VMDK.cpp revision 8d0c7969d96fb999cf64727ef3d47defb988df3b
/* $Id$ */
/** @file
* VMDK disk image, core code.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_VD_VMDK
#include <VBox/vd-plugin.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include <iprt/uuid.h>
#include <iprt/path.h>
#include <iprt/string.h>
#include <iprt/rand.h>
#include <iprt/zip.h>
#include <iprt/asm.h>
/*******************************************************************************
* Constants And Macros, Structures and Typedefs *
*******************************************************************************/
/** Maximum encoded string size (including NUL) we allow for VMDK images.
* Deliberately not set high to avoid running out of descriptor space. */
#define VMDK_ENCODED_COMMENT_MAX 1024
/** VMDK descriptor DDB entry for PCHS cylinders. */
#define VMDK_DDB_GEO_PCHS_CYLINDERS "ddb.geometry.cylinders"
/** VMDK descriptor DDB entry for PCHS heads. */
#define VMDK_DDB_GEO_PCHS_HEADS "ddb.geometry.heads"
/** VMDK descriptor DDB entry for PCHS sectors. */
#define VMDK_DDB_GEO_PCHS_SECTORS "ddb.geometry.sectors"
/** VMDK descriptor DDB entry for LCHS cylinders. */
#define VMDK_DDB_GEO_LCHS_CYLINDERS "ddb.geometry.biosCylinders"
/** VMDK descriptor DDB entry for LCHS heads. */
#define VMDK_DDB_GEO_LCHS_HEADS "ddb.geometry.biosHeads"
/** VMDK descriptor DDB entry for LCHS sectors. */
#define VMDK_DDB_GEO_LCHS_SECTORS "ddb.geometry.biosSectors"
/** VMDK descriptor DDB entry for image UUID. */
#define VMDK_DDB_IMAGE_UUID "ddb.uuid.image"
/** VMDK descriptor DDB entry for image modification UUID. */
#define VMDK_DDB_MODIFICATION_UUID "ddb.uuid.modification"
/** VMDK descriptor DDB entry for parent image UUID. */
#define VMDK_DDB_PARENT_UUID "ddb.uuid.parent"
/** VMDK descriptor DDB entry for parent image modification UUID. */
#define VMDK_DDB_PARENT_MODIFICATION_UUID "ddb.uuid.parentmodification"
/** No compression for streamOptimized files. */
#define VMDK_COMPRESSION_NONE 0
/** Deflate compression for streamOptimized files. */
#define VMDK_COMPRESSION_DEFLATE 1
/** Marker that the actual GD value is stored in the footer. */
#define VMDK_GD_AT_END 0xffffffffffffffffULL
/** Marker for end-of-stream in streamOptimized images. */
#define VMDK_MARKER_EOS 0
/** Marker for grain table block in streamOptimized images. */
#define VMDK_MARKER_GT 1
/** Marker for grain directory block in streamOptimized images. */
#define VMDK_MARKER_GD 2
/** Marker for footer in streamOptimized images. */
#define VMDK_MARKER_FOOTER 3
/** Dummy marker for "don't check the marker value". */
#define VMDK_MARKER_IGNORE 0xffffffffU
/**
* Magic number for hosted images created by VMware Workstation 4, VMware
* Workstation 5, VMware Server or VMware Player. Not necessarily sparse.
*/
#define VMDK_SPARSE_MAGICNUMBER 0x564d444b /* 'V' 'M' 'D' 'K' */
/**
* VMDK hosted binary extent header. The "Sparse" is a total misnomer, as
* this header is also used for monolithic flat images.
*/
#pragma pack(1)
typedef struct SparseExtentHeader
{
uint32_t magicNumber;
uint32_t version;
uint32_t flags;
uint64_t capacity;
uint64_t grainSize;
uint64_t descriptorOffset;
uint64_t descriptorSize;
uint32_t numGTEsPerGT;
uint64_t rgdOffset;
uint64_t gdOffset;
uint64_t overHead;
bool uncleanShutdown;
char singleEndLineChar;
char nonEndLineChar;
char doubleEndLineChar1;
char doubleEndLineChar2;
uint16_t compressAlgorithm;
uint8_t pad[433];
} SparseExtentHeader;
#pragma pack()
/** VMDK capacity for a single chunk when 2G splitting is turned on. Should be
* divisible by the default grain size (64K) */
#define VMDK_2G_SPLIT_SIZE (2047 * 1024 * 1024)
/** VMDK streamOptimized file format marker. The type field may or may not
* be actually valid, but there's always data to read there. */
#pragma pack(1)
typedef struct VMDKMARKER
{
uint64_t uSector;
uint32_t cbSize;
uint32_t uType;
} VMDKMARKER, *PVMDKMARKER;
#pragma pack()
#ifdef VBOX_WITH_VMDK_ESX
/** @todo the ESX code is not tested, not used, and lacks error messages. */
/**
* Magic number for images created by VMware GSX Server 3 or ESX Server 3.
*/
#define VMDK_ESX_SPARSE_MAGICNUMBER 0x44574f43 /* 'C' 'O' 'W' 'D' */
#pragma pack(1)
typedef struct COWDisk_Header
{
uint32_t magicNumber;
uint32_t version;
uint32_t flags;
uint32_t numSectors;
uint32_t grainSize;
uint32_t gdOffset;
uint32_t numGDEntries;
uint32_t freeSector;
/* The spec incompletely documents quite a few further fields, but states
* that they are unused by the current format. Replace them by padding. */
char reserved1[1604];
uint32_t savedGeneration;
char reserved2[8];
uint32_t uncleanShutdown;
char padding[396];
} COWDisk_Header;
#pragma pack()
#endif /* VBOX_WITH_VMDK_ESX */
/** Convert sector number/size to byte offset/size. */
#define VMDK_SECTOR2BYTE(u) ((uint64_t)(u) << 9)
/** Convert byte offset/size to sector number/size. */
#define VMDK_BYTE2SECTOR(u) ((u) >> 9)
/**
* VMDK extent type.
*/
typedef enum VMDKETYPE
{
/** Hosted sparse extent. */
VMDKETYPE_HOSTED_SPARSE = 1,
/** Flat extent. */
VMDKETYPE_FLAT,
/** Zero extent. */
VMDKETYPE_ZERO,
/** VMFS extent, used by ESX. */
VMDKETYPE_VMFS
#ifdef VBOX_WITH_VMDK_ESX
,
/** ESX sparse extent. */
VMDKETYPE_ESX_SPARSE
#endif /* VBOX_WITH_VMDK_ESX */
} VMDKETYPE, *PVMDKETYPE;
/**
* VMDK access type for a extent.
*/
typedef enum VMDKACCESS
{
/** No access allowed. */
VMDKACCESS_NOACCESS = 0,
/** Read-only access. */
VMDKACCESS_READONLY,
/** Read-write access. */
VMDKACCESS_READWRITE
} VMDKACCESS, *PVMDKACCESS;
/** Forward declaration for PVMDKIMAGE. */
typedef struct VMDKIMAGE *PVMDKIMAGE;
/**
* Extents files entry. Used for opening a particular file only once.
*/
typedef struct VMDKFILE
{
/** Pointer to filename. Local copy. */
const char *pszFilename;
/** File open flags for consistency checking. */
unsigned fOpen;
/** Flag whether this file has been opened for async I/O. */
bool fAsyncIO;
/** Handle for sync/async file abstraction.*/
PVDIOSTORAGE pStorage;
/** Reference counter. */
unsigned uReferences;
/** Flag whether the file should be deleted on last close. */
bool fDelete;
/** Pointer to the image we belong to (for debugging purposes). */
PVMDKIMAGE pImage;
/** Pointer to next file descriptor. */
struct VMDKFILE *pNext;
/** Pointer to the previous file descriptor. */
struct VMDKFILE *pPrev;
} VMDKFILE, *PVMDKFILE;
/**
* VMDK extent data structure.
*/
typedef struct VMDKEXTENT
{
/** File handle. */
PVMDKFILE pFile;
/** Base name of the image extent. */
const char *pszBasename;
/** Full name of the image extent. */
const char *pszFullname;
/** Number of sectors in this extent. */
uint64_t cSectors;
/** Number of sectors per block (grain in VMDK speak). */
uint64_t cSectorsPerGrain;
/** Starting sector number of descriptor. */
uint64_t uDescriptorSector;
/** Size of descriptor in sectors. */
uint64_t cDescriptorSectors;
/** Starting sector number of grain directory. */
uint64_t uSectorGD;
/** Starting sector number of redundant grain directory. */
uint64_t uSectorRGD;
/** Total number of metadata sectors. */
uint64_t cOverheadSectors;
/** Nominal size (i.e. as described by the descriptor) of this extent. */
uint64_t cNominalSectors;
/** Sector offset (i.e. as described by the descriptor) of this extent. */
uint64_t uSectorOffset;
/** Number of entries in a grain table. */
uint32_t cGTEntries;
/** Number of sectors reachable via a grain directory entry. */
uint32_t cSectorsPerGDE;
/** Number of entries in the grain directory. */
uint32_t cGDEntries;
/** Pointer to the next free sector. Legacy information. Do not use. */
uint32_t uFreeSector;
/** Number of this extent in the list of images. */
uint32_t uExtent;
/** Pointer to the descriptor (NULL if no descriptor in this extent). */
char *pDescData;
/** Pointer to the grain directory. */
uint32_t *pGD;
/** Pointer to the redundant grain directory. */
uint32_t *pRGD;
/** VMDK version of this extent. 1=1.0/1.1 */
uint32_t uVersion;
/** Type of this extent. */
VMDKETYPE enmType;
/** Access to this extent. */
VMDKACCESS enmAccess;
/** Flag whether this extent is marked as unclean. */
bool fUncleanShutdown;
/** Flag whether the metadata in the extent header needs to be updated. */
bool fMetaDirty;
/** Flag whether there is a footer in this extent. */
bool fFooter;
/** Compression type for this extent. */
uint16_t uCompression;
/** Append position for writing new grain. Only for sparse extents. */
uint64_t uAppendPosition;
/** Last grain which was accessed. Only for streamOptimized extents. */
uint32_t uLastGrainAccess;
/** Starting sector corresponding to the grain buffer. */
uint32_t uGrainSectorAbs;
/** Grain number corresponding to the grain buffer. */
uint32_t uGrain;
/** Actual size of the compressed data, only valid for reading. */
uint32_t cbGrainStreamRead;
/** Size of compressed grain buffer for streamOptimized extents. */
size_t cbCompGrain;
/** Compressed grain buffer for streamOptimized extents, with marker. */
void *pvCompGrain;
/** Decompressed grain buffer for streamOptimized extents. */
void *pvGrain;
/** Reference to the image in which this extent is used. Do not use this
* on a regular basis to avoid passing pImage references to functions
* explicitly. */
struct VMDKIMAGE *pImage;
} VMDKEXTENT, *PVMDKEXTENT;
/**
* Grain table cache size. Allocated per image.
*/
#define VMDK_GT_CACHE_SIZE 256
/**
* Grain table block size. Smaller than an actual grain table block to allow
* more grain table blocks to be cached without having to allocate excessive
* amounts of memory for the cache.
*/
#define VMDK_GT_CACHELINE_SIZE 128
/**
* Maximum number of lines in a descriptor file. Not worth the effort of
* making it variable. Descriptor files are generally very short (~20 lines),
* with the exception of sparse files split in 2G chunks, which need for the
* maximum size (almost 2T) exactly 1025 lines for the disk database.
*/
#define VMDK_DESCRIPTOR_LINES_MAX 1100U
/**
* Parsed descriptor information. Allows easy access and update of the
* descriptor (whether separate file or not). Free form text files suck.
*/
typedef struct VMDKDESCRIPTOR
{
/** Line number of first entry of the disk descriptor. */
unsigned uFirstDesc;
/** Line number of first entry in the extent description. */
unsigned uFirstExtent;
/** Line number of first disk database entry. */
unsigned uFirstDDB;
/** Total number of lines. */
unsigned cLines;
/** Total amount of memory available for the descriptor. */
size_t cbDescAlloc;
/** Set if descriptor has been changed and not yet written to disk. */
bool fDirty;
/** Array of pointers to the data in the descriptor. */
char *aLines[VMDK_DESCRIPTOR_LINES_MAX];
/** Array of line indices pointing to the next non-comment line. */
unsigned aNextLines[VMDK_DESCRIPTOR_LINES_MAX];
} VMDKDESCRIPTOR, *PVMDKDESCRIPTOR;
/**
* Cache entry for translating extent/sector to a sector number in that
* extent.
*/
typedef struct VMDKGTCACHEENTRY
{
/** Extent number for which this entry is valid. */
uint32_t uExtent;
/** GT data block number. */
uint64_t uGTBlock;
/** Data part of the cache entry. */
uint32_t aGTData[VMDK_GT_CACHELINE_SIZE];
} VMDKGTCACHEENTRY, *PVMDKGTCACHEENTRY;
/**
* Cache data structure for blocks of grain table entries. For now this is a
* fixed size direct mapping cache, but this should be adapted to the size of
* the sparse image and maybe converted to a set-associative cache. The
* implementation below implements a write-through cache with write allocate.
*/
typedef struct VMDKGTCACHE
{
/** Cache entries. */
VMDKGTCACHEENTRY aGTCache[VMDK_GT_CACHE_SIZE];
/** Number of cache entries (currently unused). */
unsigned cEntries;
} VMDKGTCACHE, *PVMDKGTCACHE;
/**
* Complete VMDK image data structure. Mainly a collection of extents and a few
* extra global data fields.
*/
typedef struct VMDKIMAGE
{
/** Image name. */
const char *pszFilename;
/** Descriptor file if applicable. */
PVMDKFILE pFile;
/** I/O interface. */
PVDINTERFACE pInterfaceIO;
/** I/O interface callbacks. */
PVDINTERFACEIOINT pInterfaceIOCallbacks;
/** Pointer to the per-disk VD interface list. */
PVDINTERFACE pVDIfsDisk;
/** Pointer to the per-image VD interface list. */
PVDINTERFACE pVDIfsImage;
/** Error interface. */
PVDINTERFACE pInterfaceError;
/** Error interface callbacks. */
PVDINTERFACEERROR pInterfaceErrorCallbacks;
/** Pointer to the image extents. */
PVMDKEXTENT pExtents;
/** Number of image extents. */
unsigned cExtents;
/** Pointer to the files list, for opening a file referenced multiple
* times only once (happens mainly with raw partition access). */
PVMDKFILE pFiles;
/**
* Pointer to an array of segment entries for async I/O.
* This is an optimization because the task number to submit is not known
* and allocating/freeing an array in the read/write functions every time
* is too expensive.
*/
PPDMDATASEG paSegments;
/** Entries available in the segments array. */
unsigned cSegments;
/** Open flags passed by VBoxHD layer. */
unsigned uOpenFlags;
/** Image flags defined during creation or determined during open. */
unsigned uImageFlags;
/** Total size of the image. */
uint64_t cbSize;
/** Physical geometry of this image. */
VDGEOMETRY PCHSGeometry;
/** Logical geometry of this image. */
VDGEOMETRY LCHSGeometry;
/** Image UUID. */
RTUUID ImageUuid;
/** Image modification UUID. */
RTUUID ModificationUuid;
/** Parent image UUID. */
RTUUID ParentUuid;
/** Parent image modification UUID. */
RTUUID ParentModificationUuid;
/** Pointer to grain table cache, if this image contains sparse extents. */
PVMDKGTCACHE pGTCache;
/** Pointer to the descriptor (NULL if no separate descriptor file). */
char *pDescData;
/** Allocation size of the descriptor file. */
size_t cbDescAlloc;
/** Parsed descriptor file content. */
VMDKDESCRIPTOR Descriptor;
} VMDKIMAGE;
/** State for the input/output callout of the inflate reader/deflate writer. */
typedef struct VMDKCOMPRESSIO
{
/* Image this operation relates to. */
PVMDKIMAGE pImage;
/* Current read position. */
ssize_t iOffset;
/* Size of the compressed grain buffer (available data). */
size_t cbCompGrain;
/* Pointer to the compressed grain buffer. */
void *pvCompGrain;
} VMDKCOMPRESSIO;
/** Tracks async grain allocation. */
typedef struct VMDKGRAINALLOCASYNC
{
/** Flag whether the allocation failed. */
bool fIoErr;
/** Current number of transfers pending.
* If reached 0 and there is an error the old state is restored. */
unsigned cIoXfersPending;
/** Sector number */
uint64_t uSector;
/** Flag whether the grain table needs to be updated. */
bool fGTUpdateNeeded;
/** Extent the allocation happens. */
PVMDKEXTENT pExtent;
/** Position of the new grain, required for the grain table update. */
uint64_t uGrainOffset;
/** Grain table sector. */
uint64_t uGTSector;
/** Backup grain table sector. */
uint64_t uRGTSector;
} VMDKGRAINALLOCASYNC, *PVMDKGRAINALLOCASYNC;
/*******************************************************************************
* Static Variables *
*******************************************************************************/
/** NULL-terminated array of supported file extensions. */
static const VDFILEEXTENSION s_aVmdkFileExtensions[] =
{
{"vmdk", VDTYPE_HDD},
{NULL, VDTYPE_INVALID}
};
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent);
static void vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
bool fDelete);
static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents);
static int vmdkFlushImage(PVMDKIMAGE pImage);
static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment);
static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete);
static int vmdkAllocGrainAsyncComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq);
/**
* Internal: signal an error to the frontend.
*/
DECLINLINE(int) vmdkError(PVMDKIMAGE pImage, int rc, RT_SRC_POS_DECL,
const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
if (pImage->pInterfaceError && pImage->pInterfaceErrorCallbacks)
pImage->pInterfaceErrorCallbacks->pfnError(pImage->pInterfaceError->pvUser, rc, RT_SRC_POS_ARGS,
pszFormat, va);
va_end(va);
return rc;
}
/**
* Internal: signal an informational message to the frontend.
*/
DECLINLINE(int) vmdkMessage(PVMDKIMAGE pImage, const char *pszFormat, ...)
{
int rc = VINF_SUCCESS;
va_list va;
va_start(va, pszFormat);
if (pImage->pInterfaceError && pImage->pInterfaceErrorCallbacks)
rc = pImage->pInterfaceErrorCallbacks->pfnMessage(pImage->pInterfaceError->pvUser,
pszFormat, va);
va_end(va);
return rc;
}
/**
* Internal: open a file (using a file descriptor cache to ensure each file
* is only opened once - anything else can cause locking problems).
*/
static int vmdkFileOpen(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile,
const char *pszFilename, uint32_t fOpen, bool fAsyncIO)
{
int rc = VINF_SUCCESS;
PVMDKFILE pVmdkFile;
for (pVmdkFile = pImage->pFiles;
pVmdkFile != NULL;
pVmdkFile = pVmdkFile->pNext)
{
if (!strcmp(pszFilename, pVmdkFile->pszFilename))
{
Assert(fOpen == pVmdkFile->fOpen);
pVmdkFile->uReferences++;
*ppVmdkFile = pVmdkFile;
return rc;
}
}
/* If we get here, there's no matching entry in the cache. */
pVmdkFile = (PVMDKFILE)RTMemAllocZ(sizeof(VMDKFILE));
if (!VALID_PTR(pVmdkFile))
{
*ppVmdkFile = NULL;
return VERR_NO_MEMORY;
}
pVmdkFile->pszFilename = RTStrDup(pszFilename);
if (!VALID_PTR(pVmdkFile->pszFilename))
{
RTMemFree(pVmdkFile);
*ppVmdkFile = NULL;
return VERR_NO_MEMORY;
}
pVmdkFile->fOpen = fOpen;
pVmdkFile->fAsyncIO = fAsyncIO;
rc = pImage->pInterfaceIOCallbacks->pfnOpen(pImage->pInterfaceIO->pvUser,
pszFilename, fOpen,
&pVmdkFile->pStorage);
if (RT_SUCCESS(rc))
{
pVmdkFile->uReferences = 1;
pVmdkFile->pImage = pImage;
pVmdkFile->pNext = pImage->pFiles;
if (pImage->pFiles)
pImage->pFiles->pPrev = pVmdkFile;
pImage->pFiles = pVmdkFile;
*ppVmdkFile = pVmdkFile;
}
else
{
RTStrFree((char *)(void *)pVmdkFile->pszFilename);
RTMemFree(pVmdkFile);
*ppVmdkFile = NULL;
}
return rc;
}
/**
* Internal: close a file, updating the file descriptor cache.
*/
static int vmdkFileClose(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile, bool fDelete)
{
int rc = VINF_SUCCESS;
PVMDKFILE pVmdkFile = *ppVmdkFile;
AssertPtr(pVmdkFile);
pVmdkFile->fDelete |= fDelete;
Assert(pVmdkFile->uReferences);
pVmdkFile->uReferences--;
if (pVmdkFile->uReferences == 0)
{
PVMDKFILE pPrev;
PVMDKFILE pNext;
/* Unchain the element from the list. */
pPrev = pVmdkFile->pPrev;
pNext = pVmdkFile->pNext;
if (pNext)
pNext->pPrev = pPrev;
if (pPrev)
pPrev->pNext = pNext;
else
pImage->pFiles = pNext;
rc = pImage->pInterfaceIOCallbacks->pfnClose(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage);
if (RT_SUCCESS(rc) && pVmdkFile->fDelete)
rc = pImage->pInterfaceIOCallbacks->pfnDelete(pImage->pInterfaceIO->pvUser,
pVmdkFile->pszFilename);
RTStrFree((char *)(void *)pVmdkFile->pszFilename);
RTMemFree(pVmdkFile);
}
*ppVmdkFile = NULL;
return rc;
}
/**
* Internal: rename a file (sync)
*/
DECLINLINE(int) vmdkFileMove(PVMDKIMAGE pImage, const char *pszSrc,
const char *pszDst, unsigned fMove)
{
return pImage->pInterfaceIOCallbacks->pfnMove(pImage->pInterfaceIO->pvUser,
pszSrc, pszDst, fMove);
}
/**
* Internal: get the size of a file (sync/async)
*/
DECLINLINE(int) vmdkFileGetSize(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t *pcbSize)
{
return pImage->pInterfaceIOCallbacks->pfnGetSize(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage,
pcbSize);
}
/**
* Internal: set the size of a file (sync/async)
*/
DECLINLINE(int) vmdkFileSetSize(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t cbSize)
{
return pImage->pInterfaceIOCallbacks->pfnSetSize(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage,
cbSize);
}
/**
* Internal: read from a file (sync)
*/
DECLINLINE(int) vmdkFileReadSync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t uOffset, void *pvBuf,
size_t cbToRead, size_t *pcbRead)
{
return pImage->pInterfaceIOCallbacks->pfnReadSync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage, uOffset,
pvBuf, cbToRead, pcbRead);
}
/**
* Internal: write to a file (sync)
*/
DECLINLINE(int) vmdkFileWriteSync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t uOffset, const void *pvBuf,
size_t cbToWrite, size_t *pcbWritten)
{
return pImage->pInterfaceIOCallbacks->pfnWriteSync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage, uOffset,
pvBuf, cbToWrite, pcbWritten);
}
/**
* Internal: flush a file (sync)
*/
DECLINLINE(int) vmdkFileFlush(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile)
{
return pImage->pInterfaceIOCallbacks->pfnFlushSync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage);
}
/**
* Internal: read user data (async)
*/
DECLINLINE(int) vmdkFileReadUserAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t uOffset, PVDIOCTX pIoCtx,
size_t cbRead)
{
return pImage->pInterfaceIOCallbacks->pfnReadUserAsync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage,
uOffset, pIoCtx,
cbRead);
}
/**
* Internal: write user data (async)
*/
DECLINLINE(int) vmdkFileWriteUserAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t uOffset, PVDIOCTX pIoCtx,
size_t cbWrite,
PFNVDXFERCOMPLETED pfnComplete,
void *pvCompleteUser)
{
return pImage->pInterfaceIOCallbacks->pfnWriteUserAsync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage,
uOffset, pIoCtx,
cbWrite,
pfnComplete,
pvCompleteUser);
}
/**
* Internal: read metadata (async)
*/
DECLINLINE(int) vmdkFileReadMetaAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t uOffset, void *pvBuffer,
size_t cbBuffer, PVDIOCTX pIoCtx,
PPVDMETAXFER ppMetaXfer,
PFNVDXFERCOMPLETED pfnComplete,
void *pvCompleteUser)
{
return pImage->pInterfaceIOCallbacks->pfnReadMetaAsync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage,
uOffset, pvBuffer,
cbBuffer, pIoCtx,
ppMetaXfer,
pfnComplete,
pvCompleteUser);
}
/**
* Internal: write metadata (async)
*/
DECLINLINE(int) vmdkFileWriteMetaAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
uint64_t uOffset, void *pvBuffer,
size_t cbBuffer, PVDIOCTX pIoCtx,
PFNVDXFERCOMPLETED pfnComplete,
void *pvCompleteUser)
{
return pImage->pInterfaceIOCallbacks->pfnWriteMetaAsync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage,
uOffset, pvBuffer,
cbBuffer, pIoCtx,
pfnComplete,
pvCompleteUser);
}
/**
* Internal: releases a metadata transfer handle (async)
*/
DECLINLINE(void) vmdkFileMetaXferRelease(PVMDKIMAGE pImage, PVDMETAXFER pMetaXfer)
{
pImage->pInterfaceIOCallbacks->pfnMetaXferRelease(pImage->pInterfaceIO->pvUser,
pMetaXfer);
}
/**
* Internal: flush a file (async)
*/
DECLINLINE(int) vmdkFileFlushAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile,
PVDIOCTX pIoCtx)
{
return pImage->pInterfaceIOCallbacks->pfnFlushAsync(pImage->pInterfaceIO->pvUser,
pVmdkFile->pStorage, pIoCtx,
NULL, NULL);
}
/**
* Internal: sets the buffer to a specific byte (async)
*/
DECLINLINE(int) vmdkFileIoCtxSet(PVMDKIMAGE pImage, PVDIOCTX pIoCtx,
int ch, size_t cbSet)
{
return pImage->pInterfaceIOCallbacks->pfnIoCtxSet(pImage->pInterfaceIO->pvUser,
pIoCtx, ch, cbSet);
}
static DECLCALLBACK(int) vmdkFileInflateHelper(void *pvUser, void *pvBuf, size_t cbBuf, size_t *pcbBuf)
{
VMDKCOMPRESSIO *pInflateState = (VMDKCOMPRESSIO *)pvUser;
size_t cbInjected = 0;
Assert(cbBuf);
if (pInflateState->iOffset < 0)
{
*(uint8_t *)pvBuf = RTZIPTYPE_ZLIB;
pvBuf = (uint8_t *)pvBuf + 1;
cbBuf--;
cbInjected = 1;
pInflateState->iOffset = RT_OFFSETOF(VMDKMARKER, uType);
}
if (!cbBuf)
{
if (pcbBuf)
*pcbBuf = cbInjected;
return VINF_SUCCESS;
}
cbBuf = RT_MIN(cbBuf, pInflateState->cbCompGrain - pInflateState->iOffset);
memcpy(pvBuf,
(uint8_t *)pInflateState->pvCompGrain + pInflateState->iOffset,
cbBuf);
pInflateState->iOffset += cbBuf;
Assert(pcbBuf);
*pcbBuf = cbBuf + cbInjected;
return VINF_SUCCESS;
}
/**
* Internal: read from a file and inflate the compressed data,
* distinguishing between async and normal operation
*/
DECLINLINE(int) vmdkFileInflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uOffset, void *pvBuf,
size_t cbToRead, const void *pcvMarker,
uint64_t *puLBA, uint32_t *pcbMarkerData)
{
if (pExtent->pFile->fAsyncIO)
{
AssertMsgFailed(("TODO\n"));
return VERR_NOT_SUPPORTED;
}
else
{
int rc;
PRTZIPDECOMP pZip = NULL;
VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain;
size_t cbCompSize, cbActuallyRead;
if (!pcvMarker)
{
rc = vmdkFileReadSync(pImage, pExtent->pFile, uOffset, pMarker,
RT_OFFSETOF(VMDKMARKER, uType), NULL);
if (RT_FAILURE(rc))
return rc;
}
else
memcpy(pMarker, pcvMarker, RT_OFFSETOF(VMDKMARKER, uType));
cbCompSize = RT_LE2H_U32(pMarker->cbSize);
if (cbCompSize == 0)
{
AssertMsgFailed(("VMDK: corrupted marker\n"));
return VERR_VD_VMDK_INVALID_FORMAT;
}
/* Sanity check - the expansion ratio should be much less than 2. */
Assert(cbCompSize < 2 * cbToRead);
if (cbCompSize >= 2 * cbToRead)
return VERR_VD_VMDK_INVALID_FORMAT;
/* Compressed grain marker. Data follows immediately. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
uOffset + RT_OFFSETOF(VMDKMARKER, uType),
(uint8_t *)pExtent->pvCompGrain
+ RT_OFFSETOF(VMDKMARKER, uType),
RT_ALIGN_Z( cbCompSize
+ RT_OFFSETOF(VMDKMARKER, uType),
512)
- RT_OFFSETOF(VMDKMARKER, uType), NULL);
if (puLBA)
*puLBA = RT_LE2H_U64(pMarker->uSector);
if (pcbMarkerData)
*pcbMarkerData = RT_ALIGN( cbCompSize
+ RT_OFFSETOF(VMDKMARKER, uType),
512);
VMDKCOMPRESSIO InflateState;
InflateState.pImage = pImage;
InflateState.iOffset = -1;
InflateState.cbCompGrain = cbCompSize + RT_OFFSETOF(VMDKMARKER, uType);
InflateState.pvCompGrain = pExtent->pvCompGrain;
rc = RTZipDecompCreate(&pZip, &InflateState, vmdkFileInflateHelper);
if (RT_FAILURE(rc))
return rc;
rc = RTZipDecompress(pZip, pvBuf, cbToRead, &cbActuallyRead);
RTZipDecompDestroy(pZip);
if (RT_FAILURE(rc))
return rc;
if (cbActuallyRead != cbToRead)
rc = VERR_VD_VMDK_INVALID_FORMAT;
return rc;
}
}
static DECLCALLBACK(int) vmdkFileDeflateHelper(void *pvUser, const void *pvBuf, size_t cbBuf)
{
VMDKCOMPRESSIO *pDeflateState = (VMDKCOMPRESSIO *)pvUser;
Assert(cbBuf);
if (pDeflateState->iOffset < 0)
{
pvBuf = (const uint8_t *)pvBuf + 1;
cbBuf--;
pDeflateState->iOffset = RT_OFFSETOF(VMDKMARKER, uType);
}
if (!cbBuf)
return VINF_SUCCESS;
if (pDeflateState->iOffset + cbBuf > pDeflateState->cbCompGrain)
return VERR_BUFFER_OVERFLOW;
memcpy((uint8_t *)pDeflateState->pvCompGrain + pDeflateState->iOffset,
pvBuf, cbBuf);
pDeflateState->iOffset += cbBuf;
return VINF_SUCCESS;
}
/**
* Internal: deflate the uncompressed data and write to a file,
* distinguishing between async and normal operation
*/
DECLINLINE(int) vmdkFileDeflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uOffset, const void *pvBuf,
size_t cbToWrite, uint64_t uLBA,
uint32_t *pcbMarkerData)
{
if (pExtent->pFile->fAsyncIO)
{
AssertMsgFailed(("TODO\n"));
return VERR_NOT_SUPPORTED;
}
else
{
int rc;
PRTZIPCOMP pZip = NULL;
VMDKCOMPRESSIO DeflateState;
DeflateState.pImage = pImage;
DeflateState.iOffset = -1;
DeflateState.cbCompGrain = pExtent->cbCompGrain;
DeflateState.pvCompGrain = pExtent->pvCompGrain;
rc = RTZipCompCreate(&pZip, &DeflateState, vmdkFileDeflateHelper,
RTZIPTYPE_ZLIB, RTZIPLEVEL_DEFAULT);
if (RT_FAILURE(rc))
return rc;
rc = RTZipCompress(pZip, pvBuf, cbToWrite);
if (RT_SUCCESS(rc))
rc = RTZipCompFinish(pZip);
RTZipCompDestroy(pZip);
if (RT_SUCCESS(rc))
{
Assert( DeflateState.iOffset > 0
&& (size_t)DeflateState.iOffset <= DeflateState.cbCompGrain);
/* pad with zeroes to get to a full sector size */
uint32_t uSize = DeflateState.iOffset;
if (uSize % 512)
{
uint32_t uSizeAlign = RT_ALIGN(uSize, 512);
memset((uint8_t *)pExtent->pvCompGrain + uSize, '\0',
uSizeAlign - uSize);
uSize = uSizeAlign;
}
if (pcbMarkerData)
*pcbMarkerData = uSize;
/* Compressed grain marker. Data follows immediately. */
VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain;
pMarker->uSector = RT_H2LE_U64(uLBA);
pMarker->cbSize = RT_H2LE_U32( DeflateState.iOffset
- RT_OFFSETOF(VMDKMARKER, uType));
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uOffset, pMarker,
uSize, NULL);
if (RT_FAILURE(rc))
return rc;
}
return rc;
}
}
/**
* Internal: check if all files are closed, prevent leaking resources.
*/
static int vmdkFileCheckAllClose(PVMDKIMAGE pImage)
{
int rc = VINF_SUCCESS, rc2;
PVMDKFILE pVmdkFile;
Assert(pImage->pFiles == NULL);
for (pVmdkFile = pImage->pFiles;
pVmdkFile != NULL;
pVmdkFile = pVmdkFile->pNext)
{
LogRel(("VMDK: leaking reference to file \"%s\"\n",
pVmdkFile->pszFilename));
pImage->pFiles = pVmdkFile->pNext;
rc2 = vmdkFileClose(pImage, &pVmdkFile, pVmdkFile->fDelete);
if (RT_SUCCESS(rc))
rc = rc2;
}
return rc;
}
/**
* Internal: truncate a string (at a UTF8 code point boundary) and encode the
* critical non-ASCII characters.
*/
static char *vmdkEncodeString(const char *psz)
{
char szEnc[VMDK_ENCODED_COMMENT_MAX + 3];
char *pszDst = szEnc;
AssertPtr(psz);
for (; *psz; psz = RTStrNextCp(psz))
{
char *pszDstPrev = pszDst;
RTUNICP Cp = RTStrGetCp(psz);
if (Cp == '\\')
{
pszDst = RTStrPutCp(pszDst, Cp);
pszDst = RTStrPutCp(pszDst, Cp);
}
else if (Cp == '\n')
{
pszDst = RTStrPutCp(pszDst, '\\');
pszDst = RTStrPutCp(pszDst, 'n');
}
else if (Cp == '\r')
{
pszDst = RTStrPutCp(pszDst, '\\');
pszDst = RTStrPutCp(pszDst, 'r');
}
else
pszDst = RTStrPutCp(pszDst, Cp);
if (pszDst - szEnc >= VMDK_ENCODED_COMMENT_MAX - 1)
{
pszDst = pszDstPrev;
break;
}
}
*pszDst = '\0';
return RTStrDup(szEnc);
}
/**
* Internal: decode a string and store it into the specified string.
*/
static int vmdkDecodeString(const char *pszEncoded, char *psz, size_t cb)
{
int rc = VINF_SUCCESS;
char szBuf[4];
if (!cb)
return VERR_BUFFER_OVERFLOW;
AssertPtr(psz);
for (; *pszEncoded; pszEncoded = RTStrNextCp(pszEncoded))
{
char *pszDst = szBuf;
RTUNICP Cp = RTStrGetCp(pszEncoded);
if (Cp == '\\')
{
pszEncoded = RTStrNextCp(pszEncoded);
RTUNICP CpQ = RTStrGetCp(pszEncoded);
if (CpQ == 'n')
RTStrPutCp(pszDst, '\n');
else if (CpQ == 'r')
RTStrPutCp(pszDst, '\r');
else if (CpQ == '\0')
{
rc = VERR_VD_VMDK_INVALID_HEADER;
break;
}
else
RTStrPutCp(pszDst, CpQ);
}
else
pszDst = RTStrPutCp(pszDst, Cp);
/* Need to leave space for terminating NUL. */
if ((size_t)(pszDst - szBuf) + 1 >= cb)
{
rc = VERR_BUFFER_OVERFLOW;
break;
}
memcpy(psz, szBuf, pszDst - szBuf);
psz += pszDst - szBuf;
}
*psz = '\0';
return rc;
}
/**
* Internal: free all buffers associated with grain directories.
*/
static void vmdkFreeGrainDirectory(PVMDKEXTENT pExtent)
{
if (pExtent->pGD)
{
RTMemFree(pExtent->pGD);
pExtent->pGD = NULL;
}
if (pExtent->pRGD)
{
RTMemFree(pExtent->pRGD);
pExtent->pRGD = NULL;
}
}
/**
* Internal: allocate the compressed/uncompressed buffers for streamOptimized
* images.
*/
static int vmdkAllocStreamBuffers(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
{
int rc = VINF_SUCCESS;
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* streamOptimized extents need a compressed grain buffer, which must
* be big enough to hold uncompressible data (which needs ~8 bytes
* more than the uncompressed data), the marker and padding. */
pExtent->cbCompGrain = RT_ALIGN_Z( VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)
+ 8 + sizeof(VMDKMARKER), 512);
pExtent->pvCompGrain = RTMemAlloc(pExtent->cbCompGrain);
if (!pExtent->pvCompGrain)
{
rc = VERR_NO_MEMORY;
goto out;
}
/* streamOptimized extents need a decompressed grain buffer. */
pExtent->pvGrain = RTMemAlloc(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
if (!pExtent->pvGrain)
{
rc = VERR_NO_MEMORY;
goto out;
}
}
out:
if (RT_FAILURE(rc))
vmdkFreeStreamBuffers(pExtent);
return rc;
}
/**
* Internal: allocate all buffers associated with grain directories.
*/
static int vmdkAllocGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
{
int rc = VINF_SUCCESS;
size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t);
uint32_t *pGD = NULL, *pRGD = NULL;
pGD = (uint32_t *)RTMemAllocZ(cbGD);
if (!pGD)
{
rc = VERR_NO_MEMORY;
goto out;
}
pExtent->pGD = pGD;
if (pExtent->uSectorRGD)
{
pRGD = (uint32_t *)RTMemAllocZ(cbGD);
if (!pRGD)
{
rc = VERR_NO_MEMORY;
goto out;
}
pExtent->pRGD = pRGD;
}
out:
if (RT_FAILURE(rc))
vmdkFreeGrainDirectory(pExtent);
return rc;
}
static int vmdkReadGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
{
int rc = VINF_SUCCESS;
unsigned i;
uint32_t *pGDTmp, *pRGDTmp;
size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t);
if (pExtent->enmType != VMDKETYPE_HOSTED_SPARSE)
goto out;
if ( pExtent->uSectorGD == VMDK_GD_AT_END
|| pExtent->uSectorRGD == VMDK_GD_AT_END)
{
rc = VERR_INTERNAL_ERROR;
goto out;
}
rc = vmdkAllocGrainDirectory(pImage, pExtent);
if (RT_FAILURE(rc))
goto out;
/* The VMDK 1.1 spec seems to talk about compressed grain directories,
* but in reality they are not compressed. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorGD),
pExtent->pGD, cbGD, NULL);
AssertRC(rc);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not read grain directory in '%s': %Rrc"), pExtent->pszFullname);
goto out;
}
for (i = 0, pGDTmp = pExtent->pGD; i < pExtent->cGDEntries; i++, pGDTmp++)
*pGDTmp = RT_LE2H_U32(*pGDTmp);
if (pExtent->uSectorRGD)
{
/* The VMDK 1.1 spec seems to talk about compressed grain directories,
* but in reality they are not compressed. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorRGD),
pExtent->pRGD, cbGD, NULL);
AssertRC(rc);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not read redundant grain directory in '%s'"), pExtent->pszFullname);
goto out;
}
for (i = 0, pRGDTmp = pExtent->pRGD; i < pExtent->cGDEntries; i++, pRGDTmp++)
*pRGDTmp = RT_LE2H_U32(*pRGDTmp);
/* Check grain table and redundant grain table for consistency. */
size_t cbGT = pExtent->cGTEntries * sizeof(uint32_t);
uint32_t *pTmpGT1 = (uint32_t *)RTMemTmpAlloc(cbGT);
if (!pTmpGT1)
{
rc = VERR_NO_MEMORY;
goto out;
}
uint32_t *pTmpGT2 = (uint32_t *)RTMemTmpAlloc(cbGT);
if (!pTmpGT2)
{
RTMemTmpFree(pTmpGT1);
rc = VERR_NO_MEMORY;
goto out;
}
for (i = 0, pGDTmp = pExtent->pGD, pRGDTmp = pExtent->pRGD;
i < pExtent->cGDEntries;
i++, pGDTmp++, pRGDTmp++)
{
/* If no grain table is allocated skip the entry. */
if (*pGDTmp == 0 && *pRGDTmp == 0)
continue;
if (*pGDTmp == 0 || *pRGDTmp == 0 || *pGDTmp == *pRGDTmp)
{
/* Just one grain directory entry refers to a not yet allocated
* grain table or both grain directory copies refer to the same
* grain table. Not allowed. */
RTMemTmpFree(pTmpGT1);
RTMemTmpFree(pTmpGT2);
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: inconsistent references to grain directory in '%s'"), pExtent->pszFullname);
goto out;
}
/* The VMDK 1.1 spec seems to talk about compressed grain tables,
* but in reality they are not compressed. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(*pGDTmp),
pTmpGT1, cbGT, NULL);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading grain table in '%s'"), pExtent->pszFullname);
RTMemTmpFree(pTmpGT1);
RTMemTmpFree(pTmpGT2);
goto out;
}
/* The VMDK 1.1 spec seems to talk about compressed grain tables,
* but in reality they are not compressed. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(*pRGDTmp),
pTmpGT2, cbGT, NULL);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading backup grain table in '%s'"), pExtent->pszFullname);
RTMemTmpFree(pTmpGT1);
RTMemTmpFree(pTmpGT2);
goto out;
}
if (memcmp(pTmpGT1, pTmpGT2, cbGT))
{
RTMemTmpFree(pTmpGT1);
RTMemTmpFree(pTmpGT2);
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: inconsistency between grain table and backup grain table in '%s'"), pExtent->pszFullname);
goto out;
}
}
/** @todo figure out what to do for unclean VMDKs. */
RTMemTmpFree(pTmpGT1);
RTMemTmpFree(pTmpGT2);
}
out:
if (RT_FAILURE(rc))
vmdkFreeGrainDirectory(pExtent);
return rc;
}
static int vmdkCreateGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uStartSector, bool fPreAlloc)
{
int rc = VINF_SUCCESS;
unsigned i;
size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t);
size_t cbGDRounded = RT_ALIGN_64(pExtent->cGDEntries * sizeof(uint32_t), 512);
size_t cbGTRounded;
uint64_t cbOverhead;
if (fPreAlloc)
{
cbGTRounded = RT_ALIGN_64(pExtent->cGDEntries * pExtent->cGTEntries * sizeof(uint32_t), 512);
cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded
+ cbGTRounded;
}
else
{
/* Use a dummy start sector for layout computation. */
if (uStartSector == VMDK_GD_AT_END)
uStartSector = 1;
cbGTRounded = 0;
cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded;
}
/* For streamOptimized extents there is only one grain directory,
* and for all others take redundant grain directory into account. */
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
cbOverhead = RT_ALIGN_64(cbOverhead,
VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
}
else
{
cbOverhead += cbGDRounded + cbGTRounded;
cbOverhead = RT_ALIGN_64(cbOverhead,
VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
rc = vmdkFileSetSize(pImage, pExtent->pFile, cbOverhead);
}
if (RT_FAILURE(rc))
goto out;
pExtent->uAppendPosition = cbOverhead;
pExtent->cOverheadSectors = VMDK_BYTE2SECTOR(cbOverhead);
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
pExtent->uSectorRGD = 0;
pExtent->uSectorGD = uStartSector;
}
else
{
pExtent->uSectorRGD = uStartSector;
pExtent->uSectorGD = uStartSector + VMDK_BYTE2SECTOR(cbGDRounded + cbGTRounded);
}
rc = vmdkAllocStreamBuffers(pImage, pExtent);
if (RT_FAILURE(rc))
goto out;
rc = vmdkAllocGrainDirectory(pImage, pExtent);
if (RT_FAILURE(rc))
goto out;
if (fPreAlloc)
{
uint32_t uGTSectorLE;
uint64_t uOffsetSectors;
if (pExtent->pRGD)
{
uOffsetSectors = pExtent->uSectorRGD + VMDK_BYTE2SECTOR(cbGDRounded);
for (i = 0; i < pExtent->cGDEntries; i++)
{
pExtent->pRGD[i] = uOffsetSectors;
uGTSectorLE = RT_H2LE_U64(uOffsetSectors);
/* Write the redundant grain directory entry to disk. */
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + i * sizeof(uGTSectorLE),
&uGTSectorLE, sizeof(uGTSectorLE), NULL);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write new redundant grain directory entry in '%s'"), pExtent->pszFullname);
goto out;
}
uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t));
}
}
uOffsetSectors = pExtent->uSectorGD + VMDK_BYTE2SECTOR(cbGDRounded);
for (i = 0; i < pExtent->cGDEntries; i++)
{
pExtent->pGD[i] = uOffsetSectors;
uGTSectorLE = RT_H2LE_U64(uOffsetSectors);
/* Write the grain directory entry to disk. */
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorGD) + i * sizeof(uGTSectorLE),
&uGTSectorLE, sizeof(uGTSectorLE), NULL);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write new grain directory entry in '%s'"), pExtent->pszFullname);
goto out;
}
uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t));
}
}
out:
if (RT_FAILURE(rc))
vmdkFreeGrainDirectory(pExtent);
return rc;
}
static int vmdkStringUnquote(PVMDKIMAGE pImage, const char *pszStr,
char **ppszUnquoted, char **ppszNext)
{
char *pszQ;
char *pszUnquoted;
/* Skip over whitespace. */
while (*pszStr == ' ' || *pszStr == '\t')
pszStr++;
if (*pszStr != '"')
{
pszQ = (char *)pszStr;
while (*pszQ && *pszQ != ' ' && *pszQ != '\t')
pszQ++;
}
else
{
pszStr++;
pszQ = (char *)strchr(pszStr, '"');
if (pszQ == NULL)
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrectly quoted value in descriptor in '%s'"), pImage->pszFilename);
}
pszUnquoted = (char *)RTMemTmpAlloc(pszQ - pszStr + 1);
if (!pszUnquoted)
return VERR_NO_MEMORY;
memcpy(pszUnquoted, pszStr, pszQ - pszStr);
pszUnquoted[pszQ - pszStr] = '\0';
*ppszUnquoted = pszUnquoted;
if (ppszNext)
*ppszNext = pszQ + 1;
return VINF_SUCCESS;
}
static int vmdkDescInitStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszLine)
{
char *pEnd = pDescriptor->aLines[pDescriptor->cLines];
ssize_t cbDiff = strlen(pszLine) + 1;
if ( pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1
&& pEnd - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)
return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
memcpy(pEnd, pszLine, cbDiff);
pDescriptor->cLines++;
pDescriptor->aLines[pDescriptor->cLines] = pEnd + cbDiff;
pDescriptor->fDirty = true;
return VINF_SUCCESS;
}
static bool vmdkDescGetStr(PVMDKDESCRIPTOR pDescriptor, unsigned uStart,
const char *pszKey, const char **ppszValue)
{
size_t cbKey = strlen(pszKey);
const char *pszValue;
while (uStart != 0)
{
if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey))
{
/* Key matches, check for a '=' (preceded by whitespace). */
pszValue = pDescriptor->aLines[uStart] + cbKey;
while (*pszValue == ' ' || *pszValue == '\t')
pszValue++;
if (*pszValue == '=')
{
*ppszValue = pszValue + 1;
break;
}
}
uStart = pDescriptor->aNextLines[uStart];
}
return !!uStart;
}
static int vmdkDescSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
unsigned uStart,
const char *pszKey, const char *pszValue)
{
char *pszTmp;
size_t cbKey = strlen(pszKey);
unsigned uLast = 0;
while (uStart != 0)
{
if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey))
{
/* Key matches, check for a '=' (preceded by whitespace). */
pszTmp = pDescriptor->aLines[uStart] + cbKey;
while (*pszTmp == ' ' || *pszTmp == '\t')
pszTmp++;
if (*pszTmp == '=')
{
pszTmp++;
while (*pszTmp == ' ' || *pszTmp == '\t')
pszTmp++;
break;
}
}
if (!pDescriptor->aNextLines[uStart])
uLast = uStart;
uStart = pDescriptor->aNextLines[uStart];
}
if (uStart)
{
if (pszValue)
{
/* Key already exists, replace existing value. */
size_t cbOldVal = strlen(pszTmp);
size_t cbNewVal = strlen(pszValue);
ssize_t cbDiff = cbNewVal - cbOldVal;
/* Check for buffer overflow. */
if ( pDescriptor->aLines[pDescriptor->cLines]
- pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)
return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
memmove(pszTmp + cbNewVal, pszTmp + cbOldVal,
pDescriptor->aLines[pDescriptor->cLines] - pszTmp - cbOldVal);
memcpy(pszTmp, pszValue, cbNewVal + 1);
for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
pDescriptor->aLines[i] += cbDiff;
}
else
{
memmove(pDescriptor->aLines[uStart], pDescriptor->aLines[uStart+1],
pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uStart+1] + 1);
for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
{
pDescriptor->aLines[i-1] = pDescriptor->aLines[i];
if (pDescriptor->aNextLines[i])
pDescriptor->aNextLines[i-1] = pDescriptor->aNextLines[i] - 1;
else
pDescriptor->aNextLines[i-1] = 0;
}
pDescriptor->cLines--;
/* Adjust starting line numbers of following descriptor sections. */
if (uStart < pDescriptor->uFirstExtent)
pDescriptor->uFirstExtent--;
if (uStart < pDescriptor->uFirstDDB)
pDescriptor->uFirstDDB--;
}
}
else
{
/* Key doesn't exist, append after the last entry in this category. */
if (!pszValue)
{
/* Key doesn't exist, and it should be removed. Simply a no-op. */
return VINF_SUCCESS;
}
cbKey = strlen(pszKey);
size_t cbValue = strlen(pszValue);
ssize_t cbDiff = cbKey + 1 + cbValue + 1;
/* Check for buffer overflow. */
if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1)
|| ( pDescriptor->aLines[pDescriptor->cLines]
- pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff))
return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--)
{
pDescriptor->aLines[i] = pDescriptor->aLines[i - 1];
if (pDescriptor->aNextLines[i - 1])
pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1;
else
pDescriptor->aNextLines[i] = 0;
}
uStart = uLast + 1;
pDescriptor->aNextLines[uLast] = uStart;
pDescriptor->aNextLines[uStart] = 0;
pDescriptor->cLines++;
pszTmp = pDescriptor->aLines[uStart];
memmove(pszTmp + cbDiff, pszTmp,
pDescriptor->aLines[pDescriptor->cLines] - pszTmp);
memcpy(pDescriptor->aLines[uStart], pszKey, cbKey);
pDescriptor->aLines[uStart][cbKey] = '=';
memcpy(pDescriptor->aLines[uStart] + cbKey + 1, pszValue, cbValue + 1);
for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
pDescriptor->aLines[i] += cbDiff;
/* Adjust starting line numbers of following descriptor sections. */
if (uStart <= pDescriptor->uFirstExtent)
pDescriptor->uFirstExtent++;
if (uStart <= pDescriptor->uFirstDDB)
pDescriptor->uFirstDDB++;
}
pDescriptor->fDirty = true;
return VINF_SUCCESS;
}
static int vmdkDescBaseGetU32(PVMDKDESCRIPTOR pDescriptor, const char *pszKey,
uint32_t *puValue)
{
const char *pszValue;
if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey,
&pszValue))
return VERR_VD_VMDK_VALUE_NOT_FOUND;
return RTStrToUInt32Ex(pszValue, NULL, 10, puValue);
}
static int vmdkDescBaseGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, const char **ppszValue)
{
const char *pszValue;
char *pszValueUnquoted;
if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey,
&pszValue))
return VERR_VD_VMDK_VALUE_NOT_FOUND;
int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
if (RT_FAILURE(rc))
return rc;
*ppszValue = pszValueUnquoted;
return rc;
}
static int vmdkDescBaseSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, const char *pszValue)
{
char *pszValueQuoted;
RTStrAPrintf(&pszValueQuoted, "\"%s\"", pszValue);
if (!pszValueQuoted)
return VERR_NO_STR_MEMORY;
int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, pszKey,
pszValueQuoted);
RTStrFree(pszValueQuoted);
return rc;
}
static void vmdkDescExtRemoveDummy(PVMDKIMAGE pImage,
PVMDKDESCRIPTOR pDescriptor)
{
unsigned uEntry = pDescriptor->uFirstExtent;
ssize_t cbDiff;
if (!uEntry)
return;
cbDiff = strlen(pDescriptor->aLines[uEntry]) + 1;
/* Move everything including \0 in the entry marking the end of buffer. */
memmove(pDescriptor->aLines[uEntry], pDescriptor->aLines[uEntry + 1],
pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uEntry + 1] + 1);
for (unsigned i = uEntry + 1; i <= pDescriptor->cLines; i++)
{
pDescriptor->aLines[i - 1] = pDescriptor->aLines[i] - cbDiff;
if (pDescriptor->aNextLines[i])
pDescriptor->aNextLines[i - 1] = pDescriptor->aNextLines[i] - 1;
else
pDescriptor->aNextLines[i - 1] = 0;
}
pDescriptor->cLines--;
if (pDescriptor->uFirstDDB)
pDescriptor->uFirstDDB--;
return;
}
static int vmdkDescExtInsert(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
VMDKACCESS enmAccess, uint64_t cNominalSectors,
VMDKETYPE enmType, const char *pszBasename,
uint64_t uSectorOffset)
{
static const char *apszAccess[] = { "NOACCESS", "RDONLY", "RW" };
static const char *apszType[] = { "", "SPARSE", "FLAT", "ZERO", "VMFS" };
char *pszTmp;
unsigned uStart = pDescriptor->uFirstExtent, uLast = 0;
char szExt[1024];
ssize_t cbDiff;
Assert((unsigned)enmAccess < RT_ELEMENTS(apszAccess));
Assert((unsigned)enmType < RT_ELEMENTS(apszType));
/* Find last entry in extent description. */
while (uStart)
{
if (!pDescriptor->aNextLines[uStart])
uLast = uStart;
uStart = pDescriptor->aNextLines[uStart];
}
if (enmType == VMDKETYPE_ZERO)
{
RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s ", apszAccess[enmAccess],
cNominalSectors, apszType[enmType]);
}
else if (enmType == VMDKETYPE_FLAT)
{
RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\" %llu",
apszAccess[enmAccess], cNominalSectors,
apszType[enmType], pszBasename, uSectorOffset);
}
else
{
RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\"",
apszAccess[enmAccess], cNominalSectors,
apszType[enmType], pszBasename);
}
cbDiff = strlen(szExt) + 1;
/* Check for buffer overflow. */
if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1)
|| ( pDescriptor->aLines[pDescriptor->cLines]
- pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff))
return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--)
{
pDescriptor->aLines[i] = pDescriptor->aLines[i - 1];
if (pDescriptor->aNextLines[i - 1])
pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1;
else
pDescriptor->aNextLines[i] = 0;
}
uStart = uLast + 1;
pDescriptor->aNextLines[uLast] = uStart;
pDescriptor->aNextLines[uStart] = 0;
pDescriptor->cLines++;
pszTmp = pDescriptor->aLines[uStart];
memmove(pszTmp + cbDiff, pszTmp,
pDescriptor->aLines[pDescriptor->cLines] - pszTmp);
memcpy(pDescriptor->aLines[uStart], szExt, cbDiff);
for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
pDescriptor->aLines[i] += cbDiff;
/* Adjust starting line numbers of following descriptor sections. */
if (uStart <= pDescriptor->uFirstDDB)
pDescriptor->uFirstDDB++;
pDescriptor->fDirty = true;
return VINF_SUCCESS;
}
static int vmdkDescDDBGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, const char **ppszValue)
{
const char *pszValue;
char *pszValueUnquoted;
if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey,
&pszValue))
return VERR_VD_VMDK_VALUE_NOT_FOUND;
int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
if (RT_FAILURE(rc))
return rc;
*ppszValue = pszValueUnquoted;
return rc;
}
static int vmdkDescDDBGetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, uint32_t *puValue)
{
const char *pszValue;
char *pszValueUnquoted;
if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey,
&pszValue))
return VERR_VD_VMDK_VALUE_NOT_FOUND;
int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
if (RT_FAILURE(rc))
return rc;
rc = RTStrToUInt32Ex(pszValueUnquoted, NULL, 10, puValue);
RTMemTmpFree(pszValueUnquoted);
return rc;
}
static int vmdkDescDDBGetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, PRTUUID pUuid)
{
const char *pszValue;
char *pszValueUnquoted;
if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey,
&pszValue))
return VERR_VD_VMDK_VALUE_NOT_FOUND;
int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
if (RT_FAILURE(rc))
return rc;
rc = RTUuidFromStr(pUuid, pszValueUnquoted);
RTMemTmpFree(pszValueUnquoted);
return rc;
}
static int vmdkDescDDBSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, const char *pszVal)
{
int rc;
char *pszValQuoted;
if (pszVal)
{
RTStrAPrintf(&pszValQuoted, "\"%s\"", pszVal);
if (!pszValQuoted)
return VERR_NO_STR_MEMORY;
}
else
pszValQuoted = NULL;
rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey,
pszValQuoted);
if (pszValQuoted)
RTStrFree(pszValQuoted);
return rc;
}
static int vmdkDescDDBSetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, PCRTUUID pUuid)
{
char *pszUuid;
RTStrAPrintf(&pszUuid, "\"%RTuuid\"", pUuid);
if (!pszUuid)
return VERR_NO_STR_MEMORY;
int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey,
pszUuid);
RTStrFree(pszUuid);
return rc;
}
static int vmdkDescDDBSetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
const char *pszKey, uint32_t uValue)
{
char *pszValue;
RTStrAPrintf(&pszValue, "\"%d\"", uValue);
if (!pszValue)
return VERR_NO_STR_MEMORY;
int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey,
pszValue);
RTStrFree(pszValue);
return rc;
}
static int vmdkPreprocessDescriptor(PVMDKIMAGE pImage, char *pDescData,
size_t cbDescData,
PVMDKDESCRIPTOR pDescriptor)
{
int rc = VINF_SUCCESS;
unsigned cLine = 0, uLastNonEmptyLine = 0;
char *pTmp = pDescData;
pDescriptor->cbDescAlloc = cbDescData;
while (*pTmp != '\0')
{
pDescriptor->aLines[cLine++] = pTmp;
if (cLine >= VMDK_DESCRIPTOR_LINES_MAX)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
goto out;
}
while (*pTmp != '\0' && *pTmp != '\n')
{
if (*pTmp == '\r')
{
if (*(pTmp + 1) != '\n')
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: unsupported end of line in descriptor in '%s'"), pImage->pszFilename);
goto out;
}
else
{
/* Get rid of CR character. */
*pTmp = '\0';
}
}
pTmp++;
}
/* Get rid of LF character. */
if (*pTmp == '\n')
{
*pTmp = '\0';
pTmp++;
}
}
pDescriptor->cLines = cLine;
/* Pointer right after the end of the used part of the buffer. */
pDescriptor->aLines[cLine] = pTmp;
if ( strcmp(pDescriptor->aLines[0], "# Disk DescriptorFile")
&& strcmp(pDescriptor->aLines[0], "# Disk Descriptor File"))
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor does not start as expected in '%s'"), pImage->pszFilename);
goto out;
}
/* Initialize those, because we need to be able to reopen an image. */
pDescriptor->uFirstDesc = 0;
pDescriptor->uFirstExtent = 0;
pDescriptor->uFirstDDB = 0;
for (unsigned i = 0; i < cLine; i++)
{
if (*pDescriptor->aLines[i] != '#' && *pDescriptor->aLines[i] != '\0')
{
if ( !strncmp(pDescriptor->aLines[i], "RW", 2)
|| !strncmp(pDescriptor->aLines[i], "RDONLY", 6)
|| !strncmp(pDescriptor->aLines[i], "NOACCESS", 8) )
{
/* An extent descriptor. */
if (!pDescriptor->uFirstDesc || pDescriptor->uFirstDDB)
{
/* Incorrect ordering of entries. */
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename);
goto out;
}
if (!pDescriptor->uFirstExtent)
{
pDescriptor->uFirstExtent = i;
uLastNonEmptyLine = 0;
}
}
else if (!strncmp(pDescriptor->aLines[i], "ddb.", 4))
{
/* A disk database entry. */
if (!pDescriptor->uFirstDesc || !pDescriptor->uFirstExtent)
{
/* Incorrect ordering of entries. */
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename);
goto out;
}
if (!pDescriptor->uFirstDDB)
{
pDescriptor->uFirstDDB = i;
uLastNonEmptyLine = 0;
}
}
else
{
/* A normal entry. */
if (pDescriptor->uFirstExtent || pDescriptor->uFirstDDB)
{
/* Incorrect ordering of entries. */
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename);
goto out;
}
if (!pDescriptor->uFirstDesc)
{
pDescriptor->uFirstDesc = i;
uLastNonEmptyLine = 0;
}
}
if (uLastNonEmptyLine)
pDescriptor->aNextLines[uLastNonEmptyLine] = i;
uLastNonEmptyLine = i;
}
}
out:
return rc;
}
static int vmdkDescSetPCHSGeometry(PVMDKIMAGE pImage,
PCVDGEOMETRY pPCHSGeometry)
{
int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_PCHS_CYLINDERS,
pPCHSGeometry->cCylinders);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_PCHS_HEADS,
pPCHSGeometry->cHeads);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_PCHS_SECTORS,
pPCHSGeometry->cSectors);
return rc;
}
static int vmdkDescSetLCHSGeometry(PVMDKIMAGE pImage,
PCVDGEOMETRY pLCHSGeometry)
{
int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_LCHS_CYLINDERS,
pLCHSGeometry->cCylinders);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_LCHS_HEADS,
pLCHSGeometry->cHeads);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_LCHS_SECTORS,
pLCHSGeometry->cSectors);
return rc;
}
static int vmdkCreateDescriptor(PVMDKIMAGE pImage, char *pDescData,
size_t cbDescData, PVMDKDESCRIPTOR pDescriptor)
{
int rc;
pDescriptor->uFirstDesc = 0;
pDescriptor->uFirstExtent = 0;
pDescriptor->uFirstDDB = 0;
pDescriptor->cLines = 0;
pDescriptor->cbDescAlloc = cbDescData;
pDescriptor->fDirty = false;
pDescriptor->aLines[pDescriptor->cLines] = pDescData;
memset(pDescriptor->aNextLines, '\0', sizeof(pDescriptor->aNextLines));
rc = vmdkDescInitStr(pImage, pDescriptor, "# Disk DescriptorFile");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescInitStr(pImage, pDescriptor, "version=1");
if (RT_FAILURE(rc))
goto out;
pDescriptor->uFirstDesc = pDescriptor->cLines - 1;
rc = vmdkDescInitStr(pImage, pDescriptor, "");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescInitStr(pImage, pDescriptor, "# Extent description");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescInitStr(pImage, pDescriptor, "NOACCESS 0 ZERO ");
if (RT_FAILURE(rc))
goto out;
pDescriptor->uFirstExtent = pDescriptor->cLines - 1;
rc = vmdkDescInitStr(pImage, pDescriptor, "");
if (RT_FAILURE(rc))
goto out;
/* The trailing space is created by VMware, too. */
rc = vmdkDescInitStr(pImage, pDescriptor, "# The disk Data Base ");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescInitStr(pImage, pDescriptor, "#DDB");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescInitStr(pImage, pDescriptor, "");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescInitStr(pImage, pDescriptor, "ddb.virtualHWVersion = \"4\"");
if (RT_FAILURE(rc))
goto out;
pDescriptor->uFirstDDB = pDescriptor->cLines - 1;
/* Now that the framework is in place, use the normal functions to insert
* the remaining keys. */
char szBuf[9];
RTStrPrintf(szBuf, sizeof(szBuf), "%08x", RTRandU32());
rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc,
"CID", szBuf);
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc,
"parentCID", "ffffffff");
if (RT_FAILURE(rc))
goto out;
rc = vmdkDescDDBSetStr(pImage, pDescriptor, "ddb.adapterType", "ide");
if (RT_FAILURE(rc))
goto out;
out:
return rc;
}
static int vmdkParseDescriptor(PVMDKIMAGE pImage, char *pDescData,
size_t cbDescData)
{
int rc;
unsigned cExtents;
unsigned uLine;
unsigned i;
rc = vmdkPreprocessDescriptor(pImage, pDescData, cbDescData,
&pImage->Descriptor);
if (RT_FAILURE(rc))
return rc;
/* Check version, must be 1. */
uint32_t uVersion;
rc = vmdkDescBaseGetU32(&pImage->Descriptor, "version", &uVersion);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error finding key 'version' in descriptor in '%s'"), pImage->pszFilename);
if (uVersion != 1)
return vmdkError(pImage, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: unsupported format version in descriptor in '%s'"), pImage->pszFilename);
/* Get image creation type and determine image flags. */
const char *pszCreateType = NULL; /* initialized to make gcc shut up */
rc = vmdkDescBaseGetStr(pImage, &pImage->Descriptor, "createType",
&pszCreateType);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot get image type from descriptor in '%s'"), pImage->pszFilename);
if ( !strcmp(pszCreateType, "twoGbMaxExtentSparse")
|| !strcmp(pszCreateType, "twoGbMaxExtentFlat"))
pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_SPLIT_2G;
else if ( !strcmp(pszCreateType, "partitionedDevice")
|| !strcmp(pszCreateType, "fullDevice"))
pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_RAWDISK;
else if (!strcmp(pszCreateType, "streamOptimized"))
pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED;
else if (!strcmp(pszCreateType, "vmfs"))
pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED | VD_VMDK_IMAGE_FLAGS_ESX;
RTStrFree((char *)(void *)pszCreateType);
/* Count the number of extent config entries. */
for (uLine = pImage->Descriptor.uFirstExtent, cExtents = 0;
uLine != 0;
uLine = pImage->Descriptor.aNextLines[uLine], cExtents++)
/* nothing */;
if (!pImage->pDescData && cExtents != 1)
{
/* Monolithic image, must have only one extent (already opened). */
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image may only have one extent in '%s'"), pImage->pszFilename);
}
if (pImage->pDescData)
{
/* Non-monolithic image, extents need to be allocated. */
rc = vmdkCreateExtents(pImage, cExtents);
if (RT_FAILURE(rc))
return rc;
}
for (i = 0, uLine = pImage->Descriptor.uFirstExtent;
i < cExtents; i++, uLine = pImage->Descriptor.aNextLines[uLine])
{
char *pszLine = pImage->Descriptor.aLines[uLine];
/* Access type of the extent. */
if (!strncmp(pszLine, "RW", 2))
{
pImage->pExtents[i].enmAccess = VMDKACCESS_READWRITE;
pszLine += 2;
}
else if (!strncmp(pszLine, "RDONLY", 6))
{
pImage->pExtents[i].enmAccess = VMDKACCESS_READONLY;
pszLine += 6;
}
else if (!strncmp(pszLine, "NOACCESS", 8))
{
pImage->pExtents[i].enmAccess = VMDKACCESS_NOACCESS;
pszLine += 8;
}
else
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
if (*pszLine++ != ' ')
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
/* Nominal size of the extent. */
rc = RTStrToUInt64Ex(pszLine, &pszLine, 10,
&pImage->pExtents[i].cNominalSectors);
if (RT_FAILURE(rc))
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
if (*pszLine++ != ' ')
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
/* Type of the extent. */
#ifdef VBOX_WITH_VMDK_ESX
/** @todo Add the ESX extent types. Not necessary for now because
* the ESX extent types are only used inside an ESX server. They are
* automatically converted if the VMDK is exported. */
#endif /* VBOX_WITH_VMDK_ESX */
if (!strncmp(pszLine, "SPARSE", 6))
{
pImage->pExtents[i].enmType = VMDKETYPE_HOSTED_SPARSE;
pszLine += 6;
}
else if (!strncmp(pszLine, "FLAT", 4))
{
pImage->pExtents[i].enmType = VMDKETYPE_FLAT;
pszLine += 4;
}
else if (!strncmp(pszLine, "ZERO", 4))
{
pImage->pExtents[i].enmType = VMDKETYPE_ZERO;
pszLine += 4;
}
else if (!strncmp(pszLine, "VMFS", 4))
{
pImage->pExtents[i].enmType = VMDKETYPE_VMFS;
pszLine += 4;
}
else
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
if (pImage->pExtents[i].enmType == VMDKETYPE_ZERO)
{
/* This one has no basename or offset. */
if (*pszLine == ' ')
pszLine++;
if (*pszLine != '\0')
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
pImage->pExtents[i].pszBasename = NULL;
}
else
{
/* All other extent types have basename and optional offset. */
if (*pszLine++ != ' ')
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
/* Basename of the image. Surrounded by quotes. */
char *pszBasename;
rc = vmdkStringUnquote(pImage, pszLine, &pszBasename, &pszLine);
if (RT_FAILURE(rc))
return rc;
pImage->pExtents[i].pszBasename = pszBasename;
if (*pszLine == ' ')
{
pszLine++;
if (*pszLine != '\0')
{
/* Optional offset in extent specified. */
rc = RTStrToUInt64Ex(pszLine, &pszLine, 10,
&pImage->pExtents[i].uSectorOffset);
if (RT_FAILURE(rc))
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
}
}
if (*pszLine != '\0')
return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
}
}
/* Determine PCHS geometry (autogenerate if necessary). */
rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_PCHS_CYLINDERS,
&pImage->PCHSGeometry.cCylinders);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pImage->PCHSGeometry.cCylinders = 0;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename);
rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_PCHS_HEADS,
&pImage->PCHSGeometry.cHeads);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pImage->PCHSGeometry.cHeads = 0;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename);
rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_PCHS_SECTORS,
&pImage->PCHSGeometry.cSectors);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pImage->PCHSGeometry.cSectors = 0;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename);
if ( pImage->PCHSGeometry.cCylinders == 0
|| pImage->PCHSGeometry.cHeads == 0
|| pImage->PCHSGeometry.cHeads > 16
|| pImage->PCHSGeometry.cSectors == 0
|| pImage->PCHSGeometry.cSectors > 63)
{
/* Mark PCHS geometry as not yet valid (can't do the calculation here
* as the total image size isn't known yet). */
pImage->PCHSGeometry.cCylinders = 0;
pImage->PCHSGeometry.cHeads = 16;
pImage->PCHSGeometry.cSectors = 63;
}
/* Determine LCHS geometry (set to 0 if not specified). */
rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_LCHS_CYLINDERS,
&pImage->LCHSGeometry.cCylinders);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pImage->LCHSGeometry.cCylinders = 0;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename);
rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_LCHS_HEADS,
&pImage->LCHSGeometry.cHeads);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pImage->LCHSGeometry.cHeads = 0;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename);
rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
VMDK_DDB_GEO_LCHS_SECTORS,
&pImage->LCHSGeometry.cSectors);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pImage->LCHSGeometry.cSectors = 0;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename);
if ( pImage->LCHSGeometry.cCylinders == 0
|| pImage->LCHSGeometry.cHeads == 0
|| pImage->LCHSGeometry.cSectors == 0)
{
pImage->LCHSGeometry.cCylinders = 0;
pImage->LCHSGeometry.cHeads = 0;
pImage->LCHSGeometry.cSectors = 0;
}
/* Get image UUID. */
rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID,
&pImage->ImageUuid);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
{
/* Image without UUID. Probably created by VMware and not yet used
* by VirtualBox. Can only be added for images opened in read/write
* mode, so don't bother producing a sensible UUID otherwise. */
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
RTUuidClear(&pImage->ImageUuid);
else
{
rc = RTUuidCreate(&pImage->ImageUuid);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename);
}
}
else if (RT_FAILURE(rc))
return rc;
/* Get image modification UUID. */
rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_MODIFICATION_UUID,
&pImage->ModificationUuid);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
{
/* Image without UUID. Probably created by VMware and not yet used
* by VirtualBox. Can only be added for images opened in read/write
* mode, so don't bother producing a sensible UUID otherwise. */
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
RTUuidClear(&pImage->ModificationUuid);
else
{
rc = RTUuidCreate(&pImage->ModificationUuid);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_MODIFICATION_UUID,
&pImage->ModificationUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image modification UUID in descriptor in '%s'"), pImage->pszFilename);
}
}
else if (RT_FAILURE(rc))
return rc;
/* Get UUID of parent image. */
rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID,
&pImage->ParentUuid);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
{
/* Image without UUID. Probably created by VMware and not yet used
* by VirtualBox. Can only be added for images opened in read/write
* mode, so don't bother producing a sensible UUID otherwise. */
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
RTUuidClear(&pImage->ParentUuid);
else
{
rc = RTUuidClear(&pImage->ParentUuid);
if (RT_FAILURE(rc))
return rc;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_UUID, &pImage->ParentUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent UUID in descriptor in '%s'"), pImage->pszFilename);
}
}
else if (RT_FAILURE(rc))
return rc;
/* Get parent image modification UUID. */
rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_MODIFICATION_UUID,
&pImage->ParentModificationUuid);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
{
/* Image without UUID. Probably created by VMware and not yet used
* by VirtualBox. Can only be added for images opened in read/write
* mode, so don't bother producing a sensible UUID otherwise. */
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
RTUuidClear(&pImage->ParentModificationUuid);
else
{
RTUuidClear(&pImage->ParentModificationUuid);
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_MODIFICATION_UUID,
&pImage->ParentModificationUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent modification UUID in descriptor in '%s'"), pImage->pszFilename);
}
}
else if (RT_FAILURE(rc))
return rc;
return VINF_SUCCESS;
}
/**
* Internal : Prepares the descriptor to write to the image.
*/
static int vmdkDescriptorPrepare(PVMDKIMAGE pImage, uint64_t cbLimit,
void **ppvData, size_t *pcbData)
{
int rc = VINF_SUCCESS;
/*
* Allocate temporary descriptor buffer.
* In case there is no limit allocate a default
* and increase if required.
*/
size_t cbDescriptor = cbLimit ? cbLimit : 4 * _1K;
char *pszDescriptor = (char *)RTMemAllocZ(cbDescriptor);
unsigned offDescriptor = 0;
if (!pszDescriptor)
return VERR_NO_MEMORY;
for (unsigned i = 0; i < pImage->Descriptor.cLines; i++)
{
const char *psz = pImage->Descriptor.aLines[i];
size_t cb = strlen(psz);
/*
* Increase the descriptor if there is no limit and
* there is not enough room left for this line.
*/
if (offDescriptor + cb + 1 > cbDescriptor)
{
if (cbLimit)
{
rc = vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too long in '%s'"), pImage->pszFilename);
break;
}
else
{
char *pszDescriptorNew = NULL;
LogFlow(("Increasing descriptor cache\n"));
pszDescriptorNew = (char *)RTMemRealloc(pszDescriptor, cbDescriptor + cb + 4 * _1K);
if (!pszDescriptorNew)
{
rc = VERR_NO_MEMORY;
break;
}
pszDescriptor = pszDescriptorNew;
cbDescriptor += cb + 4 * _1K;
}
}
if (cb > 0)
{
memcpy(pszDescriptor + offDescriptor, psz, cb);
offDescriptor += cb;
}
memcpy(pszDescriptor + offDescriptor, "\n", 1);
offDescriptor++;
}
if (RT_SUCCESS(rc))
{
*ppvData = pszDescriptor;
*pcbData = offDescriptor;
}
else if (pszDescriptor)
RTMemFree(pszDescriptor);
return rc;
}
/**
* Internal: write/update the descriptor part of the image.
*/
static int vmdkWriteDescriptor(PVMDKIMAGE pImage)
{
int rc = VINF_SUCCESS;
uint64_t cbLimit;
uint64_t uOffset;
PVMDKFILE pDescFile;
void *pvDescriptor;
size_t cbDescriptor;
if (pImage->pDescData)
{
/* Separate descriptor file. */
uOffset = 0;
cbLimit = 0;
pDescFile = pImage->pFile;
}
else
{
/* Embedded descriptor file. */
uOffset = VMDK_SECTOR2BYTE(pImage->pExtents[0].uDescriptorSector);
cbLimit = VMDK_SECTOR2BYTE(pImage->pExtents[0].cDescriptorSectors);
pDescFile = pImage->pExtents[0].pFile;
}
/* Bail out if there is no file to write to. */
if (pDescFile == NULL)
return VERR_INVALID_PARAMETER;
rc = vmdkDescriptorPrepare(pImage, cbLimit, &pvDescriptor, &cbDescriptor);
if (RT_SUCCESS(rc))
{
rc = vmdkFileWriteSync(pImage, pDescFile, uOffset, pvDescriptor, cbLimit ? cbLimit : cbDescriptor, NULL);
if (RT_FAILURE(rc))
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing descriptor in '%s'"), pImage->pszFilename);
if (RT_SUCCESS(rc) && !cbLimit)
{
rc = vmdkFileSetSize(pImage, pDescFile, cbDescriptor);
if (RT_FAILURE(rc))
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error truncating descriptor in '%s'"), pImage->pszFilename);
}
if (RT_SUCCESS(rc))
pImage->Descriptor.fDirty = false;
RTMemFree(pvDescriptor);
}
return rc;
}
/**
* Internal: write/update the descriptor part of the image - async version.
*/
static int vmdkWriteDescriptorAsync(PVMDKIMAGE pImage, PVDIOCTX pIoCtx)
{
int rc = VINF_SUCCESS;
uint64_t cbLimit;
uint64_t uOffset;
PVMDKFILE pDescFile;
void *pvDescriptor;
size_t cbDescriptor;
if (pImage->pDescData)
{
/* Separate descriptor file. */
uOffset = 0;
cbLimit = 0;
pDescFile = pImage->pFile;
}
else
{
/* Embedded descriptor file. */
uOffset = VMDK_SECTOR2BYTE(pImage->pExtents[0].uDescriptorSector);
cbLimit = VMDK_SECTOR2BYTE(pImage->pExtents[0].cDescriptorSectors);
pDescFile = pImage->pExtents[0].pFile;
}
/* Bail out if there is no file to write to. */
if (pDescFile == NULL)
return VERR_INVALID_PARAMETER;
rc = vmdkDescriptorPrepare(pImage, cbLimit, &pvDescriptor, &cbDescriptor);
if (RT_SUCCESS(rc))
{
rc = vmdkFileWriteMetaAsync(pImage, pDescFile, uOffset, pvDescriptor, cbLimit ? cbLimit : cbDescriptor, pIoCtx, NULL, NULL);
if ( RT_FAILURE(rc)
&& rc != VERR_VD_ASYNC_IO_IN_PROGRESS)
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing descriptor in '%s'"), pImage->pszFilename);
}
if (RT_SUCCESS(rc) && !cbLimit)
{
rc = vmdkFileSetSize(pImage, pDescFile, cbDescriptor);
if (RT_FAILURE(rc))
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error truncating descriptor in '%s'"), pImage->pszFilename);
}
if (RT_SUCCESS(rc))
pImage->Descriptor.fDirty = false;
RTMemFree(pvDescriptor);
return rc;
}
/**
* Internal: validate the consistency check values in a binary header.
*/
static int vmdkValidateHeader(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, const SparseExtentHeader *pHeader)
{
int rc = VINF_SUCCESS;
if (RT_LE2H_U32(pHeader->magicNumber) != VMDK_SPARSE_MAGICNUMBER)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect magic in sparse extent header in '%s'"), pExtent->pszFullname);
return rc;
}
if (RT_LE2H_U32(pHeader->version) != 1 && RT_LE2H_U32(pHeader->version) != 3)
{
rc = vmdkError(pImage, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: incorrect version in sparse extent header in '%s', not a VMDK 1.0/1.1 conforming file"), pExtent->pszFullname);
return rc;
}
if ( (RT_LE2H_U32(pHeader->flags) & 1)
&& ( pHeader->singleEndLineChar != '\n'
|| pHeader->nonEndLineChar != ' '
|| pHeader->doubleEndLineChar1 != '\r'
|| pHeader->doubleEndLineChar2 != '\n') )
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: corrupted by CR/LF translation in '%s'"), pExtent->pszFullname);
return rc;
}
return rc;
}
/**
* Internal: read metadata belonging to an extent with binary header, i.e.
* as found in monolithic files.
*/
static int vmdkReadBinaryMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
bool fMagicAlreadyRead)
{
SparseExtentHeader Header;
uint64_t cSectorsPerGDE;
uint64_t cbFile = 0;
int rc;
if (!fMagicAlreadyRead)
rc = vmdkFileReadSync(pImage, pExtent->pFile, 0, &Header,
sizeof(Header), NULL);
else
{
Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER);
rc = vmdkFileReadSync(pImage, pExtent->pFile,
RT_OFFSETOF(SparseExtentHeader, version),
&Header.version,
sizeof(Header)
- RT_OFFSETOF(SparseExtentHeader, version),
NULL);
}
AssertRC(rc);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading extent header in '%s'"), pExtent->pszFullname);
goto out;
}
rc = vmdkValidateHeader(pImage, pExtent, &Header);
if (RT_FAILURE(rc))
goto out;
if ( RT_LE2H_U32(Header.flags & RT_BIT(17))
&& RT_LE2H_U64(Header.gdOffset) == VMDK_GD_AT_END)
pExtent->fFooter = true;
if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
|| ( pExtent->fFooter
&& !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)))
{
rc = vmdkFileGetSize(pImage, pExtent->pFile, &cbFile);
AssertRC(rc);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot get size of '%s'"), pExtent->pszFullname);
goto out;
}
}
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
pExtent->uAppendPosition = RT_ALIGN_64(cbFile, 512);
if ( pExtent->fFooter
&& ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)))
{
/* Read the footer, which comes before the end-of-stream marker. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
cbFile - 2*512, &Header,
sizeof(Header), NULL);
AssertRC(rc);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading extent footer in '%s'"), pExtent->pszFullname);
goto out;
}
rc = vmdkValidateHeader(pImage, pExtent, &Header);
if (RT_FAILURE(rc))
goto out;
/* Prohibit any writes to this extent. */
pExtent->uAppendPosition = 0;
}
pExtent->uVersion = RT_LE2H_U32(Header.version);
pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; /* Just dummy value, changed later. */
pExtent->cSectors = RT_LE2H_U64(Header.capacity);
pExtent->cSectorsPerGrain = RT_LE2H_U64(Header.grainSize);
pExtent->uDescriptorSector = RT_LE2H_U64(Header.descriptorOffset);
pExtent->cDescriptorSectors = RT_LE2H_U64(Header.descriptorSize);
if (pExtent->uDescriptorSector && !pExtent->cDescriptorSectors)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: inconsistent embedded descriptor config in '%s'"), pExtent->pszFullname);
goto out;
}
pExtent->cGTEntries = RT_LE2H_U32(Header.numGTEsPerGT);
if (RT_LE2H_U32(Header.flags) & RT_BIT(1))
{
pExtent->uSectorRGD = RT_LE2H_U64(Header.rgdOffset);
pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset);
}
else
{
pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset);
pExtent->uSectorRGD = 0;
}
if ( ( pExtent->uSectorGD == VMDK_GD_AT_END
|| pExtent->uSectorRGD == VMDK_GD_AT_END)
&& ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)))
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: cannot resolve grain directory offset in '%s'"), pExtent->pszFullname);
goto out;
}
pExtent->cOverheadSectors = RT_LE2H_U64(Header.overHead);
pExtent->fUncleanShutdown = !!Header.uncleanShutdown;
pExtent->uCompression = RT_LE2H_U16(Header.compressAlgorithm);
cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
if (!cSectorsPerGDE || cSectorsPerGDE > UINT32_MAX)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect grain directory size in '%s'"), pExtent->pszFullname);
goto out;
}
pExtent->cSectorsPerGDE = cSectorsPerGDE;
pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
/* Fix up the number of descriptor sectors, as some flat images have
* really just one, and this causes failures when inserting the UUID
* values and other extra information. */
if (pExtent->cDescriptorSectors != 0 && pExtent->cDescriptorSectors < 4)
{
/* Do it the easy way - just fix it for flat images which have no
* other complicated metadata which needs space too. */
if ( pExtent->uDescriptorSector + 4 < pExtent->cOverheadSectors
&& pExtent->cGTEntries * pExtent->cGDEntries == 0)
pExtent->cDescriptorSectors = 4;
}
out:
if (RT_FAILURE(rc))
vmdkFreeExtentData(pImage, pExtent, false);
return rc;
}
/**
* Internal: read additional metadata belonging to an extent. For those
* extents which have no additional metadata just verify the information.
*/
static int vmdkReadMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
{
int rc = VINF_SUCCESS;
/* disabled the check as there are too many truncated vmdk images out there */
#ifdef VBOX_WITH_VMDK_STRICT_SIZE_CHECK
uint64_t cbExtentSize;
/* The image must be a multiple of a sector in size and contain the data
* area (flat images only). If not, it means the image is at least
* truncated, or even seriously garbled. */
rc = vmdkFileGetSize(pImage, pExtent->pFile, &cbExtentSize);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting size in '%s'"), pExtent->pszFullname);
goto out;
}
if ( cbExtentSize != RT_ALIGN_64(cbExtentSize, 512)
&& (pExtent->enmType != VMDKETYPE_FLAT || pExtent->cNominalSectors + pExtent->uSectorOffset > VMDK_BYTE2SECTOR(cbExtentSize)))
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: file size is not a multiple of 512 in '%s', file is truncated or otherwise garbled"), pExtent->pszFullname);
goto out;
}
#endif /* VBOX_WITH_VMDK_STRICT_SIZE_CHECK */
if (pExtent->enmType != VMDKETYPE_HOSTED_SPARSE)
goto out;
/* The spec says that this must be a power of two and greater than 8,
* but probably they meant not less than 8. */
if ( (pExtent->cSectorsPerGrain & (pExtent->cSectorsPerGrain - 1))
|| pExtent->cSectorsPerGrain < 8)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: invalid extent grain size %u in '%s'"), pExtent->cSectorsPerGrain, pExtent->pszFullname);
goto out;
}
/* This code requires that a grain table must hold a power of two multiple
* of the number of entries per GT cache entry. */
if ( (pExtent->cGTEntries & (pExtent->cGTEntries - 1))
|| pExtent->cGTEntries < VMDK_GT_CACHELINE_SIZE)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: grain table cache size problem in '%s'"), pExtent->pszFullname);
goto out;
}
rc = vmdkAllocStreamBuffers(pImage, pExtent);
if (RT_FAILURE(rc))
goto out;
/* Prohibit any writes to this streamOptimized extent. */
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
pExtent->uAppendPosition = 0;
if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
rc = vmdkReadGrainDirectory(pImage, pExtent);
else
{
pExtent->uGrainSectorAbs = pExtent->cOverheadSectors;
pExtent->cbGrainStreamRead = 0;
}
out:
if (RT_FAILURE(rc))
vmdkFreeExtentData(pImage, pExtent, false);
return rc;
}
/**
* Internal: write/update the metadata for a sparse extent.
*/
static int vmdkWriteMetaSparseExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uOffset)
{
SparseExtentHeader Header;
memset(&Header, '\0', sizeof(Header));
Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER);
Header.version = RT_H2LE_U32(pExtent->uVersion);
Header.flags = RT_H2LE_U32(RT_BIT(0));
if (pExtent->pRGD)
Header.flags |= RT_H2LE_U32(RT_BIT(1));
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
Header.flags |= RT_H2LE_U32(RT_BIT(16) | RT_BIT(17));
Header.capacity = RT_H2LE_U64(pExtent->cSectors);
Header.grainSize = RT_H2LE_U64(pExtent->cSectorsPerGrain);
Header.descriptorOffset = RT_H2LE_U64(pExtent->uDescriptorSector);
Header.descriptorSize = RT_H2LE_U64(pExtent->cDescriptorSectors);
Header.numGTEsPerGT = RT_H2LE_U32(pExtent->cGTEntries);
if (pExtent->fFooter && uOffset == 0)
{
if (pExtent->pRGD)
{
Assert(pExtent->uSectorRGD);
Header.rgdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
}
else
{
Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
}
}
else
{
if (pExtent->pRGD)
{
Assert(pExtent->uSectorRGD);
Header.rgdOffset = RT_H2LE_U64(pExtent->uSectorRGD);
Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD);
}
else
{
Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD);
}
}
Header.overHead = RT_H2LE_U64(pExtent->cOverheadSectors);
Header.uncleanShutdown = pExtent->fUncleanShutdown;
Header.singleEndLineChar = '\n';
Header.nonEndLineChar = ' ';
Header.doubleEndLineChar1 = '\r';
Header.doubleEndLineChar2 = '\n';
Header.compressAlgorithm = RT_H2LE_U16(pExtent->uCompression);
int rc = vmdkFileWriteSync(pImage, pExtent->pFile, uOffset, &Header, sizeof(Header), NULL);
AssertRC(rc);
if (RT_FAILURE(rc))
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing extent header in '%s'"), pExtent->pszFullname);
return rc;
}
/**
* Internal: write/update the metadata for a sparse extent - async version.
*/
static int vmdkWriteMetaSparseExtentAsync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uOffset, PVDIOCTX pIoCtx)
{
SparseExtentHeader Header;
memset(&Header, '\0', sizeof(Header));
Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER);
Header.version = RT_H2LE_U32(pExtent->uVersion);
Header.flags = RT_H2LE_U32(RT_BIT(0));
if (pExtent->pRGD)
Header.flags |= RT_H2LE_U32(RT_BIT(1));
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
Header.flags |= RT_H2LE_U32(RT_BIT(16) | RT_BIT(17));
Header.capacity = RT_H2LE_U64(pExtent->cSectors);
Header.grainSize = RT_H2LE_U64(pExtent->cSectorsPerGrain);
Header.descriptorOffset = RT_H2LE_U64(pExtent->uDescriptorSector);
Header.descriptorSize = RT_H2LE_U64(pExtent->cDescriptorSectors);
Header.numGTEsPerGT = RT_H2LE_U32(pExtent->cGTEntries);
if (pExtent->fFooter && uOffset == 0)
{
if (pExtent->pRGD)
{
Assert(pExtent->uSectorRGD);
Header.rgdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
}
else
{
Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
}
}
else
{
if (pExtent->pRGD)
{
Assert(pExtent->uSectorRGD);
Header.rgdOffset = RT_H2LE_U64(pExtent->uSectorRGD);
Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD);
}
else
{
Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD);
}
}
Header.overHead = RT_H2LE_U64(pExtent->cOverheadSectors);
Header.uncleanShutdown = pExtent->fUncleanShutdown;
Header.singleEndLineChar = '\n';
Header.nonEndLineChar = ' ';
Header.doubleEndLineChar1 = '\r';
Header.doubleEndLineChar2 = '\n';
Header.compressAlgorithm = RT_H2LE_U16(pExtent->uCompression);
int rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
uOffset, &Header, sizeof(Header),
pIoCtx, NULL, NULL);
if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS))
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing extent header in '%s'"), pExtent->pszFullname);
return rc;
}
#ifdef VBOX_WITH_VMDK_ESX
/**
* Internal: unused code to read the metadata of a sparse ESX extent.
*
* Such extents never leave ESX server, so this isn't ever used.
*/
static int vmdkReadMetaESXSparseExtent(PVMDKEXTENT pExtent)
{
COWDisk_Header Header;
uint64_t cSectorsPerGDE;
int rc = vmdkFileReadSync(pImage, pExtent->pFile, 0, &Header, sizeof(Header), NULL);
AssertRC(rc);
if (RT_FAILURE(rc))
goto out;
if ( RT_LE2H_U32(Header.magicNumber) != VMDK_ESX_SPARSE_MAGICNUMBER
|| RT_LE2H_U32(Header.version) != 1
|| RT_LE2H_U32(Header.flags) != 3)
{
rc = VERR_VD_VMDK_INVALID_HEADER;
goto out;
}
pExtent->enmType = VMDKETYPE_ESX_SPARSE;
pExtent->cSectors = RT_LE2H_U32(Header.numSectors);
pExtent->cSectorsPerGrain = RT_LE2H_U32(Header.grainSize);
/* The spec says that this must be between 1 sector and 1MB. This code
* assumes it's a power of two, so check that requirement, too. */
if ( (pExtent->cSectorsPerGrain & (pExtent->cSectorsPerGrain - 1))
|| pExtent->cSectorsPerGrain == 0
|| pExtent->cSectorsPerGrain > 2048)
{
rc = VERR_VD_VMDK_INVALID_HEADER;
goto out;
}
pExtent->uDescriptorSector = 0;
pExtent->cDescriptorSectors = 0;
pExtent->uSectorGD = RT_LE2H_U32(Header.gdOffset);
pExtent->uSectorRGD = 0;
pExtent->cOverheadSectors = 0;
pExtent->cGTEntries = 4096;
cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
if (!cSectorsPerGDE || cSectorsPerGDE > UINT32_MAX)
{
rc = VERR_VD_VMDK_INVALID_HEADER;
goto out;
}
pExtent->cSectorsPerGDE = cSectorsPerGDE;
pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
if (pExtent->cGDEntries != RT_LE2H_U32(Header.numGDEntries))
{
/* Inconsistency detected. Computed number of GD entries doesn't match
* stored value. Better be safe than sorry. */
rc = VERR_VD_VMDK_INVALID_HEADER;
goto out;
}
pExtent->uFreeSector = RT_LE2H_U32(Header.freeSector);
pExtent->fUncleanShutdown = !!Header.uncleanShutdown;
rc = vmdkReadGrainDirectory(pImage, pExtent);
out:
if (RT_FAILURE(rc))
vmdkFreeExtentData(pImage, pExtent, false);
return rc;
}
#endif /* VBOX_WITH_VMDK_ESX */
/**
* Internal: free the buffers used for streamOptimized images.
*/
static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent)
{
if (pExtent->pvCompGrain)
{
RTMemFree(pExtent->pvCompGrain);
pExtent->pvCompGrain = NULL;
}
if (pExtent->pvGrain)
{
RTMemFree(pExtent->pvGrain);
pExtent->pvGrain = NULL;
}
}
/**
* Internal: free the memory used by the extent data structure, optionally
* deleting the referenced files.
*/
static void vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
bool fDelete)
{
vmdkFreeGrainDirectory(pExtent);
if (pExtent->pDescData)
{
RTMemFree(pExtent->pDescData);
pExtent->pDescData = NULL;
}
if (pExtent->pFile != NULL)
{
/* Do not delete raw extents, these have full and base names equal. */
vmdkFileClose(pImage, &pExtent->pFile,
fDelete
&& pExtent->pszFullname
&& strcmp(pExtent->pszFullname, pExtent->pszBasename));
}
if (pExtent->pszBasename)
{
RTMemTmpFree((void *)pExtent->pszBasename);
pExtent->pszBasename = NULL;
}
if (pExtent->pszFullname)
{
RTStrFree((char *)(void *)pExtent->pszFullname);
pExtent->pszFullname = NULL;
}
vmdkFreeStreamBuffers(pExtent);
}
/**
* Internal: allocate grain table cache if necessary for this image.
*/
static int vmdkAllocateGrainTableCache(PVMDKIMAGE pImage)
{
PVMDKEXTENT pExtent;
/* Allocate grain table cache if any sparse extent is present. */
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if ( pExtent->enmType == VMDKETYPE_HOSTED_SPARSE
#ifdef VBOX_WITH_VMDK_ESX
|| pExtent->enmType == VMDKETYPE_ESX_SPARSE
#endif /* VBOX_WITH_VMDK_ESX */
)
{
/* Allocate grain table cache. */
pImage->pGTCache = (PVMDKGTCACHE)RTMemAllocZ(sizeof(VMDKGTCACHE));
if (!pImage->pGTCache)
return VERR_NO_MEMORY;
for (unsigned j = 0; j < VMDK_GT_CACHE_SIZE; j++)
{
PVMDKGTCACHEENTRY pGCE = &pImage->pGTCache->aGTCache[j];
pGCE->uExtent = UINT32_MAX;
}
pImage->pGTCache->cEntries = VMDK_GT_CACHE_SIZE;
break;
}
}
return VINF_SUCCESS;
}
/**
* Internal: allocate the given number of extents.
*/
static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents)
{
int rc = VINF_SUCCESS;
PVMDKEXTENT pExtents = (PVMDKEXTENT)RTMemAllocZ(cExtents * sizeof(VMDKEXTENT));
if (pExtents)
{
for (unsigned i = 0; i < cExtents; i++)
{
pExtents[i].pFile = NULL;
pExtents[i].pszBasename = NULL;
pExtents[i].pszFullname = NULL;
pExtents[i].pGD = NULL;
pExtents[i].pRGD = NULL;
pExtents[i].pDescData = NULL;
pExtents[i].uVersion = 1;
pExtents[i].uCompression = VMDK_COMPRESSION_NONE;
pExtents[i].uExtent = i;
pExtents[i].pImage = pImage;
}
pImage->pExtents = pExtents;
pImage->cExtents = cExtents;
}
else
rc = VERR_NO_MEMORY;
return rc;
}
/**
* Internal: Open an image, constructing all necessary data structures.
*/
static int vmdkOpenImage(PVMDKIMAGE pImage, unsigned uOpenFlags)
{
int rc;
uint32_t u32Magic;
PVMDKFILE pFile;
PVMDKEXTENT pExtent;
pImage->uOpenFlags = uOpenFlags;
/* Try to get error interface. */
pImage->pInterfaceError = VDInterfaceGet(pImage->pVDIfsDisk, VDINTERFACETYPE_ERROR);
if (pImage->pInterfaceError)
pImage->pInterfaceErrorCallbacks = VDGetInterfaceError(pImage->pInterfaceError);
/* Get I/O interface. */
pImage->pInterfaceIO = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_IOINT);
AssertPtrReturn(pImage->pInterfaceIO, VERR_INVALID_PARAMETER);
pImage->pInterfaceIOCallbacks = VDGetInterfaceIOInt(pImage->pInterfaceIO);
AssertPtrReturn(pImage->pInterfaceIOCallbacks, VERR_INVALID_PARAMETER);
/*
* Open the image.
* We don't have to check for asynchronous access because
* we only support raw access and the opened file is a description
* file were no data is stored.
*/
rc = vmdkFileOpen(pImage, &pFile, pImage->pszFilename,
VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
{
/* Do NOT signal an appropriate error here, as the VD layer has the
* choice of retrying the open if it failed. */
goto out;
}
pImage->pFile = pFile;
/* Read magic (if present). */
rc = vmdkFileReadSync(pImage, pFile, 0, &u32Magic, sizeof(u32Magic), NULL);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading the magic number in '%s'"), pImage->pszFilename);
goto out;
}
/* Handle the file according to its magic number. */
if (RT_LE2H_U32(u32Magic) == VMDK_SPARSE_MAGICNUMBER)
{
/* It's a hosted single-extent image. */
rc = vmdkCreateExtents(pImage, 1);
if (RT_FAILURE(rc))
goto out;
/* The opened file is passed to the extent. No separate descriptor
* file, so no need to keep anything open for the image. */
pExtent = &pImage->pExtents[0];
pExtent->pFile = pFile;
pImage->pFile = NULL;
pExtent->pszFullname = RTPathAbsDup(pImage->pszFilename);
if (!pExtent->pszFullname)
{
rc = VERR_NO_MEMORY;
goto out;
}
rc = vmdkReadBinaryMetaExtent(pImage, pExtent, true /* fMagicAlreadyRead */);
if (RT_FAILURE(rc))
goto out;
/* As we're dealing with a monolithic image here, there must
* be a descriptor embedded in the image file. */
if (!pExtent->uDescriptorSector || !pExtent->cDescriptorSectors)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image without descriptor in '%s'"), pImage->pszFilename);
goto out;
}
/* HACK: extend the descriptor if it is unusually small and it fits in
* the unused space after the image header. Allows opening VMDK files
* with extremely small descriptor in read/write mode. */
if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
&& pExtent->cDescriptorSectors < 3
&& (int64_t)pExtent->uSectorGD - pExtent->uDescriptorSector >= 4
&& (!pExtent->uSectorRGD || (int64_t)pExtent->uSectorRGD - pExtent->uDescriptorSector >= 4))
{
pExtent->cDescriptorSectors = 4;
pExtent->fMetaDirty = true;
}
/* Read the descriptor from the extent. */
pExtent->pDescData = (char *)RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors));
if (!pExtent->pDescData)
{
rc = VERR_NO_MEMORY;
goto out;
}
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uDescriptorSector),
pExtent->pDescData,
VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors), NULL);
AssertRC(rc);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pExtent->pszFullname);
goto out;
}
rc = vmdkParseDescriptor(pImage, pExtent->pDescData,
VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors));
if (RT_FAILURE(rc))
goto out;
if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
&& uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO)
{
rc = VERR_NOT_SUPPORTED;
goto out;
}
rc = vmdkReadMetaExtent(pImage, pExtent);
if (RT_FAILURE(rc))
goto out;
/* Mark the extent as unclean if opened in read-write mode. */
if ( !(uOpenFlags & VD_OPEN_FLAGS_READONLY)
&& !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
pExtent->fUncleanShutdown = true;
pExtent->fMetaDirty = true;
}
}
else
{
/* Allocate at least 10K, and make sure that there is 5K free space
* in case new entries need to be added to the descriptor. Never
* allocate more than 128K, because that's no valid descriptor file
* and will result in the correct "truncated read" error handling. */
uint64_t cbFileSize;
rc = vmdkFileGetSize(pImage, pFile, &cbFileSize);
if (RT_FAILURE(rc))
goto out;
/* If the descriptor file is shorter than 50 bytes it can't be valid. */
if (cbFileSize < 50)
{
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor in '%s' is too short"), pImage->pszFilename);
goto out;
}
uint64_t cbSize = cbFileSize;
if (cbSize % VMDK_SECTOR2BYTE(10))
cbSize += VMDK_SECTOR2BYTE(20) - cbSize % VMDK_SECTOR2BYTE(10);
else
cbSize += VMDK_SECTOR2BYTE(10);
cbSize = RT_MIN(cbSize, _128K);
pImage->cbDescAlloc = RT_MAX(VMDK_SECTOR2BYTE(20), cbSize);
pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc);
if (!pImage->pDescData)
{
rc = VERR_NO_MEMORY;
goto out;
}
/* Don't reread the place where the magic would live in a sparse
* image if it's a descriptor based one. */
memcpy(pImage->pDescData, &u32Magic, sizeof(u32Magic));
size_t cbRead;
rc = vmdkFileReadSync(pImage, pImage->pFile, sizeof(u32Magic),
pImage->pDescData + sizeof(u32Magic),
RT_MIN(pImage->cbDescAlloc - sizeof(u32Magic),
cbFileSize - sizeof(u32Magic)),
&cbRead);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pImage->pszFilename);
goto out;
}
cbRead += sizeof(u32Magic);
if (cbRead == pImage->cbDescAlloc)
{
/* Likely the read is truncated. Better fail a bit too early
* (normally the descriptor is much smaller than our buffer). */
rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: cannot read descriptor in '%s'"), pImage->pszFilename);
goto out;
}
rc = vmdkParseDescriptor(pImage, pImage->pDescData,
pImage->cbDescAlloc);
if (RT_FAILURE(rc))
goto out;
/*
* We have to check for the asynchronous open flag. The
* extents are parsed and the type of all are known now.
* Check if every extent is either FLAT or ZERO.
*/
if (uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO)
{
unsigned cFlatExtents = 0;
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if (( pExtent->enmType != VMDKETYPE_FLAT
&& pExtent->enmType != VMDKETYPE_ZERO
&& pExtent->enmType != VMDKETYPE_VMFS)
|| ((pImage->pExtents[i].enmType == VMDKETYPE_FLAT) && (cFlatExtents > 0)))
{
/*
* Opened image contains at least one none flat or zero extent.
* Return error but don't set error message as the caller
* has the chance to open in non async I/O mode.
*/
rc = VERR_NOT_SUPPORTED;
goto out;
}
if (pExtent->enmType == VMDKETYPE_FLAT)
cFlatExtents++;
}
}
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if (pExtent->pszBasename)
{
/* Hack to figure out whether the specified name in the
* extent descriptor is absolute. Doesn't always work, but
* should be good enough for now. */
char *pszFullname;
/** @todo implement proper path absolute check. */
if (pExtent->pszBasename[0] == RTPATH_SLASH)
{
pszFullname = RTStrDup(pExtent->pszBasename);
if (!pszFullname)
{
rc = VERR_NO_MEMORY;
goto out;
}
}
else
{
char *pszDirname = RTStrDup(pImage->pszFilename);
if (!pszDirname)
{
rc = VERR_NO_MEMORY;
goto out;
}
RTPathStripFilename(pszDirname);
pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename);
RTStrFree(pszDirname);
if (!pszFullname)
{
rc = VERR_NO_STR_MEMORY;
goto out;
}
}
pExtent->pszFullname = pszFullname;
}
else
pExtent->pszFullname = NULL;
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(uOpenFlags,
false /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
{
/* Do NOT signal an appropriate error here, as the VD
* layer has the choice of retrying the open if it
* failed. */
goto out;
}
rc = vmdkReadBinaryMetaExtent(pImage, pExtent,
false /* fMagicAlreadyRead */);
if (RT_FAILURE(rc))
goto out;
rc = vmdkReadMetaExtent(pImage, pExtent);
if (RT_FAILURE(rc))
goto out;
/* Mark extent as unclean if opened in read-write mode. */
if (!(uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
pExtent->fUncleanShutdown = true;
pExtent->fMetaDirty = true;
}
break;
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(uOpenFlags,
false /* fCreate */),
true /* fAsyncIO */);
if (RT_FAILURE(rc))
{
/* Do NOT signal an appropriate error here, as the VD
* layer has the choice of retrying the open if it
* failed. */
goto out;
}
break;
case VMDKETYPE_ZERO:
/* Nothing to do. */
break;
default:
AssertMsgFailed(("unknown vmdk extent type %d\n", pExtent->enmType));
}
}
}
/* Make sure this is not reached accidentally with an error status. */
AssertRC(rc);
/* Determine PCHS geometry if not set. */
if (pImage->PCHSGeometry.cCylinders == 0)
{
uint64_t cCylinders = VMDK_BYTE2SECTOR(pImage->cbSize)
/ pImage->PCHSGeometry.cHeads
/ pImage->PCHSGeometry.cSectors;
pImage->PCHSGeometry.cCylinders = (unsigned)RT_MIN(cCylinders, 16383);
if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
&& !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
rc = vmdkDescSetPCHSGeometry(pImage, &pImage->PCHSGeometry);
AssertRC(rc);
}
}
/* Update the image metadata now in case has changed. */
rc = vmdkFlushImage(pImage);
if (RT_FAILURE(rc))
goto out;
/* Figure out a few per-image constants from the extents. */
pImage->cbSize = 0;
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if ( pExtent->enmType == VMDKETYPE_HOSTED_SPARSE
#ifdef VBOX_WITH_VMDK_ESX
|| pExtent->enmType == VMDKETYPE_ESX_SPARSE
#endif /* VBOX_WITH_VMDK_ESX */
)
{
/* Here used to be a check whether the nominal size of an extent
* is a multiple of the grain size. The spec says that this is
* always the case, but unfortunately some files out there in the
* wild violate the spec (e.g. ReactOS 0.3.1). */
}
pImage->cbSize += VMDK_SECTOR2BYTE(pExtent->cNominalSectors);
}
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if ( pImage->pExtents[i].enmType == VMDKETYPE_FLAT
|| pImage->pExtents[i].enmType == VMDKETYPE_ZERO)
{
pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED;
break;
}
}
if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
rc = vmdkAllocateGrainTableCache(pImage);
out:
if (RT_FAILURE(rc))
vmdkFreeImage(pImage, false);
return rc;
}
/**
* Internal: create VMDK images for raw disk/partition access.
*/
static int vmdkCreateRawImage(PVMDKIMAGE pImage, const PVBOXHDDRAW pRaw,
uint64_t cbSize)
{
int rc = VINF_SUCCESS;
PVMDKEXTENT pExtent;
if (pRaw->fRawDisk)
{
/* Full raw disk access. This requires setting up a descriptor
* file and open the (flat) raw disk. */
rc = vmdkCreateExtents(pImage, 1);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
pExtent = &pImage->pExtents[0];
/* Create raw disk descriptor file. */
rc = vmdkFileOpen(pImage, &pImage->pFile, pImage->pszFilename,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
true /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename);
/* Set up basename for extent description. Cannot use StrDup. */
size_t cbBasename = strlen(pRaw->pszRawDisk) + 1;
char *pszBasename = (char *)RTMemTmpAlloc(cbBasename);
if (!pszBasename)
return VERR_NO_MEMORY;
memcpy(pszBasename, pRaw->pszRawDisk, cbBasename);
pExtent->pszBasename = pszBasename;
/* For raw disks the full name is identical to the base name. */
pExtent->pszFullname = RTStrDup(pszBasename);
if (!pExtent->pszFullname)
return VERR_NO_MEMORY;
pExtent->enmType = VMDKETYPE_FLAT;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize);
pExtent->uSectorOffset = 0;
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fMetaDirty = false;
/* Open flat image, the raw disk. */
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags & ~VD_OPEN_FLAGS_READONLY,
false /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not open raw disk file '%s'"), pExtent->pszFullname);
}
else
{
/* Raw partition access. This requires setting up a descriptor
* file, write the partition information to a flat extent and
* open all the (flat) raw disk partitions. */
/* First pass over the partition data areas to determine how many
* extents we need. One data area can require up to 2 extents, as
* it might be necessary to skip over unpartitioned space. */
unsigned cExtents = 0;
uint64_t uStart = 0;
for (unsigned i = 0; i < pRaw->cPartDescs; i++)
{
PVBOXHDDRAWPARTDESC pPart = &pRaw->pPartDescs[i];
if (uStart > pPart->uStart)
return vmdkError(pImage, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("VMDK: incorrect partition data area ordering set up by the caller in '%s'"), pImage->pszFilename);
if (uStart < pPart->uStart)
cExtents++;
uStart = pPart->uStart + pPart->cbData;
cExtents++;
}
/* Another extent for filling up the rest of the image. */
if (uStart != cbSize)
cExtents++;
rc = vmdkCreateExtents(pImage, cExtents);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
/* Create raw partition descriptor file. */
rc = vmdkFileOpen(pImage, &pImage->pFile, pImage->pszFilename,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
true /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename);
/* Create base filename for the partition table extent. */
/** @todo remove fixed buffer without creating memory leaks. */
char pszPartition[1024];
const char *pszBase = RTPathFilename(pImage->pszFilename);
const char *pszExt = RTPathExt(pszBase);
if (pszExt == NULL)
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: invalid filename '%s'"), pImage->pszFilename);
char *pszBaseBase = RTStrDup(pszBase);
if (!pszBaseBase)
return VERR_NO_MEMORY;
RTPathStripExt(pszBaseBase);
RTStrPrintf(pszPartition, sizeof(pszPartition), "%s-pt%s",
pszBaseBase, pszExt);
RTStrFree(pszBaseBase);
/* Second pass over the partitions, now define all extents. */
uint64_t uPartOffset = 0;
cExtents = 0;
uStart = 0;
for (unsigned i = 0; i < pRaw->cPartDescs; i++)
{
PVBOXHDDRAWPARTDESC pPart = &pRaw->pPartDescs[i];
pExtent = &pImage->pExtents[cExtents++];
if (uStart < pPart->uStart)
{
pExtent->pszBasename = NULL;
pExtent->pszFullname = NULL;
pExtent->enmType = VMDKETYPE_ZERO;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->uStart - uStart);
pExtent->uSectorOffset = 0;
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fMetaDirty = false;
/* go to next extent */
pExtent = &pImage->pExtents[cExtents++];
}
uStart = pPart->uStart + pPart->cbData;
if (pPart->pvPartitionData)
{
/* Set up basename for extent description. Can't use StrDup. */
size_t cbBasename = strlen(pszPartition) + 1;
char *pszBasename = (char *)RTMemTmpAlloc(cbBasename);
if (!pszBasename)
return VERR_NO_MEMORY;
memcpy(pszBasename, pszPartition, cbBasename);
pExtent->pszBasename = pszBasename;
/* Set up full name for partition extent. */
char *pszDirname = RTStrDup(pImage->pszFilename);
if (!pszDirname)
return VERR_NO_STR_MEMORY;
RTPathStripFilename(pszDirname);
char *pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename);
RTStrFree(pszDirname);
if (!pszDirname)
return VERR_NO_STR_MEMORY;
pExtent->pszFullname = pszFullname;
pExtent->enmType = VMDKETYPE_FLAT;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData);
pExtent->uSectorOffset = uPartOffset;
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fMetaDirty = false;
/* Create partition table flat image. */
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
true /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new partition data file '%s'"), pExtent->pszFullname);
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uPartOffset),
pPart->pvPartitionData,
pPart->cbData, NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not write partition data to '%s'"), pExtent->pszFullname);
uPartOffset += VMDK_BYTE2SECTOR(pPart->cbData);
}
else
{
if (pPart->pszRawDevice)
{
/* Set up basename for extent descr. Can't use StrDup. */
size_t cbBasename = strlen(pPart->pszRawDevice) + 1;
char *pszBasename = (char *)RTMemTmpAlloc(cbBasename);
if (!pszBasename)
return VERR_NO_MEMORY;
memcpy(pszBasename, pPart->pszRawDevice, cbBasename);
pExtent->pszBasename = pszBasename;
/* For raw disks full name is identical to base name. */
pExtent->pszFullname = RTStrDup(pszBasename);
if (!pExtent->pszFullname)
return VERR_NO_MEMORY;
pExtent->enmType = VMDKETYPE_FLAT;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData);
pExtent->uSectorOffset = VMDK_BYTE2SECTOR(pPart->uStartOffset);
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fMetaDirty = false;
/* Open flat image, the raw partition. */
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags & ~VD_OPEN_FLAGS_READONLY,
false /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not open raw partition file '%s'"), pExtent->pszFullname);
}
else
{
pExtent->pszBasename = NULL;
pExtent->pszFullname = NULL;
pExtent->enmType = VMDKETYPE_ZERO;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData);
pExtent->uSectorOffset = 0;
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fMetaDirty = false;
}
}
}
/* Another extent for filling up the rest of the image. */
if (uStart != cbSize)
{
pExtent = &pImage->pExtents[cExtents++];
pExtent->pszBasename = NULL;
pExtent->pszFullname = NULL;
pExtent->enmType = VMDKETYPE_ZERO;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize - uStart);
pExtent->uSectorOffset = 0;
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fMetaDirty = false;
}
}
rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType",
pRaw->fRawDisk ?
"fullDevice" : "partitionedDevice");
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename);
return rc;
}
/**
* Internal: create a regular (i.e. file-backed) VMDK image.
*/
static int vmdkCreateRegularImage(PVMDKIMAGE pImage, uint64_t cbSize,
unsigned uImageFlags,
PFNVDPROGRESS pfnProgress, void *pvUser,
unsigned uPercentStart, unsigned uPercentSpan)
{
int rc = VINF_SUCCESS;
unsigned cExtents = 1;
uint64_t cbOffset = 0;
uint64_t cbRemaining = cbSize;
if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
{
cExtents = cbSize / VMDK_2G_SPLIT_SIZE;
/* Do proper extent computation: need one smaller extent if the total
* size isn't evenly divisible by the split size. */
if (cbSize % VMDK_2G_SPLIT_SIZE)
cExtents++;
}
rc = vmdkCreateExtents(pImage, cExtents);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
/* Basename strings needed for constructing the extent names. */
char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename);
AssertPtr(pszBasenameSubstr);
size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1;
/* Create separate descriptor file if necessary. */
if (cExtents != 1 || (uImageFlags & VD_IMAGE_FLAGS_FIXED))
{
rc = vmdkFileOpen(pImage, &pImage->pFile, pImage->pszFilename,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
true /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new sparse descriptor file '%s'"), pImage->pszFilename);
}
else
pImage->pFile = NULL;
/* Set up all extents. */
for (unsigned i = 0; i < cExtents; i++)
{
PVMDKEXTENT pExtent = &pImage->pExtents[i];
uint64_t cbExtent = cbRemaining;
/* Set up fullname/basename for extent description. Cannot use StrDup
* for basename, as it is not guaranteed that the memory can be freed
* with RTMemTmpFree, which must be used as in other code paths
* StrDup is not usable. */
if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED))
{
char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr);
if (!pszBasename)
return VERR_NO_MEMORY;
memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr);
pExtent->pszBasename = pszBasename;
}
else
{
char *pszBasenameExt = RTPathExt(pszBasenameSubstr);
char *pszBasenameBase = RTStrDup(pszBasenameSubstr);
RTPathStripExt(pszBasenameBase);
char *pszTmp;
size_t cbTmp;
if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
{
if (cExtents == 1)
RTStrAPrintf(&pszTmp, "%s-flat%s", pszBasenameBase,
pszBasenameExt);
else
RTStrAPrintf(&pszTmp, "%s-f%03d%s", pszBasenameBase,
i+1, pszBasenameExt);
}
else
RTStrAPrintf(&pszTmp, "%s-s%03d%s", pszBasenameBase, i+1,
pszBasenameExt);
RTStrFree(pszBasenameBase);
if (!pszTmp)
return VERR_NO_STR_MEMORY;
cbTmp = strlen(pszTmp) + 1;
char *pszBasename = (char *)RTMemTmpAlloc(cbTmp);
if (!pszBasename)
return VERR_NO_MEMORY;
memcpy(pszBasename, pszTmp, cbTmp);
RTStrFree(pszTmp);
pExtent->pszBasename = pszBasename;
if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
cbExtent = RT_MIN(cbRemaining, VMDK_2G_SPLIT_SIZE);
}
char *pszBasedirectory = RTStrDup(pImage->pszFilename);
if (!pszBasedirectory)
return VERR_NO_STR_MEMORY;
RTPathStripFilename(pszBasedirectory);
char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename);
RTStrFree(pszBasedirectory);
if (!pszFullname)
return VERR_NO_STR_MEMORY;
pExtent->pszFullname = pszFullname;
/* Create file for extent. */
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
true /* fCreate */),
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname);
if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
{
rc = vmdkFileSetSize(pImage, pExtent->pFile, cbExtent);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname);
/* Fill image with zeroes. We do this for every fixed-size image since on some systems
* (for example Windows Vista), it takes ages to write a block near the end of a sparse
* file and the guest could complain about an ATA timeout. */
/** @todo Starting with Linux 2.6.23, there is an fallocate() system call.
* Currently supported file systems are ext4 and ocfs2. */
/* Allocate a temporary zero-filled buffer. Use a bigger block size to optimize writing */
const size_t cbBuf = 128 * _1K;
void *pvBuf = RTMemTmpAllocZ(cbBuf);
if (!pvBuf)
return VERR_NO_MEMORY;
uint64_t uOff = 0;
/* Write data to all image blocks. */
while (uOff < cbExtent)
{
unsigned cbChunk = (unsigned)RT_MIN(cbExtent, cbBuf);
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uOff, pvBuf, cbChunk, NULL);
if (RT_FAILURE(rc))
{
RTMemFree(pvBuf);
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: writing block failed for '%s'"), pImage->pszFilename);
}
uOff += cbChunk;
if (pfnProgress)
{
rc = pfnProgress(pvUser,
uPercentStart + uOff * uPercentSpan / cbExtent);
if (RT_FAILURE(rc))
{
RTMemFree(pvBuf);
return rc;
}
}
}
RTMemTmpFree(pvBuf);
}
/* Place descriptor file information (where integrated). */
if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED))
{
pExtent->uDescriptorSector = 1;
pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc);
/* The descriptor is part of the (only) extent. */
pExtent->pDescData = pImage->pDescData;
pImage->pDescData = NULL;
}
if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED))
{
uint64_t cSectorsPerGDE, cSectorsPerGD;
pExtent->enmType = VMDKETYPE_HOSTED_SPARSE;
pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbExtent, _64K));
pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K);
pExtent->cGTEntries = 512;
cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
pExtent->cSectorsPerGDE = cSectorsPerGDE;
pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t));
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* The spec says version is 1 for all VMDKs, but the vast
* majority of streamOptimized VMDKs actually contain
* version 3 - so go with the majority. Both are accepted. */
pExtent->uVersion = 3;
pExtent->uCompression = VMDK_COMPRESSION_DEFLATE;
}
}
else
{
if (uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
pExtent->enmType = VMDKETYPE_VMFS;
else
pExtent->enmType = VMDKETYPE_FLAT;
}
pExtent->enmAccess = VMDKACCESS_READWRITE;
pExtent->fUncleanShutdown = true;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbExtent);
pExtent->uSectorOffset = 0;
pExtent->fMetaDirty = true;
if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED))
{
/* fPreAlloc should never be false because VMware can't use such images. */
rc = vmdkCreateGrainDirectory(pImage, pExtent,
RT_MAX( pExtent->uDescriptorSector
+ pExtent->cDescriptorSectors,
1),
true /* fPreAlloc */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname);
}
if (RT_SUCCESS(rc) && pfnProgress)
pfnProgress(pvUser, uPercentStart + i * uPercentSpan / cExtents);
cbRemaining -= cbExtent;
cbOffset += cbExtent;
}
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
{
/* VirtualBox doesn't care, but VMWare ESX freaks out if the wrong
* controller type is set in an image. */
rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor, "ddb.adapterType", "lsilogic");
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set controller type to lsilogic in '%s'"), pImage->pszFilename);
}
const char *pszDescType = NULL;
if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
{
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
pszDescType = "vmfs";
else
pszDescType = (cExtents == 1)
? "monolithicFlat" : "twoGbMaxExtentFlat";
}
else
{
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
pszDescType = "streamOptimized";
else
{
pszDescType = (cExtents == 1)
? "monolithicSparse" : "twoGbMaxExtentSparse";
}
}
rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType",
pszDescType);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename);
return rc;
}
/**
* Internal: Create a real stream optimized VMDK using only linear writes.
*/
static int vmdkCreateStreamImage(PVMDKIMAGE pImage, uint64_t cbSize,
unsigned uImageFlags,
PFNVDPROGRESS pfnProgress, void *pvUser,
unsigned uPercentStart, unsigned uPercentSpan)
{
int rc;
rc = vmdkCreateExtents(pImage, 1);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
/* Basename strings needed for constructing the extent names. */
const char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename);
AssertPtr(pszBasenameSubstr);
size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1;
/* No separate descriptor file. */
pImage->pFile = NULL;
/* Set up all extents. */
PVMDKEXTENT pExtent = &pImage->pExtents[0];
/* Set up fullname/basename for extent description. Cannot use StrDup
* for basename, as it is not guaranteed that the memory can be freed
* with RTMemTmpFree, which must be used as in other code paths
* StrDup is not usable. */
char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr);
if (!pszBasename)
return VERR_NO_MEMORY;
memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr);
pExtent->pszBasename = pszBasename;
char *pszBasedirectory = RTStrDup(pImage->pszFilename);
RTPathStripFilename(pszBasedirectory);
char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename);
RTStrFree(pszBasedirectory);
if (!pszFullname)
return VERR_NO_STR_MEMORY;
pExtent->pszFullname = pszFullname;
/* Create file for extent. Make it write only, no reading allowed. */
rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname,
VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
true /* fCreate */)
& ~RTFILE_O_READ,
false /* fAsyncIO */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname);
/* Place descriptor file information. */
pExtent->uDescriptorSector = 1;
pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc);
/* The descriptor is part of the (only) extent. */
pExtent->pDescData = pImage->pDescData;
pImage->pDescData = NULL;
uint64_t cSectorsPerGDE, cSectorsPerGD;
pExtent->enmType = VMDKETYPE_HOSTED_SPARSE;
pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbSize, _64K));
pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K);
pExtent->cGTEntries = 512;
cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
pExtent->cSectorsPerGDE = cSectorsPerGDE;
pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t));
/* The spec says version is 1 for all VMDKs, but the vast
* majority of streamOptimized VMDKs actually contain
* version 3 - so go with the majority. Both are accepted. */
pExtent->uVersion = 3;
pExtent->uCompression = VMDK_COMPRESSION_DEFLATE;
pExtent->fFooter = true;
pExtent->enmAccess = VMDKACCESS_READONLY;
pExtent->fUncleanShutdown = false;
pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize);
pExtent->uSectorOffset = 0;
pExtent->fMetaDirty = true;
/* Create grain directory, without preallocating it straight away. It will
* be constructed on the fly when writing out the data and written when
* closing the image. The end effect is that the full grain directory is
* allocated, which is a requirement of the VMDK specs. */
rc = vmdkCreateGrainDirectory(pImage, pExtent, VMDK_GD_AT_END,
false /* fPreAlloc */);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname);
rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType",
"streamOptimized");
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename);
return rc;
}
/**
* Internal: The actual code for creating any VMDK variant currently in
* existence on hosted environments.
*/
static int vmdkCreateImage(PVMDKIMAGE pImage, uint64_t cbSize,
unsigned uImageFlags, const char *pszComment,
PCVDGEOMETRY pPCHSGeometry,
PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid,
PFNVDPROGRESS pfnProgress, void *pvUser,
unsigned uPercentStart, unsigned uPercentSpan)
{
int rc;
pImage->uImageFlags = uImageFlags;
/* Try to get error interface. */
pImage->pInterfaceError = VDInterfaceGet(pImage->pVDIfsDisk, VDINTERFACETYPE_ERROR);
if (pImage->pInterfaceError)
pImage->pInterfaceErrorCallbacks = VDGetInterfaceError(pImage->pInterfaceError);
/* Get I/O interface. */
pImage->pInterfaceIO = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_IOINT);
AssertPtrReturn(pImage->pInterfaceIO, VERR_INVALID_PARAMETER);
pImage->pInterfaceIOCallbacks = VDGetInterfaceIOInt(pImage->pInterfaceIO);
AssertPtrReturn(pImage->pInterfaceIOCallbacks, VERR_INVALID_PARAMETER);
rc = vmdkCreateDescriptor(pImage, pImage->pDescData, pImage->cbDescAlloc,
&pImage->Descriptor);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new descriptor in '%s'"), pImage->pszFilename);
goto out;
}
if ( (uImageFlags & VD_IMAGE_FLAGS_FIXED)
&& (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK))
{
/* Raw disk image (includes raw partition). */
const PVBOXHDDRAW pRaw = (const PVBOXHDDRAW)pszComment;
/* As the comment is misused, zap it so that no garbage comment
* is set below. */
pszComment = NULL;
rc = vmdkCreateRawImage(pImage, pRaw, cbSize);
}
else
{
if (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* Stream optimized sparse image (monolithic). */
rc = vmdkCreateStreamImage(pImage, cbSize, uImageFlags,
pfnProgress, pvUser, uPercentStart,
uPercentSpan * 95 / 100);
}
else
{
/* Regular fixed or sparse image (monolithic or split). */
rc = vmdkCreateRegularImage(pImage, cbSize, uImageFlags,
pfnProgress, pvUser, uPercentStart,
uPercentSpan * 95 / 100);
}
}
if (RT_FAILURE(rc))
goto out;
if (RT_SUCCESS(rc) && pfnProgress)
pfnProgress(pvUser, uPercentStart + uPercentSpan * 98 / 100);
pImage->cbSize = cbSize;
for (unsigned i = 0; i < pImage->cExtents; i++)
{
PVMDKEXTENT pExtent = &pImage->pExtents[i];
rc = vmdkDescExtInsert(pImage, &pImage->Descriptor, pExtent->enmAccess,
pExtent->cNominalSectors, pExtent->enmType,
pExtent->pszBasename, pExtent->uSectorOffset);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not insert the extent list into descriptor in '%s'"), pImage->pszFilename);
goto out;
}
}
vmdkDescExtRemoveDummy(pImage, &pImage->Descriptor);
if ( pPCHSGeometry->cCylinders != 0
&& pPCHSGeometry->cHeads != 0
&& pPCHSGeometry->cSectors != 0)
{
rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry);
if (RT_FAILURE(rc))
goto out;
}
if ( pLCHSGeometry->cCylinders != 0
&& pLCHSGeometry->cHeads != 0
&& pLCHSGeometry->cSectors != 0)
{
rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry);
if (RT_FAILURE(rc))
goto out;
}
pImage->LCHSGeometry = *pLCHSGeometry;
pImage->PCHSGeometry = *pPCHSGeometry;
pImage->ImageUuid = *pUuid;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in new descriptor in '%s'"), pImage->pszFilename);
goto out;
}
RTUuidClear(&pImage->ParentUuid);
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_UUID, &pImage->ParentUuid);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in new descriptor in '%s'"), pImage->pszFilename);
goto out;
}
RTUuidClear(&pImage->ModificationUuid);
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_MODIFICATION_UUID,
&pImage->ModificationUuid);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing modification UUID in new descriptor in '%s'"), pImage->pszFilename);
goto out;
}
RTUuidClear(&pImage->ParentModificationUuid);
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_MODIFICATION_UUID,
&pImage->ParentModificationUuid);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent modification UUID in new descriptor in '%s'"), pImage->pszFilename);
goto out;
}
rc = vmdkAllocateGrainTableCache(pImage);
if (RT_FAILURE(rc))
goto out;
rc = vmdkSetImageComment(pImage, pszComment);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot set image comment in '%s'"), pImage->pszFilename);
goto out;
}
if (RT_SUCCESS(rc) && pfnProgress)
pfnProgress(pvUser, uPercentStart + uPercentSpan * 99 / 100);
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* streamOptimized is a bit special, we cannot trigger the flush
* until all data has been written. So we write the necessary
* information explicitly. */
pImage->pExtents[0].cDescriptorSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64( pImage->Descriptor.aLines[pImage->Descriptor.cLines]
- pImage->Descriptor.aLines[0], 512));
rc = vmdkWriteMetaSparseExtent(pImage, &pImage->pExtents[0], 0);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK header in '%s'"), pImage->pszFilename);
goto out;
}
rc = vmdkWriteDescriptor(pImage);
if (RT_FAILURE(rc))
{
rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK descriptor in '%s'"), pImage->pszFilename);
goto out;
}
}
else
rc = vmdkFlushImage(pImage);
out:
if (RT_SUCCESS(rc) && pfnProgress)
pfnProgress(pvUser, uPercentStart + uPercentSpan);
if (RT_FAILURE(rc))
vmdkFreeImage(pImage, rc != VERR_ALREADY_EXISTS);
return rc;
}
/**
* Internal: Update image comment.
*/
static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment)
{
char *pszCommentEncoded;
if (pszComment)
{
pszCommentEncoded = vmdkEncodeString(pszComment);
if (!pszCommentEncoded)
return VERR_NO_MEMORY;
}
else
pszCommentEncoded = NULL;
int rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor,
"ddb.comment", pszCommentEncoded);
if (pszComment)
RTStrFree(pszCommentEncoded);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image comment in descriptor in '%s'"), pImage->pszFilename);
return VINF_SUCCESS;
}
/**
* Internal. Clear the grain table buffer for real stream optimized writing.
*/
static void vmdkStreamClearGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
{
uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE;
for (uint32_t i = 0; i < cCacheLines; i++)
memset(&pImage->pGTCache->aGTCache[i].aGTData[0], '\0',
VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t));
}
/**
* Internal. Flush the grain table buffer for real stream optimized writing.
*/
static int vmdkStreamFlushGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint32_t uGDEntry)
{
int rc = VINF_SUCCESS;
uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE;
/* VMware does not write out completely empty grain tables in the case
* of streamOptimized images, which according to my interpretation of
* the VMDK 1.1 spec is bending the rules. Since they do it and we can
* handle it without problems do it the same way and save some bytes. */
bool fAllZero = true;
for (uint32_t i = 0; i < cCacheLines; i++)
{
/* Convert the grain table to little endian in place, as it will not
* be used at all after this function has been called. */
uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0];
for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++)
if (*pGTTmp)
{
fAllZero = false;
break;
}
if (!fAllZero)
break;
}
if (fAllZero)
return VINF_SUCCESS;
uint64_t uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
/* Align to sector, as the previous write could have been any size. */
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
/* Grain table marker. */
uint8_t aMarker[512];
PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0];
memset(pMarker, '\0', sizeof(aMarker));
pMarker->uSector = RT_H2LE_U64(VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)));
pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GT);
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
aMarker, sizeof(aMarker), NULL);
AssertRC(rc);
uFileOffset += 512;
if (!pExtent->pGD || pExtent->pGD[uGDEntry])
return VERR_INTERNAL_ERROR;
pExtent->pGD[uGDEntry] = VMDK_BYTE2SECTOR(uFileOffset);
for (uint32_t i = 0; i < cCacheLines; i++)
{
/* Convert the grain table to little endian in place, as it will not
* be used at all after this function has been called. */
uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0];
for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++)
*pGTTmp = RT_H2LE_U32(*pGTTmp);
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
&pImage->pGTCache->aGTCache[i].aGTData[0],
VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t),
NULL);
uFileOffset += VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t);
if (RT_FAILURE(rc))
break;
}
Assert(!(uFileOffset % 512));
pExtent->uAppendPosition = RT_ALIGN_64(uFileOffset, 512);
return rc;
}
/**
* Internal. Free all allocated space for representing an image, and optionally
* delete the image from disk.
*/
static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete)
{
int rc = VINF_SUCCESS;
/* Freeing a never allocated image (e.g. because the open failed) is
* not signalled as an error. After all nothing bad happens. */
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* Check if all extents are clean. */
for (unsigned i = 0; i < pImage->cExtents; i++)
{
Assert(!pImage->pExtents[i].fUncleanShutdown);
}
}
else
{
/* Mark all extents as clean. */
for (unsigned i = 0; i < pImage->cExtents; i++)
{
if ( ( pImage->pExtents[i].enmType == VMDKETYPE_HOSTED_SPARSE
#ifdef VBOX_WITH_VMDK_ESX
|| pImage->pExtents[i].enmType == VMDKETYPE_ESX_SPARSE
#endif /* VBOX_WITH_VMDK_ESX */
)
&& pImage->pExtents[i].fUncleanShutdown)
{
pImage->pExtents[i].fUncleanShutdown = false;
pImage->pExtents[i].fMetaDirty = true;
}
/* From now on it's not safe to append any more data. */
pImage->pExtents[i].uAppendPosition = 0;
}
}
}
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* No need to write any pending data if the file will be deleted
* or if the new file wasn't successfully created. */
if ( !fDelete && pImage->pExtents
&& pImage->pExtents[0].cGTEntries
&& pImage->pExtents[0].uAppendPosition)
{
PVMDKEXTENT pExtent = &pImage->pExtents[0];
uint32_t uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries;
rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry);
AssertRC(rc);
vmdkStreamClearGT(pImage, pExtent);
for (uint32_t i = uLastGDEntry + 1; i < pExtent->cGDEntries; i++)
{
rc = vmdkStreamFlushGT(pImage, pExtent, i);
AssertRC(rc);
}
uint64_t uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
/* From now on it's not safe to append any more data. */
pExtent->uAppendPosition = 0;
/* Grain directory marker. */
uint8_t aMarker[512];
PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0];
memset(pMarker, '\0', sizeof(aMarker));
pMarker->uSector = VMDK_BYTE2SECTOR(RT_ALIGN_64(RT_H2LE_U64(pExtent->cGDEntries * sizeof(uint32_t)), 512));
pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GD);
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
aMarker, sizeof(aMarker), NULL);
AssertRC(rc);
uFileOffset += 512;
/* Write grain directory in little endian style. The array will
* not be used after this, so convert in place. */
uint32_t *pGDTmp = pExtent->pGD;
for (uint32_t i = 0; i < pExtent->cGDEntries; i++, pGDTmp++)
*pGDTmp = RT_H2LE_U32(*pGDTmp);
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
pExtent->pGD,
pExtent->cGDEntries * sizeof(uint32_t),
NULL);
AssertRC(rc);
pExtent->uSectorGD = VMDK_BYTE2SECTOR(uFileOffset);
pExtent->uSectorRGD = VMDK_BYTE2SECTOR(uFileOffset);
uFileOffset = RT_ALIGN_64( uFileOffset
+ pExtent->cGDEntries * sizeof(uint32_t),
512);
/* Footer marker. */
memset(pMarker, '\0', sizeof(aMarker));
pMarker->uSector = VMDK_BYTE2SECTOR(512);
pMarker->uType = RT_H2LE_U32(VMDK_MARKER_FOOTER);
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
aMarker, sizeof(aMarker), NULL);
AssertRC(rc);
uFileOffset += 512;
rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset);
AssertRC(rc);
uFileOffset += 512;
/* End-of-stream marker. */
memset(pMarker, '\0', sizeof(aMarker));
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
aMarker, sizeof(aMarker), NULL);
AssertRC(rc);
}
}
else
vmdkFlushImage(pImage);
if (pImage->pExtents != NULL)
{
for (unsigned i = 0 ; i < pImage->cExtents; i++)
vmdkFreeExtentData(pImage, &pImage->pExtents[i], fDelete);
RTMemFree(pImage->pExtents);
pImage->pExtents = NULL;
}
pImage->cExtents = 0;
if (pImage->pFile != NULL)
vmdkFileClose(pImage, &pImage->pFile, fDelete);
vmdkFileCheckAllClose(pImage);
if (pImage->pGTCache)
{
RTMemFree(pImage->pGTCache);
pImage->pGTCache = NULL;
}
if (pImage->pDescData)
{
RTMemFree(pImage->pDescData);
pImage->pDescData = NULL;
}
}
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/**
* Internal. Flush image data (and metadata) to disk.
*/
static int vmdkFlushImage(PVMDKIMAGE pImage)
{
PVMDKEXTENT pExtent;
int rc = VINF_SUCCESS;
/* Update descriptor if changed. */
if (pImage->Descriptor.fDirty)
{
rc = vmdkWriteDescriptor(pImage);
if (RT_FAILURE(rc))
goto out;
}
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if (pExtent->pFile != NULL && pExtent->fMetaDirty)
{
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
if (!pExtent->fFooter)
{
rc = vmdkWriteMetaSparseExtent(pImage, pExtent, 0);
if (RT_FAILURE(rc))
goto out;
}
else
{
uint64_t uFileOffset = pExtent->uAppendPosition;
/* Simply skip writing anything if the streamOptimized
* image hasn't been just created. */
if (!uFileOffset)
break;
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
rc = vmdkWriteMetaSparseExtent(pImage, pExtent,
uFileOffset);
if (RT_FAILURE(rc))
goto out;
}
break;
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
/** @todo update the header. */
break;
#endif /* VBOX_WITH_VMDK_ESX */
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
/* Nothing to do. */
break;
case VMDKETYPE_ZERO:
default:
AssertMsgFailed(("extent with type %d marked as dirty\n",
pExtent->enmType));
break;
}
}
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
/** @todo implement proper path absolute check. */
if ( pExtent->pFile != NULL
&& !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
&& !(pExtent->pszBasename[0] == RTPATH_SLASH))
rc = vmdkFileFlush(pImage, pExtent->pFile);
break;
case VMDKETYPE_ZERO:
/* No need to do anything for this extent. */
break;
default:
AssertMsgFailed(("unknown extent type %d\n", pExtent->enmType));
break;
}
}
out:
return rc;
}
/**
* Internal. Find extent corresponding to the sector number in the disk.
*/
static int vmdkFindExtent(PVMDKIMAGE pImage, uint64_t offSector,
PVMDKEXTENT *ppExtent, uint64_t *puSectorInExtent)
{
PVMDKEXTENT pExtent = NULL;
int rc = VINF_SUCCESS;
for (unsigned i = 0; i < pImage->cExtents; i++)
{
if (offSector < pImage->pExtents[i].cNominalSectors)
{
pExtent = &pImage->pExtents[i];
*puSectorInExtent = offSector + pImage->pExtents[i].uSectorOffset;
break;
}
offSector -= pImage->pExtents[i].cNominalSectors;
}
if (pExtent)
*ppExtent = pExtent;
else
rc = VERR_IO_SECTOR_NOT_FOUND;
return rc;
}
/**
* Internal. Hash function for placing the grain table hash entries.
*/
static uint32_t vmdkGTCacheHash(PVMDKGTCACHE pCache, uint64_t uSector,
unsigned uExtent)
{
/** @todo this hash function is quite simple, maybe use a better one which
* scrambles the bits better. */
return (uSector + uExtent) % pCache->cEntries;
}
/**
* Internal. Get sector number in the extent file from the relative sector
* number in the extent.
*/
static int vmdkGetSector(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uSector, uint64_t *puExtentSector)
{
PVMDKGTCACHE pCache = pImage->pGTCache;
uint64_t uGDIndex, uGTSector, uGTBlock;
uint32_t uGTHash, uGTBlockIndex;
PVMDKGTCACHEENTRY pGTCacheEntry;
uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE];
int rc;
/* For newly created and readonly/sequentially opened streamOptimized
* images this must be a no-op, as the grain directory is not there. */
if ( ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
&& pExtent->uAppendPosition)
|| ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
&& pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY
&& pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
{
*puExtentSector = 0;
return VINF_SUCCESS;
}
uGDIndex = uSector / pExtent->cSectorsPerGDE;
if (uGDIndex >= pExtent->cGDEntries)
return VERR_OUT_OF_RANGE;
uGTSector = pExtent->pGD[uGDIndex];
if (!uGTSector)
{
/* There is no grain table referenced by this grain directory
* entry. So there is absolutely no data in this area. */
*puExtentSector = 0;
return VINF_SUCCESS;
}
uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE);
uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent);
pGTCacheEntry = &pCache->aGTCache[uGTHash];
if ( pGTCacheEntry->uExtent != pExtent->uExtent
|| pGTCacheEntry->uGTBlock != uGTBlock)
{
/* Cache miss, fetch data from disk. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot read grain table entry in '%s'"), pExtent->pszFullname);
pGTCacheEntry->uExtent = pExtent->uExtent;
pGTCacheEntry->uGTBlock = uGTBlock;
for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]);
}
uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE;
uint32_t uGrainSector = pGTCacheEntry->aGTData[uGTBlockIndex];
if (uGrainSector)
*puExtentSector = uGrainSector + uSector % pExtent->cSectorsPerGrain;
else
*puExtentSector = 0;
return VINF_SUCCESS;
}
/**
* Internal. Get sector number in the extent file from the relative sector
* number in the extent - version for async access.
*/
static int vmdkGetSectorAsync(PVMDKIMAGE pImage, PVDIOCTX pIoCtx,
PVMDKEXTENT pExtent, uint64_t uSector,
uint64_t *puExtentSector)
{
PVMDKGTCACHE pCache = pImage->pGTCache;
uint64_t uGDIndex, uGTSector, uGTBlock;
uint32_t uGTHash, uGTBlockIndex;
PVMDKGTCACHEENTRY pGTCacheEntry;
uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE];
int rc;
uGDIndex = uSector / pExtent->cSectorsPerGDE;
if (uGDIndex >= pExtent->cGDEntries)
return VERR_OUT_OF_RANGE;
uGTSector = pExtent->pGD[uGDIndex];
if (!uGTSector)
{
/* There is no grain table referenced by this grain directory
* entry. So there is absolutely no data in this area. */
*puExtentSector = 0;
return VINF_SUCCESS;
}
uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE);
uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent);
pGTCacheEntry = &pCache->aGTCache[uGTHash];
if ( pGTCacheEntry->uExtent != pExtent->uExtent
|| pGTCacheEntry->uGTBlock != uGTBlock)
{
/* Cache miss, fetch data from disk. */
PVDMETAXFER pMetaXfer;
rc = vmdkFileReadMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, &pMetaXfer, NULL, NULL);
if (RT_FAILURE(rc))
return rc;
/* We can release the metadata transfer immediately. */
vmdkFileMetaXferRelease(pImage, pMetaXfer);
pGTCacheEntry->uExtent = pExtent->uExtent;
pGTCacheEntry->uGTBlock = uGTBlock;
for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]);
}
uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE;
uint32_t uGrainSector = pGTCacheEntry->aGTData[uGTBlockIndex];
if (uGrainSector)
*puExtentSector = uGrainSector + uSector % pExtent->cSectorsPerGrain;
else
*puExtentSector = 0;
return VINF_SUCCESS;
}
/**
* Internal. Allocates a new grain table (if necessary), writes the grain
* and updates the grain table. The cache is also updated by this operation.
* This is separate from vmdkGetSector, because that should be as fast as
* possible. Most code from vmdkGetSector also appears here.
*/
static int vmdkAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uSector, const void *pvBuf,
uint64_t cbWrite)
{
PVMDKGTCACHE pCache = pImage->pGTCache;
uint64_t uGDIndex, uGTSector, uRGTSector, uGTBlock;
uint64_t uFileOffset;
uint32_t uGTHash, uGTBlockIndex;
PVMDKGTCACHEENTRY pGTCacheEntry;
uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE];
int rc;
uGDIndex = uSector / pExtent->cSectorsPerGDE;
if (uGDIndex >= pExtent->cGDEntries)
return VERR_OUT_OF_RANGE;
uGTSector = pExtent->pGD[uGDIndex];
if (pExtent->pRGD)
uRGTSector = pExtent->pRGD[uGDIndex];
else
uRGTSector = 0; /**< avoid compiler warning */
if (!uGTSector)
{
/* There is no grain table referenced by this grain directory
* entry. So there is absolutely no data in this area. Allocate
* a new grain table and put the reference to it in the GDs. */
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
Assert(!(uFileOffset % 512));
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
uGTSector = VMDK_BYTE2SECTOR(uFileOffset);
pExtent->uAppendPosition += pExtent->cGTEntries * sizeof(uint32_t);
/* Normally the grain table is preallocated for hosted sparse extents
* that support more than 32 bit sector numbers. So this shouldn't
* ever happen on a valid extent. */
if (uGTSector > UINT32_MAX)
return VERR_VD_VMDK_INVALID_HEADER;
/* Write grain table by writing the required number of grain table
* cache chunks. Avoids dynamic memory allocation, but is a bit
* slower. But as this is a pretty infrequently occurring case it
* should be acceptable. */
memset(aGTDataTmp, '\0', sizeof(aGTDataTmp));
for (unsigned i = 0;
i < pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE;
i++)
{
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + i * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain table allocation in '%s'"), pExtent->pszFullname);
}
pExtent->uAppendPosition = RT_ALIGN_64( pExtent->uAppendPosition
+ pExtent->cGTEntries * sizeof(uint32_t),
512);
if (pExtent->pRGD)
{
AssertReturn(!uRGTSector, VERR_VD_VMDK_INVALID_HEADER);
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
Assert(!(uFileOffset % 512));
uRGTSector = VMDK_BYTE2SECTOR(uFileOffset);
pExtent->uAppendPosition += pExtent->cGTEntries * sizeof(uint32_t);
/* Normally the redundant grain table is preallocated for hosted
* sparse extents that support more than 32 bit sector numbers. So
* this shouldn't ever happen on a valid extent. */
if (uRGTSector > UINT32_MAX)
return VERR_VD_VMDK_INVALID_HEADER;
/* Write backup grain table by writing the required number of grain
* table cache chunks. Avoids dynamic memory allocation, but is a
* bit slower. But as this is a pretty infrequently occurring case
* it should be acceptable. */
for (unsigned i = 0;
i < pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE;
i++)
{
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uRGTSector) + i * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain table allocation in '%s'"), pExtent->pszFullname);
}
pExtent->uAppendPosition = pExtent->uAppendPosition
+ pExtent->cGTEntries * sizeof(uint32_t);
}
/* Update the grain directory on disk (doing it before writing the
* grain table will result in a garbled extent if the operation is
* aborted for some reason. Otherwise the worst that can happen is
* some unused sectors in the extent. */
uint32_t uGTSectorLE = RT_H2LE_U64(uGTSector);
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorGD) + uGDIndex * sizeof(uGTSectorLE),
&uGTSectorLE, sizeof(uGTSectorLE), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain directory entry in '%s'"), pExtent->pszFullname);
if (pExtent->pRGD)
{
uint32_t uRGTSectorLE = RT_H2LE_U64(uRGTSector);
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + uGDIndex * sizeof(uRGTSectorLE),
&uRGTSectorLE, sizeof(uRGTSectorLE), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain directory entry in '%s'"), pExtent->pszFullname);
}
/* As the final step update the in-memory copy of the GDs. */
pExtent->pGD[uGDIndex] = uGTSector;
if (pExtent->pRGD)
pExtent->pRGD[uGDIndex] = uRGTSector;
}
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
Assert(!(uFileOffset % 512));
/* Write the data. Always a full grain, or we're in big trouble. */
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
return vmdkError(pImage, VERR_INTERNAL_ERROR, RT_SRC_POS, N_("VMDK: not enough data for a compressed data block in '%s'"), pExtent->pszFullname);
/* Invalidate cache, just in case some code incorrectly allows mixing
* of reads and writes. Normally shouldn't be needed. */
pExtent->uGrainSectorAbs = 0;
/* Write compressed data block and the markers. */
uint32_t cbGrain = 0;
rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset,
pvBuf, cbWrite, uSector, &cbGrain);
if (RT_FAILURE(rc))
{
AssertRC(rc);
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write allocated compressed data block in '%s'"), pExtent->pszFullname);
}
pExtent->uLastGrainAccess = uSector / pExtent->cSectorsPerGrain;
pExtent->uAppendPosition += cbGrain;
}
else
{
rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset,
pvBuf, cbWrite, NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write allocated data block in '%s'"), pExtent->pszFullname);
pExtent->uAppendPosition += cbWrite;
}
/* Update the grain table (and the cache). */
uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE);
uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent);
pGTCacheEntry = &pCache->aGTCache[uGTHash];
if ( pGTCacheEntry->uExtent != pExtent->uExtent
|| pGTCacheEntry->uGTBlock != uGTBlock)
{
/* Cache miss, fetch data from disk. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot read allocated grain table entry in '%s'"), pExtent->pszFullname);
pGTCacheEntry->uExtent = pExtent->uExtent;
pGTCacheEntry->uGTBlock = uGTBlock;
for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]);
}
else
{
/* Cache hit. Convert grain table block back to disk format, otherwise
* the code below will write garbage for all but the updated entry. */
for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
aGTDataTmp[i] = RT_H2LE_U32(pGTCacheEntry->aGTData[i]);
}
uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE;
aGTDataTmp[uGTBlockIndex] = RT_H2LE_U32(VMDK_BYTE2SECTOR(uFileOffset));
pGTCacheEntry->aGTData[uGTBlockIndex] = VMDK_BYTE2SECTOR(uFileOffset);
/* Update grain table on disk. */
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated grain table in '%s'"), pExtent->pszFullname);
if (pExtent->pRGD)
{
/* Update backup grain table on disk. */
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uRGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), NULL);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated backup grain table in '%s'"), pExtent->pszFullname);
}
#ifdef VBOX_WITH_VMDK_ESX
if (RT_SUCCESS(rc) && pExtent->enmType == VMDKETYPE_ESX_SPARSE)
{
pExtent->uFreeSector = uGTSector + VMDK_BYTE2SECTOR(cbWrite);
pExtent->fMetaDirty = true;
}
#endif /* VBOX_WITH_VMDK_ESX */
return rc;
}
/**
* Internal. Writes the grain and also if necessary the grain tables.
* Uses the grain table cache as a true grain table.
*/
static int vmdkStreamAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uSector, const void *pvBuf,
uint64_t cbWrite)
{
uint32_t uGrain;
uint32_t uGDEntry, uLastGDEntry;
uint32_t cbGrain = 0;
uint32_t uCacheLine, uCacheEntry;
const void *pData = pvBuf;
int rc;
/* Very strict requirements: always write at least one full grain, with
* proper alignment. Everything else would require reading of already
* written data, which we don't support for obvious reasons. The only
* exception is the last grain, and only if the image size specifies
* that only some portion holds data. In any case the write must be
* within the image limits, no "overshoot" allowed. */
if ( cbWrite == 0
|| ( cbWrite < VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)
&& pExtent->cNominalSectors - uSector >= pExtent->cSectorsPerGrain)
|| uSector % pExtent->cSectorsPerGrain
|| uSector + VMDK_BYTE2SECTOR(cbWrite) > pExtent->cNominalSectors)
return VERR_INVALID_PARAMETER;
/* Clip write range to at most the rest of the grain. */
cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSector % pExtent->cSectorsPerGrain));
/* Do not allow to go back. */
uGrain = uSector / pExtent->cSectorsPerGrain;
uCacheLine = uGrain % pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE;
uCacheEntry = uGrain % VMDK_GT_CACHELINE_SIZE;
uGDEntry = uGrain / pExtent->cGTEntries;
uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries;
if (uGrain < pExtent->uLastGrainAccess)
return VERR_VD_VMDK_INVALID_WRITE;
/* Zero byte write optimization. Since we don't tell VBoxHDD that we need
* to allocate something, we also need to detect the situation ourself. */
if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_HONOR_ZEROES)
&& ASMBitFirstSet((volatile void *)pvBuf, (uint32_t)cbWrite * 8) == -1)
return VINF_SUCCESS;
if (uGDEntry != uLastGDEntry)
{
rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry);
if (RT_FAILURE(rc))
return rc;
vmdkStreamClearGT(pImage, pExtent);
for (uint32_t i = uLastGDEntry + 1; i < uGDEntry; i++)
{
rc = vmdkStreamFlushGT(pImage, pExtent, i);
if (RT_FAILURE(rc))
return rc;
}
}
uint64_t uFileOffset;
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
/* Align to sector, as the previous write could have been any size. */
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
/* Paranoia check: extent type, grain table buffer presence and
* grain table buffer space. Also grain table entry must be clear. */
if ( pExtent->enmType != VMDKETYPE_HOSTED_SPARSE
|| !pImage->pGTCache
|| pExtent->cGTEntries > VMDK_GT_CACHE_SIZE * VMDK_GT_CACHELINE_SIZE
|| pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry])
return VERR_INTERNAL_ERROR;
/* Update grain table entry. */
pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry] = VMDK_BYTE2SECTOR(uFileOffset);
if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
{
memcpy(pExtent->pvGrain, pvBuf, cbWrite);
memset((char *)pExtent->pvGrain + cbWrite, '\0',
VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbWrite);
pData = pExtent->pvGrain;
}
rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset, pData,
VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain),
uSector, &cbGrain);
if (RT_FAILURE(rc))
{
pExtent->uGrainSectorAbs = 0;
AssertRC(rc);
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write compressed data block in '%s'"), pExtent->pszFullname);
}
pExtent->uLastGrainAccess = uGrain;
pExtent->uAppendPosition += cbGrain;
return rc;
}
/**
* Internal: Updates the grain table during a async grain allocation.
*/
static int vmdkAllocGrainAsyncGTUpdate(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
PVDIOCTX pIoCtx,
PVMDKGRAINALLOCASYNC pGrainAlloc)
{
int rc = VINF_SUCCESS;
PVMDKGTCACHE pCache = pImage->pGTCache;
uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE];
uint32_t uGTHash, uGTBlockIndex;
uint64_t uGTSector, uRGTSector, uGTBlock;
uint64_t uSector = pGrainAlloc->uSector;
PVMDKGTCACHEENTRY pGTCacheEntry;
LogFlowFunc(("pImage=%#p pExtent=%#p pCache=%#p pIoCtx=%#p pGrainAlloc=%#p\n",
pImage, pExtent, pCache, pIoCtx, pGrainAlloc));
uGTSector = pGrainAlloc->uGTSector;
uRGTSector = pGrainAlloc->uRGTSector;
LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector));
/* Update the grain table (and the cache). */
uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE);
uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent);
pGTCacheEntry = &pCache->aGTCache[uGTHash];
if ( pGTCacheEntry->uExtent != pExtent->uExtent
|| pGTCacheEntry->uGTBlock != uGTBlock)
{
/* Cache miss, fetch data from disk. */
LogFlow(("Cache miss, fetch data from disk\n"));
PVDMETAXFER pMetaXfer = NULL;
rc = vmdkFileReadMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), pIoCtx,
&pMetaXfer, vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
{
pGrainAlloc->cIoXfersPending++;
pGrainAlloc->fGTUpdateNeeded = true;
/* Leave early, we will be called again after the read completed. */
LogFlowFunc(("Metadata read in progress, leaving\n"));
return rc;
}
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot read allocated grain table entry in '%s'"), pExtent->pszFullname);
vmdkFileMetaXferRelease(pImage, pMetaXfer);
pGTCacheEntry->uExtent = pExtent->uExtent;
pGTCacheEntry->uGTBlock = uGTBlock;
for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]);
}
else
{
/* Cache hit. Convert grain table block back to disk format, otherwise
* the code below will write garbage for all but the updated entry. */
for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
aGTDataTmp[i] = RT_H2LE_U32(pGTCacheEntry->aGTData[i]);
}
pGrainAlloc->fGTUpdateNeeded = false;
uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE;
aGTDataTmp[uGTBlockIndex] = RT_H2LE_U32(VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset));
pGTCacheEntry->aGTData[uGTBlockIndex] = VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset);
/* Update grain table on disk. */
rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), pIoCtx,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated grain table in '%s'"), pExtent->pszFullname);
if (pExtent->pRGD)
{
/* Update backup grain table on disk. */
rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uRGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
aGTDataTmp, sizeof(aGTDataTmp), pIoCtx,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated backup grain table in '%s'"), pExtent->pszFullname);
}
#ifdef VBOX_WITH_VMDK_ESX
if (RT_SUCCESS(rc) && pExtent->enmType == VMDKETYPE_ESX_SPARSE)
{
pExtent->uFreeSector = uGTSector + VMDK_BYTE2SECTOR(cbWrite);
pExtent->fMetaDirty = true;
}
#endif /* VBOX_WITH_VMDK_ESX */
LogFlowFunc(("leaving rc=%Rrc\n", rc));
return rc;
}
/**
* Internal - complete the grain allocation by updating disk grain table if required.
*/
static int vmdkAllocGrainAsyncComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
{
int rc = VINF_SUCCESS;
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
PVMDKGRAINALLOCASYNC pGrainAlloc = (PVMDKGRAINALLOCASYNC)pvUser;
PVMDKEXTENT pExtent = pGrainAlloc->pExtent;
LogFlowFunc(("pBackendData=%#p pIoCtx=%#p pvUser=%#p rcReq=%Rrc\n",
pBackendData, pIoCtx, pvUser, rcReq));
pGrainAlloc->cIoXfersPending--;
if (!pGrainAlloc->cIoXfersPending && pGrainAlloc->fGTUpdateNeeded)
rc = vmdkAllocGrainAsyncGTUpdate(pImage, pGrainAlloc->pExtent,
pIoCtx, pGrainAlloc);
if (!pGrainAlloc->cIoXfersPending)
{
/* Grain allocation completed. */
RTMemFree(pGrainAlloc);
}
LogFlowFunc(("Leaving rc=%Rrc\n", rc));
return rc;
}
/**
* Internal. Allocates a new grain table (if necessary) - async version.
*/
static int vmdkAllocGrainAsync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
PVDIOCTX pIoCtx, uint64_t uSector,
uint64_t cbWrite)
{
PVMDKGTCACHE pCache = pImage->pGTCache;
uint64_t uGDIndex, uGTSector, uRGTSector;
uint64_t uFileOffset;
PVMDKGRAINALLOCASYNC pGrainAlloc = NULL;
int rc;
LogFlowFunc(("pCache=%#p pExtent=%#p pIoCtx=%#p uSector=%llu cbWrite=%llu\n",
pCache, pExtent, pIoCtx, uSector, cbWrite));
AssertReturn(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED), VERR_NOT_SUPPORTED);
pGrainAlloc = (PVMDKGRAINALLOCASYNC)RTMemAllocZ(sizeof(VMDKGRAINALLOCASYNC));
if (!pGrainAlloc)
return VERR_NO_MEMORY;
pGrainAlloc->pExtent = pExtent;
pGrainAlloc->uSector = uSector;
uGDIndex = uSector / pExtent->cSectorsPerGDE;
if (uGDIndex >= pExtent->cGDEntries)
{
RTMemFree(pGrainAlloc);
return VERR_OUT_OF_RANGE;
}
uGTSector = pExtent->pGD[uGDIndex];
if (pExtent->pRGD)
uRGTSector = pExtent->pRGD[uGDIndex];
else
uRGTSector = 0; /**< avoid compiler warning */
if (!uGTSector)
{
LogFlow(("Allocating new grain table\n"));
/* There is no grain table referenced by this grain directory
* entry. So there is absolutely no data in this area. Allocate
* a new grain table and put the reference to it in the GDs. */
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
Assert(!(uFileOffset % 512));
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
uGTSector = VMDK_BYTE2SECTOR(uFileOffset);
/* Normally the grain table is preallocated for hosted sparse extents
* that support more than 32 bit sector numbers. So this shouldn't
* ever happen on a valid extent. */
if (uGTSector > UINT32_MAX)
return VERR_VD_VMDK_INVALID_HEADER;
/* Write grain table by writing the required number of grain table
* cache chunks. Allocate memory dynamically here or we flood the
* metadata cache with very small entries. */
size_t cbGTDataTmp = pExtent->cGTEntries * sizeof(uint32_t);
uint32_t *paGTDataTmp = (uint32_t *)RTMemTmpAllocZ(cbGTDataTmp);
if (!paGTDataTmp)
return VERR_NO_MEMORY;
memset(paGTDataTmp, '\0', cbGTDataTmp);
rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGTSector),
paGTDataTmp, cbGTDataTmp, pIoCtx,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
{
RTMemTmpFree(paGTDataTmp);
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain table allocation in '%s'"), pExtent->pszFullname);
}
pExtent->uAppendPosition = RT_ALIGN_64( pExtent->uAppendPosition
+ cbGTDataTmp, 512);
if (pExtent->pRGD)
{
AssertReturn(!uRGTSector, VERR_VD_VMDK_INVALID_HEADER);
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
Assert(!(uFileOffset % 512));
uRGTSector = VMDK_BYTE2SECTOR(uFileOffset);
/* Normally the redundant grain table is preallocated for hosted
* sparse extents that support more than 32 bit sector numbers. So
* this shouldn't ever happen on a valid extent. */
if (uRGTSector > UINT32_MAX)
{
RTMemTmpFree(paGTDataTmp);
return VERR_VD_VMDK_INVALID_HEADER;
}
/* Write grain table by writing the required number of grain table
* cache chunks. Allocate memory dynamically here or we flood the
* metadata cache with very small entries. */
rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uRGTSector),
paGTDataTmp, cbGTDataTmp, pIoCtx,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
{
RTMemTmpFree(paGTDataTmp);
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain table allocation in '%s'"), pExtent->pszFullname);
}
pExtent->uAppendPosition = pExtent->uAppendPosition + cbGTDataTmp;
}
RTMemTmpFree(paGTDataTmp);
/* Update the grain directory on disk (doing it before writing the
* grain table will result in a garbled extent if the operation is
* aborted for some reason. Otherwise the worst that can happen is
* some unused sectors in the extent. */
uint32_t uGTSectorLE = RT_H2LE_U64(uGTSector);
rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorGD) + uGDIndex * sizeof(uGTSectorLE),
&uGTSectorLE, sizeof(uGTSectorLE), pIoCtx,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain directory entry in '%s'"), pExtent->pszFullname);
if (pExtent->pRGD)
{
uint32_t uRGTSectorLE = RT_H2LE_U64(uRGTSector);
rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + uGDIndex * sizeof(uGTSectorLE),
&uRGTSectorLE, sizeof(uRGTSectorLE), pIoCtx,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain directory entry in '%s'"), pExtent->pszFullname);
}
/* As the final step update the in-memory copy of the GDs. */
pExtent->pGD[uGDIndex] = uGTSector;
if (pExtent->pRGD)
pExtent->pRGD[uGDIndex] = uRGTSector;
}
LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector));
pGrainAlloc->uGTSector = uGTSector;
pGrainAlloc->uRGTSector = uRGTSector;
uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
return VERR_INTERNAL_ERROR;
Assert(!(uFileOffset % 512));
pGrainAlloc->uGrainOffset = uFileOffset;
/* Write the data. Always a full grain, or we're in big trouble. */
rc = vmdkFileWriteUserAsync(pImage, pExtent->pFile,
uFileOffset, pIoCtx, cbWrite,
vmdkAllocGrainAsyncComplete, pGrainAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
pGrainAlloc->cIoXfersPending++;
else if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write allocated data block in '%s'"), pExtent->pszFullname);
pExtent->uAppendPosition += cbWrite;
rc = vmdkAllocGrainAsyncGTUpdate(pImage, pExtent, pIoCtx, pGrainAlloc);
if (!pGrainAlloc->cIoXfersPending)
{
/* Grain allocation completed. */
RTMemFree(pGrainAlloc);
}
LogFlowFunc(("leaving rc=%Rrc\n", rc));
return rc;
}
/**
* Internal. Reads the contents by sequentially going over the compressed
* grains (hoping that they are in sequence).
*/
static int vmdkStreamReadSequential(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
uint64_t uSector, void *pvBuf,
uint64_t cbRead)
{
int rc;
/* Do not allow to go back. */
uint32_t uGrain = uSector / pExtent->cSectorsPerGrain;
if (uGrain < pExtent->uLastGrainAccess)
return VERR_VD_VMDK_INVALID_STATE;
pExtent->uLastGrainAccess = uGrain;
/* After a previous error do not attempt to recover, as it would need
* seeking (in the general case backwards which is forbidden). */
if (!pExtent->uGrainSectorAbs)
return VERR_VD_VMDK_INVALID_STATE;
/* Check if we need to read something from the image or if what we have
* in the buffer is good to fulfill the request. */
if (!pExtent->cbGrainStreamRead || uGrain > pExtent->uGrain)
{
uint32_t uGrainSectorAbs = pExtent->uGrainSectorAbs
+ VMDK_BYTE2SECTOR(pExtent->cbGrainStreamRead);
/* Get the marker from the next data block - and skip everything which
* is not a compressed grain. If it's a compressed grain which is for
* the requested sector (or after), read it. */
VMDKMARKER Marker;
do
{
RT_ZERO(Marker);
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGrainSectorAbs),
&Marker, RT_OFFSETOF(VMDKMARKER, uType),
NULL);
if (RT_FAILURE(rc))
return rc;
Marker.uSector = RT_LE2H_U64(Marker.uSector);
Marker.cbSize = RT_LE2H_U32(Marker.cbSize);
if (Marker.cbSize == 0)
{
/* A marker for something else than a compressed grain. */
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGrainSectorAbs)
+ RT_OFFSETOF(VMDKMARKER, uType),
&Marker.uType, sizeof(Marker.uType),
NULL);
if (RT_FAILURE(rc))
return rc;
Marker.uType = RT_LE2H_U32(Marker.uType);
switch (Marker.uType)
{
case VMDK_MARKER_EOS:
uGrainSectorAbs++;
/* Read (or mostly skip) to the end of file. Uses the
* Marker (LBA sector) as it is unused anyway. This
* makes sure that really everything is read in the
* success case. If this read fails it means the image
* is truncated, but this is harmless so ignore. */
vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uGrainSectorAbs)
+ 511,
&Marker.uSector, 1, NULL);
break;
case VMDK_MARKER_GT:
uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t));
break;
case VMDK_MARKER_GD:
uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(RT_ALIGN(pExtent->cGDEntries * sizeof(uint32_t), 512));
break;
case VMDK_MARKER_FOOTER:
uGrainSectorAbs += 2;
break;
default:
AssertMsgFailed(("VMDK: corrupted marker, type=%#x\n", Marker.uType));
pExtent->uGrainSectorAbs = 0;
return VERR_VD_VMDK_INVALID_STATE;
}
pExtent->cbGrainStreamRead = 0;
}
else
{
/* A compressed grain marker. If it is at/after what we're
* interested in read and decompress data. */
if (uSector > Marker.uSector + pExtent->cSectorsPerGrain)
{
uGrainSectorAbs += VMDK_BYTE2SECTOR(RT_ALIGN(Marker.cbSize + RT_OFFSETOF(VMDKMARKER, uType), 512));
continue;
}
uint64_t uLBA = 0;
uint32_t cbGrainStreamRead = 0;
rc = vmdkFileInflateSync(pImage, pExtent,
VMDK_SECTOR2BYTE(uGrainSectorAbs),
pExtent->pvGrain,
VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain),
&Marker, &uLBA, &cbGrainStreamRead);
if (RT_FAILURE(rc))
{
pExtent->uGrainSectorAbs = 0;
return rc;
}
if ( pExtent->uGrain
&& uLBA / pExtent->cSectorsPerGrain <= pExtent->uGrain)
{
pExtent->uGrainSectorAbs = 0;
return VERR_VD_VMDK_INVALID_STATE;
}
pExtent->uGrain = uLBA / pExtent->cSectorsPerGrain;
pExtent->cbGrainStreamRead = cbGrainStreamRead;
break;
}
} while (Marker.uType != VMDK_MARKER_EOS);
pExtent->uGrainSectorAbs = uGrainSectorAbs;
if (!pExtent->cbGrainStreamRead && Marker.uType == VMDK_MARKER_EOS)
{
pExtent->uGrain = UINT32_MAX;
/* Must set a non-zero value for pExtent->cbGrainStreamRead or
* the next read would try to get more data, and we're at EOF. */
pExtent->cbGrainStreamRead = 1;
}
}
if (pExtent->uGrain > uSector / pExtent->cSectorsPerGrain)
{
/* The next data block we have is not for this area, so just return
* that there is no data. */
return VERR_VD_BLOCK_FREE;
}
uint32_t uSectorInGrain = uSector % pExtent->cSectorsPerGrain;
memcpy(pvBuf,
(uint8_t *)pExtent->pvGrain + VMDK_SECTOR2BYTE(uSectorInGrain),
cbRead);
return VINF_SUCCESS;
}
/**
* Replaces a fragment of a string with the specified string.
*
* @returns Pointer to the allocated UTF-8 string.
* @param pszWhere UTF-8 string to search in.
* @param pszWhat UTF-8 string to search for.
* @param pszByWhat UTF-8 string to replace the found string with.
*/
static char *vmdkStrReplace(const char *pszWhere, const char *pszWhat,
const char *pszByWhat)
{
AssertPtr(pszWhere);
AssertPtr(pszWhat);
AssertPtr(pszByWhat);
const char *pszFoundStr = strstr(pszWhere, pszWhat);
if (!pszFoundStr)
return NULL;
size_t cFinal = strlen(pszWhere) + 1 + strlen(pszByWhat) - strlen(pszWhat);
char *pszNewStr = (char *)RTMemAlloc(cFinal);
if (pszNewStr)
{
char *pszTmp = pszNewStr;
memcpy(pszTmp, pszWhere, pszFoundStr - pszWhere);
pszTmp += pszFoundStr - pszWhere;
memcpy(pszTmp, pszByWhat, strlen(pszByWhat));
pszTmp += strlen(pszByWhat);
strcpy(pszTmp, pszFoundStr + strlen(pszWhat));
}
return pszNewStr;
}
/** @copydoc VBOXHDDBACKEND::pfnCheckIfValid */
static int vmdkCheckIfValid(const char *pszFilename, PVDINTERFACE pVDIfsDisk,
PVDINTERFACE pVDIfsImage, VDTYPE *penmType)
{
LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p penmType=%#p\n",
pszFilename, pVDIfsDisk, pVDIfsImage, penmType));
int rc = VINF_SUCCESS;
PVMDKIMAGE pImage;
if ( !pszFilename
|| !*pszFilename
|| strchr(pszFilename, '"'))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
pImage = (PVMDKIMAGE)RTMemAllocZ(sizeof(VMDKIMAGE));
if (!pImage)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->pszFilename = pszFilename;
pImage->pFile = NULL;
pImage->pExtents = NULL;
pImage->pFiles = NULL;
pImage->pGTCache = NULL;
pImage->pDescData = NULL;
pImage->pVDIfsDisk = pVDIfsDisk;
pImage->pVDIfsImage = pVDIfsImage;
/** @todo speed up this test open (VD_OPEN_FLAGS_INFO) by skipping as
* much as possible in vmdkOpenImage. */
rc = vmdkOpenImage(pImage, VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_READONLY);
vmdkFreeImage(pImage, false);
RTMemFree(pImage);
if (RT_SUCCESS(rc))
*penmType = VDTYPE_HDD;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnOpen */
static int vmdkOpen(const char *pszFilename, unsigned uOpenFlags,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
VDTYPE enmType, void **ppBackendData)
{
LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p ppBackendData=%#p\n", pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, ppBackendData));
int rc;
PVMDKIMAGE pImage;
/* Check open flags. All valid flags are supported. */
if (uOpenFlags & ~VD_OPEN_FLAGS_MASK)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Check remaining arguments. */
if ( !VALID_PTR(pszFilename)
|| !*pszFilename
|| strchr(pszFilename, '"'))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
pImage = (PVMDKIMAGE)RTMemAllocZ(sizeof(VMDKIMAGE));
if (!pImage)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->pszFilename = pszFilename;
pImage->pFile = NULL;
pImage->pExtents = NULL;
pImage->pFiles = NULL;
pImage->pGTCache = NULL;
pImage->pDescData = NULL;
pImage->pVDIfsDisk = pVDIfsDisk;
pImage->pVDIfsImage = pVDIfsImage;
rc = vmdkOpenImage(pImage, uOpenFlags);
if (RT_SUCCESS(rc))
*ppBackendData = pImage;
out:
LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnCreate */
static int vmdkCreate(const char *pszFilename, uint64_t cbSize,
unsigned uImageFlags, const char *pszComment,
PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
PCRTUUID pUuid, unsigned uOpenFlags,
unsigned uPercentStart, unsigned uPercentSpan,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
PVDINTERFACE pVDIfsOperation, void **ppBackendData)
{
LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p ppBackendData=%#p\n", pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, ppBackendData));
int rc;
PVMDKIMAGE pImage;
PFNVDPROGRESS pfnProgress = NULL;
void *pvUser = NULL;
PVDINTERFACE pIfProgress = VDInterfaceGet(pVDIfsOperation,
VDINTERFACETYPE_PROGRESS);
PVDINTERFACEPROGRESS pCbProgress = NULL;
if (pIfProgress)
{
pCbProgress = VDGetInterfaceProgress(pIfProgress);
pfnProgress = pCbProgress->pfnProgress;
pvUser = pIfProgress->pvUser;
}
/* Check open flags. All valid flags are supported. */
if (uOpenFlags & ~VD_OPEN_FLAGS_MASK)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Check size. Maximum 2TB-64K for sparse images, otherwise unlimited. */
if ( !cbSize
|| (!(uImageFlags & VD_IMAGE_FLAGS_FIXED) && cbSize >= _1T * 2 - _64K))
{
rc = VERR_VD_INVALID_SIZE;
goto out;
}
/* Check remaining arguments. */
if ( !VALID_PTR(pszFilename)
|| !*pszFilename
|| strchr(pszFilename, '"')
|| !VALID_PTR(pPCHSGeometry)
|| !VALID_PTR(pLCHSGeometry)
#ifndef VBOX_WITH_VMDK_ESX
|| ( uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX
&& !(uImageFlags & VD_IMAGE_FLAGS_FIXED))
#endif
|| ( (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
&& (uImageFlags & ~(VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED | VD_IMAGE_FLAGS_DIFF))))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
pImage = (PVMDKIMAGE)RTMemAllocZ(sizeof(VMDKIMAGE));
if (!pImage)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->pszFilename = pszFilename;
pImage->pFile = NULL;
pImage->pExtents = NULL;
pImage->pFiles = NULL;
pImage->pGTCache = NULL;
pImage->pDescData = NULL;
pImage->pVDIfsDisk = pVDIfsDisk;
pImage->pVDIfsImage = pVDIfsImage;
/* Descriptors for split images can be pretty large, especially if the
* filename is long. So prepare for the worst, and allocate quite some
* memory for the descriptor in this case. */
if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
pImage->cbDescAlloc = VMDK_SECTOR2BYTE(200);
else
pImage->cbDescAlloc = VMDK_SECTOR2BYTE(20);
pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc);
if (!pImage->pDescData)
{
RTMemFree(pImage);
rc = VERR_NO_MEMORY;
goto out;
}
rc = vmdkCreateImage(pImage, cbSize, uImageFlags, pszComment,
pPCHSGeometry, pLCHSGeometry, pUuid,
pfnProgress, pvUser, uPercentStart, uPercentSpan);
if (RT_SUCCESS(rc))
{
/* So far the image is opened in read/write mode. Make sure the
* image is opened in read-only mode if the caller requested that. */
if (uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
vmdkFreeImage(pImage, false);
rc = vmdkOpenImage(pImage, uOpenFlags);
if (RT_FAILURE(rc))
goto out;
}
*ppBackendData = pImage;
}
else
{
RTMemFree(pImage->pDescData);
RTMemFree(pImage);
}
out:
LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnRename */
static int vmdkRename(void *pBackendData, const char *pszFilename)
{
LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc = VINF_SUCCESS;
char **apszOldName = NULL;
char **apszNewName = NULL;
char **apszNewLines = NULL;
char *pszOldDescName = NULL;
bool fImageFreed = false;
bool fEmbeddedDesc = false;
unsigned cExtents = 0;
char *pszNewBaseName = NULL;
char *pszOldBaseName = NULL;
char *pszNewFullName = NULL;
char *pszOldFullName = NULL;
const char *pszOldImageName;
unsigned i, line;
VMDKDESCRIPTOR DescriptorCopy;
VMDKEXTENT ExtentCopy;
memset(&DescriptorCopy, 0, sizeof(DescriptorCopy));
/* Check arguments. */
if ( !pImage
|| (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)
|| !VALID_PTR(pszFilename)
|| !*pszFilename)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
cExtents = pImage->cExtents;
/*
* Allocate an array to store both old and new names of renamed files
* in case we have to roll back the changes. Arrays are initialized
* with zeros. We actually save stuff when and if we change it.
*/
apszOldName = (char **)RTMemTmpAllocZ((cExtents + 1) * sizeof(char*));
apszNewName = (char **)RTMemTmpAllocZ((cExtents + 1) * sizeof(char*));
apszNewLines = (char **)RTMemTmpAllocZ((cExtents) * sizeof(char*));
if (!apszOldName || !apszNewName || !apszNewLines)
{
rc = VERR_NO_MEMORY;
goto out;
}
/* Save the descriptor size and position. */
if (pImage->pDescData)
{
/* Separate descriptor file. */
fEmbeddedDesc = false;
}
else
{
/* Embedded descriptor file. */
ExtentCopy = pImage->pExtents[0];
fEmbeddedDesc = true;
}
/* Save the descriptor content. */
DescriptorCopy.cLines = pImage->Descriptor.cLines;
for (i = 0; i < DescriptorCopy.cLines; i++)
{
DescriptorCopy.aLines[i] = RTStrDup(pImage->Descriptor.aLines[i]);
if (!DescriptorCopy.aLines[i])
{
rc = VERR_NO_MEMORY;
goto out;
}
}
/* Prepare both old and new base names used for string replacement. */
pszNewBaseName = RTStrDup(RTPathFilename(pszFilename));
RTPathStripExt(pszNewBaseName);
pszOldBaseName = RTStrDup(RTPathFilename(pImage->pszFilename));
RTPathStripExt(pszOldBaseName);
/* Prepare both old and new full names used for string replacement. */
pszNewFullName = RTStrDup(pszFilename);
RTPathStripExt(pszNewFullName);
pszOldFullName = RTStrDup(pImage->pszFilename);
RTPathStripExt(pszOldFullName);
/* --- Up to this point we have not done any damage yet. --- */
/* Save the old name for easy access to the old descriptor file. */
pszOldDescName = RTStrDup(pImage->pszFilename);
/* Save old image name. */
pszOldImageName = pImage->pszFilename;
/* Update the descriptor with modified extent names. */
for (i = 0, line = pImage->Descriptor.uFirstExtent;
i < cExtents;
i++, line = pImage->Descriptor.aNextLines[line])
{
/* Assume that vmdkStrReplace will fail. */
rc = VERR_NO_MEMORY;
/* Update the descriptor. */
apszNewLines[i] = vmdkStrReplace(pImage->Descriptor.aLines[line],
pszOldBaseName, pszNewBaseName);
if (!apszNewLines[i])
goto rollback;
pImage->Descriptor.aLines[line] = apszNewLines[i];
}
/* Make sure the descriptor gets written back. */
pImage->Descriptor.fDirty = true;
/* Flush the descriptor now, in case it is embedded. */
vmdkFlushImage(pImage);
/* Close and rename/move extents. */
for (i = 0; i < cExtents; i++)
{
PVMDKEXTENT pExtent = &pImage->pExtents[i];
/* Compose new name for the extent. */
apszNewName[i] = vmdkStrReplace(pExtent->pszFullname,
pszOldFullName, pszNewFullName);
if (!apszNewName[i])
goto rollback;
/* Close the extent file. */
vmdkFileClose(pImage, &pExtent->pFile, false);
/* Rename the extent file. */
rc = vmdkFileMove(pImage, pExtent->pszFullname, apszNewName[i], 0);
if (RT_FAILURE(rc))
goto rollback;
/* Remember the old name. */
apszOldName[i] = RTStrDup(pExtent->pszFullname);
}
/* Release all old stuff. */
vmdkFreeImage(pImage, false);
fImageFreed = true;
/* Last elements of new/old name arrays are intended for
* storing descriptor's names.
*/
apszNewName[cExtents] = RTStrDup(pszFilename);
/* Rename the descriptor file if it's separate. */
if (!fEmbeddedDesc)
{
rc = vmdkFileMove(pImage, pImage->pszFilename, apszNewName[cExtents], 0);
if (RT_FAILURE(rc))
goto rollback;
/* Save old name only if we may need to change it back. */
apszOldName[cExtents] = RTStrDup(pszFilename);
}
/* Update pImage with the new information. */
pImage->pszFilename = pszFilename;
/* Open the new image. */
rc = vmdkOpenImage(pImage, pImage->uOpenFlags);
if (RT_SUCCESS(rc))
goto out;
rollback:
/* Roll back all changes in case of failure. */
if (RT_FAILURE(rc))
{
int rrc;
if (!fImageFreed)
{
/*
* Some extents may have been closed, close the rest. We will
* re-open the whole thing later.
*/
vmdkFreeImage(pImage, false);
}
/* Rename files back. */
for (i = 0; i <= cExtents; i++)
{
if (apszOldName[i])
{
rrc = vmdkFileMove(pImage, apszNewName[i], apszOldName[i], 0);
AssertRC(rrc);
}
}
/* Restore the old descriptor. */
PVMDKFILE pFile;
rrc = vmdkFileOpen(pImage, &pFile, pszOldDescName,
VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_NORMAL,
false /* fCreate */),
false /* fAsyncIO */);
AssertRC(rrc);
if (fEmbeddedDesc)
{
ExtentCopy.pFile = pFile;
pImage->pExtents = &ExtentCopy;
}
else
{
/* Shouldn't be null for separate descriptor.
* There will be no access to the actual content.
*/
pImage->pDescData = pszOldDescName;
pImage->pFile = pFile;
}
pImage->Descriptor = DescriptorCopy;
vmdkWriteDescriptor(pImage);
vmdkFileClose(pImage, &pFile, false);
/* Get rid of the stuff we implanted. */
pImage->pExtents = NULL;
pImage->pFile = NULL;
pImage->pDescData = NULL;
/* Re-open the image back. */
pImage->pszFilename = pszOldImageName;
rrc = vmdkOpenImage(pImage, pImage->uOpenFlags);
AssertRC(rrc);
}
out:
for (i = 0; i < DescriptorCopy.cLines; i++)
if (DescriptorCopy.aLines[i])
RTStrFree(DescriptorCopy.aLines[i]);
if (apszOldName)
{
for (i = 0; i <= cExtents; i++)
if (apszOldName[i])
RTStrFree(apszOldName[i]);
RTMemTmpFree(apszOldName);
}
if (apszNewName)
{
for (i = 0; i <= cExtents; i++)
if (apszNewName[i])
RTStrFree(apszNewName[i]);
RTMemTmpFree(apszNewName);
}
if (apszNewLines)
{
for (i = 0; i < cExtents; i++)
if (apszNewLines[i])
RTStrFree(apszNewLines[i]);
RTMemTmpFree(apszNewLines);
}
if (pszOldDescName)
RTStrFree(pszOldDescName);
if (pszOldBaseName)
RTStrFree(pszOldBaseName);
if (pszNewBaseName)
RTStrFree(pszNewBaseName);
if (pszOldFullName)
RTStrFree(pszOldFullName);
if (pszNewFullName)
RTStrFree(pszNewFullName);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnClose */
static int vmdkClose(void *pBackendData, bool fDelete)
{
LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
rc = vmdkFreeImage(pImage, fDelete);
RTMemFree(pImage);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnRead */
static int vmdkRead(void *pBackendData, uint64_t uOffset, void *pvBuf,
size_t cbToRead, size_t *pcbActuallyRead)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToRead=%zu pcbActuallyRead=%#p\n", pBackendData, uOffset, pvBuf, cbToRead, pcbActuallyRead));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
PVMDKEXTENT pExtent;
uint64_t uSectorExtentRel;
uint64_t uSectorExtentAbs;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToRead % 512 == 0);
if ( uOffset + cbToRead > pImage->cbSize
|| cbToRead == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset),
&pExtent, &uSectorExtentRel);
if (RT_FAILURE(rc))
goto out;
/* Check access permissions as defined in the extent descriptor. */
if (pExtent->enmAccess == VMDKACCESS_NOACCESS)
{
rc = VERR_VD_VMDK_INVALID_STATE;
goto out;
}
/* Clip read range to remain in this extent. */
cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
/* Handle the read according to the current extent type. */
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
rc = vmdkGetSector(pImage, pExtent, uSectorExtentRel,
&uSectorExtentAbs);
if (RT_FAILURE(rc))
goto out;
/* Clip read range to at most the rest of the grain. */
cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain));
Assert(!(cbToRead % 512));
if (uSectorExtentAbs == 0)
{
if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
|| !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
rc = VERR_VD_BLOCK_FREE;
else
rc = vmdkStreamReadSequential(pImage, pExtent,
uSectorExtentRel,
pvBuf, cbToRead);
}
else
{
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
uint32_t uSectorInGrain = uSectorExtentRel % pExtent->cSectorsPerGrain;
uSectorExtentAbs -= uSectorInGrain;
uint64_t uLBA;
if (pExtent->uGrainSectorAbs != uSectorExtentAbs)
{
rc = vmdkFileInflateSync(pImage, pExtent,
VMDK_SECTOR2BYTE(uSectorExtentAbs),
pExtent->pvGrain,
VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain),
NULL, &uLBA, NULL);
if (RT_FAILURE(rc))
{
pExtent->uGrainSectorAbs = 0;
AssertRC(rc);
goto out;
}
pExtent->uGrainSectorAbs = uSectorExtentAbs;
pExtent->uGrain = uSectorExtentRel / pExtent->cSectorsPerGrain;
Assert(uLBA == uSectorExtentRel);
}
memcpy(pvBuf, (uint8_t *)pExtent->pvGrain + VMDK_SECTOR2BYTE(uSectorInGrain), cbToRead);
}
else
{
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentAbs),
pvBuf, cbToRead, NULL);
}
}
break;
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
rc = vmdkFileReadSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentRel),
pvBuf, cbToRead, NULL);
break;
case VMDKETYPE_ZERO:
memset(pvBuf, '\0', cbToRead);
break;
}
if (pcbActuallyRead)
*pcbActuallyRead = cbToRead;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnWrite */
static int vmdkWrite(void *pBackendData, uint64_t uOffset, const void *pvBuf,
size_t cbToWrite, size_t *pcbWriteProcess,
size_t *pcbPreRead, size_t *pcbPostRead, unsigned fWrite)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n", pBackendData, uOffset, pvBuf, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
PVMDKEXTENT pExtent;
uint64_t uSectorExtentRel;
uint64_t uSectorExtentAbs;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToWrite % 512 == 0);
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if (cbToWrite == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* No size check here, will do that later when the extent is located.
* There are sparse images out there which according to the spec are
* invalid, because the total size is not a multiple of the grain size.
* Also for sparse images which are stitched together in odd ways (not at
* grain boundaries, and with the nominal size not being a multiple of the
* grain size), this would prevent writing to the last grain. */
rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset),
&pExtent, &uSectorExtentRel);
if (RT_FAILURE(rc))
goto out;
/* Check access permissions as defined in the extent descriptor. */
if ( pExtent->enmAccess != VMDKACCESS_READWRITE
&& ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
&& !pImage->pExtents[0].uAppendPosition
&& pExtent->enmAccess != VMDKACCESS_READONLY))
{
rc = VERR_VD_VMDK_INVALID_STATE;
goto out;
}
/* Handle the write according to the current extent type. */
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
rc = vmdkGetSector(pImage, pExtent, uSectorExtentRel,
&uSectorExtentAbs);
if (RT_FAILURE(rc))
goto out;
/* Clip write range to at most the rest of the grain. */
cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain));
if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
&& uSectorExtentRel < (uint64_t)pExtent->uLastGrainAccess * pExtent->cSectorsPerGrain)
{
rc = VERR_VD_VMDK_INVALID_WRITE;
goto out;
}
if (uSectorExtentAbs == 0)
{
if (!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
if (cbToWrite == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
{
/* Full block write to a previously unallocated block.
* Check if the caller wants feedback. */
if (!(fWrite & VD_WRITE_NO_ALLOC))
{
/* Allocate GT and store the grain. */
rc = vmdkAllocGrain(pImage, pExtent,
uSectorExtentRel,
pvBuf, cbToWrite);
}
else
rc = VERR_VD_BLOCK_FREE;
*pcbPreRead = 0;
*pcbPostRead = 0;
}
else
{
/* Clip write range to remain in this extent. */
cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
*pcbPreRead = VMDK_SECTOR2BYTE(uSectorExtentRel % pExtent->cSectorsPerGrain);
*pcbPostRead = VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbToWrite - *pcbPreRead;
rc = VERR_VD_BLOCK_FREE;
}
}
else
{
rc = vmdkStreamAllocGrain(pImage, pExtent,
uSectorExtentRel,
pvBuf, cbToWrite);
}
}
else
{
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
/* A partial write to a streamOptimized image is simply
* invalid. It requires rewriting already compressed data
* which is somewhere between expensive and impossible. */
rc = VERR_VD_VMDK_INVALID_STATE;
pExtent->uGrainSectorAbs = 0;
AssertRC(rc);
}
else
{
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentAbs),
pvBuf, cbToWrite, NULL);
}
}
break;
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
/* Clip write range to remain in this extent. */
cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
rc = vmdkFileWriteSync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentRel),
pvBuf, cbToWrite, NULL);
break;
case VMDKETYPE_ZERO:
/* Clip write range to remain in this extent. */
cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
break;
}
if (pcbWriteProcess)
*pcbWriteProcess = cbToWrite;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnFlush */
static int vmdkFlush(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc = VINF_SUCCESS;
AssertPtr(pImage);
if (!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
rc = vmdkFlushImage(pImage);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetVersion */
static unsigned vmdkGetVersion(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
return VMDK_IMAGE_VERSION;
else
return 0;
}
/** @copydoc VBOXHDDBACKEND::pfnGetSize */
static uint64_t vmdkGetSize(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
return pImage->cbSize;
else
return 0;
}
/** @copydoc VBOXHDDBACKEND::pfnGetFileSize */
static uint64_t vmdkGetFileSize(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
uint64_t cb = 0;
AssertPtr(pImage);
if (pImage)
{
uint64_t cbFile;
if (pImage->pFile != NULL)
{
int rc = vmdkFileGetSize(pImage, pImage->pFile, &cbFile);
if (RT_SUCCESS(rc))
cb += cbFile;
}
for (unsigned i = 0; i < pImage->cExtents; i++)
{
if (pImage->pExtents[i].pFile != NULL)
{
int rc = vmdkFileGetSize(pImage, pImage->pExtents[i].pFile, &cbFile);
if (RT_SUCCESS(rc))
cb += cbFile;
}
}
}
LogFlowFunc(("returns %lld\n", cb));
return cb;
}
/** @copydoc VBOXHDDBACKEND::pfnGetPCHSGeometry */
static int vmdkGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->PCHSGeometry.cCylinders)
{
*pPCHSGeometry = pImage->PCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_GEOMETRY_NOT_SET;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetPCHSGeometry */
static int vmdkSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n", pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if (pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
rc = VERR_NOT_SUPPORTED;
goto out;
}
rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry);
if (RT_FAILURE(rc))
goto out;
pImage->PCHSGeometry = *pPCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetLCHSGeometry */
static int vmdkGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->LCHSGeometry.cCylinders)
{
*pLCHSGeometry = pImage->LCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_GEOMETRY_NOT_SET;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetLCHSGeometry */
static int vmdkSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n", pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if (pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
rc = VERR_NOT_SUPPORTED;
goto out;
}
rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry);
if (RT_FAILURE(rc))
goto out;
pImage->LCHSGeometry = *pLCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetImageFlags */
static unsigned vmdkGetImageFlags(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
unsigned uImageFlags;
AssertPtr(pImage);
if (pImage)
uImageFlags = pImage->uImageFlags;
else
uImageFlags = 0;
LogFlowFunc(("returns %#x\n", uImageFlags));
return uImageFlags;
}
/** @copydoc VBOXHDDBACKEND::pfnGetOpenFlags */
static unsigned vmdkGetOpenFlags(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
unsigned uOpenFlags;
AssertPtr(pImage);
if (pImage)
uOpenFlags = pImage->uOpenFlags;
else
uOpenFlags = 0;
LogFlowFunc(("returns %#x\n", uOpenFlags));
return uOpenFlags;
}
/** @copydoc VBOXHDDBACKEND::pfnSetOpenFlags */
static int vmdkSetOpenFlags(void *pBackendData, unsigned uOpenFlags)
{
LogFlowFunc(("pBackendData=%#p\n uOpenFlags=%#x", pBackendData, uOpenFlags));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
/* Image must be opened and the new flags must be valid. */
if (!pImage || (uOpenFlags & ~(VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE | VD_OPEN_FLAGS_SEQUENTIAL)))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* StreamOptimized images need special treatment: reopen is prohibited. */
if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
if (pImage->uOpenFlags == uOpenFlags)
rc = VINF_SUCCESS;
else
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Implement this operation via reopening the image. */
vmdkFreeImage(pImage, false);
rc = vmdkOpenImage(pImage, uOpenFlags);
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetComment */
static int vmdkGetComment(void *pBackendData, char *pszComment,
size_t cbComment)
{
LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
const char *pszCommentEncoded = NULL;
rc = vmdkDescDDBGetStr(pImage, &pImage->Descriptor,
"ddb.comment", &pszCommentEncoded);
if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
pszCommentEncoded = NULL;
else if (RT_FAILURE(rc))
goto out;
if (pszComment && pszCommentEncoded)
rc = vmdkDecodeString(pszCommentEncoded, pszComment, cbComment);
else
{
if (pszComment)
*pszComment = '\0';
rc = VINF_SUCCESS;
}
if (pszCommentEncoded)
RTStrFree((char *)(void *)pszCommentEncoded);
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc comment='%s'\n", rc, pszComment));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetComment */
static int vmdkSetComment(void *pBackendData, const char *pszComment)
{
LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if (pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
{
rc = VERR_NOT_SUPPORTED;
goto out;
}
if (pImage)
rc = vmdkSetImageComment(pImage, pszComment);
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetUuid */
static int vmdkGetUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
*pUuid = pImage->ImageUuid;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetUuid */
static int vmdkSetUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
LogFlowFunc(("%RTuuid\n", pUuid));
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
pImage->ImageUuid = *pUuid;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_IMAGE_UUID, pUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename);
rc = VINF_SUCCESS;
}
else
rc = VERR_NOT_SUPPORTED;
}
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetModificationUuid */
static int vmdkGetModificationUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
*pUuid = pImage->ModificationUuid;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetModificationUuid */
static int vmdkSetModificationUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
/* Only touch the modification uuid if it changed. */
if (RTUuidCompare(&pImage->ModificationUuid, pUuid))
{
pImage->ModificationUuid = *pUuid;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_MODIFICATION_UUID, pUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing modification UUID in descriptor in '%s'"), pImage->pszFilename);
}
rc = VINF_SUCCESS;
}
else
rc = VERR_NOT_SUPPORTED;
}
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentUuid */
static int vmdkGetParentUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
*pUuid = pImage->ParentUuid;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentUuid */
static int vmdkSetParentUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
pImage->ParentUuid = *pUuid;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_UUID, pUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename);
rc = VINF_SUCCESS;
}
else
rc = VERR_NOT_SUPPORTED;
}
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentModificationUuid */
static int vmdkGetParentModificationUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
*pUuid = pImage->ParentModificationUuid;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentModificationUuid */
static int vmdkSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
{
pImage->ParentModificationUuid = *pUuid;
rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
VMDK_DDB_PARENT_MODIFICATION_UUID, pUuid);
if (RT_FAILURE(rc))
return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename);
rc = VINF_SUCCESS;
}
else
rc = VERR_NOT_SUPPORTED;
}
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnDump */
static void vmdkDump(void *pBackendData)
{
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
{
vmdkMessage(pImage, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%llu\n",
pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors,
pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors,
VMDK_BYTE2SECTOR(pImage->cbSize));
vmdkMessage(pImage, "Header: uuidCreation={%RTuuid}\n", &pImage->ImageUuid);
vmdkMessage(pImage, "Header: uuidModification={%RTuuid}\n", &pImage->ModificationUuid);
vmdkMessage(pImage, "Header: uuidParent={%RTuuid}\n", &pImage->ParentUuid);
vmdkMessage(pImage, "Header: uuidParentModification={%RTuuid}\n", &pImage->ParentModificationUuid);
}
}
/** @copydoc VBOXHDDBACKEND::pfnIsAsyncIOSupported */
static bool vmdkIsAsyncIOSupported(void *pBackendData)
{
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
/* We do not support async I/O for stream optimized VMDK images. */
return (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) == 0;
}
/** @copydoc VBOXHDDBACKEND::pfnAsyncRead */
static int vmdkAsyncRead(void *pBackendData, uint64_t uOffset, size_t cbRead,
PVDIOCTX pIoCtx, size_t *pcbActuallyRead)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToRead=%zu pcbActuallyRead=%#p\n",
pBackendData, uOffset, pIoCtx, cbRead, pcbActuallyRead));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
PVMDKEXTENT pExtent;
uint64_t uSectorExtentRel;
uint64_t uSectorExtentAbs;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbRead % 512 == 0);
if ( uOffset + cbRead > pImage->cbSize
|| cbRead == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset),
&pExtent, &uSectorExtentRel);
if (RT_FAILURE(rc))
goto out;
/* Check access permissions as defined in the extent descriptor. */
if (pExtent->enmAccess == VMDKACCESS_NOACCESS)
{
rc = VERR_VD_VMDK_INVALID_STATE;
goto out;
}
/* Clip read range to remain in this extent. */
cbRead = RT_MIN(cbRead, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
/* Handle the read according to the current extent type. */
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
rc = vmdkGetSectorAsync(pImage, pIoCtx, pExtent,
uSectorExtentRel, &uSectorExtentAbs);
if (RT_FAILURE(rc))
goto out;
/* Clip read range to at most the rest of the grain. */
cbRead = RT_MIN(cbRead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain));
Assert(!(cbRead % 512));
if (uSectorExtentAbs == 0)
rc = VERR_VD_BLOCK_FREE;
else
{
AssertMsg(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED), ("Async I/O is not supported for stream optimized VMDK's\n"));
rc = vmdkFileReadUserAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentAbs),
pIoCtx, cbRead);
}
break;
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
rc = vmdkFileReadUserAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentRel),
pIoCtx, cbRead);
break;
case VMDKETYPE_ZERO:
size_t cbSet;
cbSet = vmdkFileIoCtxSet(pImage, pIoCtx, 0, cbRead);
Assert(cbSet == cbRead);
rc = VINF_SUCCESS;
break;
}
if (pcbActuallyRead)
*pcbActuallyRead = cbRead;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnAsyncWrite */
static int vmdkAsyncWrite(void *pBackendData, uint64_t uOffset, size_t cbWrite,
PVDIOCTX pIoCtx,
size_t *pcbWriteProcess, size_t *pcbPreRead,
size_t *pcbPostRead, unsigned fWrite)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n",
pBackendData, uOffset, pIoCtx, cbWrite, pcbWriteProcess, pcbPreRead, pcbPostRead));
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
PVMDKEXTENT pExtent;
uint64_t uSectorExtentRel;
uint64_t uSectorExtentAbs;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbWrite % 512 == 0);
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if (cbWrite == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* No size check here, will do that later when the extent is located.
* There are sparse images out there which according to the spec are
* invalid, because the total size is not a multiple of the grain size.
* Also for sparse images which are stitched together in odd ways (not at
* grain boundaries, and with the nominal size not being a multiple of the
* grain size), this would prevent writing to the last grain. */
rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset),
&pExtent, &uSectorExtentRel);
if (RT_FAILURE(rc))
goto out;
/* Check access permissions as defined in the extent descriptor. */
if (pExtent->enmAccess != VMDKACCESS_READWRITE)
{
rc = VERR_VD_VMDK_INVALID_STATE;
goto out;
}
/* Handle the write according to the current extent type. */
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
rc = vmdkGetSectorAsync(pImage, pIoCtx, pExtent, uSectorExtentRel,
&uSectorExtentAbs);
if (RT_FAILURE(rc))
goto out;
/* Clip write range to at most the rest of the grain. */
cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain));
if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
&& uSectorExtentRel < (uint64_t)pExtent->uLastGrainAccess * pExtent->cSectorsPerGrain)
{
rc = VERR_VD_VMDK_INVALID_WRITE;
goto out;
}
if (uSectorExtentAbs == 0)
{
if (cbWrite == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
{
/* Full block write to a previously unallocated block.
* Check if the caller wants to avoid the automatic alloc. */
if (!(fWrite & VD_WRITE_NO_ALLOC))
{
/* Allocate GT and find out where to store the grain. */
rc = vmdkAllocGrainAsync(pImage, pExtent, pIoCtx,
uSectorExtentRel, cbWrite);
}
else
rc = VERR_VD_BLOCK_FREE;
*pcbPreRead = 0;
*pcbPostRead = 0;
}
else
{
/* Clip write range to remain in this extent. */
cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
*pcbPreRead = VMDK_SECTOR2BYTE(uSectorExtentRel % pExtent->cSectorsPerGrain);
*pcbPostRead = VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbWrite - *pcbPreRead;
rc = VERR_VD_BLOCK_FREE;
}
}
else
{
Assert(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED));
rc = vmdkFileWriteUserAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentAbs),
pIoCtx, cbWrite, NULL, NULL);
}
break;
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
/* Clip write range to remain in this extent. */
cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
rc = vmdkFileWriteUserAsync(pImage, pExtent->pFile,
VMDK_SECTOR2BYTE(uSectorExtentRel),
pIoCtx, cbWrite, NULL, NULL);
break;
case VMDKETYPE_ZERO:
/* Clip write range to remain in this extent. */
cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
break;
}
if (pcbWriteProcess)
*pcbWriteProcess = cbWrite;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnAsyncFlush */
static int vmdkAsyncFlush(void *pBackendData, PVDIOCTX pIoCtx)
{
PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
PVMDKEXTENT pExtent;
int rc = VINF_SUCCESS;
/* Update descriptor if changed. */
/** @todo: The descriptor is never updated because
* it remains unchanged during normal operation (only vmdkRename updates it).
* So this part is actually not tested so far and requires testing as soon
* as the descriptor might change during async I/O.
*/
if (pImage->Descriptor.fDirty)
{
rc = vmdkWriteDescriptorAsync(pImage, pIoCtx);
if ( RT_FAILURE(rc)
&& rc != VERR_VD_ASYNC_IO_IN_PROGRESS)
goto out;
}
for (unsigned i = 0; i < pImage->cExtents; i++)
{
pExtent = &pImage->pExtents[i];
if (pExtent->pFile != NULL && pExtent->fMetaDirty)
{
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
rc = vmdkWriteMetaSparseExtentAsync(pImage, pExtent, 0, pIoCtx);
if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS))
goto out;
if (pExtent->fFooter)
{
uint64_t uFileOffset = pExtent->uAppendPosition;
if (!uFileOffset)
{
rc = VERR_INTERNAL_ERROR;
goto out;
}
uFileOffset = RT_ALIGN_64(uFileOffset, 512);
rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset);
if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS))
goto out;
}
break;
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
/* Nothing to do. */
break;
case VMDKETYPE_ZERO:
default:
AssertMsgFailed(("extent with type %d marked as dirty\n",
pExtent->enmType));
break;
}
}
switch (pExtent->enmType)
{
case VMDKETYPE_HOSTED_SPARSE:
#ifdef VBOX_WITH_VMDK_ESX
case VMDKETYPE_ESX_SPARSE:
#endif /* VBOX_WITH_VMDK_ESX */
case VMDKETYPE_VMFS:
case VMDKETYPE_FLAT:
/*
* Don't ignore block devices like in the sync case
* (they have an absolute path).
* We might have unwritten data in the writeback cache and
* the async I/O manager will handle these requests properly
* even if the block device doesn't support these requests.
*/
if ( pExtent->pFile != NULL
&& !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = vmdkFileFlushAsync(pImage, pExtent->pFile, pIoCtx);
break;
case VMDKETYPE_ZERO:
/* No need to do anything for this extent. */
break;
default:
AssertMsgFailed(("unknown extent type %d\n", pExtent->enmType));
break;
}
}
out:
return rc;
}
VBOXHDDBACKEND g_VmdkBackend =
{
/* pszBackendName */
"VMDK",
/* cbSize */
sizeof(VBOXHDDBACKEND),
/* uBackendCaps */
VD_CAP_UUID | VD_CAP_CREATE_FIXED | VD_CAP_CREATE_DYNAMIC
| VD_CAP_CREATE_SPLIT_2G | VD_CAP_DIFF | VD_CAP_FILE | VD_CAP_ASYNC
| VD_CAP_VFS,
/* paFileExtensions */
s_aVmdkFileExtensions,
/* paConfigInfo */
NULL,
/* hPlugin */
NIL_RTLDRMOD,
/* pfnCheckIfValid */
vmdkCheckIfValid,
/* pfnOpen */
vmdkOpen,
/* pfnCreate */
vmdkCreate,
/* pfnRename */
vmdkRename,
/* pfnClose */
vmdkClose,
/* pfnRead */
vmdkRead,
/* pfnWrite */
vmdkWrite,
/* pfnFlush */
vmdkFlush,
/* pfnGetVersion */
vmdkGetVersion,
/* pfnGetSize */
vmdkGetSize,
/* pfnGetFileSize */
vmdkGetFileSize,
/* pfnGetPCHSGeometry */
vmdkGetPCHSGeometry,
/* pfnSetPCHSGeometry */
vmdkSetPCHSGeometry,
/* pfnGetLCHSGeometry */
vmdkGetLCHSGeometry,
/* pfnSetLCHSGeometry */
vmdkSetLCHSGeometry,
/* pfnGetImageFlags */
vmdkGetImageFlags,
/* pfnGetOpenFlags */
vmdkGetOpenFlags,
/* pfnSetOpenFlags */
vmdkSetOpenFlags,
/* pfnGetComment */
vmdkGetComment,
/* pfnSetComment */
vmdkSetComment,
/* pfnGetUuid */
vmdkGetUuid,
/* pfnSetUuid */
vmdkSetUuid,
/* pfnGetModificationUuid */
vmdkGetModificationUuid,
/* pfnSetModificationUuid */
vmdkSetModificationUuid,
/* pfnGetParentUuid */
vmdkGetParentUuid,
/* pfnSetParentUuid */
vmdkSetParentUuid,
/* pfnGetParentModificationUuid */
vmdkGetParentModificationUuid,
/* pfnSetParentModificationUuid */
vmdkSetParentModificationUuid,
/* pfnDump */
vmdkDump,
/* pfnGetTimeStamp */
NULL,
/* pfnGetParentTimeStamp */
NULL,
/* pfnSetParentTimeStamp */
NULL,
/* pfnGetParentFilename */
NULL,
/* pfnSetParentFilename */
NULL,
/* pfnIsAsyncIOSupported */
vmdkIsAsyncIOSupported,
/* pfnAsyncRead */
vmdkAsyncRead,
/* pfnAsyncWrite */
vmdkAsyncWrite,
/* pfnAsyncFlush */
vmdkAsyncFlush,
/* pfnComposeLocation */
genericFileComposeLocation,
/* pfnComposeName */
genericFileComposeName,
/* pfnCompact */
NULL,
/* pfnResize */
NULL
};