/EM/CPU%d/RZ/Interpret/Success/Dec", "The number of times DEC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Dec, "/EM/CPU%d/R3/Interpret/Success/Dec", "The number of times DEC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZHlt, "/EM/CPU%d/RZ/Interpret/Success/Hlt", "The number of times HLT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Hlt, "/EM/CPU%d/R3/Interpret/Success/Hlt", "The number of times HLT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZInc, "/EM/CPU%d/RZ/Interpret/Success/Inc", "The number of times INC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Inc, "/EM/CPU%d/R3/Interpret/Success/Inc", "The number of times INC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZInvlPg, "/EM/CPU%d/RZ/Interpret/Success/Invlpg", "The number of times INVLPG was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3InvlPg, "/EM/CPU%d/R3/Interpret/Success/Invlpg", "The number of times INVLPG was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZIret, "/EM/CPU%d/RZ/Interpret/Success/Iret", "The number of times IRET was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Iret, "/EM/CPU%d/R3/Interpret/Success/Iret", "The number of times IRET was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZLLdt, "/EM/CPU%d/RZ/Interpret/Success/LLdt", "The number of times LLDT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3LLdt, "/EM/CPU%d/R3/Interpret/Success/LLdt", "The number of times LLDT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZLIdt, "/EM/CPU%d/RZ/Interpret/Success/LIdt", "The number of times LIDT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3LIdt, "/EM/CPU%d/R3/Interpret/Success/LIdt", "The number of times LIDT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZLGdt, "/EM/CPU%d/RZ/Interpret/Success/LGdt", "The number of times LGDT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3LGdt, "/EM/CPU%d/R3/Interpret/Success/LGdt", "The number of times LGDT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZMov, "/EM/CPU%d/RZ/Interpret/Success/Mov", "The number of times MOV was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Mov, "/EM/CPU%d/R3/Interpret/Success/Mov", "The number of times MOV was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZMovCRx, "/EM/CPU%d/RZ/Interpret/Success/MovCRx", "The number of times MOV CRx was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3MovCRx, "/EM/CPU%d/R3/Interpret/Success/MovCRx", "The number of times MOV CRx was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZMovDRx, "/EM/CPU%d/RZ/Interpret/Success/MovDRx", "The number of times MOV DRx was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3MovDRx, "/EM/CPU%d/R3/Interpret/Success/MovDRx", "The number of times MOV DRx was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZOr, "/EM/CPU%d/RZ/Interpret/Success/Or", "The number of times OR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Or, "/EM/CPU%d/R3/Interpret/Success/Or", "The number of times OR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZPop, "/EM/CPU%d/RZ/Interpret/Success/Pop", "The number of times POP was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Pop, "/EM/CPU%d/R3/Interpret/Success/Pop", "The number of times POP was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZRdtsc, "/EM/CPU%d/RZ/Interpret/Success/Rdtsc", "The number of times RDTSC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Rdtsc, "/EM/CPU%d/R3/Interpret/Success/Rdtsc", "The number of times RDTSC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZRdpmc, "/EM/CPU%d/RZ/Interpret/Success/Rdpmc", "The number of times RDPMC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Rdpmc, "/EM/CPU%d/R3/Interpret/Success/Rdpmc", "The number of times RDPMC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZSti, "/EM/CPU%d/RZ/Interpret/Success/Sti", "The number of times STI was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Sti, "/EM/CPU%d/R3/Interpret/Success/Sti", "The number of times STI was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZXchg, "/EM/CPU%d/RZ/Interpret/Success/Xchg", "The number of times XCHG was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Xchg, "/EM/CPU%d/R3/Interpret/Success/Xchg", "The number of times XCHG was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZXor, "/EM/CPU%d/RZ/Interpret/Success/Xor", "The number of times XOR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Xor, "/EM/CPU%d/R3/Interpret/Success/Xor", "The number of times XOR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZMonitor, "/EM/CPU%d/RZ/Interpret/Success/Monitor", "The number of times MONITOR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Monitor, "/EM/CPU%d/R3/Interpret/Success/Monitor", "The number of times MONITOR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZMWait, "/EM/CPU%d/RZ/Interpret/Success/MWait", "The number of times MWAIT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3MWait, "/EM/CPU%d/R3/Interpret/Success/MWait", "The number of times MWAIT was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZBtr, "/EM/CPU%d/RZ/Interpret/Success/Btr", "The number of times BTR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Btr, "/EM/CPU%d/R3/Interpret/Success/Btr", "The number of times BTR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZBts, "/EM/CPU%d/RZ/Interpret/Success/Bts", "The number of times BTS was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Bts, "/EM/CPU%d/R3/Interpret/Success/Bts", "The number of times BTS was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZBtc, "/EM/CPU%d/RZ/Interpret/Success/Btc", "The number of times BTC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Btc, "/EM/CPU%d/R3/Interpret/Success/Btc", "The number of times BTC was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZCmpXchg, "/EM/CPU%d/RZ/Interpret/Success/CmpXchg", "The number of times CMPXCHG was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3CmpXchg, "/EM/CPU%d/R3/Interpret/Success/CmpXchg", "The number of times CMPXCHG was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZCmpXchg8b, "/EM/CPU%d/RZ/Interpret/Success/CmpXchg8b", "The number of times CMPXCHG8B was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3CmpXchg8b, "/EM/CPU%d/R3/Interpret/Success/CmpXchg8b", "The number of times CMPXCHG8B was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZXAdd, "/EM/CPU%d/RZ/Interpret/Success/XAdd", "The number of times XADD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3XAdd, "/EM/CPU%d/R3/Interpret/Success/XAdd", "The number of times XADD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Rdmsr, "/EM/CPU%d/R3/Interpret/Success/Rdmsr", "The number of times RDMSR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZRdmsr, "/EM/CPU%d/RZ/Interpret/Success/Rdmsr", "The number of times RDMSR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Wrmsr, "/EM/CPU%d/R3/Interpret/Success/Wrmsr", "The number of times WRMSR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZWrmsr, "/EM/CPU%d/RZ/Interpret/Success/Wrmsr", "The number of times WRMSR was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3StosWD, "/EM/CPU%d/R3/Interpret/Success/Stoswd", "The number of times STOSWD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZStosWD, "/EM/CPU%d/RZ/Interpret/Success/Stoswd", "The number of times STOSWD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZWbInvd, "/EM/CPU%d/RZ/Interpret/Success/WbInvd", "The number of times WBINVD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3WbInvd, "/EM/CPU%d/R3/Interpret/Success/WbInvd", "The number of times WBINVD was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZLmsw, "/EM/CPU%d/RZ/Interpret/Success/Lmsw", "The number of times LMSW was successfully interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3Lmsw, "/EM/CPU%d/R3/Interpret/Success/Lmsw", "The number of times LMSW was successfully interpreted.");
EM_REG_COUNTER(&pStats->StatRZInterpretFailed, "/EM/CPU%d/RZ/Interpret/Failed", "The number of times an instruction was not interpreted.");
EM_REG_COUNTER(&pStats->StatR3InterpretFailed, "/EM/CPU%d/R3/Interpret/Failed", "The number of times an instruction was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedAnd, "/EM/CPU%d/RZ/Interpret/Failed/And", "The number of times AND was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedAnd, "/EM/CPU%d/R3/Interpret/Failed/And", "The number of times AND was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedCpuId, "/EM/CPU%d/RZ/Interpret/Failed/CpuId", "The number of times CPUID was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedCpuId, "/EM/CPU%d/R3/Interpret/Failed/CpuId", "The number of times CPUID was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedDec, "/EM/CPU%d/RZ/Interpret/Failed/Dec", "The number of times DEC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedDec, "/EM/CPU%d/R3/Interpret/Failed/Dec", "The number of times DEC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedHlt, "/EM/CPU%d/RZ/Interpret/Failed/Hlt", "The number of times HLT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedHlt, "/EM/CPU%d/R3/Interpret/Failed/Hlt", "The number of times HLT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedInc, "/EM/CPU%d/RZ/Interpret/Failed/Inc", "The number of times INC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedInc, "/EM/CPU%d/R3/Interpret/Failed/Inc", "The number of times INC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedInvlPg, "/EM/CPU%d/RZ/Interpret/Failed/InvlPg", "The number of times INVLPG was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedInvlPg, "/EM/CPU%d/R3/Interpret/Failed/InvlPg", "The number of times INVLPG was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedIret, "/EM/CPU%d/RZ/Interpret/Failed/Iret", "The number of times IRET was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedIret, "/EM/CPU%d/R3/Interpret/Failed/Iret", "The number of times IRET was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedLLdt, "/EM/CPU%d/RZ/Interpret/Failed/LLdt", "The number of times LLDT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedLLdt, "/EM/CPU%d/R3/Interpret/Failed/LLdt", "The number of times LLDT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedLIdt, "/EM/CPU%d/RZ/Interpret/Failed/LIdt", "The number of times LIDT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedLIdt, "/EM/CPU%d/R3/Interpret/Failed/LIdt", "The number of times LIDT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedLGdt, "/EM/CPU%d/RZ/Interpret/Failed/LGdt", "The number of times LGDT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedLGdt, "/EM/CPU%d/R3/Interpret/Failed/LGdt", "The number of times LGDT was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMov, "/EM/CPU%d/RZ/Interpret/Failed/Mov", "The number of times MOV was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMov, "/EM/CPU%d/R3/Interpret/Failed/Mov", "The number of times MOV was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMovCRx, "/EM/CPU%d/RZ/Interpret/Failed/MovCRx", "The number of times MOV CRx was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMovCRx, "/EM/CPU%d/R3/Interpret/Failed/MovCRx", "The number of times MOV CRx was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMovDRx, "/EM/CPU%d/RZ/Interpret/Failed/MovDRx", "The number of times MOV DRx was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMovDRx, "/EM/CPU%d/R3/Interpret/Failed/MovDRx", "The number of times MOV DRx was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedOr, "/EM/CPU%d/RZ/Interpret/Failed/Or", "The number of times OR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedOr, "/EM/CPU%d/R3/Interpret/Failed/Or", "The number of times OR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedPop, "/EM/CPU%d/RZ/Interpret/Failed/Pop", "The number of times POP was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedPop, "/EM/CPU%d/R3/Interpret/Failed/Pop", "The number of times POP was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedSti, "/EM/CPU%d/RZ/Interpret/Failed/Sti", "The number of times STI was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedSti, "/EM/CPU%d/R3/Interpret/Failed/Sti", "The number of times STI was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedXchg, "/EM/CPU%d/RZ/Interpret/Failed/Xchg", "The number of times XCHG was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedXchg, "/EM/CPU%d/R3/Interpret/Failed/Xchg", "The number of times XCHG was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedXor, "/EM/CPU%d/RZ/Interpret/Failed/Xor", "The number of times XOR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedXor, "/EM/CPU%d/R3/Interpret/Failed/Xor", "The number of times XOR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMonitor, "/EM/CPU%d/RZ/Interpret/Failed/Monitor", "The number of times MONITOR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMonitor, "/EM/CPU%d/R3/Interpret/Failed/Monitor", "The number of times MONITOR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMWait, "/EM/CPU%d/RZ/Interpret/Failed/MWait", "The number of times MONITOR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMWait, "/EM/CPU%d/R3/Interpret/Failed/MWait", "The number of times MONITOR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedRdtsc, "/EM/CPU%d/RZ/Interpret/Failed/Rdtsc", "The number of times RDTSC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedRdtsc, "/EM/CPU%d/R3/Interpret/Failed/Rdtsc", "The number of times RDTSC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedRdpmc, "/EM/CPU%d/RZ/Interpret/Failed/Rdpmc", "The number of times RDPMC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedRdpmc, "/EM/CPU%d/R3/Interpret/Failed/Rdpmc", "The number of times RDPMC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedRdmsr, "/EM/CPU%d/RZ/Interpret/Failed/Rdmsr", "The number of times RDMSR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedRdmsr, "/EM/CPU%d/R3/Interpret/Failed/Rdmsr", "The number of times RDMSR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedWrmsr, "/EM/CPU%d/RZ/Interpret/Failed/Wrmsr", "The number of times WRMSR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedWrmsr, "/EM/CPU%d/R3/Interpret/Failed/Wrmsr", "The number of times WRMSR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedLmsw, "/EM/CPU%d/RZ/Interpret/Failed/Lmsw", "The number of times LMSW was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedLmsw, "/EM/CPU%d/R3/Interpret/Failed/Lmsw", "The number of times LMSW was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMisc, "/EM/CPU%d/RZ/Interpret/Failed/Misc", "The number of times some misc instruction was encountered.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMisc, "/EM/CPU%d/R3/Interpret/Failed/Misc", "The number of times some misc instruction was encountered.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedAdd, "/EM/CPU%d/RZ/Interpret/Failed/Add", "The number of times ADD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedAdd, "/EM/CPU%d/R3/Interpret/Failed/Add", "The number of times ADD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedAdc, "/EM/CPU%d/RZ/Interpret/Failed/Adc", "The number of times ADC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedAdc, "/EM/CPU%d/R3/Interpret/Failed/Adc", "The number of times ADC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedBtr, "/EM/CPU%d/RZ/Interpret/Failed/Btr", "The number of times BTR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedBtr, "/EM/CPU%d/R3/Interpret/Failed/Btr", "The number of times BTR was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedBts, "/EM/CPU%d/RZ/Interpret/Failed/Bts", "The number of times BTS was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedBts, "/EM/CPU%d/R3/Interpret/Failed/Bts", "The number of times BTS was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedBtc, "/EM/CPU%d/RZ/Interpret/Failed/Btc", "The number of times BTC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedBtc, "/EM/CPU%d/R3/Interpret/Failed/Btc", "The number of times BTC was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedCli, "/EM/CPU%d/RZ/Interpret/Failed/Cli", "The number of times CLI was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedCli, "/EM/CPU%d/R3/Interpret/Failed/Cli", "The number of times CLI was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedCmpXchg, "/EM/CPU%d/RZ/Interpret/Failed/CmpXchg", "The number of times CMPXCHG was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedCmpXchg, "/EM/CPU%d/R3/Interpret/Failed/CmpXchg", "The number of times CMPXCHG was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedCmpXchg8b, "/EM/CPU%d/RZ/Interpret/Failed/CmpXchg8b", "The number of times CMPXCHG8B was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedCmpXchg8b, "/EM/CPU%d/R3/Interpret/Failed/CmpXchg8b", "The number of times CMPXCHG8B was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedXAdd, "/EM/CPU%d/RZ/Interpret/Failed/XAdd", "The number of times XADD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedXAdd, "/EM/CPU%d/R3/Interpret/Failed/XAdd", "The number of times XADD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedMovNTPS, "/EM/CPU%d/RZ/Interpret/Failed/MovNTPS", "The number of times MOVNTPS was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedMovNTPS, "/EM/CPU%d/R3/Interpret/Failed/MovNTPS", "The number of times MOVNTPS was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedStosWD, "/EM/CPU%d/RZ/Interpret/Failed/StosWD", "The number of times STOSWD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedStosWD, "/EM/CPU%d/R3/Interpret/Failed/StosWD", "The number of times STOSWD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedSub, "/EM/CPU%d/RZ/Interpret/Failed/Sub", "The number of times SUB was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedSub, "/EM/CPU%d/R3/Interpret/Failed/Sub", "The number of times SUB was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedWbInvd, "/EM/CPU%d/RZ/Interpret/Failed/WbInvd", "The number of times WBINVD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedWbInvd, "/EM/CPU%d/R3/Interpret/Failed/WbInvd", "The number of times WBINVD was not interpreted.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedUserMode, "/EM/CPU%d/RZ/Interpret/Failed/UserMode", "The number of rejections because of CPL.");
EM_REG_COUNTER_USED(&pStats->StatR3FailedUserMode, "/EM/CPU%d/R3/Interpret/Failed/UserMode", "The number of rejections because of CPL.");
EM_REG_COUNTER_USED(&pStats->StatRZFailedPrefix, "/EM/CPU%d/RZ/Interpret/Failed/Prefix", "The number of rejections because of prefix .");
EM_REG_COUNTER_USED(&pStats->StatR3FailedPrefix, "/EM/CPU%d/R3/Interpret/Failed/Prefix", "The number of rejections because of prefix .");
EM_REG_COUNTER_USED(&pStats->StatCli, "/EM/CPU%d/R3/PrivInst/Cli", "Number of cli instructions.");
EM_REG_COUNTER_USED(&pStats->StatSti, "/EM/CPU%d/R3/PrivInst/Sti", "Number of sli instructions.");
EM_REG_COUNTER_USED(&pStats->StatIn, "/EM/CPU%d/R3/PrivInst/In", "Number of in instructions.");
EM_REG_COUNTER_USED(&pStats->StatOut, "/EM/CPU%d/R3/PrivInst/Out", "Number of out instructions.");
EM_REG_COUNTER_USED(&pStats->StatHlt, "/EM/CPU%d/R3/PrivInst/Hlt", "Number of hlt instructions not handled in GC because of PATM.");
EM_REG_COUNTER_USED(&pStats->StatInvlpg, "/EM/CPU%d/R3/PrivInst/Invlpg", "Number of invlpg instructions.");
EM_REG_COUNTER_USED(&pStats->StatMisc, "/EM/CPU%d/R3/PrivInst/Misc", "Number of misc. instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[0], "/EM/CPU%d/R3/PrivInst/Mov CR0, X", "Number of mov CR0 read instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[1], "/EM/CPU%d/R3/PrivInst/Mov CR1, X", "Number of mov CR1 read instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[2], "/EM/CPU%d/R3/PrivInst/Mov CR2, X", "Number of mov CR2 read instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[3], "/EM/CPU%d/R3/PrivInst/Mov CR3, X", "Number of mov CR3 read instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[4], "/EM/CPU%d/R3/PrivInst/Mov CR4, X", "Number of mov CR4 read instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovReadCR[0], "/EM/CPU%d/R3/PrivInst/Mov X, CR0", "Number of mov CR0 write instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovReadCR[1], "/EM/CPU%d/R3/PrivInst/Mov X, CR1", "Number of mov CR1 write instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovReadCR[2], "/EM/CPU%d/R3/PrivInst/Mov X, CR2", "Number of mov CR2 write instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovReadCR[3], "/EM/CPU%d/R3/PrivInst/Mov X, CR3", "Number of mov CR3 write instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovReadCR[4], "/EM/CPU%d/R3/PrivInst/Mov X, CR4", "Number of mov CR4 write instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovDRx, "/EM/CPU%d/R3/PrivInst/MovDRx", "Number of mov DRx instructions.");
EM_REG_COUNTER_USED(&pStats->StatIret, "/EM/CPU%d/R3/PrivInst/Iret", "Number of iret instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovLgdt, "/EM/CPU%d/R3/PrivInst/Lgdt", "Number of lgdt instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovLidt, "/EM/CPU%d/R3/PrivInst/Lidt", "Number of lidt instructions.");
EM_REG_COUNTER_USED(&pStats->StatMovLldt, "/EM/CPU%d/R3/PrivInst/Lldt", "Number of lldt instructions.");
EM_REG_COUNTER_USED(&pStats->StatSysEnter, "/EM/CPU%d/R3/PrivInst/Sysenter", "Number of sysenter instructions.");
EM_REG_COUNTER_USED(&pStats->StatSysExit, "/EM/CPU%d/R3/PrivInst/Sysexit", "Number of sysexit instructions.");
EM_REG_COUNTER_USED(&pStats->StatSysCall, "/EM/CPU%d/R3/PrivInst/Syscall", "Number of syscall instructions.");
EM_REG_COUNTER_USED(&pStats->StatSysRet, "/EM/CPU%d/R3/PrivInst/Sysret", "Number of sysret instructions.");
EM_REG_COUNTER(&pVCpu->em.s.StatTotalClis, "/EM/CPU%d/Cli/Total", "Total number of cli instructions executed.");
pVCpu->em.s.pCliStatTree = 0;
/* these should be considered for release statistics. */
EM_REG_COUNTER(&pVCpu->em.s.StatIOEmu, "/PROF/CPU%d/EM/Emulation/IO", "Profiling of emR3RawExecuteIOInstruction.");
EM_REG_COUNTER(&pVCpu->em.s.StatPrivEmu, "/PROF/CPU%d/EM/Emulation/Priv", "Profiling of emR3RawPrivileged.");
EM_REG_COUNTER(&pVCpu->em.s.StatMiscEmu, "/PROF/CPU%d/EM/Emulation/Misc", "Profiling of emR3RawExecuteInstruction.");
EM_REG_PROFILE(&pVCpu->em.s.StatHwAccEntry, "/PROF/CPU%d/EM/HwAccEnter", "Profiling Hardware Accelerated Mode entry overhead.");
EM_REG_PROFILE(&pVCpu->em.s.StatHwAccExec, "/PROF/CPU%d/EM/HwAccExec", "Profiling Hardware Accelerated Mode execution.");
EM_REG_PROFILE(&pVCpu->em.s.StatREMEmu, "/PROF/CPU%d/EM/REMEmuSingle", "Profiling single instruction REM execution.");
EM_REG_PROFILE(&pVCpu->em.s.StatREMExec, "/PROF/CPU%d/EM/REMExec", "Profiling REM execution.");
EM_REG_PROFILE(&pVCpu->em.s.StatREMSync, "/PROF/CPU%d/EM/REMSync", "Profiling REM context syncing.");
EM_REG_PROFILE(&pVCpu->em.s.StatRAWEntry, "/PROF/CPU%d/EM/RAWEnter", "Profiling Raw Mode entry overhead.");
EM_REG_PROFILE(&pVCpu->em.s.StatRAWExec, "/PROF/CPU%d/EM/RAWExec", "Profiling Raw Mode execution.");
EM_REG_PROFILE(&pVCpu->em.s.StatRAWTail, "/PROF/CPU%d/EM/RAWTail", "Profiling Raw Mode tail overhead.");
#endif /* VBOX_WITH_STATISTICS */
EM_REG_COUNTER(&pVCpu->em.s.StatForcedActions, "/PROF/CPU%d/EM/ForcedActions", "Profiling forced action execution.");
EM_REG_COUNTER(&pVCpu->em.s.StatHalted, "/PROF/CPU%d/EM/Halted", "Profiling halted state (VMR3WaitHalted).");
EM_REG_COUNTER(&pVCpu->em.s.StatREMTotal, "/PROF/CPU%d/EM/REMTotal", "Profiling emR3RemExecute (excluding FFs).");
EM_REG_COUNTER(&pVCpu->em.s.StatRAWTotal, "/PROF/CPU%d/EM/RAWTotal", "Profiling emR3RawExecute (excluding FFs).");
EM_REG_PROFILE_ADV(&pVCpu->em.s.StatTotal, "/PROF/CPU%d/EM/Total", "Profiling EMR3ExecuteVM.");
}
return VINF_SUCCESS;
}
/**
* Initializes the per-VCPU EM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) EMR3InitCPU(PVM pVM)
{
LogFlow(("EMR3InitCPU\n"));
return VINF_SUCCESS;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* @param pVM The VM.
*/
VMMR3DECL(void) EMR3Relocate(PVM pVM)
{
LogFlow(("EMR3Relocate\n"));
for (unsigned i=0;i<pVM->cCPUs;i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
if (pVCpu->em.s.pStatsR3)
pVCpu->em.s.pStatsRC = MMHyperR3ToRC(pVM, pVCpu->em.s.pStatsR3);
}
}
/**
* Reset notification.
*
* @param pVM
*/
VMMR3DECL(void) EMR3Reset(PVM pVM)
{
LogFlow(("EMR3Reset: \n"));
for (unsigned i=0;i<pVM->cCPUs;i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
pVCpu->em.s.fForceRAW = false;
}
}
/**
* Terminates the EM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) EMR3Term(PVM pVM)
{
AssertMsg(pVM->em.s.offVM, ("bad init order!\n"));
PDMR3CritSectDelete(&pVM->em.s.CritSectREM);
return VINF_SUCCESS;
}
/**
* Terminates the per-VCPU EM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) EMR3TermCPU(PVM pVM)
{
return 0;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) emR3Save(PVM pVM, PSSMHANDLE pSSM)
{
for (unsigned i=0;i<pVM->cCPUs;i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
int rc = SSMR3PutBool(pSSM, pVCpu->em.s.fForceRAW);
AssertRCReturn(rc, rc);
Assert(pVCpu->em.s.enmState == EMSTATE_SUSPENDED);
Assert(pVCpu->em.s.enmPrevState != EMSTATE_SUSPENDED);
rc = SSMR3PutU32(pSSM, pVCpu->em.s.enmPrevState);
AssertRCReturn(rc, rc);
}
return VINF_SUCCESS;
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) emR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
int rc = VINF_SUCCESS;
/*
* Validate version.
*/
if ( u32Version != EM_SAVED_STATE_VERSION
&& u32Version != EM_SAVED_STATE_VERSION_PRE_SMP)
{
AssertMsgFailed(("emR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, EM_SAVED_STATE_VERSION));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Load the saved state.
*/
for (unsigned i=0;i<pVM->cCPUs;i++)
{
PVMCPU pVCpu = &pVM->aCpus[i];
rc = SSMR3GetBool(pSSM, &pVCpu->em.s.fForceRAW);
if (RT_FAILURE(rc))
pVCpu->em.s.fForceRAW = false;
if (u32Version > EM_SAVED_STATE_VERSION_PRE_SMP)
{
EMSTATE enmState;
uint32_t u32;
rc = SSMR3GetU32(pSSM, &u32);
AssertRCReturn(rc, rc);
enmState = (EMSTATE)u32;
Assert(enmState != EMSTATE_SUSPENDED);
pVCpu->em.s.enmState = enmState;
pVCpu->em.s.enmPrevState = EMSTATE_NONE;
}
Assert(!pVCpu->em.s.pCliStatTree);
}
return rc;
}
/**
* Enables or disables a set of raw-mode execution modes.
*
* @returns VINF_SUCCESS on success.
* @returns VINF_RESCHEDULE if a rescheduling might be required.
* @returns VERR_INVALID_PARAMETER on an invalid enmMode value.
*
* @param pVM The VM to operate on.
* @param enmMode The execution mode change.
* @thread The emulation thread.
*/
VMMR3DECL(int) EMR3RawSetMode(PVM pVM, EMRAWMODE enmMode)
{
switch (enmMode)
{
case EMRAW_NONE:
pVM->fRawR3Enabled = false;
pVM->fRawR0Enabled = false;
break;
case EMRAW_RING3_ENABLE:
pVM->fRawR3Enabled = true;
break;
case EMRAW_RING3_DISABLE:
pVM->fRawR3Enabled = false;
break;
case EMRAW_RING0_ENABLE:
pVM->fRawR0Enabled = true;
break;
case EMRAW_RING0_DISABLE:
pVM->fRawR0Enabled = false;
break;
default:
AssertMsgFailed(("Invalid enmMode=%d\n", enmMode));
return VERR_INVALID_PARAMETER;
}
Log(("EMR3SetRawMode: fRawR3Enabled=%RTbool fRawR0Enabled=%RTbool\n",
pVM->fRawR3Enabled, pVM->fRawR0Enabled));
return pVM->aCpus[0].em.s.enmState == EMSTATE_RAW ? VINF_EM_RESCHEDULE : VINF_SUCCESS;
}
/**
* Raise a fatal error.
*
* Safely terminate the VM with full state report and stuff. This function
* will naturally never return.
*
* @param pVCpu VMCPU handle.
* @param rc VBox status code.
*/
VMMR3DECL(void) EMR3FatalError(PVMCPU pVCpu, int rc)
{
longjmp(pVCpu->em.s.u.FatalLongJump, rc);
AssertReleaseMsgFailed(("longjmp returned!\n"));
}
/**
* Gets the EM state name.
*
* @returns pointer to read only state name,
* @param enmState The state.
*/
VMMR3DECL(const char *) EMR3GetStateName(EMSTATE enmState)
{
switch (enmState)
{
case EMSTATE_NONE: return "EMSTATE_NONE";
case EMSTATE_RAW: return "EMSTATE_RAW";
case EMSTATE_HWACC: return "EMSTATE_HWACC";
case EMSTATE_REM: return "EMSTATE_REM";
case EMSTATE_PARAV: return "EMSTATE_PARAV";
case EMSTATE_HALTED: return "EMSTATE_HALTED";
case EMSTATE_WAIT_SIPI: return "EMSTATE_WAIT_SIPI";
case EMSTATE_SUSPENDED: return "EMSTATE_SUSPENDED";
case EMSTATE_TERMINATING: return "EMSTATE_TERMINATING";
case EMSTATE_DEBUG_GUEST_RAW: return "EMSTATE_DEBUG_GUEST_RAW";
case EMSTATE_DEBUG_GUEST_REM: return "EMSTATE_DEBUG_GUEST_REM";
case EMSTATE_DEBUG_HYPER: return "EMSTATE_DEBUG_HYPER";
case EMSTATE_GURU_MEDITATION: return "EMSTATE_GURU_MEDITATION";
default: return "Unknown!";
}
}
#ifdef VBOX_WITH_STATISTICS
/**
* Just a braindead function to keep track of cli addresses.
* @param pVM VM handle.
* @param pVMCPU VMCPU handle.
* @param GCPtrInstr The EIP of the cli instruction.
*/
static void emR3RecordCli(PVM pVM, PVMCPU pVCpu, RTGCPTR GCPtrInstr)
{
PCLISTAT pRec;
pRec = (PCLISTAT)RTAvlPVGet(&pVCpu->em.s.pCliStatTree, (AVLPVKEY)GCPtrInstr);
if (!pRec)
{
/* New cli instruction; insert into the tree. */
pRec = (PCLISTAT)MMR3HeapAllocZ(pVM, MM_TAG_EM, sizeof(*pRec));
Assert(pRec);
if (!pRec)
return;
pRec->Core.Key = (AVLPVKEY)GCPtrInstr;
char szCliStatName[32];
RTStrPrintf(szCliStatName, sizeof(szCliStatName), "/EM/Cli/0x%RGv", GCPtrInstr);
STAM_REG(pVM, &pRec->Counter, STAMTYPE_COUNTER, szCliStatName, STAMUNIT_OCCURENCES, "Number of times cli was executed.");
bool fRc = RTAvlPVInsert(&pVCpu->em.s.pCliStatTree, &pRec->Core);
Assert(fRc); NOREF(fRc);
}
STAM_COUNTER_INC(&pRec->Counter);
STAM_COUNTER_INC(&pVCpu->em.s.StatTotalClis);
}
#endif /* VBOX_WITH_STATISTICS */
/**
* Debug loop.
*
* @returns VBox status code for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param rc Current EM VBox status code..
*/
static int emR3Debug(PVM pVM, PVMCPU pVCpu, int rc)
{
for (;;)
{
Log(("emR3Debug: rc=%Rrc\n", rc));
const int rcLast = rc;
/*
* Debug related RC.
*/
switch (rc)
{
/*
* Single step an instruction.
*/
case VINF_EM_DBG_STEP:
if ( pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_RAW
|| pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER
|| pVCpu->em.s.fForceRAW /* paranoia */)
rc = emR3RawStep(pVM, pVCpu);
else
{
Assert(pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_REM);
rc = emR3RemStep(pVM, pVCpu);
}
break;
/*
* Simple events: stepped, breakpoint, stop/assertion.
*/
case VINF_EM_DBG_STEPPED:
rc = DBGFR3Event(pVM, DBGFEVENT_STEPPED);
break;
case VINF_EM_DBG_BREAKPOINT:
rc = DBGFR3EventBreakpoint(pVM, DBGFEVENT_BREAKPOINT);
break;
case VINF_EM_DBG_STOP:
rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, NULL, 0, NULL, NULL);
break;
case VINF_EM_DBG_HYPER_STEPPED:
rc = DBGFR3Event(pVM, DBGFEVENT_STEPPED_HYPER);
break;
case VINF_EM_DBG_HYPER_BREAKPOINT:
rc = DBGFR3EventBreakpoint(pVM, DBGFEVENT_BREAKPOINT_HYPER);
break;
case VINF_EM_DBG_HYPER_ASSERTION:
RTPrintf("\nVINF_EM_DBG_HYPER_ASSERTION:\n%s%s\n", VMMR3GetRZAssertMsg1(pVM), VMMR3GetRZAssertMsg2(pVM));
rc = DBGFR3EventAssertion(pVM, DBGFEVENT_ASSERTION_HYPER, VMMR3GetRZAssertMsg1(pVM), VMMR3GetRZAssertMsg2(pVM));
break;
/*
* Guru meditation.
*/
case VERR_VMM_RING0_ASSERTION: /** @todo Make a guru meditation event! */
rc = DBGFR3EventSrc(pVM, DBGFEVENT_FATAL_ERROR, "VERR_VMM_RING0_ASSERTION", 0, NULL, NULL);
break;
case VERR_REM_TOO_MANY_TRAPS: /** @todo Make a guru meditation event! */
rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, "VERR_REM_TOO_MANY_TRAPS", 0, NULL, NULL);
break;
default: /** @todo don't use default for guru, but make special errors code! */
rc = DBGFR3Event(pVM, DBGFEVENT_FATAL_ERROR);
break;
}
/*
* Process the result.
*/
do
{
switch (rc)
{
/*
* Continue the debugging loop.
*/
case VINF_EM_DBG_STEP:
case VINF_EM_DBG_STOP:
case VINF_EM_DBG_STEPPED:
case VINF_EM_DBG_BREAKPOINT:
case VINF_EM_DBG_HYPER_STEPPED:
case VINF_EM_DBG_HYPER_BREAKPOINT:
case VINF_EM_DBG_HYPER_ASSERTION:
break;
/*
* Resuming execution (in some form) has to be done here if we got
* a hypervisor debug event.
*/
case VINF_SUCCESS:
case VINF_EM_RESUME:
case VINF_EM_SUSPEND:
case VINF_EM_RESCHEDULE:
case VINF_EM_RESCHEDULE_RAW:
case VINF_EM_RESCHEDULE_REM:
case VINF_EM_HALT:
if (pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER)
{
rc = emR3RawResumeHyper(pVM, pVCpu);
if (rc != VINF_SUCCESS && RT_SUCCESS(rc))
continue;
}
if (rc == VINF_SUCCESS)
rc = VINF_EM_RESCHEDULE;
return rc;
/*
* The debugger isn't attached.
* We'll simply turn the thing off since that's the easiest thing to do.
*/
case VERR_DBGF_NOT_ATTACHED:
switch (rcLast)
{
case VINF_EM_DBG_HYPER_STEPPED:
case VINF_EM_DBG_HYPER_BREAKPOINT:
case VINF_EM_DBG_HYPER_ASSERTION:
case VERR_TRPM_PANIC:
case VERR_TRPM_DONT_PANIC:
case VERR_VMM_RING0_ASSERTION:
return rcLast;
}
return VINF_EM_OFF;
/*
* Status codes terminating the VM in one or another sense.
*/
case VINF_EM_TERMINATE:
case VINF_EM_OFF:
case VINF_EM_RESET:
case VINF_EM_NO_MEMORY:
case VINF_EM_RAW_STALE_SELECTOR:
case VINF_EM_RAW_IRET_TRAP:
case VERR_TRPM_PANIC:
case VERR_TRPM_DONT_PANIC:
case VERR_VMM_RING0_ASSERTION:
case VERR_INTERNAL_ERROR:
case VERR_INTERNAL_ERROR_2:
case VERR_INTERNAL_ERROR_3:
case VERR_INTERNAL_ERROR_4:
case VERR_INTERNAL_ERROR_5:
case VERR_IPE_UNEXPECTED_STATUS:
case VERR_IPE_UNEXPECTED_INFO_STATUS:
case VERR_IPE_UNEXPECTED_ERROR_STATUS:
return rc;
/*
* The rest is unexpected, and will keep us here.
*/
default:
AssertMsgFailed(("Unxpected rc %Rrc!\n", rc));
break;
}
} while (false);
} /* debug for ever */
}
/**
* Locks REM execution to a single VCpu
*
* @param pVM VM handle.
*/
static void emR3RemLock(PVM pVM)
{
int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
}
/**
* Unlocks REM execution
*
* @param pVM VM handle.
*/
static void emR3RemUnlock(PVM pVM)
{
PDMCritSectLeave(&pVM->em.s.CritSectREM);
}
/**
* Steps recompiled code.
*
* @returns VBox status code. The most important ones are: VINF_EM_STEP_EVENT,
* VINF_EM_RESCHEDULE, VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
*/
static int emR3RemStep(PVM pVM, PVMCPU pVCpu)
{
LogFlow(("emR3RemStep: cs:eip=%04x:%08x\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
emR3RemLock(pVM);
/*
* Switch to REM, step instruction, switch back.
*/
int rc = REMR3State(pVM, pVCpu);
if (RT_SUCCESS(rc))
{
rc = REMR3Step(pVM, pVCpu);
REMR3StateBack(pVM, pVCpu);
}
emR3RemUnlock(pVM);
LogFlow(("emR3RemStep: returns %Rrc cs:eip=%04x:%08x\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
return rc;
}
/**
* Executes recompiled code.
*
* This function contains the recompiler version of the inner
* execution loop (the outer loop being in EMR3ExecuteVM()).
*
* @returns VBox status code. The most important ones are: VINF_EM_RESCHEDULE,
* VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param pfFFDone Where to store an indicator telling wheter or not
* FFs were done before returning.
*
*/
static int emR3RemExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone)
{
#ifdef LOG_ENABLED
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
uint32_t cpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx));
if (pCtx->eflags.Bits.u1VM)
Log(("EMV86: %04X:%08X IF=%d\n", pCtx->cs, pCtx->eip, pCtx->eflags.Bits.u1IF));
else
Log(("EMR%d: %04X:%08X ESP=%08X IF=%d CR0=%x\n", cpl, pCtx->cs, pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, (uint32_t)pCtx->cr0));
#endif
STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatREMTotal, a);
#if defined(VBOX_STRICT) && defined(DEBUG_bird)
AssertMsg( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
|| !MMHyperIsInsideArea(pVM, CPUMGetGuestEIP(pVCpu)), /** @todo #1419 - get flat address. */
("cs:eip=%RX16:%RX32\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
#endif
/* Big lock, but you are not supposed to own any lock when coming in here. */
emR3RemLock(pVM);
/*
* Spin till we get a forced action which returns anything but VINF_SUCCESS
* or the REM suggests raw-mode execution.
*/
*pfFFDone = false;
bool fInREMState = false;
int rc = VINF_SUCCESS;
/* Flush the recompiler TLB if the VCPU has changed. */
if (pVM->em.s.idLastRemCpu != pVCpu->idCpu)
{
REMFlushTBs(pVM);
/* Also sync the entire state. */
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
}
pVM->em.s.idLastRemCpu = pVCpu->idCpu;
for (;;)
{
/*
* Update REM state if not already in sync.
*/
if (!fInREMState)
{
STAM_PROFILE_START(&pVCpu->em.s.StatREMSync, b);
rc = REMR3State(pVM, pVCpu);
STAM_PROFILE_STOP(&pVCpu->em.s.StatREMSync, b);
if (RT_FAILURE(rc))
break;
fInREMState = true;
/*
* We might have missed the raising of VMREQ, TIMER and some other
* imporant FFs while we were busy switching the state. So, check again.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST | VM_FF_PDM_QUEUES | VM_FF_DBGF | VM_FF_TERMINATE | VM_FF_RESET)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TIMER | VMCPU_FF_REQUEST))
{
LogFlow(("emR3RemExecute: Skipping run, because FF is set. %#x\n", pVM->fGlobalForcedActions));
goto l_REMDoForcedActions;
}
}
/*
* Execute REM.
*/
STAM_PROFILE_START(&pVCpu->em.s.StatREMExec, c);
rc = REMR3Run(pVM, pVCpu);
STAM_PROFILE_STOP(&pVCpu->em.s.StatREMExec, c);
/*
* Deal with high priority post execution FFs before doing anything else.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_MASK))
rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc);
/*
* Process the returned status code.
* (Try keep this short! Call functions!)
*/
if (rc != VINF_SUCCESS)
{
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
break;
if (rc != VINF_REM_INTERRUPED_FF)
{
/*
* Anything which is not known to us means an internal error
* and the termination of the VM!
*/
AssertMsg(rc == VERR_REM_TOO_MANY_TRAPS, ("Unknown GC return code: %Rra\n", rc));
break;
}
}
/*
* Check and execute forced actions.
* Sync back the VM state before calling any of these.
*/
#ifdef VBOX_HIGH_RES_TIMERS_HACK
TMTimerPollVoid(pVM, pVCpu);
#endif
AssertCompile((VMCPU_FF_ALL_BUT_RAW_MASK & ~(VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE)) & VMCPU_FF_TIMER);
if ( VM_FF_ISPENDING(pVM, VM_FF_ALL_BUT_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_BUT_RAW_MASK & ~(VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE)))
{
l_REMDoForcedActions:
if (fInREMState)
{
STAM_PROFILE_START(&pVCpu->em.s.StatREMSync, d);
REMR3StateBack(pVM, pVCpu);
STAM_PROFILE_STOP(&pVCpu->em.s.StatREMSync, d);
fInREMState = false;
}
STAM_REL_PROFILE_ADV_SUSPEND(&pVCpu->em.s.StatREMTotal, a);
rc = emR3ForcedActions(pVM, pVCpu, rc);
STAM_REL_PROFILE_ADV_RESUME(&pVCpu->em.s.StatREMTotal, a);
if ( rc != VINF_SUCCESS
&& rc != VINF_EM_RESCHEDULE_REM)
{
*pfFFDone = true;
break;
}
}
} /* The Inner Loop, recompiled execution mode version. */
/*
* Returning. Sync back the VM state if required.
*/
if (fInREMState)
{
STAM_PROFILE_START(&pVCpu->em.s.StatREMSync, e);
REMR3StateBack(pVM, pVCpu);
STAM_PROFILE_STOP(&pVCpu->em.s.StatREMSync, e);
}
emR3RemUnlock(pVM);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatREMTotal, a);
return rc;
}
/**
* Resumes executing hypervisor after a debug event.
*
* This is kind of special since our current guest state is
* potentially out of sync.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
*/
static int emR3RawResumeHyper(PVM pVM, PVMCPU pVCpu)
{
int rc;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
Assert(pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER);
Log(("emR3RawResumeHyper: cs:eip=%RTsel:%RGr efl=%RGr\n", pCtx->cs, pCtx->eip, pCtx->eflags));
/*
* Resume execution.
*/
CPUMRawEnter(pVCpu, NULL);
CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_RF);
rc = VMMR3ResumeHyper(pVM, pVCpu);
Log(("emR3RawStep: cs:eip=%RTsel:%RGr efl=%RGr - returned from GC with rc=%Rrc\n", pCtx->cs, pCtx->eip, pCtx->eflags, rc));
rc = CPUMRawLeave(pVCpu, NULL, rc);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
/*
* Deal with the return code.
*/
rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc);
rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc);
rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc);
return rc;
}
/**
* Steps rawmode.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
*/
static int emR3RawStep(PVM pVM, PVMCPU pVCpu)
{
Assert( pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER
|| pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_RAW
|| pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_REM);
int rc;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
bool fGuest = pVCpu->em.s.enmState != EMSTATE_DEBUG_HYPER;
#ifndef DEBUG_sandervl
Log(("emR3RawStep: cs:eip=%RTsel:%RGr efl=%RGr\n", fGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu),
fGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu), fGuest ? CPUMGetGuestEFlags(pVCpu) : CPUMGetHyperEFlags(pVCpu)));
#endif
if (fGuest)
{
/*
* Check vital forced actions, but ignore pending interrupts and timers.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK))
{
rc = emR3RawForcedActions(pVM, pVCpu, pCtx);
if (rc != VINF_SUCCESS)
return rc;
}
/*
* Set flags for single stepping.
*/
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF);
}
else
CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF);
/*
* Single step.
* We do not start time or anything, if anything we should just do a few nanoseconds.
*/
CPUMRawEnter(pVCpu, NULL);
do
{
if (pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER)
rc = VMMR3ResumeHyper(pVM, pVCpu);
else
rc = VMMR3RawRunGC(pVM, pVCpu);
#ifndef DEBUG_sandervl
Log(("emR3RawStep: cs:eip=%RTsel:%RGr efl=%RGr - GC rc %Rrc\n", fGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu),
fGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu), fGuest ? CPUMGetGuestEFlags(pVCpu) : CPUMGetHyperEFlags(pVCpu), rc));
#endif
} while ( rc == VINF_SUCCESS
|| rc == VINF_EM_RAW_INTERRUPT);
rc = CPUMRawLeave(pVCpu, NULL, rc);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
/*
* Make sure the trap flag is cleared.
* (Too bad if the guest is trying to single step too.)
*/
if (fGuest)
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF);
else
CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) & ~X86_EFL_TF);
/*
* Deal with the return codes.
*/
rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc);
rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc);
rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc);
return rc;
}
#ifdef DEBUG
/**
* Steps hardware accelerated mode.
*
* @returns VBox status code.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
*/
static int emR3HwAccStep(PVM pVM, PVMCPU pVCpu)
{
Assert(pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC);
int rc;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
VMCPU_FF_CLEAR(pVCpu, (VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_TRPM_SYNC_IDT | VMCPU_FF_SELM_SYNC_TSS));
/*
* Check vital forced actions, but ignore pending interrupts and timers.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK))
{
rc = emR3RawForcedActions(pVM, pVCpu, pCtx);
if (rc != VINF_SUCCESS)
return rc;
}
/*
* Set flags for single stepping.
*/
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF);
/*
* Single step.
* We do not start time or anything, if anything we should just do a few nanoseconds.
*/
do
{
rc = VMMR3HwAccRunGC(pVM, pVCpu);
} while ( rc == VINF_SUCCESS
|| rc == VINF_EM_RAW_INTERRUPT);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
/*
* Make sure the trap flag is cleared.
* (Too bad if the guest is trying to single step too.)
*/
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF);
/*
* Deal with the return codes.
*/
rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc);
rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc);
rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc);
return rc;
}
int emR3SingleStepExecRaw(PVM pVM, PVMCPU pVCpu, uint32_t cIterations)
{
int rc = VINF_SUCCESS;
EMSTATE enmOldState = pVCpu->em.s.enmState;
pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_RAW;
Log(("Single step BEGIN:\n"));
for (uint32_t i = 0; i < cIterations; i++)
{
DBGFR3PrgStep(pVCpu);
DBGFR3DisasInstrCurrentLog(pVCpu, "RSS: ");
rc = emR3RawStep(pVM, pVCpu);
if (rc != VINF_SUCCESS)
break;
}
Log(("Single step END: rc=%Rrc\n", rc));
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF);
pVCpu->em.s.enmState = enmOldState;
return rc;
}
static int emR3SingleStepExecHwAcc(PVM pVM, PVMCPU pVCpu, uint32_t cIterations)
{
int rc = VINF_SUCCESS;
EMSTATE enmOldState = pVCpu->em.s.enmState;
pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_HWACC;
Log(("Single step BEGIN:\n"));
for (uint32_t i = 0; i < cIterations; i++)
{
DBGFR3PrgStep(pVCpu);
DBGFR3DisasInstrCurrentLog(pVCpu, "RSS: ");
rc = emR3HwAccStep(pVM, pVCpu);
if ( rc != VINF_SUCCESS
|| !HWACCMR3CanExecuteGuest(pVM, pVCpu->em.s.pCtx))
break;
}
Log(("Single step END: rc=%Rrc\n", rc));
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF);
pVCpu->em.s.enmState = enmOldState;
return rc == VINF_SUCCESS ? VINF_EM_RESCHEDULE_REM : rc;
}
static int emR3SingleStepExecRem(PVM pVM, PVMCPU pVCpu, uint32_t cIterations)
{
EMSTATE enmOldState = pVCpu->em.s.enmState;
pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_REM;
Log(("Single step BEGIN:\n"));
for (uint32_t i = 0; i < cIterations; i++)
{
DBGFR3PrgStep(pVCpu);
DBGFR3DisasInstrCurrentLog(pVCpu, "RSS: ");
emR3RemStep(pVM, pVCpu);
if (emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx) != EMSTATE_REM)
break;
}
Log(("Single step END:\n"));
CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF);
pVCpu->em.s.enmState = enmOldState;
return VINF_EM_RESCHEDULE;
}
#endif /* DEBUG */
/**
* Executes one (or perhaps a few more) instruction(s).
*
* @returns VBox status code suitable for EM.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle
* @param rcGC GC return code
* @param pszPrefix Disassembly prefix. If not NULL we'll disassemble the
* instruction and prefix the log output with this text.
*/
#ifdef LOG_ENABLED
static int emR3RawExecuteInstructionWorker(PVM pVM, PVMCPU pVCpu, int rcGC, const char *pszPrefix)
#else
static int emR3RawExecuteInstructionWorker(PVM pVM, PVMCPU pVCpu, int rcGC)
#endif
{
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
int rc;
/*
*
* The simple solution is to use the recompiler.
* The better solution is to disassemble the current instruction and
* try handle as many as possible without using REM.
*
*/
#ifdef LOG_ENABLED
/*
* Disassemble the instruction if requested.
*/
if (pszPrefix)
{
DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
DBGFR3DisasInstrCurrentLog(pVCpu, pszPrefix);
}
#endif /* LOG_ENABLED */
/*
* PATM is making life more interesting.
* We cannot hand anything to REM which has an EIP inside patch code. So, we'll
* tell PATM there is a trap in this code and have it take the appropriate actions
* to allow us execute the code in REM.
*/
if (PATMIsPatchGCAddr(pVM, pCtx->eip))
{
Log(("emR3RawExecuteInstruction: In patch block. eip=%RRv\n", (RTRCPTR)pCtx->eip));
RTGCPTR pNewEip;
rc = PATMR3HandleTrap(pVM, pCtx, pCtx->eip, &pNewEip);
switch (rc)
{
/*
* It's not very useful to emulate a single instruction and then go back to raw
* mode; just execute the whole block until IF is set again.
*/
case VINF_SUCCESS:
Log(("emR3RawExecuteInstruction: Executing instruction starting at new address %RGv IF=%d VMIF=%x\n",
pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags));
pCtx->eip = pNewEip;
Assert(pCtx->eip);
if (pCtx->eflags.Bits.u1IF)
{
/*
* The last instruction in the patch block needs to be executed!! (sti/sysexit for example)
*/
Log(("PATCH: IF=1 -> emulate last instruction as it can't be interrupted!!\n"));
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR");
}
else if (rcGC == VINF_PATM_PENDING_IRQ_AFTER_IRET)
{
/* special case: iret, that sets IF, detected a pending irq/event */
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIRET");
}
return VINF_EM_RESCHEDULE_REM;
/*
* One instruction.
*/
case VINF_PATCH_EMULATE_INSTR:
Log(("emR3RawExecuteInstruction: Emulate patched instruction at %RGv IF=%d VMIF=%x\n",
pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags));
pCtx->eip = pNewEip;
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR");
/*
* The patch was disabled, hand it to the REM.
*/
case VERR_PATCH_DISABLED:
Log(("emR3RawExecuteInstruction: Disabled patch -> new eip %RGv IF=%d VMIF=%x\n",
pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags));
pCtx->eip = pNewEip;
if (pCtx->eflags.Bits.u1IF)
{
/*
* The last instruction in the patch block needs to be executed!! (sti/sysexit for example)
*/
Log(("PATCH: IF=1 -> emulate last instruction as it can't be interrupted!!\n"));
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR");
}
return VINF_EM_RESCHEDULE_REM;
/* Force continued patch exection; usually due to write monitored stack. */
case VINF_PATCH_CONTINUE:
return VINF_SUCCESS;
default:
AssertReleaseMsgFailed(("Unknown return code %Rrc from PATMR3HandleTrap\n", rc));
return VERR_IPE_UNEXPECTED_STATUS;
}
}
#if 0
/* Try our own instruction emulator before falling back to the recompiler. */
DISCPUSTATE Cpu;
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "GEN EMU");
if (RT_SUCCESS(rc))
{
uint32_t size;
switch (Cpu.pCurInstr->opcode)
{
/* @todo we can do more now */
case OP_MOV:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_POP:
case OP_INC:
case OP_DEC:
case OP_XCHG:
STAM_PROFILE_START(&pVCpu->em.s.StatMiscEmu, a);
rc = EMInterpretInstructionCPU(pVM, &Cpu, CPUMCTX2CORE(pCtx), 0, &size);
if (RT_SUCCESS(rc))
{
pCtx->rip += Cpu.opsize;
#ifdef EM_NOTIFY_HWACCM
if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC)
HWACCMR3NotifyEmulated(pVCpu);
#endif
STAM_PROFILE_STOP(&pVCpu->em.s.StatMiscEmu, a);
return rc;
}
if (rc != VERR_EM_INTERPRETER)
AssertMsgFailedReturn(("rc=%Rrc\n", rc), rc);
STAM_PROFILE_STOP(&pVCpu->em.s.StatMiscEmu, a);
break;
}
}
#endif /* 0 */
STAM_PROFILE_START(&pVCpu->em.s.StatREMEmu, a);
Log(("EMINS: %04x:%RGv RSP=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip, (RTGCPTR)pCtx->rsp));
emR3RemLock(pVM);
/* Flush the recompiler TLB if the VCPU has changed. */
if (pVM->em.s.idLastRemCpu != pVCpu->idCpu)
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
pVM->em.s.idLastRemCpu = pVCpu->idCpu;
rc = REMR3EmulateInstruction(pVM, pVCpu);
emR3RemUnlock(pVM);
STAM_PROFILE_STOP(&pVCpu->em.s.StatREMEmu, a);
#ifdef EM_NOTIFY_HWACCM
if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC)
HWACCMR3NotifyEmulated(pVCpu);
#endif
return rc;
}
/**
* Executes one (or perhaps a few more) instruction(s).
* This is just a wrapper for discarding pszPrefix in non-logging builds.
*
* @returns VBox status code suitable for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param pszPrefix Disassembly prefix. If not NULL we'll disassemble the
* instruction and prefix the log output with this text.
* @param rcGC GC return code
*/
DECLINLINE(int) emR3RawExecuteInstruction(PVM pVM, PVMCPU pVCpu, const char *pszPrefix, int rcGC)
{
#ifdef LOG_ENABLED
return emR3RawExecuteInstructionWorker(pVM, pVCpu, rcGC, pszPrefix);
#else
return emR3RawExecuteInstructionWorker(pVM, pVCpu, rcGC);
#endif
}
/**
* Executes one (or perhaps a few more) IO instruction(s).
*
* @returns VBox status code suitable for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
*/
int emR3RawExecuteIOInstruction(PVM pVM, PVMCPU pVCpu)
{
int rc;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
STAM_PROFILE_START(&pVCpu->em.s.StatIOEmu, a);
/** @todo probably we should fall back to the recompiler; otherwise we'll go back and forth between HC & GC
* as io instructions tend to come in packages of more than one
*/
DISCPUSTATE Cpu;
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "IO EMU");
if (RT_SUCCESS(rc))
{
rc = VINF_EM_RAW_EMULATE_INSTR;
if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
{
switch (Cpu.pCurInstr->opcode)
{
case OP_IN:
{
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatIn);
rc = IOMInterpretIN(pVM, CPUMCTX2CORE(pCtx), &Cpu);
break;
}
case OP_OUT:
{
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatOut);
rc = IOMInterpretOUT(pVM, CPUMCTX2CORE(pCtx), &Cpu);
break;
}
}
}
else if (Cpu.prefix & PREFIX_REP)
{
switch (Cpu.pCurInstr->opcode)
{
case OP_INSB:
case OP_INSWD:
{
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatIn);
rc = IOMInterpretINS(pVM, CPUMCTX2CORE(pCtx), &Cpu);
break;
}
case OP_OUTSB:
case OP_OUTSWD:
{
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatOut);
rc = IOMInterpretOUTS(pVM, CPUMCTX2CORE(pCtx), &Cpu);
break;
}
}
}
/*
* Handled the I/O return codes.
* (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
*/
if (IOM_SUCCESS(rc))
{
pCtx->rip += Cpu.opsize;
STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a);
return rc;
}
if (rc == VINF_EM_RAW_GUEST_TRAP)
{
STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a);
rc = emR3RawGuestTrap(pVM, pVCpu);
return rc;
}
AssertMsg(rc != VINF_TRPM_XCPT_DISPATCHED, ("Handle VINF_TRPM_XCPT_DISPATCHED\n"));
if (RT_FAILURE(rc))
{
STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a);
return rc;
}
AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RESCHEDULE_REM, ("rc=%Rrc\n", rc));
}
STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a);
return emR3RawExecuteInstruction(pVM, pVCpu, "IO: ");
}
/**
* Handle a guest context trap.
*
* @returns VBox status code suitable for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
*/
static int emR3RawGuestTrap(PVM pVM, PVMCPU pVCpu)
{
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
/*
* Get the trap info.
*/
uint8_t u8TrapNo;
TRPMEVENT enmType;
RTGCUINT uErrorCode;
RTGCUINTPTR uCR2;
int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
if (RT_FAILURE(rc))
{
AssertReleaseMsgFailed(("No trap! (rc=%Rrc)\n", rc));
return rc;
}
/*
* Traps can be directly forwarded in hardware accelerated mode.
*/
if (HWACCMIsEnabled(pVM))
{
#ifdef LOGGING_ENABLED
DBGFR3InfoLog(pVM, "cpumguest", "Guest trap");
DBGFR3DisasInstrCurrentLog(pVCpu, "Guest trap");
#endif
return VINF_EM_RESCHEDULE_HWACC;
}
#if 1 /* Experimental: Review, disable if it causes trouble. */
/*
* Handle traps in patch code first.
*
* We catch a few of these cases in RC before returning to R3 (#PF, #GP, #BP)
* but several traps isn't handled specially by TRPM in RC and we end up here
* instead. One example is #DE.
*/
uint32_t uCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx));
if ( uCpl == 0
&& PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip))
{
LogFlow(("emR3RawGuestTrap: trap %#x in patch code; eip=%08x\n", u8TrapNo, pCtx->eip));
return emR3PatchTrap(pVM, pVCpu, pCtx, rc);
}
#endif
/*
* If the guest gate is marked unpatched, then we will check again if we can patch it.
* (This assumes that we've already tried and failed to dispatch the trap in
* RC for the gates that already has been patched. Which is true for most high
* volume traps, because these are handled specially, but not for odd ones like #DE.)
*/
if (TRPMR3GetGuestTrapHandler(pVM, u8TrapNo) == TRPM_INVALID_HANDLER)
{
CSAMR3CheckGates(pVM, u8TrapNo, 1);
Log(("emR3RawHandleRC: recheck gate %x -> valid=%d\n", u8TrapNo, TRPMR3GetGuestTrapHandler(pVM, u8TrapNo) != TRPM_INVALID_HANDLER));
/* If it was successful, then we could go back to raw mode. */
if (TRPMR3GetGuestTrapHandler(pVM, u8TrapNo) != TRPM_INVALID_HANDLER)
{
/* Must check pending forced actions as our IDT or GDT might be out of sync. */
rc = EMR3CheckRawForcedActions(pVM, pVCpu);
AssertRCReturn(rc, rc);
TRPMERRORCODE enmError = uErrorCode != ~0U
? TRPM_TRAP_HAS_ERRORCODE
: TRPM_TRAP_NO_ERRORCODE;
rc = TRPMForwardTrap(pVCpu, CPUMCTX2CORE(pCtx), u8TrapNo, uErrorCode, enmError, TRPM_TRAP, -1);
if (rc == VINF_SUCCESS /* Don't use RT_SUCCESS */)
{
TRPMResetTrap(pVCpu);
return VINF_EM_RESCHEDULE_RAW;
}
AssertMsg(rc == VINF_EM_RAW_GUEST_TRAP, ("%Rrc\n", rc));
}
}
/*
* Scan kernel code that traps; we might not get another chance.
*/
/** @todo move this up before the dispatching? */
if ( (pCtx->ss & X86_SEL_RPL) <= 1
&& !pCtx->eflags.Bits.u1VM)
{
Assert(!PATMIsPatchGCAddr(pVM, pCtx->eip));
CSAMR3CheckCodeEx(pVM, CPUMCTX2CORE(pCtx), pCtx->eip);
}
/*
* Trap specific handling.
*/
if (u8TrapNo == 6) /* (#UD) Invalid opcode. */
{
/*
* If MONITOR & MWAIT are supported, then interpret them here.
*/
DISCPUSTATE cpu;
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &cpu, "Guest Trap (#UD): ");
if ( RT_SUCCESS(rc)
&& (cpu.pCurInstr->opcode == OP_MONITOR || cpu.pCurInstr->opcode == OP_MWAIT))
{
uint32_t u32Dummy, u32Features, u32ExtFeatures;
CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Features);
if (u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR)
{
rc = TRPMResetTrap(pVCpu);
AssertRC(rc);
uint32_t opsize;
rc = EMInterpretInstructionCPU(pVM, pVCpu, &cpu, CPUMCTX2CORE(pCtx), 0, &opsize);
if (RT_SUCCESS(rc))
{
pCtx->rip += cpu.opsize;
#ifdef EM_NOTIFY_HWACCM
if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC)
HWACCMR3NotifyEmulated(pVCpu);
#endif
return rc;
}
return emR3RawExecuteInstruction(pVM, pVCpu, "Monitor: ");
}
}
}
else if (u8TrapNo == 13) /* (#GP) Privileged exception */
{
/*
* Handle I/O bitmap?
*/
/** @todo We're not supposed to be here with a false guest trap concerning
* I/O access. We can easily handle those in RC. */
DISCPUSTATE cpu;
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &cpu, "Guest Trap: ");
if ( RT_SUCCESS(rc)
&& (cpu.pCurInstr->optype & OPTYPE_PORTIO))
{
/*
* We should really check the TSS for the IO bitmap, but it's not like this
* lazy approach really makes things worse.
*/
rc = TRPMResetTrap(pVCpu);
AssertRC(rc);
return emR3RawExecuteInstruction(pVM, pVCpu, "IO Guest Trap: ");
}
}
#ifdef LOG_ENABLED
DBGFR3InfoLog(pVM, "cpumguest", "Guest trap");
DBGFR3DisasInstrCurrentLog(pVCpu, "Guest trap");
/* Get guest page information. */
uint64_t fFlags = 0;
RTGCPHYS GCPhys = 0;
int rc2 = PGMGstGetPage(pVCpu, uCR2, &fFlags, &GCPhys);
Log(("emR3RawGuestTrap: cs:eip=%04x:%08x: trap=%02x err=%08x cr2=%08x cr0=%08x%s: Phys=%RGp fFlags=%08llx %s %s %s%s rc2=%d\n",
pCtx->cs, pCtx->eip, u8TrapNo, uErrorCode, uCR2, (uint32_t)pCtx->cr0, (enmType == TRPM_SOFTWARE_INT) ? " software" : "", GCPhys, fFlags,
fFlags & X86_PTE_P ? "P " : "NP", fFlags & X86_PTE_US ? "U" : "S",
fFlags & X86_PTE_RW ? "RW" : "R0", fFlags & X86_PTE_G ? " G" : "", rc2));
#endif
/*
* #PG has CR2.
* (Because of stuff like above we must set CR2 in a delayed fashion.)
*/
if (u8TrapNo == 14 /* #PG */)
pCtx->cr2 = uCR2;
return VINF_EM_RESCHEDULE_REM;
}
/**
* Handle a ring switch trap.
* Need to do statistics and to install patches. The result is going to REM.
*
* @returns VBox status code suitable for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
*/
int emR3RawRingSwitch(PVM pVM, PVMCPU pVCpu)
{
int rc;
DISCPUSTATE Cpu;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
/*
* sysenter, syscall & callgate
*/
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "RSWITCH: ");
if (RT_SUCCESS(rc))
{
if (Cpu.pCurInstr->opcode == OP_SYSENTER)
{
if (pCtx->SysEnter.cs != 0)
{
rc = PATMR3InstallPatch(pVM, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->eip),
(SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) ? PATMFL_CODE32 : 0);
if (RT_SUCCESS(rc))
{
DBGFR3DisasInstrCurrentLog(pVCpu, "Patched sysenter instruction");
return VINF_EM_RESCHEDULE_RAW;
}
}
}
#ifdef VBOX_WITH_STATISTICS
switch (Cpu.pCurInstr->opcode)
{
case OP_SYSENTER:
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysEnter);
break;
case OP_SYSEXIT:
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysExit);
break;
case OP_SYSCALL:
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysCall);
break;
case OP_SYSRET:
STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysRet);
break;
}
#endif
}
else
AssertRC(rc);
/* go to the REM to emulate a single instruction */
return emR3RawExecuteInstruction(pVM, pVCpu, "RSWITCH: ");
}
/**
* Handle a trap (\#PF or \#GP) in patch code
*
* @returns VBox status code suitable for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param pCtx CPU context
* @param gcret GC return code
*/
static int emR3PatchTrap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int gcret)
{
uint8_t u8TrapNo;
int rc;
TRPMEVENT enmType;
RTGCUINT uErrorCode;
RTGCUINTPTR uCR2;
Assert(PATMIsPatchGCAddr(pVM, pCtx->eip));
if (gcret == VINF_PATM_PATCH_INT3)
{
u8TrapNo = 3;
uCR2 = 0;
uErrorCode = 0;
}
else if (gcret == VINF_PATM_PATCH_TRAP_GP)
{
/* No active trap in this case. Kind of ugly. */
u8TrapNo = X86_XCPT_GP;
uCR2 = 0;
uErrorCode = 0;
}
else
{
rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
if (RT_FAILURE(rc))
{
AssertReleaseMsgFailed(("emR3PatchTrap: no trap! (rc=%Rrc) gcret=%Rrc\n", rc, gcret));
return rc;
}
/* Reset the trap as we'll execute the original instruction again. */
TRPMResetTrap(pVCpu);
}
/*
* Deal with traps inside patch code.
* (This code won't run outside GC.)
*/
if (u8TrapNo != 1)
{
#ifdef LOG_ENABLED
DBGFR3InfoLog(pVM, "cpumguest", "Trap in patch code");
DBGFR3DisasInstrCurrentLog(pVCpu, "Patch code");
DISCPUSTATE Cpu;
int rc;
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->eip, &Cpu, "Patch code: ");
if ( RT_SUCCESS(rc)
&& Cpu.pCurInstr->opcode == OP_IRET)
{
uint32_t eip, selCS, uEFlags;
/* Iret crashes are bad as we have already changed the flags on the stack */
rc = PGMPhysSimpleReadGCPtr(pVCpu, &eip, pCtx->esp, 4);
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selCS, pCtx->esp+4, 4);
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &uEFlags, pCtx->esp+8, 4);
if (rc == VINF_SUCCESS)
{
if ( (uEFlags & X86_EFL_VM)
|| (selCS & X86_SEL_RPL) == 3)
{
uint32_t selSS, esp;
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &esp, pCtx->esp + 12, 4);
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selSS, pCtx->esp + 16, 4);
if (uEFlags & X86_EFL_VM)
{
uint32_t selDS, selES, selFS, selGS;
rc = PGMPhysSimpleReadGCPtr(pVCpu, &selES, pCtx->esp + 20, 4);
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selDS, pCtx->esp + 24, 4);
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selFS, pCtx->esp + 28, 4);
rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selGS, pCtx->esp + 32, 4);
if (rc == VINF_SUCCESS)
{
Log(("Patch code: IRET->VM stack frame: return address %04X:%08RX32 eflags=%08x ss:esp=%04X:%08RX32\n", selCS, eip, uEFlags, selSS, esp));
Log(("Patch code: IRET->VM stack frame: DS=%04X ES=%04X FS=%04X GS=%04X\n", selDS, selES, selFS, selGS));
}
}
else
Log(("Patch code: IRET stack frame: return address %04X:%08RX32 eflags=%08x ss:esp=%04X:%08RX32\n", selCS, eip, uEFlags, selSS, esp));
}
else
Log(("Patch code: IRET stack frame: return address %04X:%08RX32 eflags=%08x\n", selCS, eip, uEFlags));
}
}
#endif /* LOG_ENABLED */
Log(("emR3PatchTrap: in patch: eip=%08x: trap=%02x err=%08x cr2=%08x cr0=%08x\n",
pCtx->eip, u8TrapNo, uErrorCode, uCR2, (uint32_t)pCtx->cr0));
RTGCPTR pNewEip;
rc = PATMR3HandleTrap(pVM, pCtx, pCtx->eip, &pNewEip);
switch (rc)
{
/*
* Execute the faulting instruction.
*/
case VINF_SUCCESS:
{
/** @todo execute a whole block */
Log(("emR3PatchTrap: Executing faulting instruction at new address %RGv\n", pNewEip));
if (!(pVCpu->em.s.pPatmGCState->uVMFlags & X86_EFL_IF))
Log(("emR3PatchTrap: Virtual IF flag disabled!!\n"));
pCtx->eip = pNewEip;
AssertRelease(pCtx->eip);
if (pCtx->eflags.Bits.u1IF)
{
/* Windows XP lets irets fault intentionally and then takes action based on the opcode; an
* int3 patch overwrites it and leads to blue screens. Remove the patch in this case.
*/
if ( u8TrapNo == X86_XCPT_GP
&& PATMIsInt3Patch(pVM, pCtx->eip, NULL, NULL))
{
/** @todo move to PATMR3HandleTrap */
Log(("Possible Windows XP iret fault at %08RX32\n", pCtx->eip));
PATMR3RemovePatch(pVM, pCtx->eip);
}
/** @todo Knoppix 5 regression when returning VINF_SUCCESS here and going back to raw mode. */
/* Note: possibly because a reschedule is required (e.g. iret to V86 code) */
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR");
/* Interrupts are enabled; just go back to the original instruction.
return VINF_SUCCESS; */
}
return VINF_EM_RESCHEDULE_REM;
}
/*
* One instruction.
*/
case VINF_PATCH_EMULATE_INSTR:
Log(("emR3PatchTrap: Emulate patched instruction at %RGv IF=%d VMIF=%x\n",
pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags));
pCtx->eip = pNewEip;
AssertRelease(pCtx->eip);
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHEMUL: ");
/*
* The patch was disabled, hand it to the REM.
*/
case VERR_PATCH_DISABLED:
if (!(pVCpu->em.s.pPatmGCState->uVMFlags & X86_EFL_IF))
Log(("emR3PatchTrap: Virtual IF flag disabled!!\n"));
pCtx->eip = pNewEip;
AssertRelease(pCtx->eip);
if (pCtx->eflags.Bits.u1IF)
{
/*
* The last instruction in the patch block needs to be executed!! (sti/sysexit for example)
*/
Log(("PATCH: IF=1 -> emulate last instruction as it can't be interrupted!!\n"));
return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR");
}
return VINF_EM_RESCHEDULE_REM;
/* Force continued patch exection; usually due to write monitored stack. */
case VINF_PATCH_CONTINUE:
return VINF_SUCCESS;
/*
* Anything else is *fatal*.
*/
default:
AssertReleaseMsgFailed(("Unknown return code %Rrc from PATMR3HandleTrap!\n", rc));
return VERR_IPE_UNEXPECTED_STATUS;
}
}
return VINF_SUCCESS;
}
/**
* Handle a privileged instruction.
*
* @returns VBox status code suitable for EM.
* @param pVM VM handle.
* @param pVCpu VMCPU handle;
*/
int emR3RawPrivileged(PVM pVM, PVMCPU pVCpu)
{
STAM_PROFILE_START(&pVCpu->em.s.StatPrivEmu, a);
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
Assert(!pCtx->eflags.Bits.u1VM);
if (PATMIsEnabled(pVM))
{
/*
* Check if in patch code.
*/
if (PATMR3IsInsidePatchJump(pVM, pCtx->eip, NULL))
{
#ifdef LOG_ENABLED
DBGFR3InfoLog(pVM, "cpumguest", "PRIV");
#endif
AssertMsgFailed(("FATAL ERROR: executing random instruction inside generated patch jump %08X\n", pCtx->eip));
return VERR_EM_RAW_PATCH_CONFLICT;
}
if ( (pCtx->ss & X86_SEL_RPL) == 0
&& !pCtx->eflags.Bits.u1VM
&& !PATMIsPatchGCAddr(pVM, pCtx->eip))
{
int rc = PATMR3InstallPatch(pVM, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->eip),
(SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) ? PATMFL_CODE32 : 0);
if (RT_SUCCESS(rc))
{
#ifdef LOG_ENABLED
DBGFR3InfoLog(pVM, "cpumguest", "PRIV");
#endif
DBGFR3DisasInstrCurrentLog(pVCpu, "Patched privileged instruction");
return VINF_SUCCESS;
}
}
}
#ifdef LOG_ENABLED
if (!PATMIsPatchGCAddr(pVM, pCtx->eip))
{
DBGFR3InfoLog(pVM, "cpumguest", "PRIV");
DBGFR3DisasInstrCurrentLog(pVCpu, "Privileged instr: ");
}
#endif
/*
* Instruction statistics and logging.
*/
DISCPUSTATE Cpu;
int rc;
rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "PRIV: ");
if (RT_SUCCESS(rc))
{
#ifdef VBOX_WITH_STATISTICS
PEMSTATS pStats = pVCpu->em.s.CTX_SUFF(pStats);
switch (Cpu.pCurInstr->opcode)
{
case OP_INVLPG:
STAM_COUNTER_INC(&pStats->StatInvlpg);
break;
case OP_IRET:
STAM_COUNTER_INC(&pStats->StatIret);
break;
case OP_CLI:
STAM_COUNTER_INC(&pStats->StatCli);
emR3RecordCli(pVM, pVCpu, pCtx->rip);
break;
case OP_STI:
STAM_COUNTER_INC(&pStats->StatSti);
break;
case OP_INSB:
case OP_INSWD:
case OP_IN:
case OP_OUTSB:
case OP_OUTSWD:
case OP_OUT:
AssertMsgFailed(("Unexpected privileged exception due to port IO\n"));
break;
case OP_MOV_CR:
if (Cpu.param1.flags & USE_REG_GEN32)
{
//read
Assert(Cpu.param2.flags & USE_REG_CR);
Assert(Cpu.param2.base.reg_ctrl <= USE_REG_CR4);
STAM_COUNTER_INC(&pStats->StatMovReadCR[Cpu.param2.base.reg_ctrl]);
}
else
{
//write
Assert(Cpu.param1.flags & USE_REG_CR);
Assert(Cpu.param1.base.reg_ctrl <= USE_REG_CR4);
STAM_COUNTER_INC(&pStats->StatMovWriteCR[Cpu.param1.base.reg_ctrl]);
}
break;
case OP_MOV_DR:
STAM_COUNTER_INC(&pStats->StatMovDRx);
break;
case OP_LLDT:
STAM_COUNTER_INC(&pStats->StatMovLldt);
break;
case OP_LIDT:
STAM_COUNTER_INC(&pStats->StatMovLidt);
break;
case OP_LGDT:
STAM_COUNTER_INC(&pStats->StatMovLgdt);
break;
case OP_SYSENTER:
STAM_COUNTER_INC(&pStats->StatSysEnter);
break;
case OP_SYSEXIT:
STAM_COUNTER_INC(&pStats->StatSysExit);
break;
case OP_SYSCALL:
STAM_COUNTER_INC(&pStats->StatSysCall);
break;
case OP_SYSRET:
STAM_COUNTER_INC(&pStats->StatSysRet);
break;
case OP_HLT:
STAM_COUNTER_INC(&pStats->StatHlt);
break;
default:
STAM_COUNTER_INC(&pStats->StatMisc);
Log4(("emR3RawPrivileged: opcode=%d\n", Cpu.pCurInstr->opcode));
break;
}
#endif /* VBOX_WITH_STATISTICS */
if ( (pCtx->ss & X86_SEL_RPL) == 0
&& !pCtx->eflags.Bits.u1VM
&& SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT)
{
uint32_t size;
STAM_PROFILE_START(&pVCpu->em.s.StatPrivEmu, a);
switch (Cpu.pCurInstr->opcode)
{
case OP_CLI:
pCtx->eflags.u32 &= ~X86_EFL_IF;
Assert(Cpu.opsize == 1);
pCtx->rip += Cpu.opsize;
STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a);
return VINF_EM_RESCHEDULE_REM; /* must go to the recompiler now! */
case OP_STI:
pCtx->eflags.u32 |= X86_EFL_IF;
EMSetInhibitInterruptsPC(pVCpu, pCtx->rip + Cpu.opsize);
Assert(Cpu.opsize == 1);
pCtx->rip += Cpu.opsize;
STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a);
return VINF_SUCCESS;
case OP_HLT:
if (PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip))
{
PATMTRANSSTATE enmState;
RTGCPTR pOrgInstrGC = PATMR3PatchToGCPtr(pVM, pCtx->eip, &enmState);
if (enmState == PATMTRANS_OVERWRITTEN)
{
rc = PATMR3DetectConflict(pVM, pOrgInstrGC, pOrgInstrGC);
Assert(rc == VERR_PATCH_DISABLED);
/* Conflict detected, patch disabled */
Log(("emR3RawPrivileged: detected conflict -> disabled patch at %08RX32\n", pCtx->eip));
enmState = PATMTRANS_SAFE;
}
/* The translation had better be successful. Otherwise we can't recover. */
AssertReleaseMsg(pOrgInstrGC && enmState != PATMTRANS_OVERWRITTEN, ("Unable to translate instruction address at %08RX32\n", pCtx->eip));
if (enmState != PATMTRANS_OVERWRITTEN)
pCtx->eip = pOrgInstrGC;
}
/* no break; we could just return VINF_EM_HALT here */
case OP_MOV_CR:
case OP_MOV_DR:
#ifdef LOG_ENABLED
if (PATMIsPatchGCAddr(pVM, pCtx->eip))
{
DBGFR3InfoLog(pVM, "cpumguest", "PRIV");
DBGFR3DisasInstrCurrentLog(pVCpu, "Privileged instr: ");
}
#endif
rc = EMInterpretInstructionCPU(pVM, pVCpu, &Cpu, CPUMCTX2CORE(pCtx), 0, &size);
if (RT_SUCCESS(rc))
{
pCtx->rip += Cpu.opsize;
#ifdef EM_NOTIFY_HWACCM
if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC)
HWACCMR3NotifyEmulated(pVCpu);
#endif
STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a);
if ( Cpu.pCurInstr->opcode == OP_MOV_CR
&& Cpu.param1.flags == USE_REG_CR /* write */
)
{
/* Deal with CR0 updates inside patch code that force
* us to go to the recompiler.
*/
if ( PATMIsPatchGCAddr(pVM, pCtx->rip)
&& (pCtx->cr0 & (X86_CR0_WP|X86_CR0_PG|X86_CR0_PE)) != (X86_CR0_WP|X86_CR0_PG|X86_CR0_PE))
{
PATMTRANSSTATE enmState;
RTGCPTR pOrgInstrGC = PATMR3PatchToGCPtr(pVM, pCtx->rip, &enmState);
Log(("Force recompiler switch due to cr0 (%RGp) update rip=%RGv -> %RGv (enmState=%d)\n", pCtx->cr0, pCtx->rip, pOrgInstrGC, enmState));
if (enmState == PATMTRANS_OVERWRITTEN)
{
rc = PATMR3DetectConflict(pVM, pOrgInstrGC, pOrgInstrGC);
Assert(rc == VERR_PATCH_DISABLED);
/* Conflict detected, patch disabled */
Log(("emR3RawPrivileged: detected conflict -> disabled patch at %RGv\n", (RTGCPTR)pCtx->rip));
enmState = PATMTRANS_SAFE;
}
/* The translation had better be successful. Otherwise we can't recover. */
AssertReleaseMsg(pOrgInstrGC && enmState != PATMTRANS_OVERWRITTEN, ("Unable to translate instruction address at %RGv\n", (RTGCPTR)pCtx->rip));
if (enmState != PATMTRANS_OVERWRITTEN)
pCtx->rip = pOrgInstrGC;
}
/* Reschedule is necessary as the execution/paging mode might have changed. */
return VINF_EM_RESCHEDULE;
}
return rc; /* can return VINF_EM_HALT as well. */
}
AssertMsgReturn(rc == VERR_EM_INTERPRETER, ("%Rrc\n", rc), rc);
break; /* fall back to the recompiler */
}
STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a);
}
}
if (PATMIsPatchGCAddr(pVM, pCtx->eip))
return emR3PatchTrap(pVM, pVCpu, pCtx, VINF_PATM_PATCH_TRAP_GP);
return emR3RawExecuteInstruction(pVM, pVCpu, "PRIV");
}
/**
* Update the forced rawmode execution modifier.
*
* This function is called when we're returning from the raw-mode loop(s). If we're
* in patch code, it will set a flag forcing execution to be resumed in raw-mode,
* if not in patch code, the flag will be cleared.
*
* We should never interrupt patch code while it's being executed. Cli patches can
* contain big code blocks, but they are always executed with IF=0. Other patches
* replace single instructions and should be atomic.
*
* @returns Updated rc.
*
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pCtx The guest CPU context.
* @param rc The result code.
*/
DECLINLINE(int) emR3RawUpdateForceFlag(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc)
{
if (PATMIsPatchGCAddr(pVM, pCtx->eip)) /** @todo check cs selector base/type */
{
/* ignore reschedule attempts. */
switch (rc)
{
case VINF_EM_RESCHEDULE:
case VINF_EM_RESCHEDULE_REM:
LogFlow(("emR3RawUpdateForceFlag: patch address -> force raw reschedule\n"));
rc = VINF_SUCCESS;
break;
}
pVCpu->em.s.fForceRAW = true;
}
else
pVCpu->em.s.fForceRAW = false;
return rc;
}
/**
* Process a subset of the raw-mode return code.
*
* Since we have to share this with raw-mode single stepping, this inline
* function has been created to avoid code duplication.
*
* @returns VINF_SUCCESS if it's ok to continue raw mode.
* @returns VBox status code to return to the EM main loop.
*
* @param pVM The VM handle
* @param pVCpu The VMCPU handle
* @param rc The return code.
* @param pCtx The guest cpu context.
*/
DECLINLINE(int) emR3RawHandleRC(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc)
{
switch (rc)
{
/*
* Common & simple ones.
*/
case VINF_SUCCESS:
break;
case VINF_EM_RESCHEDULE_RAW:
case VINF_EM_RESCHEDULE_HWACC:
case VINF_EM_RAW_INTERRUPT:
case VINF_EM_RAW_TO_R3:
case VINF_EM_RAW_TIMER_PENDING:
case VINF_EM_PENDING_REQUEST:
rc = VINF_SUCCESS;
break;
/*
* Privileged instruction.
*/
case VINF_EM_RAW_EXCEPTION_PRIVILEGED:
case VINF_PATM_PATCH_TRAP_GP:
rc = emR3RawPrivileged(pVM, pVCpu);
break;
/*
* Got a trap which needs dispatching.
*/
case VINF_EM_RAW_GUEST_TRAP:
if (PATMR3IsInsidePatchJump(pVM, pCtx->eip, NULL))
{
AssertReleaseMsgFailed(("FATAL ERROR: executing random instruction inside generated patch jump %08X\n", CPUMGetGuestEIP(pVCpu)));
rc = VERR_EM_RAW_PATCH_CONFLICT;
break;
}
rc = emR3RawGuestTrap(pVM, pVCpu);
break;
/*
* Trap in patch code.
*/
case VINF_PATM_PATCH_TRAP_PF:
case VINF_PATM_PATCH_INT3:
rc = emR3PatchTrap(pVM, pVCpu, pCtx, rc);
break;
case VINF_PATM_DUPLICATE_FUNCTION:
Assert(PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip));
rc = PATMR3DuplicateFunctionRequest(pVM, pCtx);
AssertRC(rc);
rc = VINF_SUCCESS;
break;
case VINF_PATM_CHECK_PATCH_PAGE:
rc = PATMR3HandleMonitoredPage(pVM);
AssertRC(rc);
rc = VINF_SUCCESS;
break;
/*
* Patch manager.
*/
case VERR_EM_RAW_PATCH_CONFLICT:
AssertReleaseMsgFailed(("%Rrc handling is not yet implemented\n", rc));
break;
#ifdef VBOX_WITH_VMI
/*
* PARAV function.
*/
case VINF_EM_RESCHEDULE_PARAV:
rc = PARAVCallFunction(pVM);
break;
#endif
/*
* Memory mapped I/O access - attempt to patch the instruction
*/
case VINF_PATM_HC_MMIO_PATCH_READ:
rc = PATMR3InstallPatch(pVM, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->eip),
PATMFL_MMIO_ACCESS | ((SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) ? PATMFL_CODE32 : 0));
if (RT_FAILURE(rc))
rc = emR3RawExecuteInstruction(pVM, pVCpu, "MMIO");
break;
case VINF_PATM_HC_MMIO_PATCH_WRITE:
AssertFailed(); /* not yet implemented. */
rc = emR3RawExecuteInstruction(pVM, pVCpu, "MMIO");
break;
/*
* Conflict or out of page tables.
*
* VM_FF_PGM_SYNC_CR3 is set by the hypervisor and all we need to
* do here is to execute the pending forced actions.
*/
case VINF_PGM_SYNC_CR3:
AssertMsg(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL),
("VINF_PGM_SYNC_CR3 and no VMCPU_FF_PGM_SYNC_CR3*!\n"));
rc = VINF_SUCCESS;
break;
/*
* Paging mode change.
*/
case VINF_PGM_CHANGE_MODE:
rc = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
if (rc == VINF_SUCCESS)
rc = VINF_EM_RESCHEDULE;
AssertMsg(RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST), ("%Rrc\n", rc));
break;
/*
* CSAM wants to perform a task in ring-3. It has set an FF action flag.
*/
case VINF_CSAM_PENDING_ACTION:
rc = VINF_SUCCESS;
break;
/*
* Invoked Interrupt gate - must directly (!) go to the recompiler.
*/
case VINF_EM_RAW_INTERRUPT_PENDING:
case VINF_EM_RAW_RING_SWITCH_INT:
Assert(TRPMHasTrap(pVCpu));
Assert(!PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip));
if (TRPMHasTrap(pVCpu))
{
/* If the guest gate is marked unpatched, then we will check again if we can patch it. */
uint8_t u8Interrupt = TRPMGetTrapNo(pVCpu);
if (TRPMR3GetGuestTrapHandler(pVM, u8Interrupt) == TRPM_INVALID_HANDLER)
{
CSAMR3CheckGates(pVM, u8Interrupt, 1);
Log(("emR3RawHandleRC: recheck gate %x -> valid=%d\n", u8Interrupt, TRPMR3GetGuestTrapHandler(pVM, u8Interrupt) != TRPM_INVALID_HANDLER));
/* Note: If it was successful, then we could go back to raw mode, but let's keep things simple for now. */
}
}
rc = VINF_EM_RESCHEDULE_REM;
break;
/*
* Other ring switch types.
*/
case VINF_EM_RAW_RING_SWITCH:
rc = emR3RawRingSwitch(pVM, pVCpu);
break;
/*
* REMGCNotifyInvalidatePage() failed because of overflow.
*/
case VERR_REM_FLUSHED_PAGES_OVERFLOW:
Assert((pCtx->ss & X86_SEL_RPL) != 1);
emR3RemLock(pVM);
REMR3ReplayInvalidatedPages(pVM, pVCpu);
emR3RemUnlock(pVM);
rc = VINF_SUCCESS;
break;
/*
* I/O Port access - emulate the instruction.
*/
case VINF_IOM_HC_IOPORT_READ:
case VINF_IOM_HC_IOPORT_WRITE:
rc = emR3RawExecuteIOInstruction(pVM, pVCpu);
break;
/*
* Memory mapped I/O access - emulate the instruction.
*/
case VINF_IOM_HC_MMIO_READ:
case VINF_IOM_HC_MMIO_WRITE:
case VINF_IOM_HC_MMIO_READ_WRITE:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "MMIO");
break;
/*
* (MM)IO intensive code block detected; fall back to the recompiler for better performance
*/
case VINF_EM_RAW_EMULATE_IO_BLOCK:
rc = HWACCMR3EmulateIoBlock(pVM, pCtx);
break;
/*
* Execute instruction.
*/
case VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "LDT FAULT: ");
break;
case VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "GDT FAULT: ");
break;
case VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "IDT FAULT: ");
break;
case VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "TSS FAULT: ");
break;
case VINF_EM_RAW_EMULATE_INSTR_PD_FAULT:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "PD FAULT: ");
break;
case VINF_EM_RAW_EMULATE_INSTR_HLT:
/** @todo skip instruction and go directly to the halt state. (see REM for implementation details) */
rc = emR3RawPrivileged(pVM, pVCpu);
break;
case VINF_PATM_PENDING_IRQ_AFTER_IRET:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "EMUL: ", VINF_PATM_PENDING_IRQ_AFTER_IRET);
break;
case VINF_EM_RAW_EMULATE_INSTR:
case VINF_PATCH_EMULATE_INSTR:
rc = emR3RawExecuteInstruction(pVM, pVCpu, "EMUL: ");
break;
/*
* Stale selector and iret traps => REM.
*/
case VINF_EM_RAW_STALE_SELECTOR:
case VINF_EM_RAW_IRET_TRAP:
/* We will not go to the recompiler if EIP points to patch code. */
if (PATMIsPatchGCAddr(pVM, pCtx->eip))
{
pCtx->eip = PATMR3PatchToGCPtr(pVM, (RTGCPTR)pCtx->eip, 0);
}
LogFlow(("emR3RawHandleRC: %Rrc -> %Rrc\n", rc, VINF_EM_RESCHEDULE_REM));
rc = VINF_EM_RESCHEDULE_REM;
break;
/*
* Up a level.
*/
case VINF_EM_TERMINATE:
case VINF_EM_OFF:
case VINF_EM_RESET:
case VINF_EM_SUSPEND:
case VINF_EM_HALT:
case VINF_EM_RESUME:
case VINF_EM_NO_MEMORY:
case VINF_EM_RESCHEDULE:
case VINF_EM_RESCHEDULE_REM:
case VINF_EM_WAIT_SIPI:
break;
/*
* Up a level and invoke the debugger.
*/
case VINF_EM_DBG_STEPPED:
case VINF_EM_DBG_BREAKPOINT:
case VINF_EM_DBG_STEP:
case VINF_EM_DBG_HYPER_BREAKPOINT:
case VINF_EM_DBG_HYPER_STEPPED:
case VINF_EM_DBG_HYPER_ASSERTION:
case VINF_EM_DBG_STOP:
break;
/*
* Up a level, dump and debug.
*/
case VERR_TRPM_DONT_PANIC:
case VERR_TRPM_PANIC:
case VERR_VMM_RING0_ASSERTION:
break;
/*
* Up a level, after HwAccM have done some release logging.
*/
case VERR_VMX_INVALID_VMCS_FIELD:
case VERR_VMX_INVALID_VMCS_PTR:
case VERR_VMX_INVALID_VMXON_PTR:
case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE:
case VERR_VMX_UNEXPECTED_EXCEPTION:
case VERR_VMX_UNEXPECTED_EXIT_CODE:
case VERR_VMX_INVALID_GUEST_STATE:
case VERR_VMX_UNABLE_TO_START_VM:
case VERR_VMX_UNABLE_TO_RESUME_VM:
HWACCMR3CheckError(pVM, rc);
break;
/*
* Anything which is not known to us means an internal error
* and the termination of the VM!
*/
default:
AssertMsgFailed(("Unknown GC return code: %Rra\n", rc));
break;
}
return rc;
}
/**
* Check for pending raw actions
*
* @returns VBox status code. May return VINF_EM_NO_MEMORY but none of the other
* EM statuses.
* @param pVM The VM to operate on.
* @param pVCpu The VMCPU handle.
*/
VMMR3DECL(int) EMR3CheckRawForcedActions(PVM pVM, PVMCPU pVCpu)
{
return emR3RawForcedActions(pVM, pVCpu, pVCpu->em.s.pCtx);
}
/**
* Process raw-mode specific forced actions.
*
* This function is called when any FFs in the VM_FF_HIGH_PRIORITY_PRE_RAW_MASK is pending.
*
* @returns VBox status code. May return VINF_EM_NO_MEMORY but none of the other
* EM statuses.
* @param pVM The VM handle.
* @param pVCpu The VMCPU handle.
* @param pCtx The guest CPUM register context.
*/
static int emR3RawForcedActions(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
/*
* Note that the order is *vitally* important!
* Also note that SELMR3UpdateFromCPUM may trigger VM_FF_SELM_SYNC_TSS.
*/
/*
* Sync selector tables.
*/
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT))
{
int rc = SELMR3UpdateFromCPUM(pVM, pVCpu);
if (RT_FAILURE(rc))
return rc;
}
/*
* Sync IDT.
*
* The CSAMR3CheckGates call in TRPMR3SyncIDT may call PGMPrefetchPage
* and PGMShwModifyPage, so we're in for trouble if for instance a
* PGMSyncCR3+pgmPoolClearAll is pending.
*/
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TRPM_SYNC_IDT))
{
if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
&& EMIsRawRing0Enabled(pVM)
&& CSAMIsEnabled(pVM))
{
int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
if (RT_FAILURE(rc))
return rc;
}
int rc = TRPMR3SyncIDT(pVM, pVCpu);
if (RT_FAILURE(rc))
return rc;
}
/*
* Sync TSS.
*/
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
{
int rc = SELMR3SyncTSS(pVM, pVCpu);
if (RT_FAILURE(rc))
return rc;
}
/*
* Sync page directory.
*/
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
{
int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
if (RT_FAILURE(rc))
return rc;
Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT));
/* Prefetch pages for EIP and ESP. */
/** @todo This is rather expensive. Should investigate if it really helps at all. */
rc = PGMPrefetchPage(pVCpu, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->rip));
if (rc == VINF_SUCCESS)
rc = PGMPrefetchPage(pVCpu, SELMToFlat(pVM, DIS_SELREG_SS, CPUMCTX2CORE(pCtx), pCtx->rsp));
if (rc != VINF_SUCCESS)
{
if (rc != VINF_PGM_SYNC_CR3)
{
AssertLogRelMsgReturn(RT_FAILURE(rc), ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
return rc;
}
rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
if (RT_FAILURE(rc))
return rc;
}
/** @todo maybe prefetch the supervisor stack page as well */
Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT));
}
/*
* Allocate handy pages (just in case the above actions have consumed some pages).
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PGM_NEED_HANDY_PAGES, VM_FF_PGM_NO_MEMORY))
{
int rc = PGMR3PhysAllocateHandyPages(pVM);
if (RT_FAILURE(rc))
return rc;
}
/*
* Check whether we're out of memory now.
*
* This may stem from some of the above actions or operations that has been executed
* since we ran FFs. The allocate handy pages must for instance always be followed by
* this check.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
return VINF_EM_NO_MEMORY;
return VINF_SUCCESS;
}
/**
* Executes raw code.
*
* This function contains the raw-mode version of the inner
* execution loop (the outer loop being in EMR3ExecuteVM()).
*
* @returns VBox status code. The most important ones are: VINF_EM_RESCHEDULE,
* VINF_EM_RESCHEDULE_REM, VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param pfFFDone Where to store an indicator telling whether or not
* FFs were done before returning.
*/
static int emR3RawExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone)
{
STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatRAWTotal, a);
int rc = VERR_INTERNAL_ERROR;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
LogFlow(("emR3RawExecute: (cs:eip=%04x:%08x)\n", pCtx->cs, pCtx->eip));
pVCpu->em.s.fForceRAW = false;
*pfFFDone = false;
/*
*
* Spin till we get a forced action or raw mode status code resulting in
* in anything but VINF_SUCCESS or VINF_EM_RESCHEDULE_RAW.
*
*/
for (;;)
{
STAM_PROFILE_ADV_START(&pVCpu->em.s.StatRAWEntry, b);
/*
* Check various preconditions.
*/
#ifdef VBOX_STRICT
Assert(REMR3QueryPendingInterrupt(pVM, pVCpu) == REM_NO_PENDING_IRQ);
Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss & X86_SEL_RPL) == 3 || (pCtx->ss & X86_SEL_RPL) == 0);
AssertMsg( (pCtx->eflags.u32 & X86_EFL_IF)
|| PATMShouldUseRawMode(pVM, (RTGCPTR)pCtx->eip),
("Tried to execute code with IF at EIP=%08x!\n", pCtx->eip));
if ( !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
&& PGMMapHasConflicts(pVM))
{
PGMMapCheck(pVM);
AssertMsgFailed(("We should not get conflicts any longer!!!\n"));
return VERR_INTERNAL_ERROR;
}
#endif /* VBOX_STRICT */
/*
* Process high priority pre-execution raw-mode FFs.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK))
{
rc = emR3RawForcedActions(pVM, pVCpu, pCtx);
if (rc != VINF_SUCCESS)
break;
}
/*
* If we're going to execute ring-0 code, the guest state needs to
* be modified a bit and some of the state components (IF, SS/CS RPL,
* and perhaps EIP) needs to be stored with PATM.
*/
rc = CPUMRawEnter(pVCpu, NULL);
if (rc != VINF_SUCCESS)
{
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWEntry, b);
break;
}
/*
* Scan code before executing it. Don't bother with user mode or V86 code
*/
if ( (pCtx->ss & X86_SEL_RPL) <= 1
&& !pCtx->eflags.Bits.u1VM
&& !PATMIsPatchGCAddr(pVM, pCtx->eip))
{
STAM_PROFILE_ADV_SUSPEND(&pVCpu->em.s.StatRAWEntry, b);
CSAMR3CheckCodeEx(pVM, CPUMCTX2CORE(pCtx), pCtx->eip);
STAM_PROFILE_ADV_RESUME(&pVCpu->em.s.StatRAWEntry, b);
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK))
{
rc = emR3RawForcedActions(pVM, pVCpu, pCtx);
if (rc != VINF_SUCCESS)
{
rc = CPUMRawLeave(pVCpu, NULL, rc);
break;
}
}
}
#ifdef LOG_ENABLED
/*
* Log important stuff before entering GC.
*/
PPATMGCSTATE pGCState = PATMR3QueryGCStateHC(pVM);
if (pCtx->eflags.Bits.u1VM)
Log(("RV86: %04X:%08X IF=%d VMFlags=%x\n", pCtx->cs, pCtx->eip, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags));
else if ((pCtx->ss & X86_SEL_RPL) == 1)
{
bool fCSAMScanned = CSAMIsPageScanned(pVM, (RTGCPTR)pCtx->eip);
Log(("RR0: %08X ESP=%08X IF=%d VMFlags=%x PIF=%d CPL=%d (Scanned=%d)\n", pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags, pGCState->fPIF, (pCtx->ss & X86_SEL_RPL), fCSAMScanned));
}
else if ((pCtx->ss & X86_SEL_RPL) == 3)
Log(("RR3: %08X ESP=%08X IF=%d VMFlags=%x\n", pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags));
#endif /* LOG_ENABLED */
/*
* Execute the code.
*/
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWEntry, b);
STAM_PROFILE_START(&pVCpu->em.s.StatRAWExec, c);
rc = VMMR3RawRunGC(pVM, pVCpu);
STAM_PROFILE_STOP(&pVCpu->em.s.StatRAWExec, c);
STAM_PROFILE_ADV_START(&pVCpu->em.s.StatRAWTail, d);
LogFlow(("RR0-E: %08X ESP=%08X IF=%d VMFlags=%x PIF=%d CPL=%d\n", pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags, pGCState->fPIF, (pCtx->ss & X86_SEL_RPL)));
LogFlow(("VMMR3RawRunGC returned %Rrc\n", rc));
/*
* Restore the real CPU state and deal with high priority post
* execution FFs before doing anything else.
*/
rc = CPUMRawLeave(pVCpu, NULL, rc);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_MASK))
rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc);
#ifdef VBOX_STRICT
/*
* Assert TSS consistency & rc vs patch code.
*/
if ( !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_SELM_SYNC_GDT) /* GDT implies TSS at the moment. */
&& EMIsRawRing0Enabled(pVM))
SELMR3CheckTSS(pVM);
switch (rc)
{
case VINF_SUCCESS:
case VINF_EM_RAW_INTERRUPT:
case VINF_PATM_PATCH_TRAP_PF:
case VINF_PATM_PATCH_TRAP_GP:
case VINF_PATM_PATCH_INT3:
case VINF_PATM_CHECK_PATCH_PAGE:
case VINF_EM_RAW_EXCEPTION_PRIVILEGED:
case VINF_EM_RAW_GUEST_TRAP:
case VINF_EM_RESCHEDULE_RAW:
break;
default:
if (PATMIsPatchGCAddr(pVM, pCtx->eip) && !(pCtx->eflags.u32 & X86_EFL_TF))
LogIt(NULL, 0, LOG_GROUP_PATM, ("Patch code interrupted at %RRv for reason %Rrc\n", (RTRCPTR)CPUMGetGuestEIP(pVCpu), rc));
break;
}
/*
* Let's go paranoid!
*/
if ( !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
&& PGMMapHasConflicts(pVM))
{
PGMMapCheck(pVM);
AssertMsgFailed(("We should not get conflicts any longer!!! rc=%Rrc\n", rc));
return VERR_INTERNAL_ERROR;
}
#endif /* VBOX_STRICT */
/*
* Process the returned status code.
*/
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
{
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTail, d);
break;
}
rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc);
if (rc != VINF_SUCCESS)
{
rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc);
if (rc != VINF_SUCCESS)
{
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTail, d);
break;
}
}
/*
* Check and execute forced actions.
*/
#ifdef VBOX_HIGH_RES_TIMERS_HACK
TMTimerPollVoid(pVM, pVCpu);
#endif
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTail, d);
if ( VM_FF_ISPENDING(pVM, ~VM_FF_HIGH_PRIORITY_PRE_RAW_MASK | VM_FF_PGM_NO_MEMORY)
|| VMCPU_FF_ISPENDING(pVCpu, ~VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK))
{
Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss & X86_SEL_RPL) != 1);
STAM_REL_PROFILE_ADV_SUSPEND(&pVCpu->em.s.StatRAWTotal, a);
rc = emR3ForcedActions(pVM, pVCpu, rc);
STAM_REL_PROFILE_ADV_RESUME(&pVCpu->em.s.StatRAWTotal, a);
if ( rc != VINF_SUCCESS
&& rc != VINF_EM_RESCHEDULE_RAW)
{
rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc);
if (rc != VINF_SUCCESS)
{
*pfFFDone = true;
break;
}
}
}
}
/*
* Return to outer loop.
*/
#if defined(LOG_ENABLED) && defined(DEBUG)
RTLogFlush(NULL);
#endif
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTotal, a);
return rc;
}
/**
* Executes hardware accelerated raw code. (Intel VMX & AMD SVM)
*
* This function contains the raw-mode version of the inner
* execution loop (the outer loop being in EMR3ExecuteVM()).
*
* @returns VBox status code. The most important ones are: VINF_EM_RESCHEDULE, VINF_EM_RESCHEDULE_RAW,
* VINF_EM_RESCHEDULE_REM, VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param pfFFDone Where to store an indicator telling whether or not
* FFs were done before returning.
*/
static int emR3HwAccExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone)
{
int rc = VERR_INTERNAL_ERROR;
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
LogFlow(("emR3HwAccExecute%d: (cs:eip=%04x:%RGv)\n", pVCpu->idCpu, pCtx->cs, (RTGCPTR)pCtx->rip));
*pfFFDone = false;
STAM_COUNTER_INC(&pVCpu->em.s.StatHwAccExecuteEntry);
#ifdef EM_NOTIFY_HWACCM
HWACCMR3NotifyScheduled(pVCpu);
#endif
/*
* Spin till we get a forced action which returns anything but VINF_SUCCESS.
*/
for (;;)
{
STAM_PROFILE_ADV_START(&pVCpu->em.s.StatHwAccEntry, a);
/*
* Process high priority pre-execution raw-mode FFs.
*/
VMCPU_FF_CLEAR(pVCpu, (VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_TRPM_SYNC_IDT | VMCPU_FF_SELM_SYNC_TSS)); /* not relevant in HWACCM mode; shouldn't be set really. */
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK))
{
rc = emR3RawForcedActions(pVM, pVCpu, pCtx);
if (rc != VINF_SUCCESS)
break;
}
#ifdef LOG_ENABLED
/*
* Log important stuff before entering GC.
*/
if (TRPMHasTrap(pVCpu))
Log(("CPU%d: Pending hardware interrupt=0x%x cs:rip=%04X:%RGv\n", pVCpu->idCpu, TRPMGetTrapNo(pVCpu), pCtx->cs, (RTGCPTR)pCtx->rip));
uint32_t cpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx));
if (pVM->cCPUs == 1)
{
if (pCtx->eflags.Bits.u1VM)
Log(("HWV86: %08X IF=%d\n", pCtx->eip, pCtx->eflags.Bits.u1IF));
else if (CPUMIsGuestIn64BitCodeEx(pCtx))
Log(("HWR%d: %04X:%RGv ESP=%RGv IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->rsp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER));
else
Log(("HWR%d: %04X:%08X ESP=%08X IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pCtx->cs, pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER));
}
else
{
if (pCtx->eflags.Bits.u1VM)
Log(("HWV86-CPU%d: %08X IF=%d\n", pVCpu->idCpu, pCtx->eip, pCtx->eflags.Bits.u1IF));
else if (CPUMIsGuestIn64BitCodeEx(pCtx))
Log(("HWR%d-CPU%d: %04X:%RGv ESP=%RGv IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pVCpu->idCpu, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->rsp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER));
else
Log(("HWR%d-CPU%d: %04X:%08X ESP=%08X IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pVCpu->idCpu, pCtx->cs, pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER));
}
#endif /* LOG_ENABLED */
/*
* Execute the code.
*/
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatHwAccEntry, a);
STAM_PROFILE_START(&pVCpu->em.s.StatHwAccExec, x);
rc = VMMR3HwAccRunGC(pVM, pVCpu);
STAM_PROFILE_STOP(&pVCpu->em.s.StatHwAccExec, x);
/*
* Deal with high priority post execution FFs before doing anything else.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_MASK))
rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc);
/*
* Process the returned status code.
*/
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
break;
rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc);
if (rc != VINF_SUCCESS)
break;
/*
* Check and execute forced actions.
*/
#ifdef VBOX_HIGH_RES_TIMERS_HACK
TMTimerPollVoid(pVM, pVCpu);
#endif
if ( VM_FF_ISPENDING(pVM, VM_FF_ALL_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_MASK))
{
rc = emR3ForcedActions(pVM, pVCpu, rc);
if ( rc != VINF_SUCCESS
&& rc != VINF_EM_RESCHEDULE_HWACC)
{
*pfFFDone = true;
break;
}
}
}
/*
* Return to outer loop.
*/
#if defined(LOG_ENABLED) && defined(DEBUG)
RTLogFlush(NULL);
#endif
return rc;
}
/**
* Decides whether to execute RAW, HWACC or REM.
*
* @returns new EM state
* @param pVM The VM.
* @param pVCpu The VMCPU handle.
* @param pCtx The CPU context.
*/
static EMSTATE emR3Reschedule(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
{
/*
* When forcing raw-mode execution, things are simple.
*/
if (pVCpu->em.s.fForceRAW)
return EMSTATE_RAW;
/*
* We stay in the wait for SIPI state unless explicitly told otherwise.
*/
if (pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI)
return EMSTATE_WAIT_SIPI;
/* !!! THIS MUST BE IN SYNC WITH remR3CanExecuteRaw !!! */
/* !!! THIS MUST BE IN SYNC WITH remR3CanExecuteRaw !!! */
/* !!! THIS MUST BE IN SYNC WITH remR3CanExecuteRaw !!! */
X86EFLAGS EFlags = pCtx->eflags;
if (HWACCMIsEnabled(pVM))
{
/* Hardware accelerated raw-mode:
*
* Typically only 32-bits protected mode, with paging enabled, code is allowed here.
*/
if (HWACCMR3CanExecuteGuest(pVM, pCtx) == true)
return EMSTATE_HWACC;
/* Note: Raw mode and hw accelerated mode are incompatible. The latter turns
* off monitoring features essential for raw mode! */
return EMSTATE_REM;
}
/*
* Standard raw-mode:
*
* Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
* or 32 bits protected mode ring 0 code
*
* The tests are ordered by the likelyhood of being true during normal execution.
*/
if (EFlags.u32 & (X86_EFL_TF /* | HF_INHIBIT_IRQ_MASK*/))
{
Log2(("raw mode refused: EFlags=%#x\n", EFlags.u32));
return EMSTATE_REM;
}
#ifndef VBOX_RAW_V86
if (EFlags.u32 & X86_EFL_VM) {
Log2(("raw mode refused: VM_MASK\n"));
return EMSTATE_REM;
}
#endif
/** @todo check up the X86_CR0_AM flag in respect to raw mode!!! We're probably not emulating it right! */
uint32_t u32CR0 = pCtx->cr0;
if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
{
//Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
return EMSTATE_REM;
}
if (pCtx->cr4 & X86_CR4_PAE)
{
uint32_t u32Dummy, u32Features;
CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
return EMSTATE_REM;
}
unsigned uSS = pCtx->ss;
if ( pCtx->eflags.Bits.u1VM
|| (uSS & X86_SEL_RPL) == 3)
{
if (!EMIsRawRing3Enabled(pVM))
return EMSTATE_REM;
if (!(EFlags.u32 & X86_EFL_IF))
{
Log2(("raw mode refused: IF (RawR3)\n"));
return EMSTATE_REM;
}
if (!(u32CR0 & X86_CR0_WP) && EMIsRawRing0Enabled(pVM))
{
Log2(("raw mode refused: CR0.WP + RawR0\n"));
return EMSTATE_REM;
}
}
else
{
if (!EMIsRawRing0Enabled(pVM))
return EMSTATE_REM;
/* Only ring 0 supervisor code. */
if ((uSS & X86_SEL_RPL) != 0)
{
Log2(("raw r0 mode refused: CPL %d\n", uSS & X86_SEL_RPL));
return EMSTATE_REM;
}
// Let's start with pure 32 bits ring 0 code first
/** @todo What's pure 32-bit mode? flat? */
if ( !(pCtx->ssHid.Attr.n.u1DefBig)
|| !(pCtx->csHid.Attr.n.u1DefBig))
{
Log2(("raw r0 mode refused: SS/CS not 32bit\n"));
return EMSTATE_REM;
}
/* Write protection must be turned on, or else the guest can overwrite our hypervisor code and data. */
if (!(u32CR0 & X86_CR0_WP))
{
Log2(("raw r0 mode refused: CR0.WP=0!\n"));
return EMSTATE_REM;
}
if (PATMShouldUseRawMode(pVM, (RTGCPTR)pCtx->eip))
{
Log2(("raw r0 mode forced: patch code\n"));
return EMSTATE_RAW;
}
#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
if (!(EFlags.u32 & X86_EFL_IF))
{
////Log2(("R0: IF=0 VIF=%d %08X\n", eip, pVMeflags));
//Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
return EMSTATE_REM;
}
#endif
/** @todo still necessary??? */
if (EFlags.Bits.u2IOPL != 0)
{
Log2(("raw r0 mode refused: IOPL %d\n", EFlags.Bits.u2IOPL));
return EMSTATE_REM;
}
}
Assert(PGMPhysIsA20Enabled(pVCpu));
return EMSTATE_RAW;
}
/**
* Executes all high priority post execution force actions.
*
* @returns rc or a fatal status code.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param rc The current rc.
*/
static int emR3HighPriorityPostForcedActions(PVM pVM, PVMCPU pVCpu, int rc)
{
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
PDMCritSectFF(pVCpu);
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_CSAM_PENDING_ACTION))
CSAMR3DoPendingAction(pVM, pVCpu);
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
if ( rc > VINF_EM_NO_MEMORY
&& rc <= VINF_EM_LAST)
rc = VINF_EM_NO_MEMORY;
}
return rc;
}
/**
* Executes all pending forced actions.
*
* Forced actions can cause execution delays and execution
* rescheduling. The first we deal with using action priority, so
* that for instance pending timers aren't scheduled and ran until
* right before execution. The rescheduling we deal with using
* return codes. The same goes for VM termination, only in that case
* we exit everything.
*
* @returns VBox status code of equal or greater importance/severity than rc.
* The most important ones are: VINF_EM_RESCHEDULE,
* VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE.
*
* @param pVM VM handle.
* @param pVCpu VMCPU handle.
* @param rc The current rc.
*
*/
static int emR3ForcedActions(PVM pVM, PVMCPU pVCpu, int rc)
{
STAM_REL_PROFILE_START(&pVCpu->em.s.StatForcedActions, a);
#ifdef VBOX_STRICT
int rcIrq = VINF_SUCCESS;
#endif
int rc2;
#define UPDATE_RC() \
do { \
AssertMsg(rc2 <= 0 || (rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST), ("Invalid FF return code: %Rra\n", rc2)); \
if (rc2 == VINF_SUCCESS || rc < VINF_SUCCESS) \
break; \
if (!rc || rc2 < rc) \
rc = rc2; \
} while (0)
/*
* Post execution chunk first.
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_NORMAL_PRIORITY_POST_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_NORMAL_PRIORITY_POST_MASK))
{
/*
* Termination request.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_TERMINATE))
{
Log2(("emR3ForcedActions: returns VINF_EM_TERMINATE\n"));
STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a);
return VINF_EM_TERMINATE;
}
/*
* Debugger Facility polling.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_DBGF))
{
rc2 = DBGFR3VMMForcedAction(pVM);
UPDATE_RC();
}
/*
* Postponed reset request.
*/
if (VM_FF_TESTANDCLEAR(pVM, VM_FF_RESET_BIT))
{
rc2 = VMR3Reset(pVM);
UPDATE_RC();
}
/*
* CSAM page scanning.
*/
if ( !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)
&& VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_CSAM_SCAN_PAGE))
{
PCPUMCTX pCtx = pVCpu->em.s.pCtx;
/** @todo: check for 16 or 32 bits code! (D bit in the code selector) */
Log(("Forced action VMCPU_FF_CSAM_SCAN_PAGE\n"));
CSAMR3CheckCodeEx(pVM, CPUMCTX2CORE(pCtx), pCtx->eip);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_CSAM_SCAN_PAGE);
}
/*
* Out of memory? Putting this after CSAM as it may in theory cause us to run out of memory.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
rc2 = PGMR3PhysAllocateHandyPages(pVM);
UPDATE_RC();
if (rc == VINF_EM_NO_MEMORY)
return rc;
}
/* check that we got them all */
AssertCompile(VM_FF_NORMAL_PRIORITY_POST_MASK == (VM_FF_TERMINATE | VM_FF_DBGF | VM_FF_RESET | VM_FF_PGM_NO_MEMORY));
AssertCompile(VMCPU_FF_NORMAL_PRIORITY_POST_MASK == VMCPU_FF_CSAM_SCAN_PAGE);
}
/*
* Normal priority then.
* (Executed in no particular order.)
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_NORMAL_PRIORITY_MASK, VM_FF_PGM_NO_MEMORY))
{
/*
* PDM Queues are pending.
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PDM_QUEUES, VM_FF_PGM_NO_MEMORY))
PDMR3QueueFlushAll(pVM);
/*
* PDM DMA transfers are pending.
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PDM_DMA, VM_FF_PGM_NO_MEMORY))
PDMR3DmaRun(pVM);
/*
* Requests from other threads.
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_REQUEST, VM_FF_PGM_NO_MEMORY))
{
rc2 = VMR3ReqProcessU(pVM->pUVM, VMCPUID_ANY);
if (rc2 == VINF_EM_OFF || rc2 == VINF_EM_TERMINATE)
{
Log2(("emR3ForcedActions: returns %Rrc\n", rc2));
STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a);
return rc2;
}
UPDATE_RC();
}
/* Replay the handler notification changes. */
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_REM_HANDLER_NOTIFY, VM_FF_PGM_NO_MEMORY))
{
emR3RemLock(pVM);
REMR3ReplayHandlerNotifications(pVM);
emR3RemUnlock(pVM);
}
/* check that we got them all */
AssertCompile(VM_FF_NORMAL_PRIORITY_MASK == (VM_FF_REQUEST | VM_FF_PDM_QUEUES | VM_FF_PDM_DMA | VM_FF_REM_HANDLER_NOTIFY));
}
/*
* Normal priority then. (per-VCPU)
* (Executed in no particular order.)
*/
if ( !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)
&& VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_NORMAL_PRIORITY_MASK))
{
/*
* Requests from other threads.
*/
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
{
rc2 = VMR3ReqProcessU(pVM->pUVM, pVCpu->idCpu);
if (rc2 == VINF_EM_OFF || rc2 == VINF_EM_TERMINATE)
{
Log2(("emR3ForcedActions: returns %Rrc\n", rc2));
STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a);
return rc2;
}
UPDATE_RC();
}
/* check that we got them all */
Assert(!(VMCPU_FF_NORMAL_PRIORITY_MASK & ~(VMCPU_FF_REQUEST)));
}
/*
* High priority pre execution chunk last.
* (Executed in ascending priority order.)
*/
if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_MASK))
{
/*
* Timers before interrupts.
*/
if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TIMER)
&& !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
TMR3TimerQueuesDo(pVM);
/*
* The instruction following an emulated STI should *always* be executed!
*/
if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
&& !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
Log(("VM_FF_EMULATED_STI at %RGv successor %RGv\n", (RTGCPTR)CPUMGetGuestRIP(pVCpu), EMGetInhibitInterruptsPC(pVCpu)));
if (CPUMGetGuestEIP(pVCpu) != EMGetInhibitInterruptsPC(pVCpu))
{
/* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here if the eip is the same as the inhibited instr address.
* Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
* force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
* break the guest. Sounds very unlikely, but such timing sensitive problem are not as rare as you might think.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
}
if (HWACCMR3IsActive(pVCpu))
rc2 = VINF_EM_RESCHEDULE_HWACC;
else
rc2 = PATMAreInterruptsEnabled(pVM) ? VINF_EM_RESCHEDULE_RAW : VINF_EM_RESCHEDULE_REM;
UPDATE_RC();
}
/*
* Interrupts.
*/
if ( !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)
&& !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
&& (!rc || rc >= VINF_EM_RESCHEDULE_HWACC)
&& !TRPMHasTrap(pVCpu) /* an interrupt could already be scheduled for dispatching in the recompiler. */
&& PATMAreInterruptsEnabled(pVM)
&& !HWACCMR3IsEventPending(pVM))
{
if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
{
/* Note: it's important to make sure the return code from TRPMR3InjectEvent isn't ignored! */
/** @todo this really isn't nice, should properly handle this */
rc2 = TRPMR3InjectEvent(pVM, pVCpu, TRPM_HARDWARE_INT);
#ifdef VBOX_STRICT
rcIrq = rc2;
#endif
UPDATE_RC();
}
/** @todo really ugly; if we entered the hlt state when exiting the recompiler and an interrupt was pending, we previously got stuck in the halted state. */
else if (REMR3QueryPendingInterrupt(pVM, pVCpu) != REM_NO_PENDING_IRQ)
{
rc2 = VINF_EM_RESCHEDULE_REM;
UPDATE_RC();
}
}
/*
* Allocate handy pages.
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PGM_NEED_HANDY_PAGES, VM_FF_PGM_NO_MEMORY))
{
rc2 = PGMR3PhysAllocateHandyPages(pVM);
UPDATE_RC();
}
/*
* Debugger Facility request.
*/
if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_DBGF, VM_FF_PGM_NO_MEMORY))
{
rc2 = DBGFR3VMMForcedAction(pVM);
UPDATE_RC();
}
/*
* Termination request.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_TERMINATE))
{
Log2(("emR3ForcedActions: returns VINF_EM_TERMINATE\n"));
STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a);
return VINF_EM_TERMINATE;
}
/*
* Out of memory? Since most of our fellow high priority actions may cause us
* to run out of memory, we're employing VM_FF_IS_PENDING_EXCEPT and putting this
* at the end rather than the start. Also, VM_FF_TERMINATE has higher priority
* than us since we can terminate without allocating more memory.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
{
rc2 = PGMR3PhysAllocateHandyPages(pVM);
UPDATE_RC();
if (rc == VINF_EM_NO_MEMORY)
return rc;
}
/*
* If the virtual sync clock is still stopped, make TM restart it.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_TM_VIRTUAL_SYNC))
TMR3VirtualSyncFF(pVM, pVCpu);
#ifdef DEBUG
/*
* Debug, pause the VM.
*/
if (VM_FF_ISPENDING(pVM, VM_FF_DEBUG_SUSPEND))
{
VM_FF_CLEAR(pVM, VM_FF_DEBUG_SUSPEND);
Log(("emR3ForcedActions: returns VINF_EM_SUSPEND\n"));
return VINF_EM_SUSPEND;
}
#endif
/* check that we got them all */
AssertCompile(VM_FF_HIGH_PRIORITY_PRE_MASK == (VM_FF_TM_VIRTUAL_SYNC | VM_FF_DBGF | VM_FF_TERMINATE | VM_FF_DEBUG_SUSPEND | VM_FF_PGM_NEED_HANDY_PAGES | VM_FF_PGM_NO_MEMORY));
AssertCompile(VMCPU_FF_HIGH_PRIORITY_PRE_MASK == (VMCPU_FF_TIMER | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_TRPM_SYNC_IDT | VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_INHIBIT_INTERRUPTS));
}
#undef UPDATE_RC
Log2(("emR3ForcedActions: returns %Rrc\n", rc));
STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a);
Assert(rcIrq == VINF_SUCCESS || rcIrq == rc);
return rc;
}
/**
* Release the IOM lock if owned by the current VCPU
*
* @param pVM The VM to operate on.
*/
VMMR3DECL(void) EMR3ReleaseOwnedLocks(PVM pVM)
{
while (PDMCritSectIsOwner(&pVM->em.s.CritSectREM))
PDMCritSectLeave(&pVM->em.s.CritSectREM);
}
/**
* Execute VM.
*
* This function is the main loop of the VM. The emulation thread
* calls this function when the VM has been successfully constructed
* and we're ready for executing the VM.
*
* Returning from this function means that the VM is turned off or
* suspended (state already saved) and deconstruction in next in line.
*
* All interaction from other thread are done using forced actions
* and signaling of the wait object.
*
* @returns VBox status code, informational status codes may indicate failure.
* @param pVM The VM to operate on.
* @param pVCpu The VMCPU to operate on.
*/
VMMR3DECL(int) EMR3ExecuteVM(PVM pVM, PVMCPU pVCpu)
{
LogFlow(("EMR3ExecuteVM: pVM=%p enmVMState=%d enmState=%d (%s) fForceRAW=%d\n", pVM, pVM->enmVMState,
pVCpu->em.s.enmState, EMR3GetStateName(pVCpu->em.s.enmState), pVCpu->em.s.fForceRAW));
VM_ASSERT_EMT(pVM);
Assert(pVCpu->em.s.enmState == EMSTATE_NONE || pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI || pVCpu->em.s.enmState == EMSTATE_SUSPENDED);
int rc = setjmp(pVCpu->em.s.u.FatalLongJump);
if (rc == 0)
{
/*
* Start the virtual time.
*/
TMR3NotifyResume(pVM, pVCpu);
/*
* The Outer Main Loop.
*/
bool fFFDone = false;
/* Reschedule right away to start in the right state. */
rc = VINF_SUCCESS;
if ( pVCpu->em.s.enmState == EMSTATE_SUSPENDED
&& ( pVCpu->em.s.enmPrevState == EMSTATE_WAIT_SIPI
|| pVCpu->em.s.enmPrevState == EMSTATE_HALTED))
{
/* Pause->Resume: Restore the old wait state or else we'll start executing code. */
pVCpu->em.s.enmState = pVCpu->em.s.enmPrevState;
}
else
pVCpu->em.s.enmState = emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx);
STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatTotal, x);
for (;;)
{
/*
* Before we can schedule anything (we're here because
* scheduling is required) we must service any pending
* forced actions to avoid any pending action causing
* immediate rescheduling upon entering an inner loop
*
* Do forced actions.
*/
if ( !fFFDone
&& rc != VINF_EM_TERMINATE
&& rc != VINF_EM_OFF
&& ( VM_FF_ISPENDING(pVM, VM_FF_ALL_BUT_RAW_MASK)
|| VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_BUT_RAW_MASK)))
{
rc = emR3ForcedActions(pVM, pVCpu, rc);
if ( ( rc == VINF_EM_RESCHEDULE_REM
|| rc == VINF_EM_RESCHEDULE_HWACC)
&& pVCpu->em.s.fForceRAW)
rc = VINF_EM_RESCHEDULE_RAW;
}
else if (fFFDone)
fFFDone = false;
/*
* Now what to do?
*/
Log2(("EMR3ExecuteVM: rc=%Rrc\n", rc));
switch (rc)
{
/*
* Keep doing what we're currently doing.
*/
case VINF_SUCCESS:
break;
/*
* Reschedule - to raw-mode execution.
*/
case VINF_EM_RESCHEDULE_RAW:
Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_RAW: %d -> %d (EMSTATE_RAW)\n", pVCpu->em.s.enmState, EMSTATE_RAW));
pVCpu->em.s.enmState = EMSTATE_RAW;
break;
/*
* Reschedule - to hardware accelerated raw-mode execution.
*/
case VINF_EM_RESCHEDULE_HWACC:
Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_HWACC: %d -> %d (EMSTATE_HWACC)\n", pVCpu->em.s.enmState, EMSTATE_HWACC));
Assert(!pVCpu->em.s.fForceRAW);
pVCpu->em.s.enmState = EMSTATE_HWACC;
break;
/*
* Reschedule - to recompiled execution.
*/
case VINF_EM_RESCHEDULE_REM:
Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_REM: %d -> %d (EMSTATE_REM)\n", pVCpu->em.s.enmState, EMSTATE_REM));
pVCpu->em.s.enmState = EMSTATE_REM;
break;
#ifdef VBOX_WITH_VMI
/*
* Reschedule - parav call.
*/
case VINF_EM_RESCHEDULE_PARAV:
Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_PARAV: %d -> %d (EMSTATE_PARAV)\n", pVCpu->em.s.enmState, EMSTATE_PARAV));
pVCpu->em.s.enmState = EMSTATE_PARAV;
break;
#endif
/*
* Resume.
*/
case VINF_EM_RESUME:
Log2(("EMR3ExecuteVM: VINF_EM_RESUME: %d -> VINF_EM_RESCHEDULE\n", pVCpu->em.s.enmState));
/* Don't reschedule in the halted or wait for SIPI case. */
if ( pVCpu->em.s.enmPrevState == EMSTATE_WAIT_SIPI
|| pVCpu->em.s.enmPrevState == EMSTATE_HALTED)
break;
/* fall through and get scheduled. */
/*
* Reschedule.
*/
case VINF_EM_RESCHEDULE:
{
EMSTATE enmState = emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx);
Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE: %d -> %d (%s)\n", pVCpu->em.s.enmState, enmState, EMR3GetStateName(enmState)));
pVCpu->em.s.enmState = enmState;
break;
}
/*
* Halted.
*/
case VINF_EM_HALT:
Log2(("EMR3ExecuteVM: VINF_EM_HALT: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_HALTED));
pVCpu->em.s.enmState = EMSTATE_HALTED;
break;
/*
* Switch to the wait for SIPI state (application processor only)
*/
case VINF_EM_WAIT_SIPI:
Assert(pVCpu->idCpu != 0);
Log2(("EMR3ExecuteVM: VINF_EM_WAIT_SIPI: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_WAIT_SIPI));
pVCpu->em.s.enmState = EMSTATE_WAIT_SIPI;
break;
/*
* Suspend.
*/
case VINF_EM_SUSPEND:
Log2(("EMR3ExecuteVM: VINF_EM_SUSPEND: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_SUSPENDED));
pVCpu->em.s.enmPrevState = pVCpu->em.s.enmState;
pVCpu->em.s.enmState = EMSTATE_SUSPENDED;
break;
/*
* Reset.
* We might end up doing a double reset for now, we'll have to clean up the mess later.
*/
case VINF_EM_RESET:
{
if (pVCpu->idCpu == 0)
{
EMSTATE enmState = emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx);
Log2(("EMR3ExecuteVM: VINF_EM_RESET: %d -> %d (%s)\n", pVCpu->em.s.enmState, enmState, EMR3GetStateName(enmState)));
pVCpu->em.s.enmState = enmState;
}
else
{
/* All other VCPUs go into the wait for SIPI state. */
pVCpu->em.s.enmState = EMSTATE_WAIT_SIPI;
}
break;
}
/*
* Power Off.
*/
case VINF_EM_OFF:
pVCpu->em.s.enmState = EMSTATE_TERMINATING;
Log2(("EMR3ExecuteVM: returns VINF_EM_OFF (%d -> %d)\n", pVCpu->em.s.enmState, EMSTATE_TERMINATING));
TMR3NotifySuspend(pVM, pVCpu);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
return rc;
/*
* Terminate the VM.
*/
case VINF_EM_TERMINATE:
pVCpu->em.s.enmState = EMSTATE_TERMINATING;
Log(("EMR3ExecuteVM returns VINF_EM_TERMINATE (%d -> %d)\n", pVCpu->em.s.enmState, EMSTATE_TERMINATING));
TMR3NotifySuspend(pVM, pVCpu);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
return rc;
/*
* Out of memory, suspend the VM and stuff.
*/
case VINF_EM_NO_MEMORY:
Log2(("EMR3ExecuteVM: VINF_EM_NO_MEMORY: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_SUSPENDED));
pVCpu->em.s.enmState = EMSTATE_SUSPENDED;
TMR3NotifySuspend(pVM, pVCpu);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
rc = VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_SUSPEND, "HostMemoryLow",
N_("Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM"));
if (rc != VINF_EM_SUSPEND)
{
if (RT_SUCCESS_NP(rc))
{
AssertLogRelMsgFailed(("%Rrc\n", rc));
rc = VERR_EM_INTERNAL_ERROR;
}
pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION;
}
return rc;
/*
* Guest debug events.
*/
case VINF_EM_DBG_STEPPED:
AssertMsgFailed(("VINF_EM_DBG_STEPPED cannot be here!"));
case VINF_EM_DBG_STOP:
case VINF_EM_DBG_BREAKPOINT:
case VINF_EM_DBG_STEP:
if (pVCpu->em.s.enmState == EMSTATE_RAW)
{
Log2(("EMR3ExecuteVM: %Rrc: %d -> %d\n", rc, pVCpu->em.s.enmState, EMSTATE_DEBUG_GUEST_RAW));
pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_RAW;
}
else
{
Log2(("EMR3ExecuteVM: %Rrc: %d -> %d\n", rc, pVCpu->em.s.enmState, EMSTATE_DEBUG_GUEST_REM));
pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_REM;
}
break;
/*
* Hypervisor debug events.
*/
case VINF_EM_DBG_HYPER_STEPPED:
case VINF_EM_DBG_HYPER_BREAKPOINT:
case VINF_EM_DBG_HYPER_ASSERTION:
Log2(("EMR3ExecuteVM: %Rrc: %d -> %d\n", rc, pVCpu->em.s.enmState, EMSTATE_DEBUG_HYPER));
pVCpu->em.s.enmState = EMSTATE_DEBUG_HYPER;
break;
/*
* Guru mediations.
*/
case VERR_VMM_RING0_ASSERTION:
Log(("EMR3ExecuteVM: %Rrc: %d -> %d (EMSTATE_GURU_MEDITATION)\n", rc, pVCpu->em.s.enmState, EMSTATE_GURU_MEDITATION));
pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION;
break;
/*
* Any error code showing up here other than the ones we
* know and process above are considered to be FATAL.
*
* Unknown warnings and informational status codes are also
* included in this.
*/
default:
if (RT_SUCCESS_NP(rc))
{
AssertMsgFailed(("Unexpected warning or informational status code %Rra!\n", rc));
rc = VERR_EM_INTERNAL_ERROR;
}
pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION;
Log(("EMR3ExecuteVM returns %d\n", rc));
break;
}
STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); /* (skip this in release) */
STAM_PROFILE_ADV_START(&pVCpu->em.s.StatTotal, x);
/*
* Act on the state.
*/
switch (pVCpu->em.s.enmState)
{
/*
* Execute raw.
*/
case EMSTATE_RAW:
rc = emR3RawExecute(pVM, pVCpu, &fFFDone);
break;
/*
* Execute hardware accelerated raw.
*/
case EMSTATE_HWACC:
rc = emR3HwAccExecute(pVM, pVCpu, &fFFDone);
break;
/*
* Execute recompiled.
*/
case EMSTATE_REM:
rc = emR3RemExecute(pVM, pVCpu, &fFFDone);
Log2(("EMR3ExecuteVM: emR3RemExecute -> %Rrc\n", rc));
break;
#ifdef VBOX_WITH_VMI
/*
* Execute PARAV function.
*/
case EMSTATE_PARAV:
rc = PARAVCallFunction(pVM);
pVCpu->em.s.enmState = EMSTATE_REM;
break;
#endif
/*
* Application processor execution halted until SIPI.
*/
case EMSTATE_WAIT_SIPI:
/* no break */
/*
* hlt - execution halted until interrupt.
*/
case EMSTATE_HALTED:
{
STAM_REL_PROFILE_START(&pVCpu->em.s.StatHalted, y);
rc = VMR3WaitHalted(pVM, pVCpu, !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF));
STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatHalted, y);
break;
}
/*
* Suspended - return to VM.cpp.
*/
case EMSTATE_SUSPENDED:
TMR3NotifySuspend(pVM, pVCpu);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
return VINF_EM_SUSPEND;
/*
* Debugging in the guest.
*/
case EMSTATE_DEBUG_GUEST_REM:
case EMSTATE_DEBUG_GUEST_RAW:
TMR3NotifySuspend(pVM, pVCpu);
rc = emR3Debug(pVM, pVCpu, rc);
TMR3NotifyResume(pVM, pVCpu);
Log2(("EMR3ExecuteVM: enmr3Debug -> %Rrc (state %d)\n", rc, pVCpu->em.s.enmState));
break;
/*
* Debugging in the hypervisor.
*/
case EMSTATE_DEBUG_HYPER:
{
TMR3NotifySuspend(pVM, pVCpu);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
rc = emR3Debug(pVM, pVCpu, rc);
Log2(("EMR3ExecuteVM: enmr3Debug -> %Rrc (state %d)\n", rc, pVCpu->em.s.enmState));
if (rc != VINF_SUCCESS)
{
/* switch to guru meditation mode */
pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION;
VMMR3FatalDump(pVM, pVCpu, rc);
return rc;
}
STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatTotal, x);
TMR3NotifyResume(pVM, pVCpu);
break;
}
/*
* Guru meditation takes place in the debugger.
*/
case EMSTATE_GURU_MEDITATION:
{
TMR3NotifySuspend(pVM, pVCpu);
VMMR3FatalDump(pVM, pVCpu, rc);
emR3Debug(pVM, pVCpu, rc);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
return rc;
}
/*
* The states we don't expect here.
*/
case EMSTATE_NONE:
case EMSTATE_TERMINATING:
default:
AssertMsgFailed(("EMR3ExecuteVM: Invalid state %d!\n", pVCpu->em.s.enmState));
pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION;
TMR3NotifySuspend(pVM, pVCpu);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
return VERR_EM_INTERNAL_ERROR;
}
} /* The Outer Main Loop */
}
else
{
/*
* Fatal error.
*/
LogFlow(("EMR3ExecuteVM: returns %Rrc (longjmp / fatal error)\n", rc));
TMR3NotifySuspend(pVM, pVCpu);
VMMR3FatalDump(pVM, pVCpu, rc);
emR3Debug(pVM, pVCpu, rc);
STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x);
/** @todo change the VM state! */
return rc;
}
/* (won't ever get here). */
AssertFailed();
}