tstVD.cpp revision 939e2ecb812c6402abcc63e7d615c5444acfd02e
/* $Id$ */
/** @file
* Simple VBox HDD container test utility.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <VBox/vd.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/dir.h>
#include <iprt/string.h>
#include <iprt/stream.h>
#include <iprt/file.h>
#include <iprt/mem.h>
#include <iprt/initterm.h>
#include <iprt/rand.h>
#include "stdio.h"
#include "stdlib.h"
#define VHD_TEST
#define VDI_TEST
#define VMDK_TEST
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The error count. */
unsigned g_cErrors = 0;
static void tstVDError(void *pvUser, int rc, RT_SRC_POS_DECL,
const char *pszFormat, va_list va)
{
g_cErrors++;
RTPrintf("tstVD: Error %Rrc at %s:%u (%s): ", rc, RT_SRC_POS_ARGS);
RTPrintfV(pszFormat, va);
RTPrintf("\n");
}
static int tstVDMessage(void *pvUser, const char *pszFormat, va_list va)
{
RTPrintf("tstVD: ");
RTPrintfV(pszFormat, va);
return VINF_SUCCESS;
}
static int tstVDCreateDelete(const char *pszBackend, const char *pszFilename,
uint64_t cbSize, unsigned uFlags, bool fDelete)
{
int rc;
PVBOXHDD pVD = NULL;
VDGEOMETRY PCHS = { 0, 0, 0 };
VDGEOMETRY LCHS = { 0, 0, 0 };
PVDINTERFACE pVDIfs = NULL;
VDINTERFACEERROR VDIfError;
#define CHECK(str) \
do \
{ \
RTPrintf("%s rc=%Rrc\n", str, rc); \
if (RT_FAILURE(rc)) \
{ \
VDDestroy(pVD); \
return rc; \
} \
} while (0)
/* Create error interface. */
VDIfError.pfnError = tstVDError;
VDIfError.pfnMessage = tstVDMessage;
rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
AssertRC(rc);
rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
CHECK("VDCreate()");
rc = VDCreateBase(pVD, pszBackend, pszFilename, cbSize,
uFlags, "Test image", &PCHS, &LCHS, NULL,
VD_OPEN_FLAGS_NORMAL, NULL, NULL);
CHECK("VDCreateBase()");
VDDumpImages(pVD);
VDClose(pVD, fDelete);
if (fDelete)
{
RTFILE File;
rc = RTFileOpen(&File, pszFilename, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE);
if (RT_SUCCESS(rc))
{
RTFileClose(File);
return VERR_INTERNAL_ERROR;
}
}
VDDestroy(pVD);
#undef CHECK
return 0;
}
static int tstVDOpenDelete(const char *pszBackend, const char *pszFilename)
{
int rc;
PVBOXHDD pVD = NULL;
VDGEOMETRY PCHS = { 0, 0, 0 };
VDGEOMETRY LCHS = { 0, 0, 0 };
PVDINTERFACE pVDIfs = NULL;
VDINTERFACEERROR VDIfError;
#define CHECK(str) \
do \
{ \
RTPrintf("%s rc=%Rrc\n", str, rc); \
if (RT_FAILURE(rc)) \
{ \
VDDestroy(pVD); \
return rc; \
} \
} while (0)
/* Create error interface. */
VDIfError.pfnError = tstVDError;
VDIfError.pfnMessage = tstVDMessage;
rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
AssertRC(rc);
rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
CHECK("VDCreate()");
rc = VDOpen(pVD, pszBackend, pszFilename, VD_OPEN_FLAGS_NORMAL, NULL);
CHECK("VDOpen()");
VDDumpImages(pVD);
VDClose(pVD, true);
RTFILE File;
rc = RTFileOpen(&File, pszFilename, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE);
if (RT_SUCCESS(rc))
{
RTFileClose(File);
return VERR_INTERNAL_ERROR;
}
VDDestroy(pVD);
#undef CHECK
return 0;
}
#undef RTDECL
#define RTDECL(x) static x
/* Start of IPRT code */
/**
* The following code is based on the work of George Marsaglia
* taken from
* http://groups.google.ws/group/comp.sys.sun.admin/msg/7c667186f6cbf354
* and
* http://groups.google.ws/group/comp.lang.c/msg/0e170777c6e79e8d
*/
/*
A C version of a very very good 64-bit RNG is given below.
You should be able to adapt it to your particular needs.
It is based on the complimentary-multiple-with-carry
sequence
x(n)=a*x(n-4)+carry mod 2^64-1,
which works as follows:
Assume a certain multiplier 'a' and a base 'b'.
Given a current x value and a current carry 'c',
form: t=a*x+c
Then the new carry is c=floor(t/b)
and the new x value is x = b-1-(t mod b).
Ordinarily, for 32-bit mwc or cmwc sequences, the
value t=a*x+c can be formed in 64 bits, then the new c
is the top and the new x the bottom 32 bits (with a little
fiddling when b=2^32-1 and cmwc rather than mwc.)
To generate 64-bit x's, it is difficult to form
t=a*x+c in 128 bits then get the new c and new x
from the top and bottom halves.
But if 'a' has a special form, for example,
a=2^62+2^47+2 and b=2^64-1, then the new c and
the new x can be formed with shifts, tests and +/-'s,
again with a little fiddling because b=2^64-1 rather
than 2^64. (The latter is not an optimal choice because,
being a square, it cannot be a primitive root of the
prime a*b^k+1, where 'k' is the 'lag':
x(n)=a*x(n-k)+carry mod b.)
But the multiplier a=2^62+2^47+2 makes a*b^4+1 a prime for
which b=2^64-1 is a primitive root, and getting the new x and
new c can be done with arithmetic on integers the size of x.
*/
struct RndCtx
{
uint64_t x;
uint64_t y;
uint64_t z;
uint64_t w;
uint64_t c;
uint32_t u32x;
uint32_t u32y;
};
typedef struct RndCtx RNDCTX;
typedef RNDCTX *PRNDCTX;
/**
* Initialize seeds.
*
* @remarks You should choose ANY 4 random 64-bit
* seeds x,y,z,w < 2^64-1 and a random seed c in
* 0<= c < a = 2^62+2^47+2.
* There are P=(2^62+2^46+2)*(2^64-1)^4 > 2^318 possible choices
* for seeds, the period of the RNG.
*/
RTDECL(int) RTPRandInit(PRNDCTX pCtx, uint32_t u32Seed)
{
if (u32Seed == 0)
u32Seed = (uint32_t)(ASMReadTSC() >> 8);
/* Zero is not a good seed. */
if (u32Seed == 0)
u32Seed = 362436069;
pCtx->x = u32Seed;
pCtx->y = 17280675555674358941ULL;
pCtx->z = 6376492577913983186ULL;
pCtx->w = 9064188857900113776ULL;
pCtx->c = 123456789;
pCtx->u32x = 2282008;
pCtx->u32y = u32Seed;
return VINF_SUCCESS;
}
RTDECL(uint32_t) RTPRandGetSeedInfo(PRNDCTX pCtx)
{
return pCtx->u32y;
}
/**
* Generate a 64-bit unsigned random number.
*
* @returns The pseudo random number.
*/
RTDECL(uint64_t) RTPRandU64(PRNDCTX pCtx)
{
uint64_t t;
t = (pCtx->x<<47) + (pCtx->x<<62) + (pCtx->x<<1);
t += pCtx->c; t+= (t < pCtx->c);
pCtx->c = (t<pCtx->c) + (pCtx->x>>17) + (pCtx->x>>2) + (pCtx->x>>63);
pCtx->x = pCtx->y; pCtx->y = pCtx->z ; pCtx->z = pCtx->w;
return (pCtx->w = ~(t + pCtx->c)-1);
}
/**
* Generate a 64-bit unsigned pseudo random number in the set
* [u64First..u64Last].
*
* @returns The pseudo random number.
* @param u64First First number in the set.
* @param u64Last Last number in the set.
*/
RTDECL(uint64_t) RTPRandU64Ex(PRNDCTX pCtx, uint64_t u64First, uint64_t u64Last)
{
if (u64First == 0 && u64Last == UINT64_MAX)
return RTPRandU64(pCtx);
uint64_t u64Tmp;
uint64_t u64Range = u64Last - u64First + 1;
uint64_t u64Scale = UINT64_MAX / u64Range;
do
{
u64Tmp = RTPRandU64(pCtx) / u64Scale;
} while (u64Tmp >= u64Range);
return u64First + u64Tmp;
}
/**
* Generate a 32-bit unsigned random number.
*
* @returns The pseudo random number.
*/
RTDECL(uint32_t) RTPRandU32(PRNDCTX pCtx)
{
return ( pCtx->u32x = 69069 * pCtx->u32x + 123,
pCtx->u32y ^= pCtx->u32y<<13,
pCtx->u32y ^= pCtx->u32y>>17,
pCtx->u32y ^= pCtx->u32y<<5,
pCtx->u32x + pCtx->u32y );
}
/**
* Generate a 32-bit unsigned pseudo random number in the set
* [u32First..u32Last].
*
* @returns The pseudo random number.
* @param u32First First number in the set.
* @param u32Last Last number in the set.
*/
RTDECL(uint32_t) RTPRandU32Ex(PRNDCTX pCtx, uint32_t u32First, uint32_t u32Last)
{
if (u32First == 0 && u32Last == UINT32_MAX)
return RTPRandU32(pCtx);
uint32_t u32Tmp;
uint32_t u32Range = u32Last - u32First + 1;
uint32_t u32Scale = UINT32_MAX / u32Range;
do
{
u32Tmp = RTPRandU32(pCtx) / u32Scale;
} while (u32Tmp >= u32Range);
return u32First + u32Tmp;
}
/* End of IPRT code */
struct Segment
{
uint64_t u64Offset;
uint32_t u32Length;
uint32_t u8Value;
};
typedef struct Segment *PSEGMENT;
static void initializeRandomGenerator(PRNDCTX pCtx, uint32_t u32Seed)
{
int rc = RTPRandInit(pCtx, u32Seed);
if (RT_FAILURE(rc))
RTPrintf("ERROR: Failed to initialize random generator. RC=%Rrc\n", rc);
else
{
RTPrintf("INFO: Random generator seed used: %x\n", RTPRandGetSeedInfo(pCtx));
RTLogPrintf("INFO: Random generator seed used: %x\n", RTPRandGetSeedInfo(pCtx));
}
}
static int compareSegments(const void *left, const void *right)
{
/* Note that no duplicates are allowed in the array being sorted. */
return ((PSEGMENT)left)->u64Offset < ((PSEGMENT)right)->u64Offset ? -1 : 1;
}
static void generateRandomSegments(PRNDCTX pCtx, PSEGMENT pSegment, uint32_t nSegments, uint32_t u32MaxSegmentSize, uint64_t u64DiskSize, uint32_t u32SectorSize, uint8_t u8ValueLow, uint8_t u8ValueHigh)
{
uint32_t i;
/* Generate segment offsets. */
for (i = 0; i < nSegments; i++)
{
bool fDuplicateFound;
do
{
pSegment[i].u64Offset = RTPRandU64Ex(pCtx, 0, u64DiskSize / u32SectorSize - 1) * u32SectorSize;
fDuplicateFound = false;
for (uint32_t j = 0; j < i; j++)
if (pSegment[i].u64Offset == pSegment[j].u64Offset)
{
fDuplicateFound = true;
break;
}
} while (fDuplicateFound);
}
/* Sort in offset-ascending order. */
qsort(pSegment, nSegments, sizeof(*pSegment), compareSegments);
/* Put a sentinel at the end. */
pSegment[nSegments].u64Offset = u64DiskSize;
pSegment[nSegments].u32Length = 0;
/* Generate segment lengths and values. */
for (i = 0; i < nSegments; i++)
{
pSegment[i].u32Length = RTPRandU32Ex(pCtx, 1, RT_MIN(pSegment[i+1].u64Offset - pSegment[i].u64Offset,
u32MaxSegmentSize) / u32SectorSize) * u32SectorSize;
Assert(pSegment[i].u32Length <= u32MaxSegmentSize);
pSegment[i].u8Value = RTPRandU32Ex(pCtx, (uint32_t)u8ValueLow, (uint32_t)u8ValueHigh);
}
}
static void mergeSegments(PSEGMENT pBaseSegment, PSEGMENT pDiffSegment, PSEGMENT pMergeSegment, uint32_t u32MaxLength)
{
while (pBaseSegment->u32Length > 0 || pDiffSegment->u32Length > 0)
{
if (pBaseSegment->u64Offset < pDiffSegment->u64Offset)
{
*pMergeSegment = *pBaseSegment;
if (pMergeSegment->u64Offset + pMergeSegment->u32Length <= pDiffSegment->u64Offset)
pBaseSegment++;
else
{
pMergeSegment->u32Length = pDiffSegment->u64Offset - pMergeSegment->u64Offset;
Assert(pMergeSegment->u32Length <= u32MaxLength);
if (pBaseSegment->u64Offset + pBaseSegment->u32Length >
pDiffSegment->u64Offset + pDiffSegment->u32Length)
{
pBaseSegment->u32Length -= pDiffSegment->u64Offset + pDiffSegment->u32Length - pBaseSegment->u64Offset;
Assert(pBaseSegment->u32Length <= u32MaxLength);
pBaseSegment->u64Offset = pDiffSegment->u64Offset + pDiffSegment->u32Length;
}
else
pBaseSegment++;
}
pMergeSegment++;
}
else
{
*pMergeSegment = *pDiffSegment;
if (pMergeSegment->u64Offset + pMergeSegment->u32Length <= pBaseSegment->u64Offset)
{
pDiffSegment++;
pMergeSegment++;
}
else
{
if (pBaseSegment->u64Offset + pBaseSegment->u32Length > pDiffSegment->u64Offset + pDiffSegment->u32Length)
{
pBaseSegment->u32Length -= pDiffSegment->u64Offset + pDiffSegment->u32Length - pBaseSegment->u64Offset;
Assert(pBaseSegment->u32Length <= u32MaxLength);
pBaseSegment->u64Offset = pDiffSegment->u64Offset + pDiffSegment->u32Length;
pDiffSegment++;
pMergeSegment++;
}
else
pBaseSegment++;
}
}
}
}
static void writeSegmentsToDisk(PVBOXHDD pVD, void *pvBuf, PSEGMENT pSegment)
{
while (pSegment->u32Length)
{
//memset((uint8_t*)pvBuf + pSegment->u64Offset, pSegment->u8Value, pSegment->u32Length);
memset(pvBuf, pSegment->u8Value, pSegment->u32Length);
VDWrite(pVD, pSegment->u64Offset, pvBuf, pSegment->u32Length);
pSegment++;
}
}
static int readAndCompareSegments(PVBOXHDD pVD, void *pvBuf, PSEGMENT pSegment)
{
while (pSegment->u32Length)
{
int rc = VDRead(pVD, pSegment->u64Offset, pvBuf, pSegment->u32Length);
if (RT_FAILURE(rc))
{
RTPrintf("ERROR: Failed to read from virtual disk\n");
return rc;
}
else
{
for (unsigned i = 0; i < pSegment->u32Length; i++)
if (((uint8_t*)pvBuf)[i] != pSegment->u8Value)
{
RTPrintf("ERROR: Segment at %Lx of %x bytes is corrupt at offset %x (found %x instead of %x)\n",
pSegment->u64Offset, pSegment->u32Length, i, ((uint8_t*)pvBuf)[i],
pSegment->u8Value);
RTLogPrintf("ERROR: Segment at %Lx of %x bytes is corrupt at offset %x (found %x instead of %x)\n",
pSegment->u64Offset, pSegment->u32Length, i, ((uint8_t*)pvBuf)[i],
pSegment->u8Value);
return VERR_INTERNAL_ERROR;
}
}
pSegment++;
}
return VINF_SUCCESS;
}
static int tstVDOpenCreateWriteMerge(const char *pszBackend,
const char *pszBaseFilename,
const char *pszDiffFilename,
uint32_t u32Seed)
{
int rc;
PVBOXHDD pVD = NULL;
char *pszFormat;
VDTYPE enmType = VDTYPE_INVALID;
VDGEOMETRY PCHS = { 0, 0, 0 };
VDGEOMETRY LCHS = { 0, 0, 0 };
uint64_t u64DiskSize = 1000 * _1M;
uint32_t u32SectorSize = 512;
PVDINTERFACE pVDIfs = NULL;
VDINTERFACEERROR VDIfError;
#define CHECK(str) \
do \
{ \
RTPrintf("%s rc=%Rrc\n", str, rc); \
if (RT_FAILURE(rc)) \
{ \
if (pvBuf) \
RTMemFree(pvBuf); \
VDDestroy(pVD); \
return rc; \
} \
} while (0)
void *pvBuf = RTMemAlloc(_1M);
/* Create error interface. */
VDIfError.pfnError = tstVDError;
VDIfError.pfnMessage = tstVDMessage;
rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
AssertRC(rc);
rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
CHECK("VDCreate()");
RTFILE File;
rc = RTFileOpen(&File, pszBaseFilename, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE);
if (RT_SUCCESS(rc))
{
RTFileClose(File);
rc = VDGetFormat(NULL /* pVDIfsDisk */, NULL /* pVDIfsImage */,
pszBaseFilename, &pszFormat, &enmType);
RTPrintf("VDGetFormat() pszFormat=%s rc=%Rrc\n", pszFormat, rc);
if (RT_SUCCESS(rc) && strcmp(pszFormat, pszBackend))
{
rc = VERR_GENERAL_FAILURE;
RTPrintf("VDGetFormat() returned incorrect backend name\n");
}
RTStrFree(pszFormat);
CHECK("VDGetFormat()");
rc = VDOpen(pVD, pszBackend, pszBaseFilename, VD_OPEN_FLAGS_NORMAL,
NULL);
CHECK("VDOpen()");
}
else
{
rc = VDCreateBase(pVD, pszBackend, pszBaseFilename, u64DiskSize,
VD_IMAGE_FLAGS_NONE, "Test image",
&PCHS, &LCHS, NULL, VD_OPEN_FLAGS_NORMAL,
NULL, NULL);
CHECK("VDCreateBase()");
}
int nSegments = 100;
/* Allocate one extra element for a sentinel. */
PSEGMENT paBaseSegments = (PSEGMENT)RTMemAllocZ(sizeof(struct Segment) * (nSegments + 1));
PSEGMENT paDiffSegments = (PSEGMENT)RTMemAllocZ(sizeof(struct Segment) * (nSegments + 1));
PSEGMENT paMergeSegments = (PSEGMENT)RTMemAllocZ(sizeof(struct Segment) * (nSegments + 1) * 3);
RNDCTX ctx;
initializeRandomGenerator(&ctx, u32Seed);
generateRandomSegments(&ctx, paBaseSegments, nSegments, _1M, u64DiskSize, u32SectorSize, 0u, 127u);
generateRandomSegments(&ctx, paDiffSegments, nSegments, _1M, u64DiskSize, u32SectorSize, 128u, 255u);
/*PSEGMENT pSegment;
RTPrintf("Base segments:\n");
for (pSegment = paBaseSegments; pSegment->u32Length; pSegment++)
RTPrintf("off: %08Lx len: %05x val: %02x\n", pSegment->u64Offset, pSegment->u32Length, pSegment->u8Value);*/
writeSegmentsToDisk(pVD, pvBuf, paBaseSegments);
rc = VDCreateDiff(pVD, pszBackend, pszDiffFilename,
VD_IMAGE_FLAGS_NONE, "Test diff image", NULL, NULL,
VD_OPEN_FLAGS_NORMAL, NULL, NULL);
CHECK("VDCreateDiff()");
/*RTPrintf("\nDiff segments:\n");
for (pSegment = paDiffSegments; pSegment->u32Length; pSegment++)
RTPrintf("off: %08Lx len: %05x val: %02x\n", pSegment->u64Offset, pSegment->u32Length, pSegment->u8Value);*/
writeSegmentsToDisk(pVD, pvBuf, paDiffSegments);
VDDumpImages(pVD);
RTPrintf("Merging diff into base..\n");
rc = VDMerge(pVD, VD_LAST_IMAGE, 0, NULL);
CHECK("VDMerge()");
mergeSegments(paBaseSegments, paDiffSegments, paMergeSegments, _1M);
/*RTPrintf("\nMerged segments:\n");
for (pSegment = paMergeSegments; pSegment->u32Length; pSegment++)
RTPrintf("off: %08Lx len: %05x val: %02x\n", pSegment->u64Offset, pSegment->u32Length, pSegment->u8Value);*/
rc = readAndCompareSegments(pVD, pvBuf, paMergeSegments);
CHECK("readAndCompareSegments()");
RTMemFree(paMergeSegments);
RTMemFree(paDiffSegments);
RTMemFree(paBaseSegments);
VDDumpImages(pVD);
VDDestroy(pVD);
if (pvBuf)
RTMemFree(pvBuf);
#undef CHECK
return 0;
}
static int tstVDCreateWriteOpenRead(const char *pszBackend,
const char *pszFilename,
uint32_t u32Seed)
{
int rc;
PVBOXHDD pVD = NULL;
VDGEOMETRY PCHS = { 0, 0, 0 };
VDGEOMETRY LCHS = { 0, 0, 0 };
uint64_t u64DiskSize = 1000 * _1M;
uint32_t u32SectorSize = 512;
PVDINTERFACE pVDIfs = NULL;
VDINTERFACEERROR VDIfError;
#define CHECK(str) \
do \
{ \
RTPrintf("%s rc=%Rrc\n", str, rc); \
if (RT_FAILURE(rc)) \
{ \
if (pvBuf) \
RTMemFree(pvBuf); \
VDDestroy(pVD); \
return rc; \
} \
} while (0)
void *pvBuf = RTMemAlloc(_1M);
/* Create error interface. */
VDIfError.pfnError = tstVDError;
VDIfError.pfnMessage = tstVDMessage;
rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
AssertRC(rc);
rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
CHECK("VDCreate()");
RTFILE File;
rc = RTFileOpen(&File, pszFilename, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE);
if (RT_SUCCESS(rc))
{
RTFileClose(File);
RTFileDelete(pszFilename);
}
rc = VDCreateBase(pVD, pszBackend, pszFilename, u64DiskSize,
VD_IMAGE_FLAGS_NONE, "Test image",
&PCHS, &LCHS, NULL, VD_OPEN_FLAGS_NORMAL,
NULL, NULL);
CHECK("VDCreateBase()");
int nSegments = 100;
/* Allocate one extra element for a sentinel. */
PSEGMENT paSegments = (PSEGMENT)RTMemAllocZ(sizeof(struct Segment) * (nSegments + 1));
RNDCTX ctx;
initializeRandomGenerator(&ctx, u32Seed);
generateRandomSegments(&ctx, paSegments, nSegments, _1M, u64DiskSize, u32SectorSize, 0u, 127u);
/*for (PSEGMENT pSegment = paSegments; pSegment->u32Length; pSegment++)
RTPrintf("off: %08Lx len: %05x val: %02x\n", pSegment->u64Offset, pSegment->u32Length, pSegment->u8Value);*/
writeSegmentsToDisk(pVD, pvBuf, paSegments);
VDCloseAll(pVD);
rc = VDOpen(pVD, pszBackend, pszFilename, VD_OPEN_FLAGS_NORMAL, NULL);
CHECK("VDOpen()");
rc = readAndCompareSegments(pVD, pvBuf, paSegments);
CHECK("readAndCompareSegments()");
RTMemFree(paSegments);
VDDestroy(pVD);
if (pvBuf)
RTMemFree(pvBuf);
#undef CHECK
return 0;
}
static int tstVmdkRename(const char *src, const char *dst)
{
int rc;
PVBOXHDD pVD = NULL;
PVDINTERFACE pVDIfs = NULL;
VDINTERFACEERROR VDIfError;
#define CHECK(str) \
do \
{ \
RTPrintf("%s rc=%Rrc\n", str, rc); \
if (RT_FAILURE(rc)) \
{ \
VDDestroy(pVD); \
return rc; \
} \
} while (0)
/* Create error interface. */
VDIfError.pfnError = tstVDError;
VDIfError.pfnMessage = tstVDMessage;
rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
AssertRC(rc);
rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
CHECK("VDCreate()");
rc = VDOpen(pVD, "VMDK", src, VD_OPEN_FLAGS_NORMAL, NULL);
CHECK("VDOpen()");
rc = VDCopy(pVD, 0, pVD, "VMDK", dst, true, 0, VD_IMAGE_FLAGS_NONE, NULL,
VD_OPEN_FLAGS_NORMAL, NULL, NULL, NULL);
CHECK("VDCopy()");
VDDestroy(pVD);
#undef CHECK
return 0;
}
static int tstVmdkCreateRenameOpen(const char *src, const char *dst,
uint64_t cbSize, unsigned uFlags)
{
int rc = tstVDCreateDelete("VMDK", src, cbSize, uFlags, false);
if (RT_FAILURE(rc))
return rc;
rc = tstVmdkRename(src, dst);
if (RT_FAILURE(rc))
return rc;
PVBOXHDD pVD = NULL;
PVDINTERFACE pVDIfs = NULL;
VDINTERFACEERROR VDIfError;
#define CHECK(str) \
do \
{ \
RTPrintf("%s rc=%Rrc\n", str, rc); \
if (RT_FAILURE(rc)) \
{ \
VDCloseAll(pVD); \
return rc; \
} \
} while (0)
/* Create error interface. */
VDIfError.pfnError = tstVDError;
VDIfError.pfnMessage = tstVDMessage;
rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
AssertRC(rc);
rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
CHECK("VDCreate()");
rc = VDOpen(pVD, "VMDK", dst, VD_OPEN_FLAGS_NORMAL, NULL);
CHECK("VDOpen()");
VDClose(pVD, true);
CHECK("VDClose()");
VDDestroy(pVD);
#undef CHECK
return rc;
}
#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS)
#define DST_PATH "tmp\\tmpVDRename.vmdk"
#else
#define DST_PATH "tmp/tmpVDRename.vmdk"
#endif
static void tstVmdk()
{
int rc = tstVmdkCreateRenameOpen("tmpVDCreate.vmdk", "tmpVDRename.vmdk", _4G,
VD_IMAGE_FLAGS_NONE);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK rename (single extent, embedded descriptor, same dir) test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVmdkCreateRenameOpen("tmpVDCreate.vmdk", "tmpVDRename.vmdk", _4G,
VD_VMDK_IMAGE_FLAGS_SPLIT_2G);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK rename (multiple extent, separate descriptor, same dir) test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVmdkCreateRenameOpen("tmpVDCreate.vmdk", DST_PATH, _4G,
VD_IMAGE_FLAGS_NONE);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK rename (single extent, embedded descriptor, another dir) test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVmdkCreateRenameOpen("tmpVDCreate.vmdk", DST_PATH, _4G,
VD_VMDK_IMAGE_FLAGS_SPLIT_2G);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK rename (multiple extent, separate descriptor, another dir) test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
RTFILE File;
rc = RTFileOpen(&File, DST_PATH, RTFILE_O_WRITE | RTFILE_O_CREATE | RTFILE_O_DENY_NONE);
if (RT_SUCCESS(rc))
RTFileClose(File);
rc = tstVmdkCreateRenameOpen("tmpVDCreate.vmdk", DST_PATH, _4G,
VD_VMDK_IMAGE_FLAGS_SPLIT_2G);
if (RT_SUCCESS(rc))
{
RTPrintf("tstVD: VMDK rename (multiple extent, separate descriptor, another dir, already exists) test failed!\n");
g_cErrors++;
}
RTFileDelete(DST_PATH);
RTFileDelete("tmpVDCreate.vmdk");
RTFileDelete("tmpVDCreate-s001.vmdk");
RTFileDelete("tmpVDCreate-s002.vmdk");
RTFileDelete("tmpVDCreate-s003.vmdk");
}
int main(int argc, char *argv[])
{
RTR3InitExe(argc, &argv, 0);
int rc;
uint32_t u32Seed = 0; // Means choose random
if (argc > 1)
if (sscanf(argv[1], "%x", &u32Seed) != 1)
{
RTPrintf("ERROR: Invalid parameter %s. Valid usage is %s <32-bit seed>.\n",
argv[1], argv[0]);
return 1;
}
RTPrintf("tstVD: TESTING...\n");
/*
* Clean up potential leftovers from previous unsuccessful runs.
*/
RTFileDelete("tmpVDCreate.vdi");
RTFileDelete("tmpVDCreate.vmdk");
RTFileDelete("tmpVDCreate.vhd");
RTFileDelete("tmpVDBase.vdi");
RTFileDelete("tmpVDDiff.vdi");
RTFileDelete("tmpVDBase.vmdk");
RTFileDelete("tmpVDDiff.vmdk");
RTFileDelete("tmpVDBase.vhd");
RTFileDelete("tmpVDDiff.vhd");
RTFileDelete("tmpVDCreate-s001.vmdk");
RTFileDelete("tmpVDCreate-s002.vmdk");
RTFileDelete("tmpVDCreate-s003.vmdk");
RTFileDelete("tmpVDRename.vmdk");
RTFileDelete("tmpVDRename-s001.vmdk");
RTFileDelete("tmpVDRename-s002.vmdk");
RTFileDelete("tmpVDRename-s003.vmdk");
RTFileDelete("tmp/tmpVDRename.vmdk");
RTFileDelete("tmp/tmpVDRename-s001.vmdk");
RTFileDelete("tmp/tmpVDRename-s002.vmdk");
RTFileDelete("tmp/tmpVDRename-s003.vmdk");
if (!RTDirExists("tmp"))
{
rc = RTDirCreate("tmp", RTFS_UNIX_IRWXU, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: Failed to create 'tmp' directory! rc=%Rrc\n", rc);
g_cErrors++;
}
}
#ifdef VMDK_TEST
rc = tstVDCreateDelete("VMDK", "tmpVDCreate.vmdk", 2 * _4G,
VD_IMAGE_FLAGS_NONE, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: dynamic VMDK create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDCreateDelete("VMDK", "tmpVDCreate.vmdk", 2 * _4G,
VD_IMAGE_FLAGS_NONE, false);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: dynamic VMDK create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDOpenDelete("VMDK", "tmpVDCreate.vmdk");
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK delete test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
tstVmdk();
#endif /* VMDK_TEST */
#ifdef VDI_TEST
rc = tstVDCreateDelete("VDI", "tmpVDCreate.vdi", 2 * _4G,
VD_IMAGE_FLAGS_NONE, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: dynamic VDI create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDCreateDelete("VDI", "tmpVDCreate.vdi", 2 * _4G,
VD_IMAGE_FLAGS_NONE, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: fixed VDI create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
#endif /* VDI_TEST */
#ifdef VMDK_TEST
rc = tstVDCreateDelete("VMDK", "tmpVDCreate.vmdk", 2 * _4G,
VD_IMAGE_FLAGS_NONE, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: dynamic VMDK create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDCreateDelete("VMDK", "tmpVDCreate.vmdk", 2 * _4G,
VD_VMDK_IMAGE_FLAGS_SPLIT_2G, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: dynamic split VMDK create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDCreateDelete("VMDK", "tmpVDCreate.vmdk", 2 * _4G,
VD_IMAGE_FLAGS_FIXED, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: fixed VMDK create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDCreateDelete("VMDK", "tmpVDCreate.vmdk", 2 * _4G,
VD_IMAGE_FLAGS_FIXED | VD_VMDK_IMAGE_FLAGS_SPLIT_2G,
true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: fixed split VMDK create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
#endif /* VMDK_TEST */
#ifdef VHD_TEST
rc = tstVDCreateDelete("VHD", "tmpVDCreate.vhd", 2 * _4G,
VD_IMAGE_FLAGS_NONE, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: dynamic VHD create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDCreateDelete("VHD", "tmpVDCreate.vhd", 2 * _4G,
VD_IMAGE_FLAGS_FIXED, true);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: fixed VHD create test failed! rc=%Rrc\n", rc);
g_cErrors++;
}
#endif /* VHD_TEST */
#ifdef VDI_TEST
rc = tstVDOpenCreateWriteMerge("VDI", "tmpVDBase.vdi", "tmpVDDiff.vdi", u32Seed);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VDI test failed (new image)! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDOpenCreateWriteMerge("VDI", "tmpVDBase.vdi", "tmpVDDiff.vdi", u32Seed);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VDI test failed (existing image)! rc=%Rrc\n", rc);
g_cErrors++;
}
#endif /* VDI_TEST */
#ifdef VMDK_TEST
rc = tstVDOpenCreateWriteMerge("VMDK", "tmpVDBase.vmdk", "tmpVDDiff.vmdk", u32Seed);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK test failed (new image)! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDOpenCreateWriteMerge("VMDK", "tmpVDBase.vmdk", "tmpVDDiff.vmdk", u32Seed);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VMDK test failed (existing image)! rc=%Rrc\n", rc);
g_cErrors++;
}
#endif /* VMDK_TEST */
#ifdef VHD_TEST
rc = tstVDCreateWriteOpenRead("VHD", "tmpVDCreate.vhd", u32Seed);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VHD test failed (creating image)! rc=%Rrc\n", rc);
g_cErrors++;
}
rc = tstVDOpenCreateWriteMerge("VHD", "tmpVDBase.vhd", "tmpVDDiff.vhd", u32Seed);
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: VHD test failed (existing image)! rc=%Rrc\n", rc);
g_cErrors++;
}
#endif /* VHD_TEST */
/*
* Clean up any leftovers.
*/
RTFileDelete("tmpVDCreate.vdi");
RTFileDelete("tmpVDCreate.vmdk");
RTFileDelete("tmpVDCreate.vhd");
RTFileDelete("tmpVDBase.vdi");
RTFileDelete("tmpVDDiff.vdi");
RTFileDelete("tmpVDBase.vmdk");
RTFileDelete("tmpVDDiff.vmdk");
RTFileDelete("tmpVDBase.vhd");
RTFileDelete("tmpVDDiff.vhd");
RTFileDelete("tmpVDCreate-s001.vmdk");
RTFileDelete("tmpVDCreate-s002.vmdk");
RTFileDelete("tmpVDCreate-s003.vmdk");
RTFileDelete("tmpVDRename.vmdk");
RTFileDelete("tmpVDRename-s001.vmdk");
RTFileDelete("tmpVDRename-s002.vmdk");
RTFileDelete("tmpVDRename-s003.vmdk");
rc = VDShutdown();
if (RT_FAILURE(rc))
{
RTPrintf("tstVD: unloading backends failed! rc=%Rrc\n", rc);
g_cErrors++;
}
/*
* Summary
*/
if (!g_cErrors)
RTPrintf("tstVD: SUCCESS\n");
else
RTPrintf("tstVD: FAILURE - %d errors\n", g_cErrors);
return !!g_cErrors;
}