CPUM.cpp revision db6deed75647a7da717a424ca0b9cd9f3829c418
/* $Id$ */
/** @file
* CPUM - CPU Monitor / Manager.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/** @page pg_cpum CPUM - CPU Monitor / Manager
*
* The CPU Monitor / Manager keeps track of all the CPU registers. It is
* also responsible for lazy FPU handling and some of the context loading
* in raw mode.
*
* There are three CPU contexts, the most important one is the guest one (GC).
* When running in raw-mode (RC) there is a special hyper context for the VMM
* part that floats around inside the guest address space. When running in
* raw-mode, CPUM also maintains a host context for saving and restoring
* registers accross world switches. This latter is done in cooperation with the
* world switcher (@see pg_vmm).
*
* @see grp_cpum
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_CPUM
#include <VBox/cpum.h>
#include <VBox/cpumdis.h>
#include <VBox/pgm.h>
#include <VBox/pdm.h>
#include <VBox/mm.h>
#include <VBox/selm.h>
#include <VBox/dbgf.h>
#include <VBox/patm.h>
#include <VBox/ssm.h>
#include "CPUMInternal.h"
#include <VBox/vm.h>
#include <VBox/param.h>
#include <VBox/dis.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <iprt/mp.h>
#include <iprt/cpuset.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The saved state version. */
#define CPUM_SAVED_STATE_VERSION 8
/** The saved state version of 1.6, used for backwards compatability. */
#define CPUM_SAVED_STATE_VERSION_VER1_6 6
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* What kind of cpu info dump to perform.
*/
typedef enum CPUMDUMPTYPE
{
CPUMDUMPTYPE_TERSE,
CPUMDUMPTYPE_DEFAULT,
CPUMDUMPTYPE_VERBOSE
} CPUMDUMPTYPE;
/** Pointer to a cpu info dump type. */
typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static int cpumR3CpuIdInit(PVM pVM);
static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
/**
* Initializes the CPUM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) CPUMR3Init(PVM pVM)
{
LogFlow(("CPUMR3Init\n"));
/*
* Assert alignment and sizes.
*/
AssertRelease(!(RT_OFFSETOF(VM, cpum.s) & 31));
AssertRelease(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
/*
* Setup any fixed pointers and offsets.
*/
pVM->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVM->cpum.s.Hyper);
pVM->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVM->cpum.s.Hyper));
/* Hidden selector registers are invalid by default. */
pVM->cpum.s.fValidHiddenSelRegs = false;
/*
* Check that the CPU supports the minimum features we require.
*/
if (!ASMHasCpuId())
{
Log(("The CPU doesn't support CPUID!\n"));
return VERR_UNSUPPORTED_CPU;
}
ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
/* Setup the CR4 AND and OR masks used in the switcher */
/* Depends on the presence of FXSAVE(SSE) support on the host CPU */
if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
{
Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
/* No FXSAVE implies no SSE */
pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
pVM->cpum.s.CR4.OrMask = 0;
}
else
{
pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
}
if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
{
Log(("The CPU doesn't support MMX!\n"));
return VERR_UNSUPPORTED_CPU;
}
if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
{
Log(("The CPU doesn't support TSC!\n"));
return VERR_UNSUPPORTED_CPU;
}
/* Bogus on AMD? */
if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
/*
* Setup hypervisor startup values.
*/
/*
* Register saved state data item.
*/
int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
NULL, cpumR3Save, NULL,
NULL, cpumR3Load, NULL);
if (VBOX_FAILURE(rc))
return rc;
/* Query the CPU manufacturer. */
uint32_t uEAX, uEBX, uECX, uEDX;
ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
if ( uEAX >= 1
&& uEBX == X86_CPUID_VENDOR_AMD_EBX
&& uECX == X86_CPUID_VENDOR_AMD_ECX
&& uEDX == X86_CPUID_VENDOR_AMD_EDX)
pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_AMD;
else if ( uEAX >= 1
&& uEBX == X86_CPUID_VENDOR_INTEL_EBX
&& uECX == X86_CPUID_VENDOR_INTEL_ECX
&& uEDX == X86_CPUID_VENDOR_INTEL_EDX)
pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_INTEL;
else /** @todo Via */
pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_UNKNOWN;
/*
* Register info handlers.
*/
DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
/*
* Initialize the Guest CPU state.
*/
rc = cpumR3CpuIdInit(pVM);
if (VBOX_FAILURE(rc))
return rc;
CPUMR3Reset(pVM);
return VINF_SUCCESS;
}
/**
* Initializes the per-VCPU CPUM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
{
LogFlow(("CPUMR3InitCPU\n"));
return VINF_SUCCESS;
}
/**
* Initializes the emulated CPU's cpuid information.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
static int cpumR3CpuIdInit(PVM pVM)
{
PCPUM pCPUM = &pVM->cpum.s;
uint32_t i;
/*
* Get the host CPUIDs.
*/
for (i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
ASMCpuId_Idx_ECX(i, 0,
&pCPUM->aGuestCpuIdStd[i].eax, &pCPUM->aGuestCpuIdStd[i].ebx,
&pCPUM->aGuestCpuIdStd[i].ecx, &pCPUM->aGuestCpuIdStd[i].edx);
for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
ASMCpuId(0x80000000 + i,
&pCPUM->aGuestCpuIdExt[i].eax, &pCPUM->aGuestCpuIdExt[i].ebx,
&pCPUM->aGuestCpuIdExt[i].ecx, &pCPUM->aGuestCpuIdExt[i].edx);
for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
ASMCpuId(0xc0000000 + i,
&pCPUM->aGuestCpuIdCentaur[i].eax, &pCPUM->aGuestCpuIdCentaur[i].ebx,
&pCPUM->aGuestCpuIdCentaur[i].ecx, &pCPUM->aGuestCpuIdCentaur[i].edx);
/*
* Only report features we can support.
*/
pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
| X86_CPUID_FEATURE_EDX_VME
| X86_CPUID_FEATURE_EDX_DE
| X86_CPUID_FEATURE_EDX_PSE
| X86_CPUID_FEATURE_EDX_TSC
| X86_CPUID_FEATURE_EDX_MSR
//| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
| X86_CPUID_FEATURE_EDX_MCE
| X86_CPUID_FEATURE_EDX_CX8
//| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
/** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
//| X86_CPUID_FEATURE_EDX_SEP
| X86_CPUID_FEATURE_EDX_MTRR
| X86_CPUID_FEATURE_EDX_PGE
| X86_CPUID_FEATURE_EDX_MCA
| X86_CPUID_FEATURE_EDX_CMOV
| X86_CPUID_FEATURE_EDX_PAT
| X86_CPUID_FEATURE_EDX_PSE36
//| X86_CPUID_FEATURE_EDX_PSN - no serial number.
| X86_CPUID_FEATURE_EDX_CLFSH
//| X86_CPUID_FEATURE_EDX_DS - no debug store.
//| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
| X86_CPUID_FEATURE_EDX_MMX
| X86_CPUID_FEATURE_EDX_FXSR
| X86_CPUID_FEATURE_EDX_SSE
| X86_CPUID_FEATURE_EDX_SSE2
//| X86_CPUID_FEATURE_EDX_SS - no self snoop.
//| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
//| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
//| X86_CPUID_FEATURE_EDX_PBE - no pneding break enabled.
| 0;
pCPUM->aGuestCpuIdStd[1].ecx &= 0//X86_CPUID_FEATURE_ECX_SSE3 - not supported by the recompiler yet.
| X86_CPUID_FEATURE_ECX_MONITOR
//| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
//| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
//| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
//| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
//| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
/* ECX Bit 13 - CX16 - CMPXCHG16B. */
//| X86_CPUID_FEATURE_ECX_CX16
/* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
//| X86_CPUID_FEATURE_ECX_TPRUPDATE
/* ECX Bit 21 - x2APIC support - not yet. */
// | X86_CPUID_FEATURE_ECX_X2APIC
/* ECX Bit 23 - POPCOUNT instruction. */
//| X86_CPUID_FEATURE_ECX_POPCOUNT
| 0;
/* ASSUMES that this is ALWAYS the AMD define feature set if present. */
pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
| X86_CPUID_AMD_FEATURE_EDX_VME
| X86_CPUID_AMD_FEATURE_EDX_DE
| X86_CPUID_AMD_FEATURE_EDX_PSE
| X86_CPUID_AMD_FEATURE_EDX_TSC
| X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
//| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
//| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
| X86_CPUID_AMD_FEATURE_EDX_CX8
//| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
/** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
//| X86_CPUID_AMD_FEATURE_EDX_SEP
| X86_CPUID_AMD_FEATURE_EDX_MTRR
| X86_CPUID_AMD_FEATURE_EDX_PGE
| X86_CPUID_AMD_FEATURE_EDX_MCA
| X86_CPUID_AMD_FEATURE_EDX_CMOV
| X86_CPUID_AMD_FEATURE_EDX_PAT
| X86_CPUID_AMD_FEATURE_EDX_PSE36
//| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
//| X86_CPUID_AMD_FEATURE_EDX_AXMMX
| X86_CPUID_AMD_FEATURE_EDX_MMX
| X86_CPUID_AMD_FEATURE_EDX_FXSR
| X86_CPUID_AMD_FEATURE_EDX_FFXSR
//| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
//| X86_CPUID_AMD_FEATURE_EDX_RDTSCP
//| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - not yet.
| X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
| X86_CPUID_AMD_FEATURE_EDX_3DNOW
| 0;
pCPUM->aGuestCpuIdExt[1].ecx &= 0
//| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
//| X86_CPUID_AMD_FEATURE_ECX_CMPL
//| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
//| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
//| X86_CPUID_AMD_FEATURE_ECX_CR8L
//| X86_CPUID_AMD_FEATURE_ECX_ABM
//| X86_CPUID_AMD_FEATURE_ECX_SSE4A
//| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
//| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
//| X86_CPUID_AMD_FEATURE_ECX_OSVW
//| X86_CPUID_AMD_FEATURE_ECX_SKINIT
//| X86_CPUID_AMD_FEATURE_ECX_WDT
| 0;
/*
* Hide HTT, multicode, SMP, whatever.
* (APIC-ID := 0 and #LogCpus := 0)
*/
pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
/* Cpuid 2:
* Intel: Cache and TLB information
* AMD: Reserved
* Safe to expose
*/
/* Cpuid 3:
* Intel: EAX, EBX - reserved
* ECX, EDX - Processor Serial Number if available, otherwise reserved
* AMD: Reserved
* Safe to expose
*/
if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
/* Cpuid 4:
* Intel: Deterministic Cache Parameters Leaf
* Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
* AMD: Reserved
* Safe to expose, except for EAX:
* Bits 25-14: Maximum number of threads sharing this cache in a physical package (see note)**
* Bits 31-26: Maximum number of processor cores in this physical package**
*/
pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
/* Cpuid 5: Monitor/mwait Leaf
* Intel: ECX, EDX - reserved
* EAX, EBX - Smallest and largest monitor line size
* AMD: EDX - reserved
* EAX, EBX - Smallest and largest monitor line size
* ECX - extensions (ignored for now)
* Safe to expose
*/
if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
/*
* Determine the default.
*
* Intel returns values of the highest standard function, while AMD
* returns zeros. VIA on the other hand seems to returning nothing or
* perhaps some random garbage, we don't try to duplicate this behavior.
*/
ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
&pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
&pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
/* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
* Safe to pass on to the guest.
*
* Intel: 0x800000005 reserved
* 0x800000006 L2 cache information
* AMD: 0x800000005 L1 cache information
* 0x800000006 L2/L3 cache information
*/
/* Cpuid 0x800000007:
* AMD: EAX, EBX, ECX - reserved
* EDX: Advanced Power Management Information
* Intel: Reserved
*/
if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
{
Assert(pVM->cpum.s.enmCPUVendor != CPUMCPUVENDOR_INVALID);
pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
if (pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD)
{
/* Only expose the TSC invariant capability bit to the guest. */
pCPUM->aGuestCpuIdExt[7].edx &= 0
//| X86_CPUID_AMD_ADVPOWER_EDX_TS
//| X86_CPUID_AMD_ADVPOWER_EDX_FID
//| X86_CPUID_AMD_ADVPOWER_EDX_VID
//| X86_CPUID_AMD_ADVPOWER_EDX_TTP
//| X86_CPUID_AMD_ADVPOWER_EDX_TM
//| X86_CPUID_AMD_ADVPOWER_EDX_STC
//| X86_CPUID_AMD_ADVPOWER_EDX_MC
//| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
| X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
| 0;
}
else
pCPUM->aGuestCpuIdExt[7].edx = 0;
}
/* Cpuid 0x800000008:
* AMD: EBX, EDX - reserved
* EAX: Virtual/Physical address Size
* ECX: Number of cores + APICIdCoreIdSize
* Intel: EAX: Virtual/Physical address Size
* EBX, ECX, EDX - reserved
*/
if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
{
/* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
/* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
* NC (0-7) Number of cores; 0 equals 1 core */
pCPUM->aGuestCpuIdExt[8].ecx = 0;
}
/*
* Limit it the number of entries and fill the remaining with the defaults.
*
* The limits are masking off stuff about power saving and similar, this
* is perhaps a bit crudely done as there is probably some relatively harmless
* info too in these leaves (like words about having a constant TSC).
*/
#if 0
/** @todo NT4 installation regression - investigate */
if (pCPUM->aGuestCpuIdStd[0].eax > 5)
pCPUM->aGuestCpuIdStd[0].eax = 5;
#else
if (pCPUM->aGuestCpuIdStd[0].eax > 2)
pCPUM->aGuestCpuIdStd[0].eax = 2;
#endif
for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
: 0;
i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
/*
* Workaround for missing cpuid(0) patches: If we miss to patch a cpuid(0).eax then
* Linux tries to determine the number of processors from (cpuid(4).eax >> 26) + 1.
* We currently don't support more than 1 processor.
*/
pCPUM->aGuestCpuIdStd[4].eax = 0;
/*
* Centaur stuff (VIA).
*
* The important part here (we think) is to make sure the 0xc0000000
* function returns 0xc0000001. As for the features, we don't currently
* let on about any of those... 0xc0000002 seems to be some
* temperature/hz/++ stuff, include it as well (static).
*/
if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
&& pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
{
pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
i++)
pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
}
else
for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
/*
* Load CPUID overrides from configuration.
*/
/** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
* Overloads the CPUID leaf values. */
PCPUMCPUID pCpuId = &pCPUM->aGuestCpuIdStd[0];
uint32_t cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdStd);
for (i=0;; )
{
while (cElements-- > 0)
{
PCFGMNODE pNode = CFGMR3GetChildF(CFGMR3GetRoot(pVM), "CPUM/CPUID/%RX32", i);
if (pNode)
{
uint32_t u32;
int rc = CFGMR3QueryU32(pNode, "eax", &u32);
if (VBOX_SUCCESS(rc))
pCpuId->eax = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
rc = CFGMR3QueryU32(pNode, "ebx", &u32);
if (VBOX_SUCCESS(rc))
pCpuId->ebx = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
rc = CFGMR3QueryU32(pNode, "ecx", &u32);
if (VBOX_SUCCESS(rc))
pCpuId->ecx = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
rc = CFGMR3QueryU32(pNode, "edx", &u32);
if (VBOX_SUCCESS(rc))
pCpuId->edx = u32;
else
AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
}
pCpuId++;
i++;
}
/* next */
if ((i & UINT32_C(0xc0000000)) == 0)
{
pCpuId = &pCPUM->aGuestCpuIdExt[0];
cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
i = UINT32_C(0x80000000);
}
else if ((i & UINT32_C(0xc0000000)) == UINT32_C(0x80000000))
{
pCpuId = &pCPUM->aGuestCpuIdCentaur[0];
cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
i = UINT32_C(0xc0000000);
}
else
break;
}
/* Check if PAE was explicitely enabled by the user. */
bool fEnable = false;
int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable);
if (VBOX_SUCCESS(rc) && fEnable)
CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
/*
* Log the cpuid and we're good.
*/
RTCPUSET OnlineSet;
LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
(int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
LogRel(("************************* CPUID dump ************************\n"));
DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
LogRel(("\n"));
DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
LogRel(("******************** End of CPUID dump **********************\n"));
return VINF_SUCCESS;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* The CPUM will update the addresses used by the switcher.
*
* @param pVM The VM.
*/
VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
{
LogFlow(("CPUMR3Relocate\n"));
/*
* Switcher pointers.
*/
pVM->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVM->cpum.s.pHyperCoreR3);
Assert(pVM->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
}
/**
* Queries the pointer to the internal CPUMCTX structure
*
* @returns VBox status code.
* @param pVM Handle to the virtual machine.
* @param ppCtx Receives the CPUMCTX GC pointer when successful.
*/
VMMR3DECL(int) CPUMR3QueryGuestCtxGCPtr(PVM pVM, RCPTRTYPE(PCPUMCTX) *ppCtx)
{
LogFlow(("CPUMR3QueryGuestCtxGCPtr\n"));
/*
* Store the address. (Later we might check how's calling, thus the RC.)
*/
*ppCtx = VM_GUEST_ADDR(pVM, &pVM->cpum.s.Guest);
return VINF_SUCCESS;
}
/**
* Terminates the CPUM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) CPUMR3Term(PVM pVM)
{
/** @todo ? */
return 0;
}
/**
* Terminates the per-VCPU CPUM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
{
return 0;
}
/**
* Resets the CPU.
*
* @returns VINF_SUCCESS.
* @param pVM The VM handle.
*/
VMMR3DECL(void) CPUMR3Reset(PVM pVM)
{
PCPUMCTX pCtx = &pVM->cpum.s.Guest;
/*
* Initialize everything to ZERO first.
*/
uint32_t fUseFlags = pVM->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
memset(pCtx, 0, sizeof(*pCtx));
pVM->cpum.s.fUseFlags = fUseFlags;
pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
pCtx->eip = 0x0000fff0;
pCtx->edx = 0x00000600; /* P6 processor */
pCtx->eflags.Bits.u1Reserved0 = 1;
pCtx->cs = 0xf000;
pCtx->csHid.u64Base = UINT64_C(0xffff0000);
pCtx->csHid.u32Limit = 0x0000ffff;
pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->csHid.Attr.n.u1Present = 1;
pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
pCtx->dsHid.u32Limit = 0x0000ffff;
pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->dsHid.Attr.n.u1Present = 1;
pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->esHid.u32Limit = 0x0000ffff;
pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->esHid.Attr.n.u1Present = 1;
pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->fsHid.u32Limit = 0x0000ffff;
pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->fsHid.Attr.n.u1Present = 1;
pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->gsHid.u32Limit = 0x0000ffff;
pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->gsHid.Attr.n.u1Present = 1;
pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->ssHid.u32Limit = 0x0000ffff;
pCtx->ssHid.Attr.n.u1Present = 1;
pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
pCtx->idtr.cbIdt = 0xffff;
pCtx->gdtr.cbGdt = 0xffff;
pCtx->ldtrHid.u32Limit = 0xffff;
pCtx->ldtrHid.Attr.n.u1Present = 1;
pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
pCtx->trHid.u32Limit = 0xffff;
pCtx->trHid.Attr.n.u1Present = 1;
pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
pCtx->dr[6] = X86_DR6_INIT_VAL;
pCtx->dr[7] = X86_DR7_INIT_VAL;
pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
pCtx->fpu.FCW = 0x37f;
/* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
pCtx->fpu.MXCSR = 0x1F80;
/* Init PAT MSR */
pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
/* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
* The Intel docs don't mention it.
*/
pCtx->msrEFER = 0;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM)
{
/* Set the size of RTGCPTR for use of SSMR3Get/PutGCPtr. */
SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR));
/*
* Save.
*/
SSMR3PutMem(pSSM, &pVM->cpum.s.Hyper, sizeof(pVM->cpum.s.Hyper));
SSMR3PutMem(pSSM, &pVM->cpum.s.Guest, sizeof(pVM->cpum.s.Guest));
SSMR3PutU32(pSSM, pVM->cpum.s.fUseFlags);
SSMR3PutU32(pSSM, pVM->cpum.s.fChanged);
SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
/* Add the cpuid for checking that the cpu is unchanged. */
uint32_t au32CpuId[8] = {0};
ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
return SSMR3PutMem(pSSM, &au32CpuId[0], sizeof(au32CpuId));
}
/**
* Load a version 1.6 CPUMCTX structure.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pCpumctx16 Version 1.6 CPUMCTX
*/
static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
{
#define CPUMCTX16_LOADREG(RegName) \
pVM->cpum.s.Guest.RegName = pCpumctx16->RegName;
#define CPUMCTX16_LOADDRXREG(RegName) \
pVM->cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
#define CPUMCTX16_LOADHIDREG(RegName) \
pVM->cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
pVM->cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
pVM->cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
#define CPUMCTX16_LOADSEGREG(RegName) \
pVM->cpum.s.Guest.RegName = pCpumctx16->RegName; \
CPUMCTX16_LOADHIDREG(RegName);
pVM->cpum.s.Guest.fpu = pCpumctx16->fpu;
CPUMCTX16_LOADREG(rax);
CPUMCTX16_LOADREG(rbx);
CPUMCTX16_LOADREG(rcx);
CPUMCTX16_LOADREG(rdx);
CPUMCTX16_LOADREG(rdi);
CPUMCTX16_LOADREG(rsi);
CPUMCTX16_LOADREG(rbp);
CPUMCTX16_LOADREG(esp);
CPUMCTX16_LOADREG(rip);
CPUMCTX16_LOADREG(rflags);
CPUMCTX16_LOADSEGREG(cs);
CPUMCTX16_LOADSEGREG(ds);
CPUMCTX16_LOADSEGREG(es);
CPUMCTX16_LOADSEGREG(fs);
CPUMCTX16_LOADSEGREG(gs);
CPUMCTX16_LOADSEGREG(ss);
CPUMCTX16_LOADREG(r8);
CPUMCTX16_LOADREG(r9);
CPUMCTX16_LOADREG(r10);
CPUMCTX16_LOADREG(r11);
CPUMCTX16_LOADREG(r12);
CPUMCTX16_LOADREG(r13);
CPUMCTX16_LOADREG(r14);
CPUMCTX16_LOADREG(r15);
CPUMCTX16_LOADREG(cr0);
CPUMCTX16_LOADREG(cr2);
CPUMCTX16_LOADREG(cr3);
CPUMCTX16_LOADREG(cr4);
CPUMCTX16_LOADDRXREG(0);
CPUMCTX16_LOADDRXREG(1);
CPUMCTX16_LOADDRXREG(2);
CPUMCTX16_LOADDRXREG(3);
CPUMCTX16_LOADDRXREG(4);
CPUMCTX16_LOADDRXREG(5);
CPUMCTX16_LOADDRXREG(6);
CPUMCTX16_LOADDRXREG(7);
pVM->cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
pVM->cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
pVM->cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
pVM->cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
CPUMCTX16_LOADREG(ldtr);
CPUMCTX16_LOADREG(tr);
pVM->cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
CPUMCTX16_LOADREG(msrEFER);
CPUMCTX16_LOADREG(msrSTAR);
CPUMCTX16_LOADREG(msrPAT);
CPUMCTX16_LOADREG(msrLSTAR);
CPUMCTX16_LOADREG(msrCSTAR);
CPUMCTX16_LOADREG(msrSFMASK);
CPUMCTX16_LOADREG(msrKERNELGSBASE);
CPUMCTX16_LOADHIDREG(ldtr);
CPUMCTX16_LOADHIDREG(tr);
#undef CPUMCTX16_LOADSEGREG
#undef CPUMCTX16_LOADHIDREG
#undef CPUMCTX16_LOADDRXREG
#undef CPUMCTX16_LOADREG
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
/*
* Validate version.
*/
if ( u32Version != CPUM_SAVED_STATE_VERSION
&& u32Version != CPUM_SAVED_STATE_VERSION_VER1_6)
{
AssertMsgFailed(("cpuR3Load: Invalid version u32Version=%d!\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/* Set the size of RTGCPTR for SSMR3GetGCPtr. */
if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
else
SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR));
/*
* Restore.
*/
uint32_t uCR3 = pVM->cpum.s.Hyper.cr3;
uint32_t uESP = pVM->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
SSMR3GetMem(pSSM, &pVM->cpum.s.Hyper, sizeof(pVM->cpum.s.Hyper));
pVM->cpum.s.Hyper.cr3 = uCR3;
pVM->cpum.s.Hyper.esp = uESP;
if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
{
CPUMCTX_VER1_6 cpumctx16;
memset(&pVM->cpum.s.Guest, 0, sizeof(pVM->cpum.s.Guest));
SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
/* Save the old cpumctx state into the new one. */
cpumR3LoadCPUM1_6(pVM, &cpumctx16);
}
else
SSMR3GetMem(pSSM, &pVM->cpum.s.Guest, sizeof(pVM->cpum.s.Guest));
SSMR3GetU32(pSSM, &pVM->cpum.s.fUseFlags);
SSMR3GetU32(pSSM, &pVM->cpum.s.fChanged);
uint32_t cElements;
int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
/* Support old saved states with a smaller standard cpuid array. */
if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
/*
* Check that the basic cpuid id information is unchanged.
*/
uint32_t au32CpuId[8] = {0};
ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
uint32_t au32CpuIdSaved[8];
rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
if (VBOX_SUCCESS(rc))
{
/* Ignore APIC ID (AMD specs). */
au32CpuId[5] &= ~0xff000000;
au32CpuIdSaved[5] &= ~0xff000000;
/* Ignore the number of Logical CPUs (AMD specs). */
au32CpuId[5] &= ~0x00ff0000;
au32CpuIdSaved[5] &= ~0x00ff0000;
/* do the compare */
if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
{
if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
LogRel(("cpumR3Load: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
"Saved=%.*Vhxs\n"
"Real =%.*Vhxs\n",
sizeof(au32CpuIdSaved), au32CpuIdSaved,
sizeof(au32CpuId), au32CpuId));
else
{
LogRel(("cpumR3Load: CpuId mismatch!\n"
"Saved=%.*Vhxs\n"
"Real =%.*Vhxs\n",
sizeof(au32CpuIdSaved), au32CpuIdSaved,
sizeof(au32CpuId), au32CpuId));
rc = VERR_SSM_LOAD_CPUID_MISMATCH;
}
}
}
return rc;
}
/**
* Formats the EFLAGS value into mnemonics.
*
* @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
* @param efl The EFLAGS value.
*/
static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
{
/*
* Format the flags.
*/
static const struct
{
const char *pszSet; const char *pszClear; uint32_t fFlag;
} s_aFlags[] =
{
{ "vip",NULL, X86_EFL_VIP },
{ "vif",NULL, X86_EFL_VIF },
{ "ac", NULL, X86_EFL_AC },
{ "vm", NULL, X86_EFL_VM },
{ "rf", NULL, X86_EFL_RF },
{ "nt", NULL, X86_EFL_NT },
{ "ov", "nv", X86_EFL_OF },
{ "dn", "up", X86_EFL_DF },
{ "ei", "di", X86_EFL_IF },
{ "tf", NULL, X86_EFL_TF },
{ "nt", "pl", X86_EFL_SF },
{ "nz", "zr", X86_EFL_ZF },
{ "ac", "na", X86_EFL_AF },
{ "po", "pe", X86_EFL_PF },
{ "cy", "nc", X86_EFL_CF },
};
char *psz = pszEFlags;
for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
{
const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
if (pszAdd)
{
strcpy(psz, pszAdd);
psz += strlen(pszAdd);
*psz++ = ' ';
}
}
psz[-1] = '\0';
}
/**
* Formats a full register dump.
*
* @param pVM VM Handle.
* @param pCtx The context to format.
* @param pCtxCore The context core to format.
* @param pHlp Output functions.
* @param enmType The dump type.
* @param pszPrefix Register name prefix.
*/
static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
{
/*
* Format the EFLAGS.
*/
uint32_t efl = pCtxCore->eflags.u32;
char szEFlags[80];
cpumR3InfoFormatFlags(&szEFlags[0], efl);
/*
* Format the registers.
*/
switch (enmType)
{
case CPUMDUMPTYPE_TERSE:
if (CPUMIsGuestIn64BitCode(pVM, pCtxCore))
pHlp->pfnPrintf(pHlp,
"%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
"%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
"%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
"%sr14=%016RX64 %sr15=%016RX64\n"
"%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
else
pHlp->pfnPrintf(pHlp,
"%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
"%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
break;
case CPUMDUMPTYPE_DEFAULT:
if (CPUMIsGuestIn64BitCode(pVM, pCtxCore))
pHlp->pfnPrintf(pHlp,
"%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
"%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
"%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
"%sr14=%016RX64 %sr15=%016RX64\n"
"%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
"%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%VGv:%04x %sldtr=%04x\n"
,
pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
else
pHlp->pfnPrintf(pHlp,
"%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
"%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
"%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
"%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
,
pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
break;
case CPUMDUMPTYPE_VERBOSE:
if (CPUMIsGuestIn64BitCode(pVM, pCtxCore))
pHlp->pfnPrintf(pHlp,
"%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
"%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
"%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
"%sr14=%016RX64 %sr15=%016RX64\n"
"%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
"%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
"%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
"%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
"%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
"%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
"%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
,
pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
else
pHlp->pfnPrintf(pHlp,
"%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
"%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
"%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
"%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
"%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
"%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
"%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
"%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
"%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
"%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
"%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
,
pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
pHlp->pfnPrintf(pHlp,
"FPU:\n"
"%sFCW=%04x %sFSW=%04x %sFTW=%02x\n"
"%sres1=%02x %sFOP=%04x %sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x\n"
"%sFPUDP=%04x %sDS=%04x %sRsvrd2=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
,
pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW,
pszPrefix, pCtx->fpu.huh1, pszPrefix, pCtx->fpu.FOP, pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2,
pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK);
pHlp->pfnPrintf(pHlp,
"MSR:\n"
"%sEFER =%016RX64\n"
"%sPAT =%016RX64\n"
"%sSTAR =%016RX64\n"
"%sCSTAR =%016RX64\n"
"%sLSTAR =%016RX64\n"
"%sSFMASK =%016RX64\n"
"%sKERNELGSBASE =%016RX64\n",
pszPrefix, pCtx->msrEFER,
pszPrefix, pCtx->msrPAT,
pszPrefix, pCtx->msrSTAR,
pszPrefix, pCtx->msrCSTAR,
pszPrefix, pCtx->msrLSTAR,
pszPrefix, pCtx->msrSFMASK,
pszPrefix, pCtx->msrKERNELGSBASE);
break;
}
}
/**
* Display all cpu states and any other cpum info.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
cpumR3InfoGuest(pVM, pHlp, pszArgs);
cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
cpumR3InfoHyper(pVM, pHlp, pszArgs);
cpumR3InfoHost(pVM, pHlp, pszArgs);
}
/**
* Parses the info argument.
*
* The argument starts with 'verbose', 'terse' or 'default' and then
* continues with the comment string.
*
* @param pszArgs The pointer to the argument string.
* @param penmType Where to store the dump type request.
* @param ppszComment Where to store the pointer to the comment string.
*/
static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
{
if (!pszArgs)
{
*penmType = CPUMDUMPTYPE_DEFAULT;
*ppszComment = "";
}
else
{
if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
{
pszArgs += 5;
*penmType = CPUMDUMPTYPE_VERBOSE;
}
else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
{
pszArgs += 5;
*penmType = CPUMDUMPTYPE_TERSE;
}
else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
{
pszArgs += 7;
*penmType = CPUMDUMPTYPE_DEFAULT;
}
else
*penmType = CPUMDUMPTYPE_DEFAULT;
*ppszComment = RTStrStripL(pszArgs);
}
}
/**
* Display the guest cpu state.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
CPUMDUMPTYPE enmType;
const char *pszComment;
cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
pHlp->pfnPrintf(pHlp, "Guest CPUM state: %s\n", pszComment);
cpumR3InfoOne(pVM, &pVM->cpum.s.Guest, CPUMCTX2CORE(&pVM->cpum.s.Guest), pHlp, enmType, "");
}
/**
* Display the current guest instruction
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
char szInstruction[256];
int rc = DBGFR3DisasInstrCurrent(pVM, szInstruction, sizeof(szInstruction));
if (VBOX_SUCCESS(rc))
pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
}
/**
* Display the hypervisor cpu state.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
CPUMDUMPTYPE enmType;
const char *pszComment;
cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
cpumR3InfoOne(pVM, &pVM->cpum.s.Hyper, pVM->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
}
/**
* Display the host cpu state.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
CPUMDUMPTYPE enmType;
const char *pszComment;
cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
/*
* Format the EFLAGS.
*/
PCPUMHOSTCTX pCtx = &pVM->cpum.s.Host;
#if HC_ARCH_BITS == 32
uint32_t efl = pCtx->eflags.u32;
#else
uint64_t efl = pCtx->rflags;
#endif
char szEFlags[80];
cpumR3InfoFormatFlags(&szEFlags[0], efl);
/*
* Format the registers.
*/
#if HC_ARCH_BITS == 32
# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
if (!(pCtx->efer & MSR_K6_EFER_LMA))
# endif
{
pHlp->pfnPrintf(pHlp,
"eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
"eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
"cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
"cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
"dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
"SysEnter={cs=%04x eip=%08x esp=%08x}\n"
,
/*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
/*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
(RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
(uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
}
# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
else
# endif
#endif
#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
{
pHlp->pfnPrintf(pHlp,
"rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
"rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
"rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
" r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
"r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
"r14=%016RX64 r15=%016RX64\n"
"iopl=%d %31s\n"
"cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
"cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
"cr4=%016RX64 ldtr=%04x tr=%04x\n"
"dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
"dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
"gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
"SysEnter={cs=%04x eip=%08x esp=%08x}\n"
"FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
,
/*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
/*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
/*pCtx->r8, pCtx->r9,*/ pCtx->r10,
pCtx->r11, pCtx->r12, pCtx->r13,
pCtx->r14, pCtx->r15,
X86_EFL_GET_IOPL(efl), szEFlags,
(RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
pCtx->cr4, pCtx->ldtr, pCtx->tr,
pCtx->dr0, pCtx->dr1, pCtx->dr2,
pCtx->dr3, pCtx->dr6, pCtx->dr7,
pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
pCtx->FSbase, pCtx->GSbase, pCtx->efer);
}
#endif
}
/**
* Get L1 cache / TLS associativity.
*/
static const char *getCacheAss(unsigned u, char *pszBuf)
{
if (u == 0)
return "res0 ";
if (u == 1)
return "direct";
if (u >= 256)
return "???";
RTStrPrintf(pszBuf, 16, "%d way", u);
return pszBuf;
}
/**
* Get L2 cache soociativity.
*/
const char *getL2CacheAss(unsigned u)
{
switch (u)
{
case 0: return "off ";
case 1: return "direct";
case 2: return "2 way ";
case 3: return "res3 ";
case 4: return "4 way ";
case 5: return "res5 ";
case 6: return "8 way "; case 7: return "res7 ";
case 8: return "16 way";
case 9: return "res9 ";
case 10: return "res10 ";
case 11: return "res11 ";
case 12: return "res12 ";
case 13: return "res13 ";
case 14: return "res14 ";
case 15: return "fully ";
default:
return "????";
}
}
/**
* Display the guest CpuId leaves.
*
* @param pVM VM Handle.
* @param pHlp The info helper functions.
* @param pszArgs "terse", "default" or "verbose".
*/
static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/*
* Parse the argument.
*/
unsigned iVerbosity = 1;
if (pszArgs)
{
pszArgs = RTStrStripL(pszArgs);
if (!strcmp(pszArgs, "terse"))
iVerbosity--;
else if (!strcmp(pszArgs, "verbose"))
iVerbosity++;
}
/*
* Start cracking.
*/
CPUMCPUID Host;
CPUMCPUID Guest;
unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
pHlp->pfnPrintf(pHlp,
" RAW Standard CPUIDs\n"
" Function eax ebx ecx edx\n");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
{
Guest = pVM->cpum.s.aGuestCpuIdStd[i];
ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
pHlp->pfnPrintf(pHlp,
"Gst: %08x %08x %08x %08x %08x%s\n"
"Hst: %08x %08x %08x %08x\n",
i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
i <= cStdMax ? "" : "*",
Host.eax, Host.ebx, Host.ecx, Host.edx);
}
/*
* If verbose, decode it.
*/
if (iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdStd[0];
pHlp->pfnPrintf(pHlp,
"Name: %.04s%.04s%.04s\n"
"Supports: 0-%x\n",
&Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
}
/*
* Get Features.
*/
bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
pVM->cpum.s.aGuestCpuIdStd[0].ecx,
pVM->cpum.s.aGuestCpuIdStd[0].edx);
if (cStdMax >= 1 && iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdStd[1];
uint32_t uEAX = Guest.eax;
pHlp->pfnPrintf(pHlp,
"Family: %d \tExtended: %d \tEffective: %d\n"
"Model: %d \tExtended: %d \tEffective: %d\n"
"Stepping: %d\n"
"APIC ID: %#04x\n"
"Logical CPUs: %d\n"
"CLFLUSH Size: %d\n"
"Brand ID: %#04x\n",
(uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
(uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
ASMGetCpuStepping(uEAX),
(Guest.ebx >> 24) & 0xff,
(Guest.ebx >> 16) & 0xff,
(Guest.ebx >> 8) & 0xff,
(Guest.ebx >> 0) & 0xff);
if (iVerbosity == 1)
{
uint32_t uEDX = Guest.edx;
pHlp->pfnPrintf(pHlp, "Features EDX: ");
if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
pHlp->pfnPrintf(pHlp, "\n");
uint32_t uECX = Guest.ecx;
pHlp->pfnPrintf(pHlp, "Features ECX: ");
if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " 1");
if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " 2");
if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " 6");
if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " 9");
if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " 12");
if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
for (unsigned iBit = 14; iBit < 32; iBit++)
if (uECX & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
else
{
ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u2Reserved1, EcxHost.u2Reserved1);
pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved4, EcxHost.u2Reserved4);
pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u17Reserved5, EcxHost.u17Reserved5);
}
}
if (cStdMax >= 2 && iVerbosity)
{
/** @todo */
}
/*
* Extended.
* Implemented after AMD specs.
*/
unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
pHlp->pfnPrintf(pHlp,
"\n"
" RAW Extended CPUIDs\n"
" Function eax ebx ecx edx\n");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
{
Guest = pVM->cpum.s.aGuestCpuIdExt[i];
ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
pHlp->pfnPrintf(pHlp,
"Gst: %08x %08x %08x %08x %08x%s\n"
"Hst: %08x %08x %08x %08x\n",
0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
i <= cExtMax ? "" : "*",
Host.eax, Host.ebx, Host.ecx, Host.edx);
}
/*
* Understandable output
*/
if (iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdExt[0];
pHlp->pfnPrintf(pHlp,
"Ext Name: %.4s%.4s%.4s\n"
"Ext Supports: 0x80000000-%#010x\n",
&Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
}
if (iVerbosity && cExtMax >= 1)
{
Guest = pVM->cpum.s.aGuestCpuIdExt[1];
uint32_t uEAX = Guest.eax;
pHlp->pfnPrintf(pHlp,
"Family: %d \tExtended: %d \tEffective: %d\n"
"Model: %d \tExtended: %d \tEffective: %d\n"
"Stepping: %d\n"
"Brand ID: %#05x\n",
(uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
(uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
ASMGetCpuStepping(uEAX),
Guest.ebx & 0xfff);
if (iVerbosity == 1)
{
uint32_t uEDX = Guest.edx;
pHlp->pfnPrintf(pHlp, "Features EDX: ");
if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
pHlp->pfnPrintf(pHlp, "\n");
uint32_t uECX = Guest.ecx;
pHlp->pfnPrintf(pHlp, "Features ECX: ");
if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
for (unsigned iBit = 5; iBit < 32; iBit++)
if (uECX & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
else
{
ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
uint32_t uEdxGst = Guest.edx;
uint32_t uEdxHst = Host.edx;
pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
uint32_t uEcxGst = Guest.ecx;
uint32_t uEcxHst = Host.ecx;
pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
}
}
if (iVerbosity && cExtMax >= 2)
{
char szString[4*4*3+1] = {0};
uint32_t *pu32 = (uint32_t *)szString;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
if (cExtMax >= 3)
{
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
}
if (cExtMax >= 4)
{
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
*pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
}
pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
}
if (iVerbosity && cExtMax >= 5)
{
uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
char sz1[32];
char sz2[32];
pHlp->pfnPrintf(pHlp,
"TLB 2/4M Instr/Uni: %s %3d entries\n"
"TLB 2/4M Data: %s %3d entries\n",
getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
pHlp->pfnPrintf(pHlp,
"TLB 4K Instr/Uni: %s %3d entries\n"
"TLB 4K Data: %s %3d entries\n",
getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
"L1 Instr Cache Lines Per Tag: %d\n"
"L1 Instr Cache Associativity: %s\n"
"L1 Instr Cache Size: %d KB\n",
(uEDX >> 0) & 0xff,
(uEDX >> 8) & 0xff,
getCacheAss((uEDX >> 16) & 0xff, sz1),
(uEDX >> 24) & 0xff);
pHlp->pfnPrintf(pHlp,
"L1 Data Cache Line Size: %d bytes\n"
"L1 Data Cache Lines Per Tag: %d\n"
"L1 Data Cache Associativity: %s\n"
"L1 Data Cache Size: %d KB\n",
(uECX >> 0) & 0xff,
(uECX >> 8) & 0xff,
getCacheAss((uECX >> 16) & 0xff, sz1),
(uECX >> 24) & 0xff);
}
if (iVerbosity && cExtMax >= 6)
{
uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
pHlp->pfnPrintf(pHlp,
"L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
"L2 TLB 2/4M Data: %s %4d entries\n",
getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
pHlp->pfnPrintf(pHlp,
"L2 TLB 4K Instr/Uni: %s %4d entries\n"
"L2 TLB 4K Data: %s %4d entries\n",
getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
pHlp->pfnPrintf(pHlp,
"L2 Cache Line Size: %d bytes\n"
"L2 Cache Lines Per Tag: %d\n"
"L2 Cache Associativity: %s\n"
"L2 Cache Size: %d KB\n",
(uEDX >> 0) & 0xff,
(uEDX >> 8) & 0xf,
getL2CacheAss((uEDX >> 12) & 0xf),
(uEDX >> 16) & 0xffff);
}
if (iVerbosity && cExtMax >= 7)
{
uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
pHlp->pfnPrintf(pHlp, "APM Features: ");
if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
for (unsigned iBit = 6; iBit < 32; iBit++)
if (uEDX & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
if (iVerbosity && cExtMax >= 8)
{
uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
pHlp->pfnPrintf(pHlp,
"Physical Address Width: %d bits\n"
"Virtual Address Width: %d bits\n",
(uEAX >> 0) & 0xff,
(uEAX >> 8) & 0xff);
pHlp->pfnPrintf(pHlp,
"Physical Core Count: %d\n",
(uECX >> 0) & 0xff);
}
/*
* Centaur.
*/
unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
pHlp->pfnPrintf(pHlp,
"\n"
" RAW Centaur CPUIDs\n"
" Function eax ebx ecx edx\n");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
{
Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
pHlp->pfnPrintf(pHlp,
"Gst: %08x %08x %08x %08x %08x%s\n"
"Hst: %08x %08x %08x %08x\n",
0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
i <= cCentaurMax ? "" : "*",
Host.eax, Host.ebx, Host.ecx, Host.edx);
}
/*
* Understandable output
*/
if (iVerbosity)
{
Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
pHlp->pfnPrintf(pHlp,
"Centaur Supports: 0xc0000000-%#010x\n",
Guest.eax);
}
if (iVerbosity && cCentaurMax >= 1)
{
ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
uint32_t uEdxHst = Host.edx;
if (iVerbosity == 1)
{
pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
/* possibly indicating MM/HE and MM/HE-E on older chips... */
if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
for (unsigned iBit = 14; iBit < 32; iBit++)
if (uEdxGst & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, " %d", iBit);
pHlp->pfnPrintf(pHlp, "\n");
}
else
{
pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
/* possibly indicating MM/HE and MM/HE-E on older chips... */
pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
for (unsigned iBit = 14; iBit < 32; iBit++)
if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
pHlp->pfnPrintf(pHlp, "\n");
}
}
}
/**
* Structure used when disassembling and instructions in DBGF.
* This is used so the reader function can get the stuff it needs.
*/
typedef struct CPUMDISASSTATE
{
/** Pointer to the CPU structure. */
PDISCPUSTATE pCpu;
/** The VM handle. */
PVM pVM;
/** Pointer to the first byte in the segemnt. */
RTGCUINTPTR GCPtrSegBase;
/** Pointer to the byte after the end of the segment. (might have wrapped!) */
RTGCUINTPTR GCPtrSegEnd;
/** The size of the segment minus 1. */
RTGCUINTPTR cbSegLimit;
/** Pointer to the current page - R3 Ptr. */
void const *pvPageR3;
/** Pointer to the current page - GC Ptr. */
RTGCPTR pvPageGC;
/** The lock information that PGMPhysReleasePageMappingLock needs. */
PGMPAGEMAPLOCK PageMapLock;
/** Whether the PageMapLock is valid or not. */
bool fLocked;
/** 64 bits mode or not. */
bool f64Bits;
} CPUMDISASSTATE, *PCPUMDISASSTATE;
/**
* Instruction reader.
*
* @returns VBox status code.
* @param PtrSrc Address to read from.
* In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
* @param pu8Dst Where to store the bytes.
* @param cbRead Number of bytes to read.
* @param uDisCpu Pointer to the disassembler cpu state.
* In this context it's always pointer to the Core of a DBGFDISASSTATE.
*/
static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
{
PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
Assert(cbRead > 0);
for (;;)
{
RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
/* Need to update the page translation? */
if ( !pState->pvPageR3
|| (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
{
int rc = VINF_SUCCESS;
/* translate the address */
pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
if (MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)) /** @todo r=bird: Don't do this if we're in VT-x/AMD-V mode. */
{
pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
if (!pState->pvPageR3)
rc = VERR_INVALID_POINTER;
}
else
{
/* Release mapping lock previously acquired. */
if (pState->fLocked)
PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVM, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
pState->fLocked = RT_SUCCESS_NP(rc);
}
if (VBOX_FAILURE(rc))
{
pState->pvPageR3 = NULL;
return rc;
}
}
/* check the segemnt limit */
if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
return VERR_OUT_OF_SELECTOR_BOUNDS;
/* calc how much we can read */
uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
if (!pState->f64Bits)
{
RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
if (cb > cbSeg && cbSeg)
cb = cbSeg;
}
if (cb > cbRead)
cb = cbRead;
/* read and advance */
memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
cbRead -= cb;
if (!cbRead)
return VINF_SUCCESS;
pu8Dst += cb;
PtrSrc += cb;
}
}
/**
* Disassemble an instruction and return the information in the provided structure.
*
* @returns VBox status code.
* @param pVM VM Handle
* @param pCtx CPU context
* @param GCPtrPC Program counter (relative to CS) to disassemble from.
* @param pCpu Disassembly state
* @param pszPrefix String prefix for logging (debug only)
*
*/
VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
{
CPUMDISASSTATE State;
int rc;
const PGMMODE enmMode = PGMGetGuestMode(pVM);
State.pCpu = pCpu;
State.pvPageGC = 0;
State.pvPageR3 = NULL;
State.pVM = pVM;
State.fLocked = false;
State.f64Bits = false;
/*
* Get selector information.
*/
if ( (pCtx->cr0 & X86_CR0_PE)
&& pCtx->eflags.Bits.u1VM == 0)
{
if (CPUMAreHiddenSelRegsValid(pVM))
{
State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
State.GCPtrSegBase = pCtx->csHid.u64Base;
State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
State.cbSegLimit = pCtx->csHid.u32Limit;
pCpu->mode = (State.f64Bits)
? CPUMODE_64BIT
: pCtx->csHid.Attr.n.u1DefBig
? CPUMODE_32BIT
: CPUMODE_16BIT;
}
else
{
SELMSELINFO SelInfo;
rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
if (!VBOX_SUCCESS(rc))
{
AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%VGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
return rc;
}
/*
* Validate the selector.
*/
rc = SELMSelInfoValidateCS(&SelInfo, pCtx->ss);
if (!VBOX_SUCCESS(rc))
{
AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%VGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
return rc;
}
State.GCPtrSegBase = SelInfo.GCPtrBase;
State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
State.cbSegLimit = SelInfo.cbLimit;
pCpu->mode = SelInfo.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
}
}
else
{
/* real or V86 mode */
pCpu->mode = CPUMODE_16BIT;
State.GCPtrSegBase = pCtx->cs * 16;
State.GCPtrSegEnd = 0xFFFFFFFF;
State.cbSegLimit = 0xFFFFFFFF;
}
/*
* Disassemble the instruction.
*/
pCpu->pfnReadBytes = cpumR3DisasInstrRead;
pCpu->apvUserData[0] = &State;
uint32_t cbInstr;
#ifndef LOG_ENABLED
rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
if (VBOX_SUCCESS(rc))
{
#else
char szOutput[160];
rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
if (VBOX_SUCCESS(rc))
{
/* log it */
if (pszPrefix)
Log(("%s: %s", pszPrefix, szOutput));
else
Log(("%s", szOutput));
#endif
rc = VINF_SUCCESS;
}
else
Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%VGv rc=%Vrc\n", pCtx->cs, GCPtrPC, rc));
/* Release mapping lock acquired in cpumR3DisasInstrRead. */
if (State.fLocked)
PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
return rc;
}
#ifdef DEBUG
/**
* Disassemble an instruction and dump it to the log
*
* @returns VBox status code.
* @param pVM VM Handle
* @param pCtx CPU context
* @param pc GC instruction pointer
* @param pszPrefix String prefix for logging
*
* @deprecated Use DBGFR3DisasInstrCurrentLog().
*/
VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
{
DISCPUSTATE Cpu;
CPUMR3DisasmInstrCPU(pVM, pCtx, pc, &Cpu, pszPrefix);
}
/**
* Disassemble an instruction and dump it to the log
*
* @returns VBox status code.
* @param pVM VM Handle
* @param pCtx CPU context
* @param pc GC instruction pointer
* @param pszPrefix String prefix for logging
* @param nrInstructions
*
* @deprecated Create new DBGFR3Disas function to do this.
*/
VMMR3DECL(void) CPUMR3DisasmBlock(PVM pVM, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix, int nrInstructions)
{
for (int i = 0; i < nrInstructions; i++)
{
DISCPUSTATE cpu;
CPUMR3DisasmInstrCPU(pVM, pCtx, pc, &cpu, pszPrefix);
pc += cpu.opsize;
}
}
/**
* Debug helper - Saves guest context on raw mode entry (for fatal dump)
*
* @internal
*/
VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
{
pVM->cpum.s.GuestEntry = pVM->cpum.s.Guest;
}
#endif /* DEBUG */
/**
* API for controlling a few of the CPU features found in CR4.
*
* Currently only X86_CR4_TSD is accepted as input.
*
* @returns VBox status code.
*
* @param pVM The VM handle.
* @param fOr The CR4 OR mask.
* @param fAnd The CR4 AND mask.
*/
VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
{
AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
pVM->cpum.s.CR4.OrMask &= fAnd;
pVM->cpum.s.CR4.OrMask |= fOr;
return VINF_SUCCESS;
}