QED.cpp revision 870daa6c20c3a45b8a665f37def6c14a3a3072c9
/* $Id$ */
/** @file
* QED - QED Disk image.
*/
/*
* Copyright (C) 2011 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_VD_RAW /** @todo: log group */
#include <VBox/vd-plugin.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/alloc.h>
#include <iprt/path.h>
#include <iprt/list.h>
/**
* The QED backend implements support for the qemu enhanced disk format (short QED)
* The specification for the format is available under http://wiki.qemu.org/Features/QED/Specification
*
* Missing things to implement:
* - compaction
* - resizing which requires block relocation (very rare case)
*/
/*******************************************************************************
* Structures in a QED image, little endian *
*******************************************************************************/
#pragma pack(1)
typedef struct QedHeader
{
/** Magic value. */
uint32_t u32Magic;
/** Cluster size in bytes. */
uint32_t u32ClusterSize;
/** Size of L1 and L2 tables in clusters. */
uint32_t u32TableSize;
/** size of this header structure in clusters. */
uint32_t u32HeaderSize;
/** Features used for the image. */
uint64_t u64FeatureFlags;
/** Compatibility features used for the image. */
uint64_t u64CompatFeatureFlags;
/** Self resetting feature bits. */
uint64_t u64AutoresetFeatureFlags;
/** Offset of the L1 table in bytes. */
uint64_t u64OffL1Table;
/** Logical image size as seen by the guest. */
uint64_t u64Size;
/** Offset of the backing filename in bytes. */
uint32_t u32OffBackingFilename;
/** Size of the backing filename. */
uint32_t u32BackingFilenameSize;
} QedHeader;
#pragma pack()
/** Pointer to a on disk QED header. */
typedef QedHeader *PQedHeader;
/** QED magic value. */
#define QED_MAGIC UINT32_C(0x00444551) /* QED\0 */
/** Cluster size minimum. */
#define QED_CLUSTER_SIZE_MIN RT_BIT(12)
/** Cluster size maximum. */
#define QED_CLUSTER_SIZE_MAX RT_BIT(26)
/** L1 and L2 Table size minimum. */
#define QED_TABLE_SIZE_MIN 1
/** L1 and L2 Table size maximum. */
#define QED_TABLE_SIZE_MAX 16
/** QED default cluster size when creating an image. */
#define QED_CLUSTER_SIZE_DEFAULT (64 * _1K)
/** The default table size in clusters. */
#define QED_TABLE_SIZE_DEFAULT 4
/** Feature flags.
* @{
*/
/** Image uses a backing file to provide data for unallocated clusters. */
#define QED_FEATURE_BACKING_FILE RT_BIT(0)
/** Image needs checking before use. */
#define QED_FEATURE_NEED_CHECK RT_BIT(1)
/** Don't probe for format of the backing file, treat as raw image. */
#define QED_FEATURE_BACKING_FILE_NO_PROBE RT_BIT(2)
/** Mask of valid features. */
#define QED_FEATURE_MASK (QED_FEATURE_BACKING_FILE | QED_FEATURE_NEED_CHECK | QED_FEATURE_BACKING_FILE_NO_PROBE)
/** @} */
/** Compatibility feature flags.
* @{
*/
/** Mask of valid compatibility features. */
#define QED_COMPAT_FEATURE_MASK (0)
/** @} */
/** Autoreset feature flags.
* @{
*/
/** Mask of valid autoreset features. */
#define QED_AUTORESET_FEATURE_MASK (0)
/** @} */
/*******************************************************************************
* Constants And Macros, Structures and Typedefs *
*******************************************************************************/
/**
* QED L2 cache entry.
*/
typedef struct QEDL2CACHEENTRY
{
/** List node for the search list. */
RTLISTNODE NodeSearch;
/** List node for the LRU list. */
RTLISTNODE NodeLru;
/** Reference counter. */
uint32_t cRefs;
/** The offset of the L2 table, used as search key. */
uint64_t offL2Tbl;
/** Pointer to the cached L2 table. */
uint64_t *paL2Tbl;
} QEDL2CACHEENTRY, *PQEDL2CACHEENTRY;
/** Maximum amount of memory the cache is allowed to use. */
#define QED_L2_CACHE_MEMORY_MAX (2*_1M)
/**
* QED image data structure.
*/
typedef struct QEDIMAGE
{
/** Image name. */
const char *pszFilename;
/** Storage handle. */
PVDIOSTORAGE pStorage;
/** Pointer to the per-disk VD interface list. */
PVDINTERFACE pVDIfsDisk;
/** Pointer to the per-image VD interface list. */
PVDINTERFACE pVDIfsImage;
/** Error interface. */
PVDINTERFACEERROR pIfError;
/** I/O interface. */
PVDINTERFACEIOINT pIfIo;
/** Open flags passed by VBoxHD layer. */
unsigned uOpenFlags;
/** Image flags defined during creation or determined during open. */
unsigned uImageFlags;
/** Total size of the image. */
uint64_t cbSize;
/** Physical geometry of this image. */
VDGEOMETRY PCHSGeometry;
/** Logical geometry of this image. */
VDGEOMETRY LCHSGeometry;
/** Filename of the backing file if any. */
char *pszBackingFilename;
/** Offset of the filename in the image. */
uint32_t offBackingFilename;
/** Size of the backing filename excluding \0. */
uint32_t cbBackingFilename;
/** Size of the image, multiple of clusters. */
uint64_t cbImage;
/** Cluster size in bytes. */
uint32_t cbCluster;
/** Number of entries in the L1 and L2 table. */
uint32_t cTableEntries;
/** Size of an L1 or L2 table rounded to the next cluster size. */
uint32_t cbTable;
/** Pointer to the L1 table. */
uint64_t *paL1Table;
/** Offset of the L1 table. */
uint64_t offL1Table;
/** Offset mask for a cluster. */
uint64_t fOffsetMask;
/** L1 table mask to get the L1 index. */
uint64_t fL1Mask;
/** Number of bits to shift to get the L1 index. */
uint32_t cL1Shift;
/** L2 table mask to get the L2 index. */
uint64_t fL2Mask;
/** Number of bits to shift to get the L2 index. */
uint32_t cL2Shift;
/** Memory occupied by the L2 table cache. */
size_t cbL2Cache;
/** The sorted L2 entry list used for searching. */
RTLISTNODE ListSearch;
/** The LRU L2 entry list used for eviction. */
RTLISTNODE ListLru;
} QEDIMAGE, *PQEDIMAGE;
/**
* State of the async cluster allocation.
*/
typedef enum QEDCLUSTERASYNCALLOCSTATE
{
/** Invalid. */
QEDCLUSTERASYNCALLOCSTATE_INVALID = 0,
/** L2 table allocation. */
QEDCLUSTERASYNCALLOCSTATE_L2_ALLOC,
/** Link L2 table into L1. */
QEDCLUSTERASYNCALLOCSTATE_L2_LINK,
/** Allocate user data cluster. */
QEDCLUSTERASYNCALLOCSTATE_USER_ALLOC,
/** Link user data cluster. */
QEDCLUSTERASYNCALLOCSTATE_USER_LINK,
/** 32bit blowup. */
QEDCLUSTERASYNCALLOCSTATE_32BIT_HACK = 0x7fffffff
} QEDCLUSTERASYNCALLOCSTATE, *PQEDCLUSTERASYNCALLOCSTATE;
/**
* Data needed to track async cluster allocation.
*/
typedef struct QEDCLUSTERASYNCALLOC
{
/** The state of the cluster allocation. */
QEDCLUSTERASYNCALLOCSTATE enmAllocState;
/** Old image size to rollback in case of an error. */
uint64_t cbImageOld;
/** L1 index to link if any. */
uint32_t idxL1;
/** L2 index to link, required in any case. */
uint32_t idxL2;
/** Start offset of the allocated cluster. */
uint64_t offClusterNew;
/** L2 cache entry if a L2 table is allocated. */
PQEDL2CACHEENTRY pL2Entry;
/** Number of bytes to write. */
size_t cbToWrite;
} QEDCLUSTERASYNCALLOC, *PQEDCLUSTERASYNCALLOC;
/*******************************************************************************
* Static Variables *
*******************************************************************************/
/** NULL-terminated array of supported file extensions. */
static const VDFILEEXTENSION s_aQedFileExtensions[] =
{
{"qed", VDTYPE_HDD},
{NULL, VDTYPE_INVALID}
};
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
/**
* Converts the image header to the host endianess and performs basic checks.
*
* @returns Whether the given header is valid or not.
* @param pHeader Pointer to the header to convert.
*/
static bool qedHdrConvertToHostEndianess(PQedHeader pHeader)
{
pHeader->u32Magic = RT_LE2H_U32(pHeader->u32Magic);
pHeader->u32ClusterSize = RT_LE2H_U32(pHeader->u32ClusterSize);
pHeader->u32TableSize = RT_LE2H_U32(pHeader->u32TableSize);
pHeader->u32HeaderSize = RT_LE2H_U32(pHeader->u32HeaderSize);
pHeader->u64FeatureFlags = RT_LE2H_U64(pHeader->u64FeatureFlags);
pHeader->u64CompatFeatureFlags = RT_LE2H_U64(pHeader->u64CompatFeatureFlags);
pHeader->u64AutoresetFeatureFlags = RT_LE2H_U64(pHeader->u64AutoresetFeatureFlags);
pHeader->u64OffL1Table = RT_LE2H_U64(pHeader->u64OffL1Table);
pHeader->u64Size = RT_LE2H_U64(pHeader->u64Size);
pHeader->u32OffBackingFilename = RT_LE2H_U32(pHeader->u32OffBackingFilename);
pHeader->u32BackingFilenameSize = RT_LE2H_U32(pHeader->u32BackingFilenameSize);
if (RT_UNLIKELY(pHeader->u32Magic != QED_MAGIC))
return false;
if (RT_UNLIKELY( pHeader->u32ClusterSize < QED_CLUSTER_SIZE_MIN
|| pHeader->u32ClusterSize > QED_CLUSTER_SIZE_MAX))
return false;
if (RT_UNLIKELY( pHeader->u32TableSize < QED_TABLE_SIZE_MIN
|| pHeader->u32TableSize > QED_TABLE_SIZE_MAX))
return false;
if (RT_UNLIKELY(pHeader->u64Size % 512 != 0))
return false;
return true;
}
/**
* Creates a QED header from the given image state.
*
* @returns nothing.
* @param pImage Image instance data.
* @param pHeader Pointer to the header to convert.
*/
static void qedHdrConvertFromHostEndianess(PQEDIMAGE pImage, PQedHeader pHeader)
{
pHeader->u32Magic = RT_H2LE_U32(QED_MAGIC);
pHeader->u32ClusterSize = RT_H2LE_U32(pImage->cbCluster);
pHeader->u32TableSize = RT_H2LE_U32(pImage->cbTable / pImage->cbCluster);
pHeader->u32HeaderSize = RT_H2LE_U32(1);
pHeader->u64FeatureFlags = RT_H2LE_U64(pImage->pszBackingFilename ? QED_FEATURE_BACKING_FILE : 0);
pHeader->u64CompatFeatureFlags = RT_H2LE_U64(0);
pHeader->u64AutoresetFeatureFlags = RT_H2LE_U64(0);
pHeader->u64OffL1Table = RT_H2LE_U64(pImage->offL1Table);
pHeader->u64Size = RT_H2LE_U64(pImage->cbSize);
pHeader->u32OffBackingFilename = RT_H2LE_U32(pImage->offBackingFilename);
pHeader->u32BackingFilenameSize = RT_H2LE_U32(pImage->cbBackingFilename);
}
/**
* Convert table entries from little endian to host endianess.
*
* @returns nothing.
* @param paTbl Pointer to the table.
* @param cEntries Number of entries in the table.
*/
static void qedTableConvertToHostEndianess(uint64_t *paTbl, uint32_t cEntries)
{
while(cEntries-- > 0)
{
*paTbl = RT_LE2H_U64(*paTbl);
paTbl++;
}
}
/**
* Convert table entries from host to little endian format.
*
* @returns nothing.
* @param paTblImg Pointer to the table which will store the little endian table.
* @param paTbl The source table to convert.
* @param cEntries Number of entries in the table.
*/
static void qedTableConvertFromHostEndianess(uint64_t *paTblImg, uint64_t *paTbl,
uint32_t cEntries)
{
while(cEntries-- > 0)
{
*paTblImg = RT_H2LE_U64(*paTbl);
paTbl++;
paTblImg++;
}
}
/**
* Creates the L2 table cache.
*
* @returns VBox status code.
* @param pImage The image instance data.
*/
static int qedL2TblCacheCreate(PQEDIMAGE pImage)
{
pImage->cbL2Cache = 0;
RTListInit(&pImage->ListSearch);
RTListInit(&pImage->ListLru);
return VINF_SUCCESS;
}
/**
* Destroys the L2 table cache.
*
* @returns nothing.
* @param pImage The image instance data.
*/
static void qedL2TblCacheDestroy(PQEDIMAGE pImage)
{
PQEDL2CACHEENTRY pL2Entry = NULL;
PQEDL2CACHEENTRY pL2Next = NULL;
RTListForEachSafe(&pImage->ListSearch, pL2Entry, pL2Next, QEDL2CACHEENTRY, NodeSearch)
{
Assert(!pL2Entry->cRefs);
RTListNodeRemove(&pL2Entry->NodeSearch);
RTMemPageFree(pL2Entry->paL2Tbl, pImage->cbTable);
RTMemFree(pL2Entry);
}
pImage->cbL2Cache = 0;
RTListInit(&pImage->ListSearch);
RTListInit(&pImage->ListLru);
}
/**
* Returns the L2 table matching the given offset or NULL if none could be found.
*
* @returns Pointer to the L2 table cache entry or NULL.
* @param pImage The image instance data.
* @param offL2Tbl Offset of the L2 table to search for.
*/
static PQEDL2CACHEENTRY qedL2TblCacheRetain(PQEDIMAGE pImage, uint64_t offL2Tbl)
{
PQEDL2CACHEENTRY pL2Entry = NULL;
RTListForEach(&pImage->ListSearch, pL2Entry, QEDL2CACHEENTRY, NodeSearch)
{
if (pL2Entry->offL2Tbl == offL2Tbl)
break;
}
if (!RTListNodeIsDummy(&pImage->ListSearch, pL2Entry, QEDL2CACHEENTRY, NodeSearch))
{
/* Update LRU list. */
RTListNodeRemove(&pL2Entry->NodeLru);
RTListPrepend(&pImage->ListLru, &pL2Entry->NodeLru);
pL2Entry->cRefs++;
return pL2Entry;
}
else
return NULL;
}
/**
* Releases a L2 table cache entry.
*
* @returns nothing.
* @param pL2Entry The L2 cache entry.
*/
static void qedL2TblCacheEntryRelease(PQEDL2CACHEENTRY pL2Entry)
{
Assert(pL2Entry->cRefs > 0);
pL2Entry->cRefs--;
}
/**
* Allocates a new L2 table from the cache evicting old entries if required.
*
* @returns Pointer to the L2 cache entry or NULL.
* @param pImage The image instance data.
*/
static PQEDL2CACHEENTRY qedL2TblCacheEntryAlloc(PQEDIMAGE pImage)
{
PQEDL2CACHEENTRY pL2Entry = NULL;
int rc = VINF_SUCCESS;
if (pImage->cbL2Cache + pImage->cbTable <= QED_L2_CACHE_MEMORY_MAX)
{
/* Add a new entry. */
pL2Entry = (PQEDL2CACHEENTRY)RTMemAllocZ(sizeof(QEDL2CACHEENTRY));
if (pL2Entry)
{
pL2Entry->paL2Tbl = (uint64_t *)RTMemPageAllocZ(pImage->cbTable);
if (RT_UNLIKELY(!pL2Entry->paL2Tbl))
{
RTMemFree(pL2Entry);
pL2Entry = NULL;
}
else
{
pL2Entry->cRefs = 1;
pImage->cbL2Cache += pImage->cbTable;
}
}
}
else
{
/* Evict the last not in use entry and use it */
Assert(!RTListIsEmpty(&pImage->ListLru));
RTListForEachReverse(&pImage->ListLru, pL2Entry, QEDL2CACHEENTRY, NodeLru)
{
if (!pL2Entry->cRefs)
break;
}
if (!RTListNodeIsDummy(&pImage->ListSearch, pL2Entry, QEDL2CACHEENTRY, NodeSearch))
{
RTListNodeRemove(&pL2Entry->NodeSearch);
RTListNodeRemove(&pL2Entry->NodeLru);
pL2Entry->offL2Tbl = 0;
pL2Entry->cRefs = 1;
}
else
pL2Entry = NULL;
}
return pL2Entry;
}
/**
* Frees a L2 table cache entry.
*
* @returns nothing.
* @param pImage The image instance data.
* @param pL2Entry The L2 cache entry to free.
*/
static void qedL2TblCacheEntryFree(PQEDIMAGE pImage, PQEDL2CACHEENTRY pL2Entry)
{
Assert(!pL2Entry->cRefs);
RTMemPageFree(pL2Entry->paL2Tbl, pImage->cbTable);
RTMemFree(pL2Entry);
pImage->cbL2Cache -= pImage->cbTable;
}
/**
* Inserts an entry in the L2 table cache.
*
* @returns nothing.
* @param pImage The image instance data.
* @param pL2Entry The L2 cache entry to insert.
*/
static void qedL2TblCacheEntryInsert(PQEDIMAGE pImage, PQEDL2CACHEENTRY pL2Entry)
{
PQEDL2CACHEENTRY pIt = NULL;
Assert(pL2Entry->offL2Tbl > 0);
/* Insert at the top of the LRU list. */
RTListPrepend(&pImage->ListLru, &pL2Entry->NodeLru);
if (RTListIsEmpty(&pImage->ListSearch))
{
RTListAppend(&pImage->ListSearch, &pL2Entry->NodeSearch);
}
else
{
/* Insert into search list. */
pIt = RTListGetFirst(&pImage->ListSearch, QEDL2CACHEENTRY, NodeSearch);
if (pIt->offL2Tbl > pL2Entry->offL2Tbl)
RTListPrepend(&pImage->ListSearch, &pL2Entry->NodeSearch);
else
{
bool fInserted = false;
RTListForEach(&pImage->ListSearch, pIt, QEDL2CACHEENTRY, NodeSearch)
{
Assert(pIt->offL2Tbl != pL2Entry->offL2Tbl);
if (pIt->offL2Tbl < pL2Entry->offL2Tbl)
{
RTListNodeInsertAfter(&pIt->NodeSearch, &pL2Entry->NodeSearch);
fInserted = true;
break;
}
}
Assert(fInserted);
}
}
}
/**
* Fetches the L2 from the given offset trying the LRU cache first and
* reading it from the image after a cache miss.
*
* @returns VBox status code.
* @param pImage Image instance data.
* @param offL2Tbl The offset of the L2 table in the image.
* @param ppL2Entry Where to store the L2 table on success.
*/
static int qedL2TblCacheFetch(PQEDIMAGE pImage, uint64_t offL2Tbl, PQEDL2CACHEENTRY *ppL2Entry)
{
int rc = VINF_SUCCESS;
LogFlowFunc(("pImage=%#p offL2Tbl=%llu ppL2Entry=%#p\n", pImage, offL2Tbl, ppL2Entry));
/* Try to fetch the L2 table from the cache first. */
PQEDL2CACHEENTRY pL2Entry = qedL2TblCacheRetain(pImage, offL2Tbl);
if (!pL2Entry)
{
LogFlowFunc(("Reading L2 table from image\n"));
pL2Entry = qedL2TblCacheEntryAlloc(pImage);
if (pL2Entry)
{
/* Read from the image. */
pL2Entry->offL2Tbl = offL2Tbl;
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, offL2Tbl,
pL2Entry->paL2Tbl, pImage->cbTable, NULL);
if (RT_SUCCESS(rc))
{
#if defined(RT_BIG_ENDIAN)
qedTableConvertToHostEndianess(pL2Entry->paL2Tbl, pImage->cTableEntries);
#endif
qedL2TblCacheEntryInsert(pImage, pL2Entry);
}
else
{
qedL2TblCacheEntryRelease(pL2Entry);
qedL2TblCacheEntryFree(pImage, pL2Entry);
}
}
else
rc = VERR_NO_MEMORY;
}
if (RT_SUCCESS(rc))
*ppL2Entry = pL2Entry;
LogFlowFunc(("returns rc=%Rrc\n", rc));
return rc;
}
/**
* Fetches the L2 from the given offset trying the LRU cache first and
* reading it from the image after a cache miss - version for async I/O.
*
* @returns VBox status code.
* @param pImage Image instance data.
* @param pIoCtx The I/O context.
* @param offL2Tbl The offset of the L2 table in the image.
* @param ppL2Entry Where to store the L2 table on success.
*/
static int qedL2TblCacheFetchAsync(PQEDIMAGE pImage, PVDIOCTX pIoCtx,
uint64_t offL2Tbl, PQEDL2CACHEENTRY *ppL2Entry)
{
int rc = VINF_SUCCESS;
/* Try to fetch the L2 table from the cache first. */
PQEDL2CACHEENTRY pL2Entry = qedL2TblCacheRetain(pImage, offL2Tbl);
if (!pL2Entry)
{
pL2Entry = qedL2TblCacheEntryAlloc(pImage);
if (pL2Entry)
{
/* Read from the image. */
PVDMETAXFER pMetaXfer;
pL2Entry->offL2Tbl = offL2Tbl;
rc = vdIfIoIntFileReadMetaAsync(pImage->pIfIo, pImage->pStorage,
offL2Tbl, pL2Entry->paL2Tbl,
pImage->cbTable, pIoCtx,
&pMetaXfer, NULL, NULL);
if (RT_SUCCESS(rc))
{
vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer);
#if defined(RT_BIG_ENDIAN)
qedTableConvertToHostEndianess(pL2Entry->paL2Tbl, pImage->cTableEntries);
#endif
qedL2TblCacheEntryInsert(pImage, pL2Entry);
}
else
{
qedL2TblCacheEntryRelease(pL2Entry);
qedL2TblCacheEntryFree(pImage, pL2Entry);
}
}
else
rc = VERR_NO_MEMORY;
}
if (RT_SUCCESS(rc))
*ppL2Entry = pL2Entry;
return rc;
}
/**
* Return power of 2 or 0 if num error.
*
* @returns The power of 2 or 0 if the given number is not a power of 2.
* @param u32 The number.
*/
static uint32_t qedGetPowerOfTwo(uint32_t u32)
{
if (u32 == 0)
return 0;
uint32_t uPower2 = 0;
while ((u32 & 1) == 0)
{
u32 >>= 1;
uPower2++;
}
return u32 == 1 ? uPower2 : 0;
}
/**
* Sets the L1, L2 and offset bitmasks and L1 and L2 bit shift members.
*
* @returns nothing.
* @param pImage The image instance data.
*/
static void qedTableMasksInit(PQEDIMAGE pImage)
{
uint32_t cClusterBits, cTableBits;
cClusterBits = qedGetPowerOfTwo(pImage->cbCluster);
cTableBits = qedGetPowerOfTwo(pImage->cTableEntries);
Assert(cClusterBits + 2 * cTableBits <= 64);
pImage->fOffsetMask = ((uint64_t)pImage->cbCluster - 1);
pImage->fL2Mask = ((uint64_t)pImage->cTableEntries - 1) << cClusterBits;
pImage->cL2Shift = cClusterBits;
pImage->fL1Mask = ((uint64_t)pImage->cTableEntries - 1) << (cClusterBits + cTableBits);
pImage->cL1Shift = cClusterBits + cTableBits;
}
/**
* Converts a given logical offset into the
*
* @returns nothing.
* @param pImage The image instance data.
* @param off The logical offset to convert.
* @param pidxL1 Where to store the index in the L1 table on success.
* @param pidxL2 Where to store the index in the L2 table on success.
* @param poffCluster Where to store the offset in the cluster on success.
*/
DECLINLINE(void) qedConvertLogicalOffset(PQEDIMAGE pImage, uint64_t off, uint32_t *pidxL1,
uint32_t *pidxL2, uint32_t *poffCluster)
{
AssertPtr(pidxL1);
AssertPtr(pidxL2);
AssertPtr(poffCluster);
*poffCluster = off & pImage->fOffsetMask;
*pidxL1 = (off & pImage->fL1Mask) >> pImage->cL1Shift;
*pidxL2 = (off & pImage->fL2Mask) >> pImage->cL2Shift;
}
/**
* Converts Cluster size to a byte size.
*
* @returns Number of bytes derived from the given number of clusters.
* @param pImage The image instance data.
* @param cClusters The clusters to convert.
*/
DECLINLINE(uint64_t) qedCluster2Byte(PQEDIMAGE pImage, uint64_t cClusters)
{
return cClusters * pImage->cbCluster;
}
/**
* Converts number of bytes to cluster size rounding to the next cluster.
*
* @returns Number of bytes derived from the given number of clusters.
* @param pImage The image instance data.
* @param cb Number of bytes to convert.
*/
DECLINLINE(uint64_t) qedByte2Cluster(PQEDIMAGE pImage, uint64_t cb)
{
return cb / pImage->cbCluster + (cb % pImage->cbCluster ? 1 : 0);
}
/**
* Allocates a new cluster in the image.
*
* @returns The start offset of the new cluster in the image.
* @param pImage The image instance data.
* @param cCLusters Number of clusters to allocate.
*/
DECLINLINE(uint64_t) qedClusterAllocate(PQEDIMAGE pImage, uint32_t cClusters)
{
uint64_t offCluster;
offCluster = pImage->cbImage;
pImage->cbImage += cClusters*pImage->cbCluster;
return offCluster;
}
/**
* Returns the real image offset for a given cluster or an error if the cluster is not
* yet allocated.
*
* @returns VBox status code.
* VERR_VD_BLOCK_FREE if the cluster is not yet allocated.
* @param pImage The image instance data.
* @param idxL1 The L1 index.
* @param idxL2 The L2 index.
* @param offCluster Offset inside the cluster.
* @param poffImage Where to store the image offset on success;
*/
static int qedConvertToImageOffset(PQEDIMAGE pImage, uint32_t idxL1, uint32_t idxL2,
uint32_t offCluster, uint64_t *poffImage)
{
int rc = VERR_VD_BLOCK_FREE;
LogFlowFunc(("pImage=%#p idxL1=%u idxL2=%u offCluster=%u poffImage=%#p\n",
pImage, idxL1, idxL2, offCluster, poffImage));
AssertReturn(idxL1 < pImage->cTableEntries, VERR_INVALID_PARAMETER);
AssertReturn(idxL2 < pImage->cTableEntries, VERR_INVALID_PARAMETER);
if (pImage->paL1Table[idxL1])
{
PQEDL2CACHEENTRY pL2Entry;
rc = qedL2TblCacheFetch(pImage, pImage->paL1Table[idxL1], &pL2Entry);
if (RT_SUCCESS(rc))
{
LogFlowFunc(("cluster start offset %llu\n", pL2Entry->paL2Tbl[idxL2]));
/* Get real file offset. */
if (pL2Entry->paL2Tbl[idxL2])
*poffImage = pL2Entry->paL2Tbl[idxL2] + offCluster;
else
rc = VERR_VD_BLOCK_FREE;
qedL2TblCacheEntryRelease(pL2Entry);
}
}
LogFlowFunc(("returns rc=%Rrc\n", rc));
return rc;
}
/**
* Returns the real image offset for a given cluster or an error if the cluster is not
* yet allocated- version for async I/O.
*
* @returns VBox status code.
* VERR_VD_BLOCK_FREE if the cluster is not yet allocated.
* @param pImage The image instance data.
* @param pIoCtx The I/O context.
* @param idxL1 The L1 index.
* @param idxL2 The L2 index.
* @param offCluster Offset inside the cluster.
* @param poffImage Where to store the image offset on success;
*/
static int qedConvertToImageOffsetAsync(PQEDIMAGE pImage, PVDIOCTX pIoCtx,
uint32_t idxL1, uint32_t idxL2,
uint32_t offCluster, uint64_t *poffImage)
{
int rc = VERR_VD_BLOCK_FREE;
AssertReturn(idxL1 < pImage->cTableEntries, VERR_INVALID_PARAMETER);
AssertReturn(idxL2 < pImage->cTableEntries, VERR_INVALID_PARAMETER);
if (pImage->paL1Table[idxL1])
{
PQEDL2CACHEENTRY pL2Entry;
rc = qedL2TblCacheFetchAsync(pImage, pIoCtx, pImage->paL1Table[idxL1],
&pL2Entry);
if (RT_SUCCESS(rc))
{
/* Get real file offset. */
if (pL2Entry->paL2Tbl[idxL2])
*poffImage = pL2Entry->paL2Tbl[idxL2] + offCluster;
else
rc = VERR_VD_BLOCK_FREE;
qedL2TblCacheEntryRelease(pL2Entry);
}
}
return rc;
}
/**
* Internal. Flush image data to disk.
*/
static int qedFlushImage(PQEDIMAGE pImage)
{
int rc = VINF_SUCCESS;
if ( pImage->pStorage
&& !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
QedHeader Header;
Assert(!(pImage->cbTable % pImage->cbCluster));
#if defined(RT_BIG_ENDIAN)
uint64_t *paL1TblImg = (uint64_t *)RTMemAllocZ(pImage->cbTable);
if (paL1TblImg)
{
qedTableConvertFromHostEndianess(paL1TblImg, pImage->paL1Table,
pImage->cTableEntries);
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
pImage->offL1Table, paL1TblImg,
pImage->cbTable, NULL);
RTMemFree(paL1TblImg);
}
else
rc = VERR_NO_MEMORY;
#else
/* Write L1 table directly. */
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->offL1Table,
pImage->paL1Table, pImage->cbTable, NULL);
#endif
if (RT_SUCCESS(rc))
{
/* Write header. */
qedHdrConvertFromHostEndianess(pImage, &Header);
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, 0, &Header,
sizeof(Header), NULL);
if (RT_SUCCESS(rc))
rc = vdIfIoIntFileFlushSync(pImage->pIfIo, pImage->pStorage);
}
}
return rc;
}
/**
* Flush image data to disk - version for async I/O.
*
* @returns VBox status code.
* @param pImage The image instance data.
* @param pIoCtx The I/o context
*/
static int qedFlushImageAsync(PQEDIMAGE pImage, PVDIOCTX pIoCtx)
{
int rc = VINF_SUCCESS;
if ( pImage->pStorage
&& !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
QedHeader Header;
Assert(!(pImage->cbTable % pImage->cbCluster));
#if defined(RT_BIG_ENDIAN)
uint64_t *paL1TblImg = (uint64_t *)RTMemAllocZ(pImage->cbTable);
if (paL1TblImg)
{
qedTableConvertFromHostEndianess(paL1TblImg, pImage->paL1Table,
pImage->cTableEntries);
rc = vdIfIoIntFileWriteMetaAsync(pImage->pIfIo, pImage->pStorage,
pImage->offL1Table, paL1TblImg,
pImage->cbTable, pIoCtx, NULL, NULL);
RTMemFree(paL1TblImg);
}
else
rc = VERR_NO_MEMORY;
#else
/* Write L1 table directly. */
rc = vdIfIoIntFileWriteMetaAsync(pImage->pIfIo, pImage->pStorage,
pImage->offL1Table, pImage->paL1Table,
pImage->cbTable, pIoCtx, NULL, NULL);
#endif
if (RT_SUCCESS(rc) || rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
{
/* Write header. */
qedHdrConvertFromHostEndianess(pImage, &Header);
rc = vdIfIoIntFileWriteMetaAsync(pImage->pIfIo, pImage->pStorage,
0, &Header, sizeof(Header),
pIoCtx, NULL, NULL);
if (RT_SUCCESS(rc) || rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
rc = vdIfIoIntFileFlushAsync(pImage->pIfIo, pImage->pStorage,
pIoCtx, NULL, NULL);
}
}
return rc;
}
/**
* Checks whether the given cluster offset is valid.
*
* @returns Whether the given cluster offset is valid.
* @param offCluster The table offset to check.
* @param cbFile The real file size of the image.
* @param cbCluster The cluster size in bytes.
*/
DECLINLINE(bool) qedIsClusterOffsetValid(uint64_t offCluster, uint64_t cbFile, size_t cbCluster)
{
return (offCluster <= cbFile - cbCluster)
&& !(offCluster & (cbCluster - 1));
}
/**
* Checks whether the given table offset is valid.
*
* @returns Whether the given table offset is valid.
* @param offTbl The table offset to check.
* @param cbFile The real file size of the image.
* @param cbTable The table size in bytes.
* @param cbCluster The cluster size in bytes.
*/
DECLINLINE(bool) qedIsTblOffsetValid(uint64_t offTbl, uint64_t cbFile, size_t cbTable, size_t cbCluster)
{
return (offTbl <= cbFile - cbTable)
&& !(offTbl & (cbCluster - 1));
}
/**
* Sets the specified range in the cluster bitmap checking whether any of the clusters is already
* used before.
*
* @returns Whether the range was clear and is set now.
* @param pvClusterBitmap The cluster bitmap to use.
* @param offClusterStart The first cluster to check and set.
* @param offClusterEnd The first cluster to not check and set anymore.
*/
static bool qedClusterBitmapCheckAndSet(void *pvClusterBitmap, uint32_t offClusterStart, uint32_t offClusterEnd)
{
for (uint32_t offCluster = offClusterStart; offCluster < offClusterEnd; offCluster++)
if (ASMBitTest(pvClusterBitmap, offCluster))
return false;
ASMBitSetRange(pvClusterBitmap, offClusterStart, offClusterEnd);
return true;
}
/**
* Checks the given image for consistency, usually called when the
* QED_FEATURE_NEED_CHECK bit is set.
*
* @returns VBox status code.
* @retval VINF_SUCCESS when the image can be accessed.
* @param pImage The image instance data.
* @param pHeader The header to use for checking.
*
* @note It is not required that the image state is fully initialized Only
* The I/O interface and storage handle need to be valid.
* @note The header must be converted to the host CPU endian format already
* and should be validated already.
*/
static int qedCheckImage(PQEDIMAGE pImage, PQedHeader pHeader)
{
uint64_t cbFile;
uint32_t cbTable;
uint32_t cTableEntries;
uint64_t *paL1Tbl = NULL;
uint64_t *paL2Tbl = NULL;
void *pvClusterBitmap = NULL;
uint32_t offClusterStart;
int rc = VINF_SUCCESS;
pImage->cbCluster = pHeader->u32ClusterSize;
cbTable = pHeader->u32TableSize * pHeader->u32ClusterSize;
cTableEntries = cbTable / sizeof(uint64_t);
do
{
rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pStorage, &cbFile);
if (RT_FAILURE(rc))
{
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
N_("Qed: Querying the file size of image '%s' failed"),
pImage->pszFilename);
break;
}
/* Allocate L1 table. */
paL1Tbl = (uint64_t *)RTMemAllocZ(cbTable);
if (!paL1Tbl)
{
rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
N_("Qed: Allocating memory for the L1 table for image '%s' failed"),
pImage->pszFilename);
break;
}
paL2Tbl = (uint64_t *)RTMemAllocZ(cbTable);
if (!paL2Tbl)
{
rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
N_("Qed: Allocating memory for the L2 table for image '%s' failed"),
pImage->pszFilename);
break;
}
pvClusterBitmap = RTMemAllocZ(cbFile / pHeader->u32ClusterSize / 8);
if (!pvClusterBitmap)
{
rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
N_("Qed: Allocating memory for the cluster bitmap for image '%s' failed"),
pImage->pszFilename);
break;
}
/* Validate L1 table offset. */
if (!qedIsTblOffsetValid(pHeader->u64OffL1Table, cbFile, cbTable, pHeader->u32ClusterSize))
{
rc = vdIfError(pImage->pIfError, VERR_VD_GEN_INVALID_HEADER, RT_SRC_POS,
N_("Qed: L1 table offset of image '%s' is corrupt (%llu)"),
pImage->pszFilename, pHeader->u64OffL1Table);
break;
}
/* Read L1 table. */
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
pHeader->u64OffL1Table, paL1Tbl, cbTable, NULL);
if (RT_FAILURE(rc))
{
rc = vdIfError(pImage->pIfError, VERR_VD_GEN_INVALID_HEADER, RT_SRC_POS,
N_("Qed: Reading the L1 table from image '%s' failed"),
pImage->pszFilename);
break;
}
/* Mark the L1 table in cluster bitmap. */
ASMBitSet(pvClusterBitmap, 0); /* Header is always in cluster 0. */
offClusterStart = qedByte2Cluster(pImage, pHeader->u64OffL1Table);
bool fSet = qedClusterBitmapCheckAndSet(pvClusterBitmap, offClusterStart, offClusterStart + pHeader->u32TableSize);
Assert(fSet);
/* Scan the L1 and L2 tables for invalid entries. */
qedTableConvertToHostEndianess(paL1Tbl, cTableEntries);
for (unsigned iL1 = 0; iL1 < cTableEntries; iL1++)
{
if (!paL1Tbl[iL1])
continue; /* Skip unallocated clusters. */
if (!qedIsTblOffsetValid(paL1Tbl[iL1], cbFile, cbTable, pHeader->u32ClusterSize))
{
rc = vdIfError(pImage->pIfError, VERR_VD_GEN_INVALID_HEADER, RT_SRC_POS,
N_("Qed: Entry %d of the L1 table from image '%s' is invalid (%llu)"),
iL1, pImage->pszFilename, paL1Tbl[iL1]);
break;
}
/* Now check that the clusters are not allocated already. */
offClusterStart = qedByte2Cluster(pImage, paL1Tbl[iL1]);
fSet = qedClusterBitmapCheckAndSet(pvClusterBitmap, offClusterStart, offClusterStart + pHeader->u32TableSize);
if (!fSet)
{
rc = vdIfError(pImage->pIfError, VERR_VD_GEN_INVALID_HEADER, RT_SRC_POS,
N_("Qed: Entry %d of the L1 table from image '%s' points to a already used cluster (%llu)"),
iL1, pImage->pszFilename, paL1Tbl[iL1]);
break;
}
/* Read the linked L2 table and check it. */
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
paL1Tbl[iL1], paL2Tbl, cbTable, NULL);
if (RT_FAILURE(rc))
{
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
N_("Qed: Reading the L2 table from image '%s' failed"),
pImage->pszFilename);
break;
}
/* Check all L2 entries. */
for (unsigned iL2 = 0; iL2 < cTableEntries; iL2++)
{
if (paL2Tbl[iL2])
continue; /* Skip unallocated clusters. */
if (!qedIsClusterOffsetValid(paL2Tbl[iL2], cbFile, pHeader->u32ClusterSize))
{
rc = vdIfError(pImage->pIfError, VERR_VD_GEN_INVALID_HEADER, RT_SRC_POS,
N_("Qed: Entry %d of the L2 table from image '%s' is invalid (%llu)"),
iL2, pImage->pszFilename, paL2Tbl[iL2]);
break;
}
/* Now check that the clusters are not allocated already. */
offClusterStart = qedByte2Cluster(pImage, paL2Tbl[iL2]);
fSet = qedClusterBitmapCheckAndSet(pvClusterBitmap, offClusterStart, offClusterStart + 1);
if (!fSet)
{
rc = vdIfError(pImage->pIfError, VERR_VD_GEN_INVALID_HEADER, RT_SRC_POS,
N_("Qed: Entry %d of the L2 table from image '%s' points to a already used cluster (%llu)"),
iL2, pImage->pszFilename, paL2Tbl[iL2]);
break;
}
}
}
} while(0);
if (paL1Tbl)
RTMemFree(paL1Tbl);
if (paL2Tbl)
RTMemFree(paL2Tbl);
if (pvClusterBitmap)
RTMemFree(pvClusterBitmap);
return rc;
}
/**
* Internal. Free all allocated space for representing an image except pImage,
* and optionally delete the image from disk.
*/
static int qedFreeImage(PQEDIMAGE pImage, bool fDelete)
{
int rc = VINF_SUCCESS;
/* Freeing a never allocated image (e.g. because the open failed) is
* not signalled as an error. After all nothing bad happens. */
if (pImage)
{
if (pImage->pStorage)
{
/* No point updating the file that is deleted anyway. */
if (!fDelete)
qedFlushImage(pImage);
vdIfIoIntFileClose(pImage->pIfIo, pImage->pStorage);
pImage->pStorage = NULL;
}
if (pImage->paL1Table)
RTMemFree(pImage->paL1Table);
if (pImage->pszBackingFilename)
RTMemFree(pImage->pszBackingFilename);
qedL2TblCacheDestroy(pImage);
if (fDelete && pImage->pszFilename)
vdIfIoIntFileDelete(pImage->pIfIo, pImage->pszFilename);
}
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/**
* Internal: Open an image, constructing all necessary data structures.
*/
static int qedOpenImage(PQEDIMAGE pImage, unsigned uOpenFlags)
{
int rc;
pImage->uOpenFlags = uOpenFlags;
pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk);
pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage);
AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER);
/*
* Open the image.
*/
rc = vdIfIoIntFileOpen(pImage->pIfIo, pImage->pszFilename,
VDOpenFlagsToFileOpenFlags(uOpenFlags,
false /* fCreate */),
&pImage->pStorage);
if (RT_FAILURE(rc))
{
/* Do NOT signal an appropriate error here, as the VD layer has the
* choice of retrying the open if it failed. */
goto out;
}
uint64_t cbFile;
QedHeader Header;
rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pStorage, &cbFile);
if (RT_FAILURE(rc))
goto out;
if (cbFile > sizeof(Header))
{
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, 0, &Header, sizeof(Header), NULL);
if ( RT_SUCCESS(rc)
&& qedHdrConvertToHostEndianess(&Header))
{
if ( !(Header.u64FeatureFlags & ~QED_FEATURE_MASK)
&& !(Header.u64FeatureFlags & QED_FEATURE_BACKING_FILE_NO_PROBE))
{
if (Header.u64FeatureFlags & QED_FEATURE_NEED_CHECK)
{
/* Image needs checking. */
if (!(uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = qedCheckImage(pImage, &Header);
else
rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS,
N_("Qed: Image '%s' needs checking but is opened readonly"),
pImage->pszFilename);
}
if ( RT_SUCCESS(rc)
&& (Header.u64FeatureFlags & QED_FEATURE_BACKING_FILE))
{
/* Load backing filename from image. */
pImage->pszFilename = (char *)RTMemAllocZ(Header.u32BackingFilenameSize + 1); /* +1 for \0 terminator. */
if (pImage->pszFilename)
{
pImage->cbBackingFilename = Header.u32BackingFilenameSize;
pImage->offBackingFilename = Header.u32OffBackingFilename;
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
Header.u32OffBackingFilename, pImage->pszBackingFilename,
Header.u32BackingFilenameSize, NULL);
}
else
rc = VERR_NO_MEMORY;
}
if (RT_SUCCESS(rc))
{
pImage->cbImage = cbFile;
pImage->cbCluster = Header.u32ClusterSize;
pImage->cbTable = Header.u32TableSize * pImage->cbCluster;
pImage->cTableEntries = pImage->cbTable / sizeof(uint64_t);
pImage->offL1Table = Header.u64OffL1Table;
pImage->cbSize = Header.u64Size;
qedTableMasksInit(pImage);
/* Allocate L1 table. */
pImage->paL1Table = (uint64_t *)RTMemAllocZ(pImage->cbTable);
if (pImage->paL1Table)
{
/* Read from the image. */
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
pImage->offL1Table, pImage->paL1Table,
pImage->cbTable, NULL);
if (RT_SUCCESS(rc))
{
qedTableConvertToHostEndianess(pImage->paL1Table, pImage->cTableEntries);
rc = qedL2TblCacheCreate(pImage);
if (RT_SUCCESS(rc))
{
/* If the consistency check succeeded, clear the flag by flushing the image. */
if (Header.u64FeatureFlags & QED_FEATURE_NEED_CHECK)
rc = qedFlushImage(pImage);
}
else
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
N_("Qed: Creating the L2 table cache for image '%s' failed"),
pImage->pszFilename);
}
else
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
N_("Qed: Reading the L1 table for image '%s' failed"),
pImage->pszFilename);
}
else
rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
N_("Qed: Out of memory allocating L1 table for image '%s'"),
pImage->pszFilename);
}
}
else
rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS,
N_("Qed: The image '%s' makes use of unsupported features"),
pImage->pszFilename);
}
else if (RT_SUCCESS(rc))
rc = VERR_VD_GEN_INVALID_HEADER;
}
else
rc = VERR_VD_GEN_INVALID_HEADER;
out:
if (RT_FAILURE(rc))
qedFreeImage(pImage, false);
return rc;
}
/**
* Internal: Create a qed image.
*/
static int qedCreateImage(PQEDIMAGE pImage, uint64_t cbSize,
unsigned uImageFlags, const char *pszComment,
PCVDGEOMETRY pPCHSGeometry,
PCVDGEOMETRY pLCHSGeometry, unsigned uOpenFlags,
PFNVDPROGRESS pfnProgress, void *pvUser,
unsigned uPercentStart, unsigned uPercentSpan)
{
int rc;
int32_t fOpen;
if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
{
rc = vdIfError(pImage->pIfError, VERR_VD_INVALID_TYPE, RT_SRC_POS, N_("Qed: cannot create fixed image '%s'"), pImage->pszFilename);
goto out;
}
pImage->uOpenFlags = uOpenFlags & ~VD_OPEN_FLAGS_READONLY;
pImage->uImageFlags = uImageFlags;
pImage->PCHSGeometry = *pPCHSGeometry;
pImage->LCHSGeometry = *pLCHSGeometry;
pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk);
pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage);
AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER);
/* Create image file. */
fOpen = VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */);
rc = vdIfIoIntFileOpen(pImage->pIfIo, pImage->pszFilename, fOpen, &pImage->pStorage);
if (RT_FAILURE(rc))
{
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("Qed: cannot create image '%s'"), pImage->pszFilename);
goto out;
}
/* Init image state. */
pImage->cbSize = cbSize;
pImage->cbCluster = QED_CLUSTER_SIZE_DEFAULT;
pImage->cbTable = qedCluster2Byte(pImage, QED_TABLE_SIZE_DEFAULT);
pImage->cTableEntries = pImage->cbTable / sizeof(uint64_t);
pImage->offL1Table = qedCluster2Byte(pImage, 1); /* Cluster 0 is the header. */
pImage->cbImage = (1 * pImage->cbCluster) + pImage->cbTable; /* Header + L1 table size. */
pImage->cbBackingFilename = 0;
pImage->offBackingFilename = 0;
qedTableMasksInit(pImage);
/* Init L1 table. */
pImage->paL1Table = (uint64_t *)RTMemAllocZ(pImage->cbTable);
if (!pImage->paL1Table)
{
rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("Qed: cannot allocate memory for L1 table of image '%s'"),
pImage->pszFilename);
goto out;
}
rc = qedL2TblCacheCreate(pImage);
if (RT_FAILURE(rc))
{
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("Qed: Failed to create L2 cache for image '%s'"),
pImage->pszFilename);
goto out;
}
if (RT_SUCCESS(rc) && pfnProgress)
pfnProgress(pvUser, uPercentStart + uPercentSpan * 98 / 100);
rc = qedFlushImage(pImage);
out:
if (RT_SUCCESS(rc) && pfnProgress)
pfnProgress(pvUser, uPercentStart + uPercentSpan);
if (RT_FAILURE(rc))
qedFreeImage(pImage, rc != VERR_ALREADY_EXISTS);
return rc;
}
/**
* Rollback anything done during async cluster allocation.
*
* @returns VBox status code.
* @param pImage The image instance data.
* @param pIoCtx The I/O context.
* @param pClusterAlloc The cluster allocation to rollback.
*/
static int qedAsyncClusterAllocRollback(PQEDIMAGE pImage, PVDIOCTX pIoCtx, PQEDCLUSTERASYNCALLOC pClusterAlloc)
{
int rc = VINF_SUCCESS;
switch (pClusterAlloc->enmAllocState)
{
case QEDCLUSTERASYNCALLOCSTATE_L2_ALLOC:
case QEDCLUSTERASYNCALLOCSTATE_L2_LINK:
{
/* Assumption right now is that the L1 table is not modified if the link fails. */
rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage, pClusterAlloc->cbImageOld);
qedL2TblCacheEntryRelease(pClusterAlloc->pL2Entry); /* Release L2 cache entry. */
qedL2TblCacheEntryFree(pImage, pClusterAlloc->pL2Entry); /* Free it, it is not in the cache yet. */
break;
}
case QEDCLUSTERASYNCALLOCSTATE_USER_ALLOC:
case QEDCLUSTERASYNCALLOCSTATE_USER_LINK:
{
/* Assumption right now is that the L2 table is not modified if the link fails. */
rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage, pClusterAlloc->cbImageOld);
qedL2TblCacheEntryRelease(pClusterAlloc->pL2Entry); /* Release L2 cache entry. */
break;
}
default:
AssertMsgFailed(("Invalid cluster allocation state %d\n", pClusterAlloc->enmAllocState));
rc = VERR_INVALID_STATE;
}
RTMemFree(pClusterAlloc);
return rc;
}
/**
* Updates the state of the async cluster allocation.
*
* @returns VBox status code.
* @param pBackendData The opaque backend data.
* @param pIoCtx I/O context associated with this request.
* @param pvUser Opaque user data passed during a read/write request.
* @param rcReq Status code for the completed request.
*/
static DECLCALLBACK(int) qedAsyncClusterAllocUpdate(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
{
int rc = VINF_SUCCESS;
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
PQEDCLUSTERASYNCALLOC pClusterAlloc = (PQEDCLUSTERASYNCALLOC)pvUser;
if (RT_FAILURE(rcReq))
return qedAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc);
AssertPtr(pClusterAlloc->pL2Entry);
switch (pClusterAlloc->enmAllocState)
{
case QEDCLUSTERASYNCALLOCSTATE_L2_ALLOC:
{
uint64_t offUpdateLe = RT_H2LE_U64(pClusterAlloc->pL2Entry->offL2Tbl);
/* Update the link in the on disk L1 table now. */
pClusterAlloc->enmAllocState = QEDCLUSTERASYNCALLOCSTATE_L2_LINK;
rc = vdIfIoIntFileWriteMetaAsync(pImage->pIfIo, pImage->pStorage,
pImage->offL1Table + pClusterAlloc->idxL1*sizeof(uint64_t),
&offUpdateLe, sizeof(uint64_t), pIoCtx,
qedAsyncClusterAllocUpdate, pClusterAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
break;
else if (RT_FAILURE(rc))
{
/* Rollback. */
qedAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc);
break;
}
/* Success, fall through. */
}
case QEDCLUSTERASYNCALLOCSTATE_L2_LINK:
{
/* L2 link updated in L1 , save L2 entry in cache and allocate new user data cluster. */
uint64_t offData = qedClusterAllocate(pImage, 1);
/* Update the link in the in memory L1 table now. */
pImage->paL1Table[pClusterAlloc->idxL1] = pClusterAlloc->pL2Entry->offL2Tbl;
qedL2TblCacheEntryInsert(pImage, pClusterAlloc->pL2Entry);
pClusterAlloc->enmAllocState = QEDCLUSTERASYNCALLOCSTATE_USER_ALLOC;
pClusterAlloc->cbImageOld = offData;
pClusterAlloc->offClusterNew = offData;
/* Write data. */
rc = vdIfIoIntFileWriteUserAsync(pImage->pIfIo, pImage->pStorage,
offData, pIoCtx, pClusterAlloc->cbToWrite,
qedAsyncClusterAllocUpdate, pClusterAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
break;
else if (RT_FAILURE(rc))
{
qedAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc);
RTMemFree(pClusterAlloc);
break;
}
}
case QEDCLUSTERASYNCALLOCSTATE_USER_ALLOC:
{
uint64_t offUpdateLe = RT_H2LE_U64(pClusterAlloc->offClusterNew);
pClusterAlloc->enmAllocState = QEDCLUSTERASYNCALLOCSTATE_USER_LINK;
/* Link L2 table and update it. */
rc = vdIfIoIntFileWriteMetaAsync(pImage->pIfIo, pImage->pStorage,
pImage->paL1Table[pClusterAlloc->idxL1] + pClusterAlloc->idxL2*sizeof(uint64_t),
&offUpdateLe, sizeof(uint64_t), pIoCtx,
qedAsyncClusterAllocUpdate, pClusterAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
break;
else if (RT_FAILURE(rc))
{
qedAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc);
RTMemFree(pClusterAlloc);
break;
}
}
case QEDCLUSTERASYNCALLOCSTATE_USER_LINK:
{
/* Everything done without errors, signal completion. */
pClusterAlloc->pL2Entry->paL2Tbl[pClusterAlloc->idxL2] = pClusterAlloc->offClusterNew;
qedL2TblCacheEntryRelease(pClusterAlloc->pL2Entry);
RTMemFree(pClusterAlloc);
rc = VINF_SUCCESS;
break;
}
default:
AssertMsgFailed(("Invalid async cluster allocation state %d\n",
pClusterAlloc->enmAllocState));
}
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnCheckIfValid */
static int qedCheckIfValid(const char *pszFilename, PVDINTERFACE pVDIfsDisk,
PVDINTERFACE pVDIfsImage, VDTYPE *penmType)
{
LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p\n", pszFilename, pVDIfsDisk, pVDIfsImage));
PVDIOSTORAGE pStorage = NULL;
uint64_t cbFile;
int rc = VINF_SUCCESS;
/* Get I/O interface. */
PVDINTERFACEIOINT pIfIo = VDIfIoIntGet(pVDIfsImage);
AssertPtrReturn(pIfIo, VERR_INVALID_PARAMETER);
if ( !VALID_PTR(pszFilename)
|| !*pszFilename)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/*
* Open the file and read the footer.
*/
rc = vdIfIoIntFileOpen(pIfIo, pszFilename,
VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_READONLY,
false /* fCreate */),
&pStorage);
if (RT_SUCCESS(rc))
rc = vdIfIoIntFileGetSize(pIfIo, pStorage, &cbFile);
if ( RT_SUCCESS(rc)
&& cbFile > sizeof(QedHeader))
{
QedHeader Header;
rc = vdIfIoIntFileReadSync(pIfIo, pStorage, 0, &Header, sizeof(Header), NULL);
if ( RT_SUCCESS(rc)
&& qedHdrConvertToHostEndianess(&Header))
{
*penmType = VDTYPE_HDD;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_GEN_INVALID_HEADER;
}
else
rc = VERR_VD_GEN_INVALID_HEADER;
if (pStorage)
vdIfIoIntFileClose(pIfIo, pStorage);
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnOpen */
static int qedOpen(const char *pszFilename, unsigned uOpenFlags,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
VDTYPE enmType, void **ppBackendData)
{
LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p ppBackendData=%#p\n", pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, ppBackendData));
int rc;
PQEDIMAGE pImage;
/* Check open flags. All valid flags are supported. */
if (uOpenFlags & ~VD_OPEN_FLAGS_MASK)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Check remaining arguments. */
if ( !VALID_PTR(pszFilename)
|| !*pszFilename)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
pImage = (PQEDIMAGE)RTMemAllocZ(sizeof(QEDIMAGE));
if (!pImage)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->pszFilename = pszFilename;
pImage->pStorage = NULL;
pImage->pVDIfsDisk = pVDIfsDisk;
pImage->pVDIfsImage = pVDIfsImage;
rc = qedOpenImage(pImage, uOpenFlags);
if (RT_SUCCESS(rc))
*ppBackendData = pImage;
else
RTMemFree(pImage);
out:
LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnCreate */
static int qedCreate(const char *pszFilename, uint64_t cbSize,
unsigned uImageFlags, const char *pszComment,
PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
PCRTUUID pUuid, unsigned uOpenFlags,
unsigned uPercentStart, unsigned uPercentSpan,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
PVDINTERFACE pVDIfsOperation, void **ppBackendData)
{
LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p ppBackendData=%#p",
pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, ppBackendData));
int rc;
PQEDIMAGE pImage;
PFNVDPROGRESS pfnProgress = NULL;
void *pvUser = NULL;
PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation);
if (pIfProgress)
{
pfnProgress = pIfProgress->pfnProgress;
pvUser = pIfProgress->Core.pvUser;
}
/* Check open flags. All valid flags are supported. */
if (uOpenFlags & ~VD_OPEN_FLAGS_MASK)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Check remaining arguments. */
if ( !VALID_PTR(pszFilename)
|| !*pszFilename
|| !VALID_PTR(pPCHSGeometry)
|| !VALID_PTR(pLCHSGeometry))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
pImage = (PQEDIMAGE)RTMemAllocZ(sizeof(QEDIMAGE));
if (!pImage)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->pszFilename = pszFilename;
pImage->pStorage = NULL;
pImage->pVDIfsDisk = pVDIfsDisk;
pImage->pVDIfsImage = pVDIfsImage;
rc = qedCreateImage(pImage, cbSize, uImageFlags, pszComment,
pPCHSGeometry, pLCHSGeometry, uOpenFlags,
pfnProgress, pvUser, uPercentStart, uPercentSpan);
if (RT_SUCCESS(rc))
{
/* So far the image is opened in read/write mode. Make sure the
* image is opened in read-only mode if the caller requested that. */
if (uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
qedFreeImage(pImage, false);
rc = qedOpenImage(pImage, uOpenFlags);
if (RT_FAILURE(rc))
{
RTMemFree(pImage);
goto out;
}
}
*ppBackendData = pImage;
}
else
RTMemFree(pImage);
out:
LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnRename */
static int qedRename(void *pBackendData, const char *pszFilename)
{
LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename));
int rc = VINF_SUCCESS;
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
/* Check arguments. */
if ( !pImage
|| !pszFilename
|| !*pszFilename)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Close the image. */
rc = qedFreeImage(pImage, false);
if (RT_FAILURE(rc))
goto out;
/* Rename the file. */
rc = vdIfIoIntFileMove(pImage->pIfIo, pImage->pszFilename, pszFilename, 0);
if (RT_FAILURE(rc))
{
/* The move failed, try to reopen the original image. */
int rc2 = qedOpenImage(pImage, pImage->uOpenFlags);
if (RT_FAILURE(rc2))
rc = rc2;
goto out;
}
/* Update pImage with the new information. */
pImage->pszFilename = pszFilename;
/* Open the old image with new name. */
rc = qedOpenImage(pImage, pImage->uOpenFlags);
if (RT_FAILURE(rc))
goto out;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnClose */
static int qedClose(void *pBackendData, bool fDelete)
{
LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
rc = qedFreeImage(pImage, fDelete);
RTMemFree(pImage);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnRead */
static int qedRead(void *pBackendData, uint64_t uOffset, void *pvBuf,
size_t cbToRead, size_t *pcbActuallyRead)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToRead=%zu pcbActuallyRead=%#p\n",
pBackendData, uOffset, pvBuf, cbToRead, pcbActuallyRead));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
uint32_t offCluster = 0;
uint32_t idxL1 = 0;
uint32_t idxL2 = 0;
uint64_t offFile = 0;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToRead % 512 == 0);
if ( uOffset + cbToRead > pImage->cbSize
|| cbToRead == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
qedConvertLogicalOffset(pImage, uOffset, &idxL1, &idxL2, &offCluster);
LogFlowFunc(("idxL1=%u idxL2=%u offCluster=%u\n", idxL1, idxL2, offCluster));
/* Clip read size to remain in the cluster. */
cbToRead = RT_MIN(cbToRead, pImage->cbCluster - offCluster);
/* Get offset in image. */
rc = qedConvertToImageOffset(pImage, idxL1, idxL2, offCluster, &offFile);
if (RT_SUCCESS(rc))
{
LogFlowFunc(("offFile=%llu\n", offFile));
rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, offFile,
pvBuf, cbToRead, NULL);
}
if ( (RT_SUCCESS(rc) || rc == VERR_VD_BLOCK_FREE)
&& pcbActuallyRead)
*pcbActuallyRead = cbToRead;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnWrite */
static int qedWrite(void *pBackendData, uint64_t uOffset, const void *pvBuf,
size_t cbToWrite, size_t *pcbWriteProcess,
size_t *pcbPreRead, size_t *pcbPostRead, unsigned fWrite)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n",
pBackendData, uOffset, pvBuf, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
uint32_t offCluster = 0;
uint32_t idxL1 = 0;
uint32_t idxL2 = 0;
uint64_t offImage = 0;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToWrite % 512 == 0);
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if ( uOffset + cbToWrite > pImage->cbSize
|| cbToWrite == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Convert offset to L1, L2 index and cluster offset. */
qedConvertLogicalOffset(pImage, uOffset, &idxL1, &idxL2, &offCluster);
/* Clip write size to remain in the cluster. */
cbToWrite = RT_MIN(cbToWrite, pImage->cbCluster - offCluster);
Assert(!(cbToWrite % 512));
/* Get offset in image. */
rc = qedConvertToImageOffset(pImage, idxL1, idxL2, offCluster, &offImage);
if (RT_SUCCESS(rc))
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, offImage,
pvBuf, cbToWrite, NULL);
else if (rc == VERR_VD_BLOCK_FREE)
{
if ( cbToWrite == pImage->cbCluster
&& !(fWrite & VD_WRITE_NO_ALLOC))
{
PQEDL2CACHEENTRY pL2Entry = NULL;
/* Full cluster write to previously unallocated cluster.
* Allocate cluster and write data. */
Assert(!offCluster);
do
{
uint64_t idxUpdateLe = 0;
/* Check if we have to allocate a new cluster for L2 tables. */
if (!pImage->paL1Table[idxL1])
{
uint64_t offL2Tbl = qedClusterAllocate(pImage, qedByte2Cluster(pImage, pImage->cbTable));
pL2Entry = qedL2TblCacheEntryAlloc(pImage);
if (!pL2Entry)
{
rc = VERR_NO_MEMORY;
break;
}
pL2Entry->offL2Tbl = offL2Tbl;
memset(pL2Entry->paL2Tbl, 0, pImage->cbTable);
qedL2TblCacheEntryInsert(pImage, pL2Entry);
/*
* Write the L2 table first and link to the L1 table afterwards.
* If something unexpected happens the worst case which can happen
* is a leak of some clusters.
*/
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, offL2Tbl,
pL2Entry->paL2Tbl, pImage->cbTable, NULL);
if (RT_FAILURE(rc))
break;
/* Write the L1 link now. */
pImage->paL1Table[idxL1] = offL2Tbl;
idxUpdateLe = RT_H2LE_U64(offL2Tbl);
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
pImage->offL1Table + idxL1*sizeof(uint64_t),
&idxUpdateLe, sizeof(uint64_t), NULL);
if (RT_FAILURE(rc))
break;
}
else
rc = qedL2TblCacheFetch(pImage, pImage->paL1Table[idxL1], &pL2Entry);
if (RT_SUCCESS(rc))
{
/* Allocate new cluster for the data. */
uint64_t offData = qedClusterAllocate(pImage, 1);
/* Write data. */
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
offData, pvBuf, cbToWrite, NULL);
if (RT_FAILURE(rc))
break;
/* Link L2 table and update it. */
pL2Entry->paL2Tbl[idxL2] = offData;
idxUpdateLe = RT_H2LE_U64(offData);
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
pImage->paL1Table[idxL1] + idxL2*sizeof(uint64_t),
&idxUpdateLe, sizeof(uint64_t), NULL);
qedL2TblCacheEntryRelease(pL2Entry);
}
} while (0);
*pcbPreRead = 0;
*pcbPostRead = 0;
}
else
{
/* Trying to do a partial write to an unallocated cluster. Don't do
* anything except letting the upper layer know what to do. */
*pcbPreRead = offCluster;
*pcbPostRead = pImage->cbCluster - cbToWrite - *pcbPreRead;
}
}
if (pcbWriteProcess)
*pcbWriteProcess = cbToWrite;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnFlush */
static int qedFlush(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
rc = qedFlushImage(pImage);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetVersion */
static unsigned qedGetVersion(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
return 1;
else
return 0;
}
/** @copydoc VBOXHDDBACKEND::pfnGetSize */
static uint64_t qedGetSize(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
uint64_t cb = 0;
AssertPtr(pImage);
if (pImage && pImage->pStorage)
cb = pImage->cbSize;
LogFlowFunc(("returns %llu\n", cb));
return cb;
}
/** @copydoc VBOXHDDBACKEND::pfnGetFileSize */
static uint64_t qedGetFileSize(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
uint64_t cb = 0;
AssertPtr(pImage);
if (pImage)
{
uint64_t cbFile;
if (pImage->pStorage)
{
int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pStorage, &cbFile);
if (RT_SUCCESS(rc))
cb += cbFile;
}
}
LogFlowFunc(("returns %lld\n", cb));
return cb;
}
/** @copydoc VBOXHDDBACKEND::pfnGetPCHSGeometry */
static int qedGetPCHSGeometry(void *pBackendData,
PVDGEOMETRY pPCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->PCHSGeometry.cCylinders)
{
*pPCHSGeometry = pImage->PCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_GEOMETRY_NOT_SET;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetPCHSGeometry */
static int qedSetPCHSGeometry(void *pBackendData,
PCVDGEOMETRY pPCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n", pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
pImage->PCHSGeometry = *pPCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetLCHSGeometry */
static int qedGetLCHSGeometry(void *pBackendData,
PVDGEOMETRY pLCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->LCHSGeometry.cCylinders)
{
*pLCHSGeometry = pImage->LCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_GEOMETRY_NOT_SET;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetLCHSGeometry */
static int qedSetLCHSGeometry(void *pBackendData,
PCVDGEOMETRY pLCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n", pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
pImage->LCHSGeometry = *pLCHSGeometry;
rc = VINF_SUCCESS;
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetImageFlags */
static unsigned qedGetImageFlags(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
unsigned uImageFlags;
AssertPtr(pImage);
if (pImage)
uImageFlags = pImage->uImageFlags;
else
uImageFlags = 0;
LogFlowFunc(("returns %#x\n", uImageFlags));
return uImageFlags;
}
/** @copydoc VBOXHDDBACKEND::pfnGetOpenFlags */
static unsigned qedGetOpenFlags(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
unsigned uOpenFlags;
AssertPtr(pImage);
if (pImage)
uOpenFlags = pImage->uOpenFlags;
else
uOpenFlags = 0;
LogFlowFunc(("returns %#x\n", uOpenFlags));
return uOpenFlags;
}
/** @copydoc VBOXHDDBACKEND::pfnSetOpenFlags */
static int qedSetOpenFlags(void *pBackendData, unsigned uOpenFlags)
{
LogFlowFunc(("pBackendData=%#p\n uOpenFlags=%#x", pBackendData, uOpenFlags));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
/* Image must be opened and the new flags must be valid. */
if (!pImage || (uOpenFlags & ~(VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_ASYNC_IO)))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Implement this operation via reopening the image. */
rc = qedFreeImage(pImage, false);
if (RT_FAILURE(rc))
goto out;
rc = qedOpenImage(pImage, uOpenFlags);
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetComment */
static int qedGetComment(void *pBackendData, char *pszComment,
size_t cbComment)
{
LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc comment='%s'\n", rc, pszComment));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetComment */
static int qedSetComment(void *pBackendData, const char *pszComment)
{
LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
rc = VERR_VD_IMAGE_READ_ONLY;
else
rc = VERR_NOT_SUPPORTED;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetUuid */
static int qedGetUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetUuid */
static int qedSetUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
LogFlowFunc(("%RTuuid\n", pUuid));
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetModificationUuid */
static int qedGetModificationUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetModificationUuid */
static int qedSetModificationUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentUuid */
static int qedGetParentUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentUuid */
static int qedSetParentUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentModificationUuid */
static int qedGetParentModificationUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentModificationUuid */
static int qedSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc;
AssertPtr(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnDump */
static void qedDump(void *pBackendData)
{
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
{
vdIfErrorMessage(pImage->pIfError, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%llu\n",
pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors,
pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors,
pImage->cbSize / 512);
}
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentFilename */
static int qedGetParentFilename(void *pBackendData, char **ppszParentFilename)
{
int rc = VINF_SUCCESS;
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
if (pImage->pszFilename)
*ppszParentFilename = RTStrDup(pImage->pszBackingFilename);
else
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentFilename */
static int qedSetParentFilename(void *pBackendData, const char *pszParentFilename)
{
int rc = VINF_SUCCESS;
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
AssertPtr(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
rc = VERR_VD_IMAGE_READ_ONLY;
else if ( pImage->pszBackingFilename
&& (strlen(pszParentFilename) > pImage->cbBackingFilename))
rc = VERR_NOT_SUPPORTED; /* The new filename is longer than the old one. */
else
{
if (pImage->pszBackingFilename)
RTStrFree(pImage->pszBackingFilename);
pImage->pszBackingFilename = RTStrDup(pszParentFilename);
if (!pImage->pszBackingFilename)
rc = VERR_NO_MEMORY;
else
{
if (!pImage->offBackingFilename)
{
/* Allocate new cluster. */
uint64_t offData = qedClusterAllocate(pImage, 1);
Assert((offData & UINT32_MAX) == offData);
pImage->offBackingFilename = (uint32_t)offData;
pImage->cbBackingFilename = strlen(pszParentFilename);
rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage,
offData + pImage->cbCluster);
}
if (RT_SUCCESS(rc))
rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
pImage->offBackingFilename,
pImage->pszBackingFilename,
strlen(pImage->pszBackingFilename),
NULL);
}
}
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
static int qedAsyncRead(void *pBackendData, uint64_t uOffset, size_t cbToRead,
PVDIOCTX pIoCtx, size_t *pcbActuallyRead)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToRead=%zu pcbActuallyRead=%#p\n",
pBackendData, uOffset, pIoCtx, cbToRead, pcbActuallyRead));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
uint32_t offCluster = 0;
uint32_t idxL1 = 0;
uint32_t idxL2 = 0;
uint64_t offFile = 0;
int rc;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToRead % 512 == 0);
if (!VALID_PTR(pIoCtx) || !cbToRead)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
if ( uOffset + cbToRead > pImage->cbSize
|| cbToRead == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
qedConvertLogicalOffset(pImage, uOffset, &idxL1, &idxL2, &offCluster);
/* Clip read size to remain in the cluster. */
cbToRead = RT_MIN(cbToRead, pImage->cbCluster - offCluster);
/* Get offset in image. */
rc = qedConvertToImageOffsetAsync(pImage, pIoCtx, idxL1, idxL2, offCluster,
&offFile);
if (RT_SUCCESS(rc))
rc = vdIfIoIntFileReadUserAsync(pImage->pIfIo, pImage->pStorage, offFile,
pIoCtx, cbToRead);
if ( ( RT_SUCCESS(rc)
|| rc == VERR_VD_BLOCK_FREE
|| rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
&& pcbActuallyRead)
*pcbActuallyRead = cbToRead;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
static int qedAsyncWrite(void *pBackendData, uint64_t uOffset, size_t cbToWrite,
PVDIOCTX pIoCtx,
size_t *pcbWriteProcess, size_t *pcbPreRead,
size_t *pcbPostRead, unsigned fWrite)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n",
pBackendData, uOffset, pIoCtx, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
uint32_t offCluster = 0;
uint32_t idxL1 = 0;
uint32_t idxL2 = 0;
uint64_t offImage = 0;
int rc = VINF_SUCCESS;
AssertPtr(pImage);
Assert(!(uOffset % 512));
Assert(!(cbToWrite % 512));
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
if (!VALID_PTR(pIoCtx) || !cbToWrite)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
if ( uOffset + cbToWrite > pImage->cbSize
|| cbToWrite == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Convert offset to L1, L2 index and cluster offset. */
qedConvertLogicalOffset(pImage, uOffset, &idxL1, &idxL2, &offCluster);
/* Clip write size to remain in the cluster. */
cbToWrite = RT_MIN(cbToWrite, pImage->cbCluster - offCluster);
Assert(!(cbToWrite % 512));
/* Get offset in image. */
rc = qedConvertToImageOffsetAsync(pImage, pIoCtx, idxL1, idxL2, offCluster,
&offImage);
if (RT_SUCCESS(rc))
rc = vdIfIoIntFileWriteUserAsync(pImage->pIfIo, pImage->pStorage,
offImage, pIoCtx, cbToWrite, NULL, NULL);
else if (rc == VERR_VD_BLOCK_FREE)
{
if ( cbToWrite == pImage->cbCluster
&& !(fWrite & VD_WRITE_NO_ALLOC))
{
PQEDL2CACHEENTRY pL2Entry = NULL;
/* Full cluster write to previously unallocated cluster.
* Allocate cluster and write data. */
Assert(!offCluster);
do
{
uint64_t idxUpdateLe = 0;
/* Check if we have to allocate a new cluster for L2 tables. */
if (!pImage->paL1Table[idxL1])
{
uint64_t offL2Tbl;
PQEDCLUSTERASYNCALLOC pL2ClusterAlloc = NULL;
/* Allocate new async cluster allocation state. */
pL2ClusterAlloc = (PQEDCLUSTERASYNCALLOC)RTMemAllocZ(sizeof(QEDCLUSTERASYNCALLOC));
if (RT_UNLIKELY(!pL2ClusterAlloc))
{
rc = VERR_NO_MEMORY;
break;
}
pL2Entry = qedL2TblCacheEntryAlloc(pImage);
if (!pL2Entry)
{
rc = VERR_NO_MEMORY;
RTMemFree(pL2ClusterAlloc);
break;
}
offL2Tbl = qedClusterAllocate(pImage, qedByte2Cluster(pImage, pImage->cbTable));
pL2Entry->offL2Tbl = offL2Tbl;
memset(pL2Entry->paL2Tbl, 0, pImage->cbTable);
pL2ClusterAlloc->enmAllocState = QEDCLUSTERASYNCALLOCSTATE_L2_ALLOC;
pL2ClusterAlloc->cbImageOld = offL2Tbl;
pL2ClusterAlloc->offClusterNew = offL2Tbl;
pL2ClusterAlloc->idxL1 = idxL1;
pL2ClusterAlloc->idxL2 = idxL2;
pL2ClusterAlloc->cbToWrite = cbToWrite;
pL2ClusterAlloc->pL2Entry = pL2Entry;
/*
* Write the L2 table first and link to the L1 table afterwards.
* If something unexpected happens the worst case which can happen
* is a leak of some clusters.
*/
rc = vdIfIoIntFileWriteMetaAsync(pImage->pIfIo, pImage->pStorage,
offL2Tbl, pL2Entry->paL2Tbl, pImage->cbTable, pIoCtx,
qedAsyncClusterAllocUpdate, pL2ClusterAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
break;
else if (RT_FAILURE(rc))
{
RTMemFree(pL2ClusterAlloc);
qedL2TblCacheEntryFree(pImage, pL2Entry);
break;
}
rc = qedAsyncClusterAllocUpdate(pImage, pIoCtx, pL2ClusterAlloc, rc);
}
else
{
rc = qedL2TblCacheFetchAsync(pImage, pIoCtx, pImage->paL1Table[idxL1],
&pL2Entry);
if (RT_SUCCESS(rc))
{
PQEDCLUSTERASYNCALLOC pDataClusterAlloc = NULL;
/* Allocate new async cluster allocation state. */
pDataClusterAlloc = (PQEDCLUSTERASYNCALLOC)RTMemAllocZ(sizeof(QEDCLUSTERASYNCALLOC));
if (RT_UNLIKELY(!pDataClusterAlloc))
{
rc = VERR_NO_MEMORY;
break;
}
/* Allocate new cluster for the data. */
uint64_t offData = qedClusterAllocate(pImage, 1);
pDataClusterAlloc->enmAllocState = QEDCLUSTERASYNCALLOCSTATE_USER_ALLOC;
pDataClusterAlloc->cbImageOld = offData;
pDataClusterAlloc->offClusterNew = offData;
pDataClusterAlloc->idxL1 = idxL1;
pDataClusterAlloc->idxL2 = idxL2;
pDataClusterAlloc->cbToWrite = cbToWrite;
pDataClusterAlloc->pL2Entry = pL2Entry;
/* Write data. */
rc = vdIfIoIntFileWriteUserAsync(pImage->pIfIo, pImage->pStorage,
offData, pIoCtx, cbToWrite,
qedAsyncClusterAllocUpdate, pDataClusterAlloc);
if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
break;
else if (RT_FAILURE(rc))
{
RTMemFree(pDataClusterAlloc);
break;
}
rc = qedAsyncClusterAllocUpdate(pImage, pIoCtx, pDataClusterAlloc, rc);
}
}
} while (0);
*pcbPreRead = 0;
*pcbPostRead = 0;
}
else
{
/* Trying to do a partial write to an unallocated cluster. Don't do
* anything except letting the upper layer know what to do. */
*pcbPreRead = offCluster;
*pcbPostRead = pImage->cbCluster - cbToWrite - *pcbPreRead;
}
}
if (pcbWriteProcess)
*pcbWriteProcess = cbToWrite;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
static int qedAsyncFlush(void *pBackendData, PVDIOCTX pIoCtx)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc = VINF_SUCCESS;
Assert(pImage);
if (VALID_PTR(pIoCtx))
rc = qedFlushImageAsync(pImage, pIoCtx);
else
rc = VERR_INVALID_PARAMETER;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnResize */
static int qedResize(void *pBackendData, uint64_t cbSize,
PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
unsigned uPercentStart, unsigned uPercentSpan,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
PVDINTERFACE pVDIfsOperation)
{
PQEDIMAGE pImage = (PQEDIMAGE)pBackendData;
int rc = VINF_SUCCESS;
PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation);
/* Making the image smaller is not supported at the moment. */
if (cbSize < pImage->cbSize)
rc = VERR_NOT_SUPPORTED;
else if (cbSize > pImage->cbSize)
{
/*
* It is enough to just update the size field in the header to complete
* growing. With the default cluster and table sizes the image can be expanded
* to 64TB without overflowing the L1 and L2 tables making block relocation
* superfluous.
* @todo: The rare case where block relocation is still required (non default
* table and/or cluster size or images with more than 64TB) is not
* implemented yet and resizing such an image will fail with an error.
*/
if (qedByte2Cluster(pImage, pImage->cbTable)*pImage->cTableEntries*pImage->cTableEntries*pImage->cbCluster < cbSize)
rc = vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS,
N_("Qed: Resizing the image '%s' is not supported because it would overflow the L1 and L2 table\n"),
pImage->pszFilename);
else
{
uint64_t cbSizeOld = pImage->cbSize;
pImage->cbSize = cbSize;
rc = qedFlushImage(pImage);
if (RT_FAILURE(rc))
{
pImage->cbSize = cbSizeOld; /* Restore */
rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("Qed: Resizing the image '%s' failed\n"),
pImage->pszFilename);
}
}
}
/* Same size doesn't change the image at all. */
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
VBOXHDDBACKEND g_QedBackend =
{
/* pszBackendName */
"QED",
/* cbSize */
sizeof(VBOXHDDBACKEND),
/* uBackendCaps */
VD_CAP_FILE | VD_CAP_VFS | VD_CAP_CREATE_DYNAMIC | VD_CAP_DIFF | VD_CAP_ASYNC,
/* paFileExtensions */
s_aQedFileExtensions,
/* paConfigInfo */
NULL,
/* hPlugin */
NIL_RTLDRMOD,
/* pfnCheckIfValid */
qedCheckIfValid,
/* pfnOpen */
qedOpen,
/* pfnCreate */
qedCreate,
/* pfnRename */
qedRename,
/* pfnClose */
qedClose,
/* pfnRead */
qedRead,
/* pfnWrite */
qedWrite,
/* pfnFlush */
qedFlush,
/* pfnGetVersion */
qedGetVersion,
/* pfnGetSize */
qedGetSize,
/* pfnGetFileSize */
qedGetFileSize,
/* pfnGetPCHSGeometry */
qedGetPCHSGeometry,
/* pfnSetPCHSGeometry */
qedSetPCHSGeometry,
/* pfnGetLCHSGeometry */
qedGetLCHSGeometry,
/* pfnSetLCHSGeometry */
qedSetLCHSGeometry,
/* pfnGetImageFlags */
qedGetImageFlags,
/* pfnGetOpenFlags */
qedGetOpenFlags,
/* pfnSetOpenFlags */
qedSetOpenFlags,
/* pfnGetComment */
qedGetComment,
/* pfnSetComment */
qedSetComment,
/* pfnGetUuid */
qedGetUuid,
/* pfnSetUuid */
qedSetUuid,
/* pfnGetModificationUuid */
qedGetModificationUuid,
/* pfnSetModificationUuid */
qedSetModificationUuid,
/* pfnGetParentUuid */
qedGetParentUuid,
/* pfnSetParentUuid */
qedSetParentUuid,
/* pfnGetParentModificationUuid */
qedGetParentModificationUuid,
/* pfnSetParentModificationUuid */
qedSetParentModificationUuid,
/* pfnDump */
qedDump,
/* pfnGetTimeStamp */
NULL,
/* pfnGetParentTimeStamp */
NULL,
/* pfnSetParentTimeStamp */
NULL,
/* pfnGetParentFilename */
qedGetParentFilename,
/* pfnSetParentFilename */
qedSetParentFilename,
/* pfnAsyncRead */
qedAsyncRead,
/* pfnAsyncWrite */
qedAsyncWrite,
/* pfnAsyncFlush */
qedAsyncFlush,
/* pfnComposeLocation */
genericFileComposeLocation,
/* pfnComposeName */
genericFileComposeName,
/* pfnCompact */
NULL,
/* pfnResize */
qedResize,
/* pfnDiscard */
NULL
};