ISCSI.cpp revision bcd77ed0b2d4856ff9e53013c696e3210219f30f
/* $Id$ */
/** @file
* iSCSI initiator driver, VD backend.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_VD_ISCSI
#include <VBox/vd-plugin.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/uuid.h>
#include <iprt/string.h>
#include <iprt/asm.h>
#include <iprt/thread.h>
#include <iprt/semaphore.h>
#include <iprt/md5.h>
#include <iprt/tcp.h>
#include <iprt/time.h>
#include <VBox/scsi.h>
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The maximum number of release log entries per image. */
#define MAX_LOG_REL_ERRORS 1024
/** Default port number to use for iSCSI. */
#define ISCSI_DEFAULT_PORT 3260
/** Converts a number in the range of 0 - 15 into the corresponding hex char. */
#define NUM_2_HEX(b) ('0' + (b) + (((b) > 9) ? 39 : 0))
/** Converts a hex char into the corresponding number in the range 0-15. */
#define HEX_2_NUM(c) (((c) <= '9') ? ((c) - '0') : (((c - 'A' + 10) & 0xf)))
/* Converts a base64 char into the corresponding number in the range 0-63. */
#define B64_2_NUM(c) ((c >= 'A' && c <= 'Z') ? (c - 'A') : (c >= 'a' && c <= 'z') ? (c - 'a' + 26) : (c >= '0' && c <= '9') ? (c - '0' + 52) : (c == '+') ? 62 : (c == '/') ? 63 : -1)
/** Minimum CHAP_MD5 challenge length in bytes. */
#define CHAP_MD5_CHALLENGE_MIN 16
/** Maximum CHAP_MD5 challenge length in bytes. */
#define CHAP_MD5_CHALLENGE_MAX 24
/**
* SCSI peripheral device type. */
typedef enum SCSIDEVTYPE
{
/** direct-access device. */
SCSI_DEVTYPE_DISK = 0,
/** sequential-access device. */
SCSI_DEVTYPE_TAPE,
/** printer device. */
SCSI_DEVTYPE_PRINTER,
/** processor device. */
SCSI_DEVTYPE_PROCESSOR,
/** write-once device. */
SCSI_DEVTYPE_WORM,
/** CD/DVD device. */
SCSI_DEVTYPE_CDROM,
/** scanner device. */
SCSI_DEVTYPE_SCANNER,
/** optical memory device. */
SCSI_DEVTYPE_OPTICAL,
/** medium changer. */
SCSI_DEVTYPE_CHANGER,
/** communications device. */
SCSI_DEVTYPE_COMMUNICATION,
/** storage array controller device. */
SCSI_DEVTYPE_RAIDCTL = 0x0c,
/** enclosure services device. */
SCSI_DEVTYPE_ENCLOSURE,
/** simplified direct-access device. */
SCSI_DEVTYPE_SIMPLEDISK,
/** optical card reader/writer device. */
SCSI_DEVTYPE_OCRW,
/** bridge controller device. */
SCSI_DEVTYPE_BRIDGE,
/** object-based storage device. */
SCSI_DEVTYPE_OSD
} SCSIDEVTYPE;
/** Mask for extracting the SCSI device type out of the first byte of the INQUIRY response. */
#define SCSI_DEVTYPE_MASK 0x1f
/** Mask to extract the CmdQue bit out of the seventh byte of the INQUIRY response. */
#define SCSI_INQUIRY_CMDQUE_MASK 0x02
/** Maximum PDU payload size we can handle in one piece. Greater or equal than
* s_iscsiConfigDefaultWriteSplit. */
#define ISCSI_DATA_LENGTH_MAX _256K
/** Maximum PDU size we can handle in one piece. */
#define ISCSI_RECV_PDU_BUFFER_SIZE (ISCSI_DATA_LENGTH_MAX + ISCSI_BHS_SIZE)
/** Version of the iSCSI standard which this initiator driver can handle. */
#define ISCSI_MY_VERSION 0
/** Length of ISCSI basic header segment. */
#define ISCSI_BHS_SIZE 48
/** Reserved task tag value. */
#define ISCSI_TASK_TAG_RSVD 0xffffffff
/**
* iSCSI opcodes. */
typedef enum ISCSIOPCODE
{
/** NOP-Out. */
ISCSIOP_NOP_OUT = 0x00000000,
/** SCSI command. */
ISCSIOP_SCSI_CMD = 0x01000000,
/** SCSI task management request. */
ISCSIOP_SCSI_TASKMGMT_REQ = 0x02000000,
/** Login request. */
ISCSIOP_LOGIN_REQ = 0x03000000,
/** Text request. */
ISCSIOP_TEXT_REQ = 0x04000000,
/** SCSI Data-Out. */
ISCSIOP_SCSI_DATA_OUT = 0x05000000,
/** Logout request. */
ISCSIOP_LOGOUT_REQ = 0x06000000,
/** SNACK request. */
ISCSIOP_SNACK_REQ = 0x10000000,
/** NOP-In. */
ISCSIOP_NOP_IN = 0x20000000,
/** SCSI response. */
ISCSIOP_SCSI_RES = 0x21000000,
/** SCSI Task Management response. */
ISCSIOP_SCSI_TASKMGMT_RES = 0x22000000,
/** Login response. */
ISCSIOP_LOGIN_RES = 0x23000000,
/** Text response. */
ISCSIOP_TEXT_RES = 0x24000000,
/** SCSI Data-In. */
ISCSIOP_SCSI_DATA_IN = 0x25000000,
/** Logout response. */
ISCSIOP_LOGOUT_RES = 0x26000000,
/** Ready To Transfer (R2T). */
ISCSIOP_R2T = 0x31000000,
/** Asynchronous message. */
ISCSIOP_ASYN_MSG = 0x32000000,
/** Reject. */
ISCSIOP_REJECT = 0x3f000000
} ISCSIOPCODE;
/** Mask for extracting the iSCSI opcode out of the first header word. */
#define ISCSIOP_MASK 0x3f000000
/** ISCSI BHS word 0: Request should be processed immediately. */
#define ISCSI_IMMEDIATE_DELIVERY_BIT 0x40000000
/** ISCSI BHS word 0: This is the final PDU for this request/response. */
#define ISCSI_FINAL_BIT 0x00800000
/** ISCSI BHS word 0: Mask for extracting the CSG. */
#define ISCSI_CSG_MASK 0x000c0000
/** ISCSI BHS word 0: Shift offset for extracting the CSG. */
#define ISCSI_CSG_SHIFT 18
/** ISCSI BHS word 0: Mask for extracting the NSG. */
#define ISCSI_NSG_MASK 0x00030000
/** ISCSI BHS word 0: Shift offset for extracting the NSG. */
#define ISCSI_NSG_SHIFT 16
/** ISCSI BHS word 0: task attribute untagged */
#define ISCSI_TASK_ATTR_UNTAGGED 0x00000000
/** ISCSI BHS word 0: task attribute simple */
#define ISCSI_TASK_ATTR_SIMPLE 0x00010000
/** ISCSI BHS word 0: task attribute ordered */
#define ISCSI_TASK_ATTR_ORDERED 0x00020000
/** ISCSI BHS word 0: task attribute head of queue */
#define ISCSI_TASK_ATTR_HOQ 0x00030000
/** ISCSI BHS word 0: task attribute ACA */
#define ISCSI_TASK_ATTR_ACA 0x00040000
/** ISCSI BHS word 0: transit to next login phase. */
#define ISCSI_TRANSIT_BIT 0x00800000
/** ISCSI BHS word 0: continue with login negotiation. */
#define ISCSI_CONTINUE_BIT 0x00400000
/** ISCSI BHS word 0: residual underflow. */
#define ISCSI_RESIDUAL_UNFL_BIT 0x00020000
/** ISCSI BHS word 0: residual overflow. */
#define ISCSI_RESIDUAL_OVFL_BIT 0x00040000
/** ISCSI BHS word 0: Bidirectional read residual underflow. */
#define ISCSI_BI_READ_RESIDUAL_UNFL_BIT 0x00080000
/** ISCSI BHS word 0: Bidirectional read residual overflow. */
#define ISCSI_BI_READ_RESIDUAL_OVFL_BIT 0x00100000
/** ISCSI BHS word 0: SCSI response mask. */
#define ISCSI_SCSI_RESPONSE_MASK 0x0000ff00
/** ISCSI BHS word 0: SCSI status mask. */
#define ISCSI_SCSI_STATUS_MASK 0x000000ff
/** ISCSI BHS word 0: response includes status. */
#define ISCSI_STATUS_BIT 0x00010000
/** Maximum number of scatter/gather segments needed to send a PDU. */
#define ISCSI_SG_SEGMENTS_MAX 4
/** Number of entries in the command table. */
#define ISCSI_CMD_WAITING_ENTRIES 32
/**
* iSCSI login status class. */
typedef enum ISCSILOGINSTATUSCLASS
{
/** Success. */
ISCSI_LOGIN_STATUS_CLASS_SUCCESS = 0,
/** Redirection. */
ISCSI_LOGIN_STATUS_CLASS_REDIRECTION,
/** Initiator error. */
ISCSI_LOGIN_STATUS_CLASS_INITIATOR_ERROR,
/** Target error. */
ISCSI_LOGIN_STATUS_CLASS_TARGET_ERROR
} ISCSILOGINSTATUSCLASS;
/**
* iSCSI connection state. */
typedef enum ISCSISTATE
{
/** Not having a connection/session at all. */
ISCSISTATE_FREE,
/** Currently trying to login. */
ISCSISTATE_IN_LOGIN,
/** Normal operation, corresponds roughly to the Full Feature Phase. */
ISCSISTATE_NORMAL,
/** Currently trying to logout. */
ISCSISTATE_IN_LOGOUT
} ISCSISTATE;
/**
* iSCSI PDU send flags (and maybe more in the future). */
typedef enum ISCSIPDUFLAGS
{
/** No special flags */
ISCSIPDU_DEFAULT = 0,
/** Do not attempt to re-attach to the target if the connection is lost */
ISCSIPDU_NO_REATTACH = RT_BIT(1)
} ISCSIPDUFLAGS;
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* iSCSI login negotiation parameter
*/
typedef struct ISCSIPARAMETER
{
/** Name of the parameter. */
const char *pszParamName;
/** Value of the parameter. */
const char *pszParamValue;
/** Length of the binary parameter. 0=zero-terminated string. */
size_t cbParamValue;
} ISCSIPARAMETER;
/**
* iSCSI Response PDU buffer (scatter).
*/
typedef struct ISCSIRES
{
/** Length of PDU segment. */
size_t cbSeg;
/** Pointer to PDU segment. */
void *pvSeg;
} ISCSIRES;
/** Pointer to an iSCSI Response PDU buffer. */
typedef ISCSIRES *PISCSIRES;
/** Pointer to a const iSCSI Response PDU buffer. */
typedef ISCSIRES const *PCISCSIRES;
/**
* iSCSI Request PDU buffer (gather).
*/
typedef struct ISCSIREQ
{
/** Length of PDU segment in bytes. */
size_t cbSeg;
/** Pointer to PDU segment. */
const void *pcvSeg;
} ISCSIREQ;
/** Pointer to an iSCSI Request PDU buffer. */
typedef ISCSIREQ *PISCSIREQ;
/** Pointer to a const iSCSI Request PDU buffer. */
typedef ISCSIREQ const *PCISCSIREQ;
/**
* SCSI transfer directions.
*/
typedef enum SCSIXFER
{
SCSIXFER_NONE = 0,
SCSIXFER_TO_TARGET,
SCSIXFER_FROM_TARGET,
SCSIXFER_TO_FROM_TARGET
} SCSIXFER, *PSCSIXFER;
/** Forward declaration. */
typedef struct ISCSIIMAGE *PISCSIIMAGE;
/**
* SCSI request structure.
*/
typedef struct SCSIREQ
{
/** Transfer direction. */
SCSIXFER enmXfer;
/** Length of command block. */
size_t cbCDB;
/** Length of Initiator2Target data buffer. */
size_t cbI2TData;
/** Length of Target2Initiator data buffer. */
size_t cbT2IData;
/** Length of sense buffer
* This contains the number of sense bytes received upon completion. */
size_t cbSense;
/** Completion status of the command. */
uint8_t status;
/** Pointer to command block. */
void *pvCDB;
/** Pointer to sense buffer. */
void *pvSense;
/** Pointer to the Initiator2Target S/G list. */
PRTSGSEG paI2TSegs;
/** Number of entries in the I2T S/G list. */
unsigned cI2TSegs;
/** Pointer to the Target2Initiator S/G list. */
PRTSGSEG paT2ISegs;
/** Number of entries in the T2I S/G list. */
unsigned cT2ISegs;
/** S/G buffer for the target to initiator bits. */
RTSGBUF SgBufT2I;
} SCSIREQ, *PSCSIREQ;
/**
* Async request structure holding all necessary data for
* request processing.
*/
typedef struct SCSIREQASYNC
{
/** I/O context associated with this request. */
PVDIOCTX pIoCtx;
/** Pointer to the SCSI request structure. */
PSCSIREQ pScsiReq;
/** The CDB. */
uint8_t abCDB[16];
/** The sense buffer. */
uint8_t abSense[96];
/** Status code to return if we got sense data. */
int rcSense;
/** Number of retries if the command completes with sense
* data before we return with an error.
*/
unsigned cSenseRetries;
/** The number of entries in the I2T S/G list. */
unsigned cI2TSegs;
/** The number of entries in the T2I S/G list. */
unsigned cT2ISegs;
/** The S/G list - variable in size.
* This array holds both the I2T and T2I segments.
* The I2T segments are first and the T2I are second.
*/
RTSGSEG aSegs[1];
} SCSIREQASYNC, *PSCSIREQASYNC;
typedef enum ISCSICMDTYPE
{
/** Process a SCSI request. */
ISCSICMDTYPE_REQ = 0,
/** Call a function in the I/O thread. */
ISCSICMDTYPE_EXEC,
/** Usual 32bit hack. */
ISCSICMDTYPE_32BIT_HACK = 0x7fffffff
} ISCSICMDTYPE;
/** The command completion function. */
typedef DECLCALLBACK(void) FNISCSICMDCOMPLETED(PISCSIIMAGE pImage, int rcReq, void *pvUser);
/** Pointer to a command completion function. */
typedef FNISCSICMDCOMPLETED *PFNISCSICMDCOMPLETED;
/** The command execution function. */
typedef DECLCALLBACK(int) FNISCSIEXEC(void *pvUser);
/** Pointer to a command execution function. */
typedef FNISCSIEXEC *PFNISCSIEXEC;
/**
* Structure used to complete a synchronous request.
*/
typedef struct ISCSICMDSYNC
{
/** Event semaphore to wakeup the waiting thread. */
RTSEMEVENT EventSem;
/** Status code of the command. */
int rcCmd;
} ISCSICMDSYNC, *PISCSICMDSYNC;
/**
* iSCSI command.
* Used to forward requests to the I/O thread
* if existing.
*/
typedef struct ISCSICMD
{
/** Next one in the list. */
struct ISCSICMD *pNext;
/** Assigned ITT. */
uint32_t Itt;
/** Completion callback. */
PFNISCSICMDCOMPLETED pfnComplete;
/** Opaque user data. */
void *pvUser;
/** Command to execute. */
ISCSICMDTYPE enmCmdType;
/** Command type dependent data. */
union
{
/** Process a SCSI request. */
struct
{
/** The SCSI request to process. */
PSCSIREQ pScsiReq;
} ScsiReq;
/** Call a function in the I/O thread. */
struct
{
/** The method to execute. */
PFNISCSIEXEC pfnExec;
/** User data. */
void *pvUser;
} Exec;
} CmdType;
} ISCSICMD, *PISCSICMD;
/**
* Send iSCSI PDU.
* Contains all necessary data to send a PDU.
*/
typedef struct ISCSIPDUTX
{
/** Pointer to the next PDu to send. */
struct ISCSIPDUTX *pNext;
/** The BHS. */
uint32_t aBHS[12];
/** Assigned CmdSN for this PDU. */
uint32_t CmdSN;
/** The S/G buffer used for sending. */
RTSGBUF SgBuf;
/** Number of bytes to send until the PDU completed. */
size_t cbSgLeft;
/** The iSCSI command this PDU belongs to. */
PISCSICMD pIScsiCmd;
/** Number of segments in the request segments array. */
unsigned cISCSIReq;
/** The request segments - variable in size. */
RTSGSEG aISCSIReq[1];
} ISCSIPDUTX, *PISCSIPDUTX;
/**
* Block driver instance data.
*/
typedef struct ISCSIIMAGE
{
/** Pointer to the filename (location). Not really used. */
const char *pszFilename;
/** Pointer to the initiator name. */
char *pszInitiatorName;
/** Pointer to the target name. */
char *pszTargetName;
/** Pointer to the target address. */
char *pszTargetAddress;
/** Pointer to the user name for authenticating the Initiator. */
char *pszInitiatorUsername;
/** Pointer to the secret for authenticating the Initiator. */
uint8_t *pbInitiatorSecret;
/** Length of the secret for authenticating the Initiator. */
size_t cbInitiatorSecret;
/** Pointer to the user name for authenticating the Target. */
char *pszTargetUsername;
/** Pointer to the secret for authenticating the Initiator. */
uint8_t *pbTargetSecret;
/** Length of the secret for authenticating the Initiator. */
size_t cbTargetSecret;
/** Limit for iSCSI writes, essentially limiting the amount of data
* written in a single write. This is negotiated with the target, so
* the actual size might be smaller. */
uint32_t cbWriteSplit;
/** Initiator session identifier. */
uint64_t ISID;
/** SCSI Logical Unit Number. */
uint64_t LUN;
/** Pointer to the per-disk VD interface list. */
PVDINTERFACE pVDIfsDisk;
/** Error interface. */
PVDINTERFACE pInterfaceError;
/** Error interface callback table. */
PVDINTERFACEERROR pInterfaceErrorCallbacks;
/** Pointer to the per-image VD interface list. */
PVDINTERFACE pVDIfsImage;
/** Config interface. */
PVDINTERFACE pInterfaceConfig;
/** Config interface callback table. */
PVDINTERFACECONFIG pInterfaceConfigCallbacks;
/** I/O interface. */
PVDINTERFACE pInterfaceIo;
/** I/O interface callback table. */
PVDINTERFACEIOINT pInterfaceIoCallbacks;
/** TCP network stack interface. */
PVDINTERFACE pInterfaceNet;
/** TCP network stack interface callback table. */
PVDINTERFACETCPNET pInterfaceNetCallbacks;
/** Image open flags. */
unsigned uOpenFlags;
/** Number of re-login retries when a connection fails. */
uint32_t cISCSIRetries;
/** Sector size on volume. */
uint32_t cbSector;
/** Size of volume in sectors. */
uint64_t cVolume;
/** Total volume size in bytes. Easier than multiplying the above values all the time. */
uint64_t cbSize;
/** Negotiated maximum data length when sending to target. */
uint32_t cbSendDataLength;
/** Negotiated maximum data length when receiving from target. */
uint32_t cbRecvDataLength;
/** Current state of the connection/session. */
ISCSISTATE state;
/** Flag whether the first Login Response PDU has been seen. */
bool FirstRecvPDU;
/** Initiator Task Tag of the last iSCSI request PDU. */
uint32_t ITT;
/** Sequence number of the last command. */
uint32_t CmdSN;
/** Sequence number of the next command expected by the target. */
uint32_t ExpCmdSN;
/** Maximum sequence number accepted by the target (determines size of window). */
uint32_t MaxCmdSN;
/** Expected sequence number of next status. */
uint32_t ExpStatSN;
/** Currently active request. */
PISCSIREQ paCurrReq;
/** Segment number of currently active request. */
uint32_t cnCurrReq;
/** Pointer to receive PDU buffer. (Freed by RT) */
void *pvRecvPDUBuf;
/** Length of receive PDU buffer. */
size_t cbRecvPDUBuf;
/** Mutex protecting against concurrent use from several threads. */
RTSEMMUTEX Mutex;
/** Pointer to the target hostname. */
char *pszHostname;
/** Pointer to the target hostname. */
uint32_t uPort;
/** Socket handle of the TCP connection. */
VDSOCKET Socket;
/** Timeout for read operations on the TCP connection (in milliseconds). */
uint32_t uReadTimeout;
/** Flag whether to automatically generate the initiator name. */
bool fAutomaticInitiatorName;
/** Flag whether to use the host IP stack or DevINIP. */
bool fHostIP;
/** Head of request queue */
PISCSICMD pScsiReqQueue;
/** Mutex protecting the request queue from concurrent access. */
RTSEMMUTEX MutexReqQueue;
/** I/O thread. */
RTTHREAD hThreadIo;
/** Flag whether the thread should be still running. */
volatile bool fRunning;
/* Flag whether the target supports command queuing. */
bool fCmdQueuingSupported;
/** Flag whether extended select is supported. */
bool fExtendedSelectSupported;
/** Padding used for aligning the PDUs. */
uint8_t aPadding[4];
/** Socket events to poll for. */
uint32_t fPollEvents;
/** Number of bytes to read to complete the current PDU. */
size_t cbRecvPDUResidual;
/** Current position in the PDU buffer. */
uint8_t *pbRecvPDUBufCur;
/** Flag whether we are currently reading the BHS. */
bool fRecvPDUBHS;
/** List of PDUs waiting to get transmitted. */
PISCSIPDUTX pIScsiPDUTxHead;
/** Tail of PDUs waiting to get transmitted. */
PISCSIPDUTX pIScsiPDUTxTail;
/** PDU we are currently transmitting. */
PISCSIPDUTX pIScsiPDUTxCur;
/** Number of commands waiting for an answer from the target.
* Used for timeout handling for poll.
*/
unsigned cCmdsWaiting;
/** Table of commands waiting for a response from the target. */
PISCSICMD aCmdsWaiting[ISCSI_CMD_WAITING_ENTRIES];
/** Release log counter. */
unsigned cLogRelErrors;
} ISCSIIMAGE;
/*******************************************************************************
* Static Variables *
*******************************************************************************/
/** Default initiator basename. */
static const char *s_iscsiDefaultInitiatorBasename = "iqn.2009-08.com.sun.virtualbox.initiator";
/** Default LUN. */
static const char *s_iscsiConfigDefaultLUN = "0";
/** Default timeout, 10 seconds. */
static const char *s_iscsiConfigDefaultTimeout = "10000";
/** Default write split value, less or equal to ISCSI_DATA_LENGTH_MAX. */
static const char *s_iscsiConfigDefaultWriteSplit = "262144";
/** Default host IP stack. */
static const char *s_iscsiConfigDefaultHostIPStack = "1";
/** Description of all accepted config parameters. */
static const VDCONFIGINFO s_iscsiConfigInfo[] =
{
{ "TargetName", NULL, VDCFGVALUETYPE_STRING, VD_CFGKEY_MANDATORY },
/* LUN is defined of string type to handle the "enc" prefix. */
{ "LUN", s_iscsiConfigDefaultLUN, VDCFGVALUETYPE_STRING, VD_CFGKEY_MANDATORY },
{ "TargetAddress", NULL, VDCFGVALUETYPE_STRING, VD_CFGKEY_MANDATORY },
{ "InitiatorName", NULL, VDCFGVALUETYPE_STRING, 0 },
{ "InitiatorUsername", NULL, VDCFGVALUETYPE_STRING, 0 },
{ "InitiatorSecret", NULL, VDCFGVALUETYPE_BYTES, 0 },
{ "TargetUsername", NULL, VDCFGVALUETYPE_STRING, VD_CFGKEY_EXPERT },
{ "TargetSecret", NULL, VDCFGVALUETYPE_BYTES, VD_CFGKEY_EXPERT },
{ "WriteSplit", s_iscsiConfigDefaultWriteSplit, VDCFGVALUETYPE_INTEGER, VD_CFGKEY_EXPERT },
{ "Timeout", s_iscsiConfigDefaultTimeout, VDCFGVALUETYPE_INTEGER, VD_CFGKEY_EXPERT },
{ "HostIPStack", s_iscsiConfigDefaultHostIPStack, VDCFGVALUETYPE_INTEGER, VD_CFGKEY_EXPERT },
{ NULL, NULL, VDCFGVALUETYPE_INTEGER, 0 }
};
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
/* iSCSI low-level functions (only to be used from the iSCSI high-level functions). */
static uint32_t iscsiNewITT(PISCSIIMAGE pImage);
static int iscsiSendPDU(PISCSIIMAGE pImage, PISCSIREQ paReq, uint32_t cnReq, uint32_t uFlags);
static int iscsiRecvPDU(PISCSIIMAGE pImage, uint32_t itt, PISCSIRES paRes, uint32_t cnRes);
static int iscsiRecvPDUAsync(PISCSIIMAGE pImage);
static int iscsiSendPDUAsync(PISCSIIMAGE pImage);
static int iscsiValidatePDU(PISCSIRES paRes, uint32_t cnRes);
static int iscsiRecvPDUProcess(PISCSIIMAGE pImage, PISCSIRES paRes, uint32_t cnRes);
static int iscsiPDUTxPrepare(PISCSIIMAGE pImage, PISCSICMD pIScsiCmd);
static int iscsiRecvPDUUpdateRequest(PISCSIIMAGE pImage, PISCSIRES paRes, uint32_t cnRes);
static void iscsiCmdComplete(PISCSIIMAGE pImage, PISCSICMD pIScsiCmd, int rcCmd);
static int iscsiTextAddKeyValue(uint8_t *pbBuf, size_t cbBuf, size_t *pcbBufCurr, const char *pcszKey, const char *pcszValue, size_t cbValue);
static int iscsiTextGetKeyValue(const uint8_t *pbBuf, size_t cbBuf, const char *pcszKey, const char **ppcszValue);
static int iscsiStrToBinary(const char *pcszValue, uint8_t *pbValue, size_t *pcbValue);
static int iscsiUpdateParameters(PISCSIIMAGE pImage, const uint8_t *pbBuf, size_t cbBuf);
/* Serial number arithmetic comparison. */
static bool serial_number_less(uint32_t sn1, uint32_t sn2);
static bool serial_number_greater(uint32_t sn1, uint32_t sn2);
/* CHAP-MD5 functions. */
#ifdef IMPLEMENT_TARGET_AUTH
static void chap_md5_generate_challenge(uint8_t *pbChallenge, size_t *pcbChallenge);
#endif
static void chap_md5_compute_response(uint8_t *pbResponse, uint8_t id, const uint8_t *pbChallenge, size_t cbChallenge,
const uint8_t *pbSecret, size_t cbSecret);
/**
* Internal: release log wrapper limiting the number of entries.
*/
DECLINLINE(void) iscsiLogRel(PISCSIIMAGE pImage, const char *pcszFormat, ...)
{
if (pImage->cLogRelErrors++ < MAX_LOG_REL_ERRORS)
{
va_list va;
va_start(va, pcszFormat);
LogRel(("%N\n", pcszFormat, &va));
va_end(va);
}
}
/**
* Internal: signal an error to the frontend.
*/
DECLINLINE(int) iscsiError(PISCSIIMAGE pImage, int rc, RT_SRC_POS_DECL,
const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
if (pImage->pInterfaceError)
pImage->pInterfaceErrorCallbacks->pfnError(pImage->pInterfaceError->pvUser, rc, RT_SRC_POS_ARGS,
pszFormat, va);
va_end(va);
#ifdef LOG_ENABLED
va_start(va, pszFormat);
Log(("iscsiError(%d/%s): %N\n", iLine, pszFunction, pszFormat, &va));
va_end(va);
#endif
return rc;
}
/**
* Internal: signal an informational message to the frontend.
*/
DECLINLINE(int) iscsiMessage(PISCSIIMAGE pImage, const char *pszFormat, ...)
{
int rc = VINF_SUCCESS;
va_list va;
va_start(va, pszFormat);
if (pImage->pInterfaceError)
rc = pImage->pInterfaceErrorCallbacks->pfnMessage(pImage->pInterfaceError->pvUser,
pszFormat, va);
va_end(va);
return rc;
}
DECLINLINE(bool) iscsiIsClientConnected(PISCSIIMAGE pImage)
{
return pImage->Socket != NIL_VDSOCKET
&& pImage->pInterfaceNetCallbacks->pfnIsClientConnected(pImage->Socket);
}
/**
* Calculates the hash for the given ITT used
* to look up the command in the table.
*/
DECLINLINE(uint32_t) iscsiIttHash(uint32_t Itt)
{
return Itt % ISCSI_CMD_WAITING_ENTRIES;
}
static PISCSICMD iscsiCmdGetFromItt(PISCSIIMAGE pImage, uint32_t Itt)
{
PISCSICMD pIScsiCmd = NULL;
pIScsiCmd = pImage->aCmdsWaiting[iscsiIttHash(Itt)];
while ( pIScsiCmd
&& pIScsiCmd->Itt != Itt)
pIScsiCmd = pIScsiCmd->pNext;
return pIScsiCmd;
}
static void iscsiCmdInsert(PISCSIIMAGE pImage, PISCSICMD pIScsiCmd)
{
PISCSICMD pIScsiCmdOld;
uint32_t idx = iscsiIttHash(pIScsiCmd->Itt);
Assert(!pIScsiCmd->pNext);
pIScsiCmdOld = pImage->aCmdsWaiting[idx];
pIScsiCmd->pNext = pIScsiCmdOld;
pImage->aCmdsWaiting[idx] = pIScsiCmd;
pImage->cCmdsWaiting++;
}
static PISCSICMD iscsiCmdRemove(PISCSIIMAGE pImage, uint32_t Itt)
{
PISCSICMD pIScsiCmd = NULL;
PISCSICMD pIScsiCmdPrev = NULL;
uint32_t idx = iscsiIttHash(Itt);
pIScsiCmd = pImage->aCmdsWaiting[idx];
while ( pIScsiCmd
&& pIScsiCmd->Itt != Itt)
{
pIScsiCmdPrev = pIScsiCmd;
pIScsiCmd = pIScsiCmd->pNext;
}
if (pIScsiCmd)
{
if (pIScsiCmdPrev)
{
Assert(!pIScsiCmd->pNext || VALID_PTR(pIScsiCmd->pNext));
pIScsiCmdPrev->pNext = pIScsiCmd->pNext;
}
else
{
pImage->aCmdsWaiting[idx] = pIScsiCmd->pNext;
Assert(!pImage->aCmdsWaiting[idx] || VALID_PTR(pImage->aCmdsWaiting[idx]));
}
pImage->cCmdsWaiting--;
}
return pIScsiCmd;
}
/**
* Removes all commands from the table and returns the
* list head
*
* @returns Pointer to the head of teh command list.
* @param pImage iSCSI connection to use.
*/
static PISCSICMD iscsiCmdRemoveAll(PISCSIIMAGE pImage)
{
PISCSICMD pIScsiCmdHead = NULL;
for (unsigned idx = 0; idx < RT_ELEMENTS(pImage->aCmdsWaiting); idx++)
{
PISCSICMD pHead;
PISCSICMD pTail;
pHead = pImage->aCmdsWaiting[idx];
pImage->aCmdsWaiting[idx] = NULL;
if (pHead)
{
/* Get the tail. */
pTail = pHead;
while (pTail->pNext)
pTail = pTail->pNext;
/* Concatenate. */
pTail->pNext = pIScsiCmdHead;
pIScsiCmdHead = pHead;
}
}
pImage->cCmdsWaiting = 0;
return pIScsiCmdHead;
}
static int iscsiTransportConnect(PISCSIIMAGE pImage)
{
int rc;
if (!pImage->pszHostname)
return VERR_NET_DEST_ADDRESS_REQUIRED;
rc = pImage->pInterfaceNetCallbacks->pfnClientConnect(pImage->Socket, pImage->pszHostname, pImage->uPort);
if (RT_FAILURE(rc))
{
if ( rc == VERR_NET_CONNECTION_REFUSED
|| rc == VERR_NET_CONNECTION_RESET
|| rc == VERR_NET_UNREACHABLE
|| rc == VERR_NET_HOST_UNREACHABLE
|| rc == VERR_NET_CONNECTION_TIMED_OUT)
{
/* Standardize return value for no connection. */
rc = VERR_NET_CONNECTION_REFUSED;
}
return rc;
}
/* Disable Nagle algorithm, we want things to be sent immediately. */
pImage->pInterfaceNetCallbacks->pfnSetSendCoalescing(pImage->Socket, false);
/* Make initiator name and ISID unique on this host. */
RTNETADDR LocalAddr;
rc = pImage->pInterfaceNetCallbacks->pfnGetLocalAddress(pImage->Socket,
&LocalAddr);
if (RT_FAILURE(rc))
return rc;
if ( LocalAddr.uPort == RTNETADDR_PORT_NA
|| LocalAddr.uPort > 65535)
return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
pImage->ISID &= ~65535ULL;
pImage->ISID |= LocalAddr.uPort;
/* Eliminate the port so that it isn't included below. */
LocalAddr.uPort = RTNETADDR_PORT_NA;
if (pImage->fAutomaticInitiatorName)
{
if (pImage->pszInitiatorName)
RTStrFree(pImage->pszInitiatorName);
RTStrAPrintf(&pImage->pszInitiatorName, "%s:01:%RTnaddr",
s_iscsiDefaultInitiatorBasename, &LocalAddr);
if (!pImage->pszInitiatorName)
return VERR_NO_MEMORY;
}
return VINF_SUCCESS;
}
static int iscsiTransportRead(PISCSIIMAGE pImage, PISCSIRES paResponse, unsigned int cnResponse)
{
int rc = VINF_SUCCESS;
unsigned int i = 0;
size_t cbToRead, cbActuallyRead, residual, cbSegActual = 0, cbAHSLength, cbDataLength;
char *pDst;
LogFlowFunc(("cnResponse=%d (%s:%d)\n", cnResponse, pImage->pszHostname, pImage->uPort));
if (!iscsiIsClientConnected(pImage))
{
/* Reconnecting makes no sense in this case, as there will be nothing
* to receive. We would just run into a timeout. */
rc = VERR_BROKEN_PIPE;
}
if (RT_SUCCESS(rc) && paResponse[0].cbSeg >= ISCSI_BHS_SIZE)
{
cbToRead = 0;
residual = ISCSI_BHS_SIZE; /* Do not read more than the BHS length before the true PDU length is known. */
cbSegActual = residual;
pDst = (char *)paResponse[i].pvSeg;
uint64_t u64Timeout = RTTimeMilliTS() + pImage->uReadTimeout;
do
{
int64_t cMilliesRemaining = u64Timeout - RTTimeMilliTS();
if (cMilliesRemaining <= 0)
{
rc = VERR_TIMEOUT;
break;
}
Assert(cMilliesRemaining < 1000000);
rc = pImage->pInterfaceNetCallbacks->pfnSelectOne(pImage->Socket,
cMilliesRemaining);
if (RT_FAILURE(rc))
break;
rc = pImage->pInterfaceNetCallbacks->pfnRead(pImage->Socket,
pDst, residual,
&cbActuallyRead);
if (RT_FAILURE(rc))
break;
if (cbActuallyRead == 0)
{
/* The other end has closed the connection. */
pImage->pInterfaceNetCallbacks->pfnClientClose(pImage->Socket);
pImage->state = ISCSISTATE_FREE;
rc = VERR_NET_CONNECTION_RESET;
break;
}
if (cbToRead == 0)
{
/* Currently reading the BHS. */
residual -= cbActuallyRead;
pDst += cbActuallyRead;
if (residual <= 40)
{
/* Enough data read to figure out the actual PDU size. */
uint32_t word1 = RT_N2H_U32(((uint32_t *)(paResponse[0].pvSeg))[1]);
cbAHSLength = (word1 & 0xff000000) >> 24;
cbAHSLength = ((cbAHSLength - 1) | 3) + 1; /* Add padding. */
cbDataLength = word1 & 0x00ffffff;
cbDataLength = ((cbDataLength - 1) | 3) + 1; /* Add padding. */
cbToRead = residual + cbAHSLength + cbDataLength;
residual += paResponse[0].cbSeg - ISCSI_BHS_SIZE;
if (residual > cbToRead)
residual = cbToRead;
cbSegActual = ISCSI_BHS_SIZE + cbAHSLength + cbDataLength;
/* Check whether we are already done with this PDU (no payload). */
if (cbToRead == 0)
break;
}
}
else
{
cbToRead -= cbActuallyRead;
if (cbToRead == 0)
break;
pDst += cbActuallyRead;
residual -= cbActuallyRead;
}
if (residual == 0)
{
i++;
if (i >= cnResponse)
{
/* No space left in receive buffers. */
rc = VERR_BUFFER_OVERFLOW;
break;
}
pDst = (char *)paResponse[i].pvSeg;
residual = paResponse[i].cbSeg;
if (residual > cbToRead)
residual = cbToRead;
cbSegActual = residual;
}
LogFlowFunc(("cbToRead=%u residual=%u cbSegActual=%u cbActuallRead=%u\n",
cbToRead, residual, cbSegActual, cbActuallyRead));
} while (true);
}
else
{
if (RT_SUCCESS(rc))
rc = VERR_BUFFER_OVERFLOW;
}
if (RT_SUCCESS(rc))
{
paResponse[i].cbSeg = cbSegActual;
for (i++; i < cnResponse; i++)
paResponse[i].cbSeg = 0;
}
if (RT_UNLIKELY( RT_FAILURE(rc)
&& ( rc == VERR_NET_CONNECTION_RESET
|| rc == VERR_NET_CONNECTION_ABORTED
|| rc == VERR_NET_CONNECTION_RESET_BY_PEER
|| rc == VERR_NET_CONNECTION_REFUSED
|| rc == VERR_BROKEN_PIPE)))
{
/* Standardize return value for broken connection. */
rc = VERR_BROKEN_PIPE;
}
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
static int iscsiTransportWrite(PISCSIIMAGE pImage, PISCSIREQ paRequest, unsigned int cnRequest)
{
int rc = VINF_SUCCESS;
uint32_t pad = 0;
unsigned int i;
LogFlowFunc(("cnRequest=%d (%s:%d)\n", cnRequest, pImage->pszHostname, pImage->uPort));
if (!iscsiIsClientConnected(pImage))
{
/* Attempt to reconnect if the connection was previously broken. */
rc = iscsiTransportConnect(pImage);
}
if (RT_SUCCESS(rc))
{
/* Construct scatter/gather buffer for entire request, worst case
* needs twice as many entries to allow for padding. */
unsigned cBuf = 0;
for (i = 0; i < cnRequest; i++)
{
cBuf++;
if (paRequest[i].cbSeg & 3)
cBuf++;
}
Assert(cBuf < ISCSI_SG_SEGMENTS_MAX);
RTSGBUF buf;
RTSGSEG aSeg[ISCSI_SG_SEGMENTS_MAX];
static char aPad[4] = { 0, 0, 0, 0 };
RTSgBufInit(&buf, &aSeg[0], cBuf);
unsigned iBuf = 0;
for (i = 0; i < cnRequest; i++)
{
/* Actual data chunk. */
aSeg[iBuf].pvSeg = (void *)paRequest[i].pcvSeg;
aSeg[iBuf].cbSeg = paRequest[i].cbSeg;
iBuf++;
/* Insert proper padding before the next chunk. */
if (paRequest[i].cbSeg & 3)
{
aSeg[iBuf].pvSeg = &aPad[0];
aSeg[iBuf].cbSeg = 4 - (paRequest[i].cbSeg & 3);
iBuf++;
}
}
/* Send out the request, the socket is set to send data immediately,
* avoiding unnecessary delays. */
rc = pImage->pInterfaceNetCallbacks->pfnSgWrite(pImage->Socket, &buf);
}
if (RT_UNLIKELY( RT_FAILURE(rc)
&& ( rc == VERR_NET_CONNECTION_RESET
|| rc == VERR_NET_CONNECTION_ABORTED
|| rc == VERR_NET_CONNECTION_RESET_BY_PEER
|| rc == VERR_NET_CONNECTION_REFUSED
|| rc == VERR_BROKEN_PIPE)))
{
/* Standardize return value for broken connection. */
rc = VERR_BROKEN_PIPE;
}
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
static int iscsiTransportOpen(PISCSIIMAGE pImage)
{
int rc = VINF_SUCCESS;
size_t cbHostname = 0; /* shut up gcc */
const char *pcszPort = NULL; /* shut up gcc */
char *pszPortEnd;
uint16_t uPort;
/* Clean up previous connection data. */
if (iscsiIsClientConnected(pImage))
{
pImage->pInterfaceNetCallbacks->pfnClientClose(pImage->Socket);
}
if (pImage->pszHostname)
{
RTMemFree(pImage->pszHostname);
pImage->pszHostname = NULL;
pImage->uPort = 0;
}
/* Locate the port number via the colon separating the hostname from the port. */
if (*pImage->pszTargetAddress)
{
if (*pImage->pszTargetAddress != '[')
{
/* Normal hostname or IPv4 dotted decimal. */
pcszPort = strchr(pImage->pszTargetAddress, ':');
if (pcszPort != NULL)
{
cbHostname = pcszPort - pImage->pszTargetAddress;
pcszPort++;
}
else
cbHostname = strlen(pImage->pszTargetAddress);
}
else
{
/* IPv6 literal address. Contains colons, so skip to closing square bracket. */
pcszPort = strchr(pImage->pszTargetAddress, ']');
if (pcszPort != NULL)
{
pcszPort++;
cbHostname = pcszPort - pImage->pszTargetAddress;
if (*pcszPort == '\0')
pcszPort = NULL;
else if (*pcszPort != ':')
rc = VERR_PARSE_ERROR;
else
pcszPort++;
}
else
rc = VERR_PARSE_ERROR;
}
}
else
rc = VERR_PARSE_ERROR;
/* Now split address into hostname and port. */
if (RT_SUCCESS(rc))
{
pImage->pszHostname = (char *)RTMemAlloc(cbHostname + 1);
if (!pImage->pszHostname)
rc = VERR_NO_MEMORY;
else
{
memcpy(pImage->pszHostname, pImage->pszTargetAddress, cbHostname);
pImage->pszHostname[cbHostname] = '\0';
if (pcszPort != NULL)
{
rc = RTStrToUInt16Ex(pcszPort, &pszPortEnd, 0, &uPort);
/* Note that RT_SUCCESS() macro to check the rc value is not strict enough in this case. */
if (rc == VINF_SUCCESS && *pszPortEnd == '\0' && uPort != 0)
{
pImage->uPort = uPort;
}
else
{
rc = VERR_PARSE_ERROR;
}
}
else
pImage->uPort = ISCSI_DEFAULT_PORT;
}
}
if (RT_SUCCESS(rc))
{
if (!iscsiIsClientConnected(pImage))
rc = iscsiTransportConnect(pImage);
}
else
{
if (pImage->pszHostname)
{
RTMemFree(pImage->pszHostname);
pImage->pszHostname = NULL;
}
pImage->uPort = 0;
}
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
static int iscsiTransportClose(PISCSIIMAGE pImage)
{
int rc;
LogFlowFunc(("(%s:%d)\n", pImage->pszHostname, pImage->uPort));
if (iscsiIsClientConnected(pImage))
{
rc = pImage->pInterfaceNetCallbacks->pfnClientClose(pImage->Socket);
}
else
rc = VINF_SUCCESS;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/**
* Attach to an iSCSI target. Performs all operations necessary to enter
* Full Feature Phase.
*
* @returns VBox status.
* @param pImage The iSCSI connection state to be used.
*/
static int iscsiAttach(void *pvUser)
{
int rc;
uint32_t itt;
uint32_t csg, nsg, substate;
uint64_t isid_tsih;
uint8_t bBuf[4096]; /* Should be large enough even for large authentication values. */
size_t cbBuf;
bool transit;
uint8_t pbChallenge[1024]; /* RFC3720 specifies this as maximum. */
size_t cbChallenge = 0; /* shut up gcc */
uint8_t bChapIdx;
uint8_t aResponse[RTMD5HASHSIZE];
uint32_t cnISCSIReq;
ISCSIREQ aISCSIReq[4];
uint32_t aReqBHS[12];
uint32_t cnISCSIRes;
ISCSIRES aISCSIRes[2];
uint32_t aResBHS[12];
char *pszNext;
PISCSIIMAGE pImage = (PISCSIIMAGE)pvUser;
bool fParameterNeg = true;;
pImage->cbRecvDataLength = ISCSI_DATA_LENGTH_MAX;
pImage->cbSendDataLength = RT_MIN(ISCSI_DATA_LENGTH_MAX, pImage->cbWriteSplit);
char szMaxDataLength[16];
RTStrPrintf(szMaxDataLength, sizeof(szMaxDataLength), "%u", ISCSI_DATA_LENGTH_MAX);
ISCSIPARAMETER aParameterNeg[] =
{
{ "HeaderDigest", "None", 0 },
{ "DataDigest", "None", 0 },
{ "MaxConnections", "1", 0 },
{ "InitialR2T", "No", 0 },
{ "ImmediateData", "Yes", 0 },
{ "MaxRecvDataSegmentLength", szMaxDataLength, 0 },
{ "MaxBurstLength", szMaxDataLength, 0 },
{ "FirstBurstLength", szMaxDataLength, 0 },
{ "DefaultTime2Wait", "0", 0 },
{ "DefaultTime2Retain", "60", 0 },
{ "DataPDUInOrder", "Yes", 0 },
{ "DataSequenceInOrder", "Yes", 0 },
{ "ErrorRecoveryLevel", "0", 0 },
{ "MaxOutstandingR2T", "1", 0 }
};
LogFlowFunc(("entering\n"));
Assert(pImage->state == ISCSISTATE_FREE);
RTSemMutexRequest(pImage->Mutex, RT_INDEFINITE_WAIT);
/* Make 100% sure the connection isn't reused for a new login. */
iscsiTransportClose(pImage);
restart:
if (!iscsiIsClientConnected(pImage))
{
rc = iscsiTransportOpen(pImage);
if (RT_FAILURE(rc))
goto out;
}
pImage->state = ISCSISTATE_IN_LOGIN;
pImage->ITT = 1;
pImage->FirstRecvPDU = true;
pImage->CmdSN = 1;
pImage->ExpCmdSN = 0;
pImage->MaxCmdSN = 1;
pImage->ExpStatSN = 0;
/*
* Send login request to target.
*/
itt = iscsiNewITT(pImage);
csg = 0;
nsg = 0;
substate = 0;
isid_tsih = pImage->ISID << 16; /* TSIH field currently always 0 */
do {
transit = false;
cbBuf = 0;
/* Handle all cases with a single switch statement. */
switch (csg << 8 | substate)
{
case 0x0000: /* security negotiation, step 0: propose authentication. */
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "SessionType", "Normal", 0);
if (RT_FAILURE(rc))
goto out;
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "InitiatorName", pImage->pszInitiatorName, 0);
if (RT_FAILURE(rc))
goto out;
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "TargetName", pImage->pszTargetName, 0);
if (RT_FAILURE(rc))
goto out;
if (pImage->pszInitiatorUsername == NULL)
{
/* No authentication. Immediately switch to next phase. */
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "AuthMethod", "None", 0);
if (RT_FAILURE(rc))
goto out;
nsg = 1;
transit = true;
}
else
{
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "AuthMethod", "CHAP,None", 0);
if (RT_FAILURE(rc))
goto out;
}
break;
case 0x0001: /* security negotiation, step 1: propose CHAP_MD5 variant. */
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "CHAP_A", "5", 0);
if (RT_FAILURE(rc))
goto out;
break;
case 0x0002: /* security negotiation, step 2: send authentication info. */
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "CHAP_N", pImage->pszInitiatorUsername, 0);
if (RT_FAILURE(rc))
goto out;
chap_md5_compute_response(aResponse, bChapIdx, pbChallenge, cbChallenge,
pImage->pbInitiatorSecret, pImage->cbInitiatorSecret);
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf, "CHAP_R", (const char *)aResponse, RTMD5HASHSIZE);
if (RT_FAILURE(rc))
goto out;
nsg = 1;
transit = true;
break;
case 0x0100: /* login operational negotiation, step 0: set parameters. */
if (fParameterNeg)
{
for (unsigned i = 0; i < RT_ELEMENTS(aParameterNeg); i++)
{
rc = iscsiTextAddKeyValue(bBuf, sizeof(bBuf), &cbBuf,
aParameterNeg[i].pszParamName,
aParameterNeg[i].pszParamValue,
aParameterNeg[i].cbParamValue);
if (RT_FAILURE(rc))
goto out;
}
fParameterNeg = false;
}
nsg = 3;
transit = true;
break;
case 0x0300: /* full feature phase. */
default:
/* Should never come here. */
AssertMsgFailed(("send: Undefined login state %d substate %d\n", csg, substate));
break;
}
aReqBHS[0] = RT_H2N_U32( ISCSI_IMMEDIATE_DELIVERY_BIT
| (csg << ISCSI_CSG_SHIFT)
| (transit ? (nsg << ISCSI_NSG_SHIFT | ISCSI_TRANSIT_BIT) : 0)
| ISCSI_MY_VERSION /* Minimum version. */
| (ISCSI_MY_VERSION << 8) /* Maximum version. */
| ISCSIOP_LOGIN_REQ); /* C=0 */
aReqBHS[1] = RT_H2N_U32((uint32_t)cbBuf); /* TotalAHSLength=0 */
aReqBHS[2] = RT_H2N_U32(isid_tsih >> 32);
aReqBHS[3] = RT_H2N_U32(isid_tsih & 0xffffffff);
aReqBHS[4] = itt;
aReqBHS[5] = RT_H2N_U32(1 << 16); /* CID=1,reserved */
aReqBHS[6] = RT_H2N_U32(pImage->CmdSN);
aReqBHS[7] = RT_H2N_U32(pImage->ExpStatSN);
aReqBHS[8] = 0; /* reserved */
aReqBHS[9] = 0; /* reserved */
aReqBHS[10] = 0; /* reserved */
aReqBHS[11] = 0; /* reserved */
cnISCSIReq = 0;
aISCSIReq[cnISCSIReq].pcvSeg = aReqBHS;
aISCSIReq[cnISCSIReq].cbSeg = sizeof(aReqBHS);
cnISCSIReq++;
aISCSIReq[cnISCSIReq].pcvSeg = bBuf;
aISCSIReq[cnISCSIReq].cbSeg = cbBuf;
cnISCSIReq++;
rc = iscsiSendPDU(pImage, aISCSIReq, cnISCSIReq, ISCSIPDU_NO_REATTACH);
if (RT_SUCCESS(rc))
{
ISCSIOPCODE cmd;
ISCSILOGINSTATUSCLASS loginStatusClass;
cnISCSIRes = 0;
aISCSIRes[cnISCSIRes].pvSeg = aResBHS;
aISCSIRes[cnISCSIRes].cbSeg = sizeof(aResBHS);
cnISCSIRes++;
aISCSIRes[cnISCSIRes].pvSeg = bBuf;
aISCSIRes[cnISCSIRes].cbSeg = sizeof(bBuf);
cnISCSIRes++;
rc = iscsiRecvPDU(pImage, itt, aISCSIRes, cnISCSIRes);
if (RT_FAILURE(rc))
break;
/** @todo collect partial login responses with Continue bit set. */
Assert(aISCSIRes[0].pvSeg == aResBHS);
Assert(aISCSIRes[0].cbSeg >= ISCSI_BHS_SIZE);
Assert((RT_N2H_U32(aResBHS[0]) & ISCSI_CONTINUE_BIT) == 0);
cmd = (ISCSIOPCODE)(RT_N2H_U32(aResBHS[0]) & ISCSIOP_MASK);
if (cmd == ISCSIOP_LOGIN_RES)
{
if ((RT_N2H_U32(aResBHS[0]) & 0xff) != ISCSI_MY_VERSION)
{
iscsiTransportClose(pImage);
rc = VERR_PARSE_ERROR;
break; /* Give up immediately, as a RFC violation in version fields is very serious. */
}
loginStatusClass = (ISCSILOGINSTATUSCLASS)(RT_N2H_U32(aResBHS[9]) >> 24);
switch (loginStatusClass)
{
case ISCSI_LOGIN_STATUS_CLASS_SUCCESS:
uint32_t targetCSG;
uint32_t targetNSG;
bool targetTransit;
if (pImage->FirstRecvPDU)
{
pImage->FirstRecvPDU = false;
pImage->ExpStatSN = RT_N2H_U32(aResBHS[6]) + 1;
}
targetCSG = (RT_N2H_U32(aResBHS[0]) & ISCSI_CSG_MASK) >> ISCSI_CSG_SHIFT;
targetNSG = (RT_N2H_U32(aResBHS[0]) & ISCSI_NSG_MASK) >> ISCSI_NSG_SHIFT;
targetTransit = !!(RT_N2H_U32(aResBHS[0]) & ISCSI_TRANSIT_BIT);
/* Handle all cases with a single switch statement. */
switch (csg << 8 | substate)
{
case 0x0000: /* security negotiation, step 0: receive final authentication. */
rc = iscsiUpdateParameters(pImage, bBuf, aISCSIRes[1].cbSeg);
if (RT_FAILURE(rc))
break;
const char *pcszAuthMethod;
rc = iscsiTextGetKeyValue(bBuf, aISCSIRes[1].cbSeg, "AuthMethod", &pcszAuthMethod);
if (RT_FAILURE(rc))
{
rc = VERR_PARSE_ERROR;
break;
}
if (strcmp(pcszAuthMethod, "None") == 0)
{
/* Authentication offered, but none required. Skip to operational parameters. */
csg = 1;
nsg = 1;
transit = true;
substate = 0;
break;
}
else if (strcmp(pcszAuthMethod, "CHAP") == 0 && targetNSG == 0 && !targetTransit)
{
/* CHAP authentication required, continue with next substate. */
substate++;
break;
}
/* Unknown auth method or login response PDU headers incorrect. */
rc = VERR_PARSE_ERROR;
break;
case 0x0001: /* security negotiation, step 1: receive final CHAP variant and challenge. */
rc = iscsiUpdateParameters(pImage, bBuf, aISCSIRes[1].cbSeg);
if (RT_FAILURE(rc))
break;
const char *pcszChapAuthMethod;
const char *pcszChapIdxTarget;
const char *pcszChapChallengeStr;
rc = iscsiTextGetKeyValue(bBuf, aISCSIRes[1].cbSeg, "CHAP_A", &pcszChapAuthMethod);
if (RT_FAILURE(rc))
{
rc = VERR_PARSE_ERROR;
break;
}
if (strcmp(pcszChapAuthMethod, "5") != 0)
{
rc = VERR_PARSE_ERROR;
break;
}
rc = iscsiTextGetKeyValue(bBuf, aISCSIRes[1].cbSeg, "CHAP_I", &pcszChapIdxTarget);
if (RT_FAILURE(rc))
{
rc = VERR_PARSE_ERROR;
break;
}
rc = RTStrToUInt8Ex(pcszChapIdxTarget, &pszNext, 0, &bChapIdx);
if ((rc > VINF_SUCCESS) || *pszNext != '\0')
{
rc = VERR_PARSE_ERROR;
break;
}
rc = iscsiTextGetKeyValue(bBuf, aISCSIRes[1].cbSeg, "CHAP_C", &pcszChapChallengeStr);
if (RT_FAILURE(rc))
{
rc = VERR_PARSE_ERROR;
break;
}
cbChallenge = sizeof(pbChallenge);
rc = iscsiStrToBinary(pcszChapChallengeStr, pbChallenge, &cbChallenge);
if (RT_FAILURE(rc))
break;
substate++;
transit = true;
break;
case 0x0002: /* security negotiation, step 2: check authentication success. */
rc = iscsiUpdateParameters(pImage, bBuf, aISCSIRes[1].cbSeg);
if (RT_FAILURE(rc))
break;
if (targetCSG == 0 && targetNSG == 1 && targetTransit)
{
/* Target wants to continue in login operational state, authentication success. */
csg = 1;
nsg = 3;
substate = 0;
break;
}
rc = VERR_PARSE_ERROR;
break;
case 0x0100: /* login operational negotiation, step 0: check results. */
rc = iscsiUpdateParameters(pImage, bBuf, aISCSIRes[1].cbSeg);
if (RT_FAILURE(rc))
break;
if (targetCSG == 1 && targetNSG == 3 && targetTransit)
{
/* Target wants to continue in full feature phase, login finished. */
csg = 3;
nsg = 3;
substate = 0;
break;
}
else if (targetCSG == 1 && targetNSG == 1 && !targetTransit)
{
/* Target wants to negotiate certain parameters and
* stay in login operational negotiation. */
csg = 1;
nsg = 3;
substate = 0;
}
rc = VERR_PARSE_ERROR;
break;
case 0x0300: /* full feature phase. */
default:
AssertMsgFailed(("recv: Undefined login state %d substate %d\n", csg, substate));
rc = VERR_PARSE_ERROR;
break;
}
break;
case ISCSI_LOGIN_STATUS_CLASS_REDIRECTION:
const char *pcszTargetRedir;
/* Target has moved to some other location, as indicated in the TargetAddress key. */
rc = iscsiTextGetKeyValue(bBuf, aISCSIRes[1].cbSeg, "TargetAddress", &pcszTargetRedir);
if (RT_FAILURE(rc))
{
rc = VERR_PARSE_ERROR;
break;
}
if (pImage->pszTargetAddress)
RTMemFree(pImage->pszTargetAddress);
{
size_t cb = strlen(pcszTargetRedir) + 1;
pImage->pszTargetAddress = (char *)RTMemAlloc(cb);
if (!pImage->pszTargetAddress)
{
rc = VERR_NO_MEMORY;
break;
}
memcpy(pImage->pszTargetAddress, pcszTargetRedir, cb);
}
rc = iscsiTransportOpen(pImage);
goto restart;
case ISCSI_LOGIN_STATUS_CLASS_INITIATOR_ERROR:
iscsiTransportClose(pImage);
rc = VERR_IO_GEN_FAILURE;
goto out;
case ISCSI_LOGIN_STATUS_CLASS_TARGET_ERROR:
iscsiTransportClose(pImage);
rc = VINF_EOF;
break;
default:
rc = VERR_PARSE_ERROR;
}
if (csg == 3)
{
/*
* Finished login, continuing with Full Feature Phase.
*/
rc = VINF_SUCCESS;
break;
}
}
else
{
AssertMsgFailed(("%s: ignoring unexpected PDU with first word = %#08x\n", __FUNCTION__, RT_N2H_U32(aResBHS[0])));
}
}
else
break;
} while (true);
out:
if (RT_FAILURE(rc))
{
/*
* Close connection to target.
*/
iscsiTransportClose(pImage);
pImage->state = ISCSISTATE_FREE;
}
else
pImage->state = ISCSISTATE_NORMAL;
RTSemMutexRelease(pImage->Mutex);
LogFlowFunc(("returning %Rrc\n", rc));
LogRel(("iSCSI: login to target %s %s\n", pImage->pszTargetName, RT_SUCCESS(rc) ? "successful" : "failed"));
return rc;
}
/**
* Detach from an iSCSI target.
*
* @returns VBox status.
* @param pImage The iSCSI connection state to be used.
*/
static int iscsiDetach(void *pvUser)
{
int rc;
uint32_t itt;
uint32_t cnISCSIReq = 0;
ISCSIREQ aISCSIReq[4];
uint32_t aReqBHS[12];
PISCSIIMAGE pImage = (PISCSIIMAGE)pvUser;
LogFlowFunc(("entering\n"));
RTSemMutexRequest(pImage->Mutex, RT_INDEFINITE_WAIT);
if (pImage->state != ISCSISTATE_FREE && pImage->state != ISCSISTATE_IN_LOGOUT)
{
pImage->state = ISCSISTATE_IN_LOGOUT;
/*
* Send logout request to target.
*/
itt = iscsiNewITT(pImage);
aReqBHS[0] = RT_H2N_U32(ISCSI_FINAL_BIT | ISCSIOP_LOGOUT_REQ); /* I=0,F=1,Reason=close session */
aReqBHS[1] = RT_H2N_U32(0); /* TotalAHSLength=0,DataSementLength=0 */
aReqBHS[2] = 0; /* reserved */
aReqBHS[3] = 0; /* reserved */
aReqBHS[4] = itt;
aReqBHS[5] = 0; /* reserved */
aReqBHS[6] = RT_H2N_U32(pImage->CmdSN);
aReqBHS[7] = RT_H2N_U32(pImage->ExpStatSN);
aReqBHS[8] = 0; /* reserved */
aReqBHS[9] = 0; /* reserved */
aReqBHS[10] = 0; /* reserved */
aReqBHS[11] = 0; /* reserved */
pImage->CmdSN++;
aISCSIReq[cnISCSIReq].pcvSeg = aReqBHS;
aISCSIReq[cnISCSIReq].cbSeg = sizeof(aReqBHS);
cnISCSIReq++;
rc = iscsiSendPDU(pImage, aISCSIReq, cnISCSIReq, ISCSIPDU_NO_REATTACH);
if (RT_SUCCESS(rc))
{
/*
* Read logout response from target.
*/
ISCSIRES aISCSIRes;
uint32_t aResBHS[12];
aISCSIRes.pvSeg = aResBHS;
aISCSIRes.cbSeg = sizeof(aResBHS);
rc = iscsiRecvPDU(pImage, itt, &aISCSIRes, 1);
if (RT_SUCCESS(rc))
{
if (RT_N2H_U32(aResBHS[0]) != (ISCSI_FINAL_BIT | ISCSIOP_LOGOUT_RES))
AssertMsgFailed(("iSCSI Logout response invalid\n"));
}
else
AssertMsgFailed(("iSCSI Logout response error, rc=%Rrc\n", rc));
}
else
AssertMsgFailed(("Could not send iSCSI Logout request, rc=%Rrc\n", rc));
}
if (pImage->state != ISCSISTATE_FREE)
{
/*
* Close connection to target.
*/
rc = iscsiTransportClose(pImage);
if (RT_FAILURE(rc))
AssertMsgFailed(("Could not close connection to target, rc=%Rrc\n", rc));
}
pImage->state = ISCSISTATE_FREE;
RTSemMutexRelease(pImage->Mutex);
LogFlowFunc(("leaving\n"));
LogRel(("iSCSI: logout to target %s\n", pImage->pszTargetName));
return VINF_SUCCESS;
}
/**
* Perform a command on an iSCSI target. Target must be already in
* Full Feature Phase.
*
* @returns VBOX status.
* @param pImage The iSCSI connection state to be used.
* @param pRequest Command descriptor. Contains all information about
* the command, its transfer directions and pointers
* to the buffer(s) used for transferring data and
* status information.
*/
static int iscsiCommand(PISCSIIMAGE pImage, PSCSIREQ pRequest)
{
int rc;
uint32_t itt;
uint32_t cbData;
uint32_t cnISCSIReq = 0;
ISCSIREQ aISCSIReq[4];
uint32_t aReqBHS[12];
uint32_t *pDst = NULL;
size_t cbBufLength;
uint32_t aStatus[256]; /**< Plenty of buffer for status information. */
uint32_t ExpDataSN = 0;
bool final = false;
LogFlowFunc(("entering, CmdSN=%d\n", pImage->CmdSN));
Assert(pRequest->enmXfer != SCSIXFER_TO_FROM_TARGET); /**< @todo not yet supported, would require AHS. */
Assert(pRequest->cbI2TData <= 0xffffff); /* larger transfers would require R2T support. */
Assert(pRequest->cbCDB <= 16); /* would cause buffer overrun below. */
/* If not in normal state, then the transport connection was dropped. Try
* to reestablish by logging in, the target might be responsive again. */
if (pImage->state == ISCSISTATE_FREE)
rc = iscsiAttach(pImage);
/* If still not in normal state, then the underlying transport connection
* cannot be established. Get out before bad things happen (and make
* sure the caller suspends the VM again). */
if (pImage->state != ISCSISTATE_NORMAL)
{
rc = VERR_NET_CONNECTION_REFUSED;
goto out;
}
/*
* Send SCSI command to target with all I2T data included.
*/
cbData = 0;
if (pRequest->enmXfer == SCSIXFER_FROM_TARGET)
cbData = (uint32_t)pRequest->cbT2IData;
else
cbData = (uint32_t)pRequest->cbI2TData;
RTSemMutexRequest(pImage->Mutex, RT_INDEFINITE_WAIT);
itt = iscsiNewITT(pImage);
memset(aReqBHS, 0, sizeof(aReqBHS));
aReqBHS[0] = RT_H2N_U32( ISCSI_FINAL_BIT | ISCSI_TASK_ATTR_ORDERED | ISCSIOP_SCSI_CMD
| (pRequest->enmXfer << 21)); /* I=0,F=1,Attr=Ordered */
aReqBHS[1] = RT_H2N_U32(0x00000000 | ((uint32_t)pRequest->cbI2TData & 0xffffff)); /* TotalAHSLength=0 */
aReqBHS[2] = RT_H2N_U32(pImage->LUN >> 32);
aReqBHS[3] = RT_H2N_U32(pImage->LUN & 0xffffffff);
aReqBHS[4] = itt;
aReqBHS[5] = RT_H2N_U32(cbData);
aReqBHS[6] = RT_H2N_U32(pImage->CmdSN);
aReqBHS[7] = RT_H2N_U32(pImage->ExpStatSN);
memcpy(aReqBHS + 8, pRequest->pvCDB, pRequest->cbCDB);
pImage->CmdSN++;
aISCSIReq[cnISCSIReq].pcvSeg = aReqBHS;
aISCSIReq[cnISCSIReq].cbSeg = sizeof(aReqBHS);
cnISCSIReq++;
if ( pRequest->enmXfer == SCSIXFER_TO_TARGET
|| pRequest->enmXfer == SCSIXFER_TO_FROM_TARGET)
{
Assert(pRequest->cI2TSegs == 1);
aISCSIReq[cnISCSIReq].pcvSeg = pRequest->paI2TSegs[0].pvSeg;
aISCSIReq[cnISCSIReq].cbSeg = pRequest->paI2TSegs[0].cbSeg; /* Padding done by transport. */
cnISCSIReq++;
}
rc = iscsiSendPDU(pImage, aISCSIReq, cnISCSIReq, ISCSIPDU_DEFAULT);
if (RT_FAILURE(rc))
goto out_release;
/* Place SCSI request in queue. */
pImage->paCurrReq = aISCSIReq;
pImage->cnCurrReq = cnISCSIReq;
/*
* Read SCSI response/data in PDUs from target.
*/
if ( pRequest->enmXfer == SCSIXFER_FROM_TARGET
|| pRequest->enmXfer == SCSIXFER_TO_FROM_TARGET)
{
Assert(pRequest->cT2ISegs == 1);
pDst = (uint32_t *)pRequest->paT2ISegs[0].pvSeg;
cbBufLength = pRequest->paT2ISegs[0].cbSeg;
}
else
cbBufLength = 0;
do {
uint32_t cnISCSIRes = 0;
ISCSIRES aISCSIRes[4];
uint32_t aResBHS[12];
aISCSIRes[cnISCSIRes].pvSeg = aResBHS;
aISCSIRes[cnISCSIRes].cbSeg = sizeof(aResBHS);
cnISCSIRes++;
if (cbBufLength != 0 &&
( pRequest->enmXfer == SCSIXFER_FROM_TARGET
|| pRequest->enmXfer == SCSIXFER_TO_FROM_TARGET))
{
aISCSIRes[cnISCSIRes].pvSeg = pDst;
aISCSIRes[cnISCSIRes].cbSeg = cbBufLength;
cnISCSIRes++;
}
/* Always reserve space for the status - it's impossible to tell
* beforehand whether this will be the final PDU or not. */
aISCSIRes[cnISCSIRes].pvSeg = aStatus;
aISCSIRes[cnISCSIRes].cbSeg = sizeof(aStatus);
cnISCSIRes++;
rc = iscsiRecvPDU(pImage, itt, aISCSIRes, cnISCSIRes);
if (RT_FAILURE(rc))
break;
final = !!(RT_N2H_U32(aResBHS[0]) & ISCSI_FINAL_BIT);
ISCSIOPCODE cmd = (ISCSIOPCODE)(RT_N2H_U32(aResBHS[0]) & ISCSIOP_MASK);
if (cmd == ISCSIOP_SCSI_RES)
{
/* This is the final PDU which delivers the status (and may be omitted if
* the last Data-In PDU included successful completion status). Note
* that ExpStatSN has been bumped already in iscsiRecvPDU. */
if (!final || ((RT_N2H_U32(aResBHS[0]) & 0x0000ff00) != 0) || (RT_N2H_U32(aResBHS[6]) != pImage->ExpStatSN - 1))
{
/* SCSI Response in the wrong place or with a (target) failure. */
rc = VERR_PARSE_ERROR;
break;
}
/* The following is a bit tricky, as in error situations we may
* get the status only instead of the result data plus optional
* status. Thus the status may have ended up partially in the
* data area. */
pRequest->status = RT_N2H_U32(aResBHS[0]) & 0x000000ff;
cbData = RT_N2H_U32(aResBHS[1]) & 0x00ffffff;
if (cbData >= 2)
{
uint32_t cbStat = RT_N2H_U32(((uint32_t *)aISCSIRes[1].pvSeg)[0]) >> 16;
if (cbStat + 2 > cbData)
{
rc = VERR_BUFFER_OVERFLOW;
break;
}
/* Truncate sense data if it doesn't fit into the buffer. */
pRequest->cbSense = RT_MIN(cbStat, pRequest->cbSense);
memcpy(pRequest->pvSense,
((const char *)aISCSIRes[1].pvSeg) + 2,
RT_MIN(aISCSIRes[1].cbSeg - 2, pRequest->cbSense));
if ( cnISCSIRes > 2 && aISCSIRes[2].cbSeg
&& (ssize_t)pRequest->cbSense - aISCSIRes[1].cbSeg + 2 > 0)
{
memcpy((char *)pRequest->pvSense + aISCSIRes[1].cbSeg - 2,
aISCSIRes[2].pvSeg,
pRequest->cbSense - aISCSIRes[1].cbSeg + 2);
}
}
else if (cbData == 1)
{
rc = VERR_PARSE_ERROR;
break;
}
else
pRequest->cbSense = 0;
break;
}
else if (cmd == ISCSIOP_SCSI_DATA_IN)
{
/* A Data-In PDU carries some data that needs to be added to the received
* data in response to the command. There may be both partial and complete
* Data-In PDUs, so collect data until the status is included or the status
* is sent in a separate SCSI Result frame (see above). */
if (final && aISCSIRes[2].cbSeg != 0)
{
/* The received PDU is partially stored in the buffer for status.
* Must not happen under normal circumstances and is a target error. */
rc = VERR_BUFFER_OVERFLOW;
break;
}
uint32_t len = RT_N2H_U32(aResBHS[1]) & 0x00ffffff;
pDst = (uint32_t *)((char *)pDst + len);
cbBufLength -= len;
ExpDataSN++;
if (final && (RT_N2H_U32(aResBHS[0]) & ISCSI_STATUS_BIT) != 0)
{
pRequest->status = RT_N2H_U32(aResBHS[0]) & 0x000000ff;
pRequest->cbSense = 0;
break;
}
}
else
{
rc = VERR_PARSE_ERROR;
break;
}
} while (true);
/* Remove SCSI request from queue. */
pImage->paCurrReq = NULL;
pImage->cnCurrReq = 0;
out_release:
if (rc == VERR_TIMEOUT)
{
/* Drop connection in case the target plays dead. Much better than
* delaying the next requests until the timed out command actually
* finishes. Also keep in mind that command shouldn't take longer than
* about 30-40 seconds, or the guest will lose its patience. */
iscsiTransportClose(pImage);
pImage->state = ISCSISTATE_FREE;
}
RTSemMutexRelease(pImage->Mutex);
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/**
* Generate a new Initiator Task Tag.
*
* @returns Initiator Task Tag.
* @param pImage The iSCSI connection state to be used.
*/
static uint32_t iscsiNewITT(PISCSIIMAGE pImage)
{
uint32_t next_itt;
next_itt = pImage->ITT++;
if (pImage->ITT == ISCSI_TASK_TAG_RSVD)
pImage->ITT = 0;
return RT_H2N_U32(next_itt);
}
/**
* Send an iSCSI request. The request can consist of several segments, which
* are padded to 4 byte boundaries and concatenated.
*
* @returns VBOX status
* @param pImage The iSCSI connection state to be used.
* @param paReq Pointer to array of iSCSI request sections.
* @param cnReq Number of valid iSCSI request sections in the array.
* @param uFlags Flags controlling the exact send semantics.
*/
static int iscsiSendPDU(PISCSIIMAGE pImage, PISCSIREQ paReq, uint32_t cnReq,
uint32_t uFlags)
{
int rc = VINF_SUCCESS;
/** @todo return VERR_VD_ISCSI_INVALID_STATE in the appropriate situations,
* needs cleaning up of timeout/disconnect handling a bit, as otherwise
* too many incorrect errors are signalled. */
Assert(cnReq >= 1);
Assert(paReq[0].cbSeg >= ISCSI_BHS_SIZE);
for (uint32_t i = 0; i < pImage->cISCSIRetries; i++)
{
rc = iscsiTransportWrite(pImage, paReq, cnReq);
if (RT_SUCCESS(rc))
break;
if ( (uFlags & ISCSIPDU_NO_REATTACH)
|| (rc != VERR_BROKEN_PIPE && rc != VERR_NET_CONNECTION_REFUSED))
break;
/* No point in reestablishing the connection for a logout */
if (pImage->state == ISCSISTATE_IN_LOGOUT)
break;
RTThreadSleep(500);
if (pImage->state != ISCSISTATE_IN_LOGIN)
{
/* Attempt to re-login when a connection fails, but only when not
* currently logging in. */
rc = iscsiAttach(pImage);
if (RT_FAILURE(rc))
break;
}
}
return rc;
}
/**
* Wait for an iSCSI response with a matching Initiator Target Tag. The response is
* split into several segments, as requested by the caller-provided buffer specification.
* Remember that the response can be split into several PDUs by the sender, so make
* sure that all parts are collected and processed appropriately by the caller.
*
* @returns VBOX status
* @param pImage The iSCSI connection state to be used.
* @param paRes Pointer to array of iSCSI response sections.
* @param cnRes Number of valid iSCSI response sections in the array.
*/
static int iscsiRecvPDU(PISCSIIMAGE pImage, uint32_t itt, PISCSIRES paRes, uint32_t cnRes)
{
int rc = VINF_SUCCESS;
ISCSIRES aResBuf;
for (uint32_t i = 0; i < pImage->cISCSIRetries; i++)
{
aResBuf.pvSeg = pImage->pvRecvPDUBuf;
aResBuf.cbSeg = pImage->cbRecvPDUBuf;
rc = iscsiTransportRead(pImage, &aResBuf, 1);
if (RT_FAILURE(rc))
{
if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED)
{
/* No point in reestablishing the connection for a logout */
if (pImage->state == ISCSISTATE_IN_LOGOUT)
break;
/* Connection broken while waiting for a response - wait a while and
* try to restart by re-sending the original request (if any).
* This also handles the connection reestablishment (login etc.). */
RTThreadSleep(500);
if (pImage->state != ISCSISTATE_IN_LOGIN)
{
/* Attempt to re-login when a connection fails, but only when not
* currently logging in. */
rc = iscsiAttach(pImage);
if (RT_FAILURE(rc))
break;
}
if (pImage->paCurrReq != NULL)
{
rc = iscsiSendPDU(pImage, pImage->paCurrReq, pImage->cnCurrReq, ISCSIPDU_DEFAULT);
if (RT_FAILURE(rc))
break;
}
}
else
{
/* Signal other errors (VERR_BUFFER_OVERFLOW etc.) to the caller. */
break;
}
}
else
{
ISCSIOPCODE cmd;
const uint32_t *pcvResSeg = (const uint32_t *)aResBuf.pvSeg;
/* Check whether the received PDU is valid, and update the internal state of
* the iSCSI connection/session. */
rc = iscsiValidatePDU(&aResBuf, 1);
if (RT_FAILURE(rc))
continue;
cmd = (ISCSIOPCODE)(RT_N2H_U32(pcvResSeg[0]) & ISCSIOP_MASK);
switch (cmd)
{
case ISCSIOP_SCSI_RES:
case ISCSIOP_SCSI_TASKMGMT_RES:
case ISCSIOP_SCSI_DATA_IN:
case ISCSIOP_R2T:
case ISCSIOP_ASYN_MSG:
case ISCSIOP_TEXT_RES:
case ISCSIOP_LOGIN_RES:
case ISCSIOP_LOGOUT_RES:
case ISCSIOP_REJECT:
case ISCSIOP_NOP_IN:
if (serial_number_less(pImage->MaxCmdSN, RT_N2H_U32(pcvResSeg[8])))
pImage->MaxCmdSN = RT_N2H_U32(pcvResSeg[8]);
if (serial_number_less(pImage->ExpCmdSN, RT_N2H_U32(pcvResSeg[7])))
pImage->ExpCmdSN = RT_N2H_U32(pcvResSeg[7]);
break;
default:
rc = VERR_PARSE_ERROR;
}
if (RT_FAILURE(rc))
continue;
if ( !pImage->FirstRecvPDU
&& (cmd != ISCSIOP_SCSI_DATA_IN || (RT_N2H_U32(pcvResSeg[0]) & ISCSI_STATUS_BIT)))
{
if (pImage->ExpStatSN == RT_N2H_U32(pcvResSeg[6]))
{
/* StatSN counter is not advanced on R2T and on a target SN update NOP-In. */
if ( (cmd != ISCSIOP_R2T)
&& ((cmd != ISCSIOP_NOP_IN) || (RT_N2H_U32(pcvResSeg[4]) != ISCSI_TASK_TAG_RSVD)))
pImage->ExpStatSN++;
}
else
{
rc = VERR_PARSE_ERROR;
continue;
}
}
/* Finally check whether the received PDU matches what the caller wants. */
if ( itt == pcvResSeg[4]
&& itt != ISCSI_TASK_TAG_RSVD)
{
/* Copy received PDU (one segment) to caller-provided buffers. */
uint32_t j;
size_t cbSeg;
const uint8_t *pSrc;
pSrc = (const uint8_t *)aResBuf.pvSeg;
cbSeg = aResBuf.cbSeg;
for (j = 0; j < cnRes; j++)
{
if (cbSeg > paRes[j].cbSeg)
{
memcpy(paRes[j].pvSeg, pSrc, paRes[j].cbSeg);
pSrc += paRes[j].cbSeg;
cbSeg -= paRes[j].cbSeg;
}
else
{
memcpy(paRes[j].pvSeg, pSrc, cbSeg);
paRes[j].cbSeg = cbSeg;
cbSeg = 0;
break;
}
}
if (cbSeg != 0)
{
rc = VERR_BUFFER_OVERFLOW;
break;
}
for (j++; j < cnRes; j++)
paRes[j].cbSeg = 0;
break;
}
else if ( cmd == ISCSIOP_NOP_IN
&& RT_N2H_U32(pcvResSeg[5]) != ISCSI_TASK_TAG_RSVD)
{
uint32_t cnISCSIReq;
ISCSIREQ aISCSIReq[4];
uint32_t aReqBHS[12];
aReqBHS[0] = RT_H2N_U32(ISCSI_IMMEDIATE_DELIVERY_BIT | ISCSI_FINAL_BIT | ISCSIOP_NOP_OUT);
aReqBHS[1] = RT_H2N_U32(0); /* TotalAHSLength=0,DataSementLength=0 */
aReqBHS[2] = pcvResSeg[2]; /* copy LUN from NOP-In */
aReqBHS[3] = pcvResSeg[3]; /* copy LUN from NOP-In */
aReqBHS[4] = RT_H2N_U32(ISCSI_TASK_TAG_RSVD); /* ITT, reply */
aReqBHS[5] = pcvResSeg[5]; /* copy TTT from NOP-In */
aReqBHS[6] = RT_H2N_U32(pImage->CmdSN);
aReqBHS[7] = RT_H2N_U32(pImage->ExpStatSN);
aReqBHS[8] = 0; /* reserved */
aReqBHS[9] = 0; /* reserved */
aReqBHS[10] = 0; /* reserved */
aReqBHS[11] = 0; /* reserved */
cnISCSIReq = 0;
aISCSIReq[cnISCSIReq].pcvSeg = aReqBHS;
aISCSIReq[cnISCSIReq].cbSeg = sizeof(aReqBHS);
cnISCSIReq++;
iscsiSendPDU(pImage, aISCSIReq, cnISCSIReq, ISCSIPDU_NO_REATTACH);
/* Break if the caller wanted to process the NOP-in only. */
if (itt == ISCSI_TASK_TAG_RSVD)
break;
}
}
}
return rc;
}
/**
* Reset the PDU buffer
*
* @param pImage The iSCSI connection state to be used.
*/
static void iscsiRecvPDUReset(PISCSIIMAGE pImage)
{
pImage->cbRecvPDUResidual = ISCSI_BHS_SIZE;
pImage->fRecvPDUBHS = true;
pImage->pbRecvPDUBufCur = (uint8_t *)pImage->pvRecvPDUBuf;
}
static void iscsiPDUTxAdd(PISCSIIMAGE pImage, PISCSIPDUTX pIScsiPDUTx, bool fFront)
{
if (!fFront)
{
/* Insert PDU at the tail of the list. */
if (!pImage->pIScsiPDUTxHead)
pImage->pIScsiPDUTxHead = pIScsiPDUTx;
else
pImage->pIScsiPDUTxTail->pNext = pIScsiPDUTx;
pImage->pIScsiPDUTxTail = pIScsiPDUTx;
}
else
{
/* Insert PDU at the beginning of the list. */
pIScsiPDUTx->pNext = pImage->pIScsiPDUTxHead;
pImage->pIScsiPDUTxHead = pIScsiPDUTx;
if (!pImage->pIScsiPDUTxTail)
pImage->pIScsiPDUTxTail = pIScsiPDUTx;
}
}
/**
* Receives a PDU in a non blocking way.
*
* @returns VBOX status code.
* @param pImage The iSCSI connection state to be used.
*/
static int iscsiRecvPDUAsync(PISCSIIMAGE pImage)
{
size_t cbActuallyRead = 0;
int rc = VINF_SUCCESS;
LogFlowFunc(("pImage=%#p\n", pImage));
/* Check if we are in the middle of a PDU receive. */
if (pImage->cbRecvPDUResidual == 0)
{
/*
* We are receiving a new PDU, don't read more than the BHS initially
* until we know the real size of the PDU.
*/
iscsiRecvPDUReset(pImage);
LogFlow(("Receiving new PDU\n"));
}
rc = pImage->pInterfaceNetCallbacks->pfnReadNB(pImage->Socket, pImage->pbRecvPDUBufCur,
pImage->cbRecvPDUResidual, &cbActuallyRead);
if (RT_SUCCESS(rc) && cbActuallyRead == 0)
rc = VERR_BROKEN_PIPE;
if (RT_SUCCESS(rc))
{
LogFlow(("Received %zu bytes\n", cbActuallyRead));
pImage->cbRecvPDUResidual -= cbActuallyRead;
pImage->pbRecvPDUBufCur += cbActuallyRead;
/* Check if we received everything we wanted. */
if ( !pImage->cbRecvPDUResidual
&& pImage->fRecvPDUBHS)
{
size_t cbAHSLength, cbDataLength;
/* If we were reading the BHS first get the actual PDU size now. */
uint32_t word1 = RT_N2H_U32(((uint32_t *)(pImage->pvRecvPDUBuf))[1]);
cbAHSLength = (word1 & 0xff000000) >> 24;
cbAHSLength = ((cbAHSLength - 1) | 3) + 1; /* Add padding. */
cbDataLength = word1 & 0x00ffffff;
cbDataLength = ((cbDataLength - 1) | 3) + 1; /* Add padding. */
pImage->cbRecvPDUResidual = cbAHSLength + cbDataLength;
pImage->fRecvPDUBHS = false; /* Start receiving the rest of the PDU. */
}
if (!pImage->cbRecvPDUResidual)
{
/* We received the complete PDU with or without any payload now. */
LogFlow(("Received complete PDU\n"));
ISCSIRES aResBuf;
aResBuf.pvSeg = pImage->pvRecvPDUBuf;
aResBuf.cbSeg = pImage->cbRecvPDUBuf;
rc = iscsiRecvPDUProcess(pImage, &aResBuf, 1);
}
}
else
LogFlowFunc(("Reading from the socket returned with rc=%Rrc\n", rc));
return rc;
}
static int iscsiSendPDUAsync(PISCSIIMAGE pImage)
{
size_t cbSent = 0;
int rc = VINF_SUCCESS;
LogFlowFunc(("pImage=%#p\n", pImage));
do
{
/*
* If there is no PDU active, get the first one from the list.
* Check that we are allowed to transfer the PDU by comparing the
* command sequence number and the maximum sequence number allowed by the target.
*/
if (!pImage->pIScsiPDUTxCur)
{
if ( !pImage->pIScsiPDUTxHead
|| serial_number_greater(pImage->pIScsiPDUTxHead->CmdSN, pImage->MaxCmdSN))
break;
pImage->pIScsiPDUTxCur = pImage->pIScsiPDUTxHead;
pImage->pIScsiPDUTxHead = pImage->pIScsiPDUTxCur->pNext;
if (!pImage->pIScsiPDUTxHead)
pImage->pIScsiPDUTxTail = NULL;
}
/* Send as much as we can. */
rc = pImage->pInterfaceNetCallbacks->pfnSgWriteNB(pImage->Socket, &pImage->pIScsiPDUTxCur->SgBuf, &cbSent);
LogFlow(("SgWriteNB returned rc=%Rrc cbSent=%zu\n", rc, cbSent));
if (RT_SUCCESS(rc))
{
LogFlow(("Sent %zu bytes for PDU %#p\n", cbSent, pImage->pIScsiPDUTxCur));
pImage->pIScsiPDUTxCur->cbSgLeft -= cbSent;
RTSgBufAdvance(&pImage->pIScsiPDUTxCur->SgBuf, cbSent);
if (!pImage->pIScsiPDUTxCur->cbSgLeft)
{
/* PDU completed, free it and place the command on the waiting for response list. */
if (pImage->pIScsiPDUTxCur->pIScsiCmd)
{
LogFlow(("Sent complete PDU, placing on waiting list\n"));
iscsiCmdInsert(pImage, pImage->pIScsiPDUTxCur->pIScsiCmd);
}
RTMemFree(pImage->pIScsiPDUTxCur);
pImage->pIScsiPDUTxCur = NULL;
}
}
} while ( RT_SUCCESS(rc)
&& !pImage->pIScsiPDUTxCur);
if (rc == VERR_TRY_AGAIN)
rc = VINF_SUCCESS;
/* Add the write poll flag if we still have something to send, clear it otherwise. */
if (pImage->pIScsiPDUTxCur)
pImage->fPollEvents |= VD_INTERFACETCPNET_EVT_WRITE;
else
pImage->fPollEvents &= ~VD_INTERFACETCPNET_EVT_WRITE;
LogFlowFunc(("rc=%Rrc pIScsiPDUTxCur=%#p\n", rc, pImage->pIScsiPDUTxCur));
return rc;
}
/**
* Process a received PDU.
*
* @return VBOX status code.
* @param pImage The iSCSI connection state to be used.
* @param paRes Pointer to the array of iSCSI response sections.
* @param cnRes Number of valid iSCSI response sections in the array.
*/
static int iscsiRecvPDUProcess(PISCSIIMAGE pImage, PISCSIRES paRes, uint32_t cnRes)
{
int rc = VINF_SUCCESS;
LogFlowFunc(("pImage=%#p paRes=%#p cnRes=%u\n", pImage, paRes, cnRes));
/* Validate the PDU first. */
rc = iscsiValidatePDU(paRes, cnRes);
if (RT_SUCCESS(rc))
{
ISCSIOPCODE cmd;
const uint32_t *pcvResSeg = (const uint32_t *)paRes[0].pvSeg;
Assert(paRes[0].cbSeg > 9 * sizeof(uint32_t));
do
{
cmd = (ISCSIOPCODE)(RT_N2H_U32(pcvResSeg[0]) & ISCSIOP_MASK);
switch (cmd)
{
case ISCSIOP_SCSI_RES:
case ISCSIOP_SCSI_TASKMGMT_RES:
case ISCSIOP_SCSI_DATA_IN:
case ISCSIOP_R2T:
case ISCSIOP_ASYN_MSG:
case ISCSIOP_TEXT_RES:
case ISCSIOP_LOGIN_RES:
case ISCSIOP_LOGOUT_RES:
case ISCSIOP_REJECT:
case ISCSIOP_NOP_IN:
if (serial_number_less(pImage->MaxCmdSN, RT_N2H_U32(pcvResSeg[8])))
pImage->MaxCmdSN = RT_N2H_U32(pcvResSeg[8]);
if (serial_number_less(pImage->ExpCmdSN, RT_N2H_U32(pcvResSeg[7])))
pImage->ExpCmdSN = RT_N2H_U32(pcvResSeg[7]);
break;
default:
rc = VERR_PARSE_ERROR;
}
if (RT_FAILURE(rc))
break;
if ( !pImage->FirstRecvPDU
&& (cmd != ISCSIOP_SCSI_DATA_IN || (RT_N2H_U32(pcvResSeg[0]) & ISCSI_STATUS_BIT)))
{
if (pImage->ExpStatSN == RT_N2H_U32(pcvResSeg[6]))
{
/* StatSN counter is not advanced on R2T and on a target SN update NOP-In. */
if ( (cmd != ISCSIOP_R2T)
&& ((cmd != ISCSIOP_NOP_IN) || (RT_N2H_U32(pcvResSeg[4]) != ISCSI_TASK_TAG_RSVD)))
pImage->ExpStatSN++;
}
else
{
rc = VERR_PARSE_ERROR;
break;
}
}
if (pcvResSeg[4] != ISCSI_TASK_TAG_RSVD)
{
/*
* This is a response from the target for a request from the initiator.
* Get the request and update its state.
*/
rc = iscsiRecvPDUUpdateRequest(pImage, paRes, cnRes);
/* Try to send more PDUs now that we updated the MaxCmdSN field */
if ( RT_SUCCESS(rc)
&& !pImage->pIScsiPDUTxCur)
rc = iscsiSendPDUAsync(pImage);
}
else
{
/* This is a target initiated request (we handle only NOP-In request at the moment). */
if ( cmd == ISCSIOP_NOP_IN
&& RT_N2H_U32(pcvResSeg[5]) != ISCSI_TASK_TAG_RSVD)
{
PISCSIPDUTX pIScsiPDUTx;
uint32_t cnISCSIReq;
uint32_t *paReqBHS;
LogFlowFunc(("Sending NOP-Out\n"));
/* Allocate a new PDU initialize it and put onto the waiting list. */
pIScsiPDUTx = (PISCSIPDUTX)RTMemAllocZ(sizeof(ISCSIPDUTX));
if (!pIScsiPDUTx)
{
rc = VERR_NO_MEMORY;
break;
}
paReqBHS = &pIScsiPDUTx->aBHS[0];
paReqBHS[0] = RT_H2N_U32(ISCSI_IMMEDIATE_DELIVERY_BIT | ISCSI_FINAL_BIT | ISCSIOP_NOP_OUT);
paReqBHS[1] = RT_H2N_U32(0); /* TotalAHSLength=0,DataSementLength=0 */
paReqBHS[2] = pcvResSeg[2]; /* copy LUN from NOP-In */
paReqBHS[3] = pcvResSeg[3]; /* copy LUN from NOP-In */
paReqBHS[4] = RT_H2N_U32(ISCSI_TASK_TAG_RSVD); /* ITT, reply */
paReqBHS[5] = pcvResSeg[5]; /* copy TTT from NOP-In */
paReqBHS[6] = RT_H2N_U32(pImage->CmdSN);
paReqBHS[7] = RT_H2N_U32(pImage->ExpStatSN);
paReqBHS[8] = 0; /* reserved */
paReqBHS[9] = 0; /* reserved */
paReqBHS[10] = 0; /* reserved */
paReqBHS[11] = 0; /* reserved */
cnISCSIReq = 0;
pIScsiPDUTx->aISCSIReq[cnISCSIReq].pvSeg = paReqBHS;
pIScsiPDUTx->aISCSIReq[cnISCSIReq].cbSeg = sizeof(pIScsiPDUTx->aBHS);
cnISCSIReq++;
pIScsiPDUTx->cbSgLeft = sizeof(pIScsiPDUTx->aBHS);
RTSgBufInit(&pIScsiPDUTx->SgBuf, pIScsiPDUTx->aISCSIReq, cnISCSIReq);
/*
* Link the PDU to the list.
* Insert at the front of the list to send the response as soon as possible
* to avoid frequent reconnects for a slow connection when there are many PDUs
* waiting.
*/
iscsiPDUTxAdd(pImage, pIScsiPDUTx, true /* fFront */);
/* Start transfer of a PDU if there is no one active at the moment. */
if (!pImage->pIScsiPDUTxCur)
rc = iscsiSendPDUAsync(pImage);
}
}
} while (0);
}
return rc;
}
/**
* Check the static (not dependent on the connection/session state) validity of an iSCSI response PDU.
*
* @returns VBOX status
* @param paRes Pointer to array of iSCSI response sections.
* @param cnRes Number of valid iSCSI response sections in the array.
*/
static int iscsiValidatePDU(PISCSIRES paRes, uint32_t cnRes)
{
const uint32_t *pcrgResBHS;
uint32_t hw0;
Assert(cnRes >= 1);
Assert(paRes[0].cbSeg >= ISCSI_BHS_SIZE);
LogFlowFunc(("paRes=%#p cnRes=%u\n", paRes, cnRes));
pcrgResBHS = (const uint32_t *)(paRes[0].pvSeg);
hw0 = RT_N2H_U32(pcrgResBHS[0]);
switch (hw0 & ISCSIOP_MASK)
{
case ISCSIOP_NOP_IN:
/* NOP-In responses must not be split into several PDUs nor it may contain
* ping data for target-initiated pings nor may both task tags be valid task tags. */
if ( (hw0 & ISCSI_FINAL_BIT) == 0
|| ( RT_N2H_U32(pcrgResBHS[4]) == ISCSI_TASK_TAG_RSVD
&& RT_N2H_U32(pcrgResBHS[1]) != 0)
|| ( RT_N2H_U32(pcrgResBHS[4]) != ISCSI_TASK_TAG_RSVD
&& RT_N2H_U32(pcrgResBHS[5]) != ISCSI_TASK_TAG_RSVD))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_SCSI_RES:
/* SCSI responses must not be split into several PDUs nor must the residual
* bits be contradicting each other nor may the residual bits be set for PDUs
* containing anything else but a completed command response. Underflow
* is no reason for declaring a PDU as invalid, as the target may choose
* to return less data than we assume to get. */
if ( (hw0 & ISCSI_FINAL_BIT) == 0
|| ((hw0 & ISCSI_BI_READ_RESIDUAL_OVFL_BIT) && (hw0 & ISCSI_BI_READ_RESIDUAL_UNFL_BIT))
|| ((hw0 & ISCSI_RESIDUAL_OVFL_BIT) && (hw0 & ISCSI_RESIDUAL_UNFL_BIT))
|| ( ((hw0 & ISCSI_SCSI_RESPONSE_MASK) == 0)
&& ((hw0 & ISCSI_SCSI_STATUS_MASK) == SCSI_STATUS_OK)
&& (hw0 & ( ISCSI_BI_READ_RESIDUAL_OVFL_BIT | ISCSI_BI_READ_RESIDUAL_UNFL_BIT
| ISCSI_RESIDUAL_OVFL_BIT))))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_LOGIN_RES:
/* Login responses must not contain contradicting transit and continue bits. */
if ((hw0 & ISCSI_CONTINUE_BIT) && ((hw0 & ISCSI_TRANSIT_BIT) != 0))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_TEXT_RES:
/* Text responses must not contain contradicting final and continue bits nor
* may the final bit be set for PDUs containing a target transfer tag other than
* the reserved transfer tag (and vice versa). */
if ( (((hw0 & ISCSI_CONTINUE_BIT) && (hw0 & ISCSI_FINAL_BIT) != 0))
|| (((hw0 & ISCSI_FINAL_BIT) && (RT_N2H_U32(pcrgResBHS[5]) != ISCSI_TASK_TAG_RSVD)))
|| (((hw0 & ISCSI_FINAL_BIT) == 0) && (RT_N2H_U32(pcrgResBHS[5]) == ISCSI_TASK_TAG_RSVD)))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_SCSI_DATA_IN:
/* SCSI Data-in responses must not contain contradicting residual bits when
* status bit is set. */
if ((hw0 & ISCSI_STATUS_BIT) && (hw0 & ISCSI_RESIDUAL_OVFL_BIT) && (hw0 & ISCSI_RESIDUAL_UNFL_BIT))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_LOGOUT_RES:
/* Logout responses must not have the final bit unset and may not contain any
* data or additional header segments. */
if ( ((hw0 & ISCSI_FINAL_BIT) == 0)
|| (RT_N2H_U32(pcrgResBHS[1]) != 0))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_ASYN_MSG:
/* Asynchronous Messages must not have the final bit unset and may not contain
* an initiator task tag. */
if ( ((hw0 & ISCSI_FINAL_BIT) == 0)
|| (RT_N2H_U32(pcrgResBHS[4]) != ISCSI_TASK_TAG_RSVD))
return VERR_PARSE_ERROR;
break;
case ISCSIOP_SCSI_TASKMGMT_RES:
case ISCSIOP_R2T:
case ISCSIOP_REJECT:
default:
/* Do some logging, ignore PDU. */
LogFlowFunc(("ignore unhandled PDU, first word %#08x\n", RT_N2H_U32(pcrgResBHS[0])));
return VERR_PARSE_ERROR;
}
/* A target must not send PDUs with MaxCmdSN less than ExpCmdSN-1. */
if (serial_number_less(RT_N2H_U32(pcrgResBHS[8]), RT_N2H_U32(pcrgResBHS[7])-1))
return VERR_PARSE_ERROR;
return VINF_SUCCESS;
}
/**
* Prepares a PDU to transfer for the given command and adds it to the list.
*/
static int iscsiPDUTxPrepare(PISCSIIMAGE pImage, PISCSICMD pIScsiCmd)
{
int rc = VINF_SUCCESS;
uint32_t *paReqBHS;
size_t cbData = 0;
size_t cbSegs = 0;
PSCSIREQ pScsiReq;
PISCSIPDUTX pIScsiPDU = NULL;
LogFlowFunc(("pImage=%#p pIScsiCmd=%#p\n", pImage, pIScsiCmd));
Assert(pIScsiCmd->enmCmdType == ISCSICMDTYPE_REQ);
pIScsiCmd->Itt = iscsiNewITT(pImage);
pScsiReq = pIScsiCmd->CmdType.ScsiReq.pScsiReq;
if (pScsiReq->cT2ISegs)
RTSgBufInit(&pScsiReq->SgBufT2I, pScsiReq->paT2ISegs, pScsiReq->cT2ISegs);
/*
* Allocate twice as much entries as required for padding (worst case).
* The additional segment is for the BHS.
*/
size_t cI2TSegs = 2*(pScsiReq->cI2TSegs + 1);
pIScsiPDU = (PISCSIPDUTX)RTMemAllocZ(RT_OFFSETOF(ISCSIPDUTX, aISCSIReq[cI2TSegs]));
if (!pIScsiPDU)
return VERR_NO_MEMORY;
pIScsiPDU->pIScsiCmd = pIScsiCmd;
if (pScsiReq->enmXfer == SCSIXFER_FROM_TARGET)
cbData = (uint32_t)pScsiReq->cbT2IData;
else
cbData = (uint32_t)pScsiReq->cbI2TData;
paReqBHS = pIScsiPDU->aBHS;
/* Setup the BHS. */
paReqBHS[0] = RT_H2N_U32( ISCSI_FINAL_BIT | ISCSI_TASK_ATTR_ORDERED | ISCSIOP_SCSI_CMD
| (pScsiReq->enmXfer << 21)); /* I=0,F=1,Attr=Ordered */
paReqBHS[1] = RT_H2N_U32(0x00000000 | ((uint32_t)pScsiReq->cbI2TData & 0xffffff)); /* TotalAHSLength=0 */
paReqBHS[2] = RT_H2N_U32(pImage->LUN >> 32);
paReqBHS[3] = RT_H2N_U32(pImage->LUN & 0xffffffff);
paReqBHS[4] = pIScsiCmd->Itt;
paReqBHS[5] = RT_H2N_U32(cbData);
paReqBHS[6] = RT_H2N_U32(pImage->CmdSN);
paReqBHS[7] = RT_H2N_U32(pImage->ExpStatSN);
memcpy(paReqBHS + 8, pScsiReq->pvCDB, pScsiReq->cbCDB);
pIScsiPDU->CmdSN = pImage->CmdSN;
pImage->CmdSN++;
/* Setup the S/G buffers. */
uint32_t cnISCSIReq = 0;
pIScsiPDU->aISCSIReq[cnISCSIReq].cbSeg = sizeof(pIScsiPDU->aBHS);
pIScsiPDU->aISCSIReq[cnISCSIReq].pvSeg = pIScsiPDU->aBHS;
cnISCSIReq++;
cbSegs = sizeof(pIScsiPDU->aBHS);
/* Padding is not necessary for the BHS. */
if (pScsiReq->cbI2TData)
{
for (unsigned cSeg = 0; cSeg < pScsiReq->cI2TSegs; cSeg++)
{
Assert(cnISCSIReq < cI2TSegs);
pIScsiPDU->aISCSIReq[cnISCSIReq].cbSeg = pScsiReq->paI2TSegs[cSeg].cbSeg;
pIScsiPDU->aISCSIReq[cnISCSIReq].pvSeg = pScsiReq->paI2TSegs[cSeg].pvSeg;
cbSegs += pScsiReq->paI2TSegs[cSeg].cbSeg;
cnISCSIReq++;
/* Add padding if necessary. */
if (pScsiReq->paI2TSegs[cSeg].cbSeg & 3)
{
Assert(cnISCSIReq < cI2TSegs);
pIScsiPDU->aISCSIReq[cnISCSIReq].pvSeg = &pImage->aPadding[0];
pIScsiPDU->aISCSIReq[cnISCSIReq].cbSeg = 4 - (pScsiReq->paI2TSegs[cSeg].cbSeg & 3);
cbSegs += pIScsiPDU->aISCSIReq[cnISCSIReq].cbSeg;
cnISCSIReq++;
}
}
}
pIScsiPDU->cISCSIReq = cnISCSIReq;
pIScsiPDU->cbSgLeft = cbSegs;
RTSgBufInit(&pIScsiPDU->SgBuf, pIScsiPDU->aISCSIReq, cnISCSIReq);
/* Link the PDU to the list. */
iscsiPDUTxAdd(pImage, pIScsiPDU, false /* fFront */);
/* Start transfer of a PDU if there is no one active at the moment. */
if (!pImage->pIScsiPDUTxCur)
rc = iscsiSendPDUAsync(pImage);
return rc;
}
/**
* Updates the state of a request from the PDU we received.
*
* @return VBox status code.
* @param pImage iSCSI connection state to use.
* @param paRes Pointer to array of iSCSI response sections.
* @param cnRes Number of valid iSCSI response sections in the array.
*/
static int iscsiRecvPDUUpdateRequest(PISCSIIMAGE pImage, PISCSIRES paRes, uint32_t cnRes)
{
int rc = VINF_SUCCESS;
PISCSICMD pIScsiCmd;
uint32_t *paResBHS;
LogFlowFunc(("pImage=%#p paRes=%#p cnRes=%u\n", pImage, paRes, cnRes));
Assert(cnRes == 1);
Assert(paRes[0].cbSeg >= ISCSI_BHS_SIZE);
paResBHS = (uint32_t *)paRes[0].pvSeg;
pIScsiCmd = iscsiCmdGetFromItt(pImage, paResBHS[4]);
if (pIScsiCmd)
{
bool final = false;
PSCSIREQ pScsiReq;
LogFlow(("Found SCSI command %#p for Itt=%#u\n", pIScsiCmd, paResBHS[4]));
Assert(pIScsiCmd->enmCmdType == ISCSICMDTYPE_REQ);
pScsiReq = pIScsiCmd->CmdType.ScsiReq.pScsiReq;
final = !!(RT_N2H_U32(paResBHS[0]) & ISCSI_FINAL_BIT);
ISCSIOPCODE cmd = (ISCSIOPCODE)(RT_N2H_U32(paResBHS[0]) & ISCSIOP_MASK);
if (cmd == ISCSIOP_SCSI_RES)
{
/* This is the final PDU which delivers the status (and may be omitted if
* the last Data-In PDU included successful completion status). Note
* that ExpStatSN has been bumped already in iscsiRecvPDU. */
if (!final || ((RT_N2H_U32(paResBHS[0]) & 0x0000ff00) != 0) || (RT_N2H_U32(paResBHS[6]) != pImage->ExpStatSN - 1))
{
/* SCSI Response in the wrong place or with a (target) failure. */
LogFlow(("Wrong ExpStatSN value in PDU\n"));
rc = VERR_PARSE_ERROR;
}
else
{
pScsiReq->status = RT_N2H_U32(paResBHS[0]) & 0x000000ff;
size_t cbData = RT_N2H_U32(paResBHS[1]) & 0x00ffffff;
void *pvSense = (uint8_t *)paRes[0].pvSeg + ISCSI_BHS_SIZE;
if (cbData >= 2)
{
uint32_t cbStat = RT_N2H_U32(((uint32_t *)pvSense)[0]) >> 16;
if (cbStat + 2 > cbData)
{
rc = VERR_BUFFER_OVERFLOW;
}
else
{
/* Truncate sense data if it doesn't fit into the buffer. */
pScsiReq->cbSense = RT_MIN(cbStat, pScsiReq->cbSense);
memcpy(pScsiReq->pvSense, (uint8_t *)pvSense + 2,
RT_MIN(paRes[0].cbSeg - ISCSI_BHS_SIZE - 2, pScsiReq->cbSense));
}
}
else if (cbData == 1)
rc = VERR_PARSE_ERROR;
else
pScsiReq->cbSense = 0;
}
iscsiCmdComplete(pImage, pIScsiCmd, rc);
}
else if (cmd == ISCSIOP_SCSI_DATA_IN)
{
/* A Data-In PDU carries some data that needs to be added to the received
* data in response to the command. There may be both partial and complete
* Data-In PDUs, so collect data until the status is included or the status
* is sent in a separate SCSI Result frame (see above). */
size_t cbData = RT_N2H_U32(paResBHS[1]) & 0x00ffffff;
void *pvData = (uint8_t *)paRes[0].pvSeg + ISCSI_BHS_SIZE;
if (final && cbData > pScsiReq->cbT2IData)
{
/* The received PDU is bigger than what we requested.
* Must not happen under normal circumstances and is a target error. */
rc = VERR_BUFFER_OVERFLOW;
}
else
{
/* Copy data from the received PDU into the T2I segments. */
size_t cbCopied = RTSgBufCopyFromBuf(&pScsiReq->SgBufT2I, pvData, cbData);
Assert(cbCopied == cbData);
if (final && (RT_N2H_U32(paResBHS[0]) & ISCSI_STATUS_BIT) != 0)
{
pScsiReq->status = RT_N2H_U32(paResBHS[0]) & 0x000000ff;
pScsiReq->cbSense = 0;
iscsiCmdComplete(pImage, pIScsiCmd, VINF_SUCCESS);
}
}
}
else
rc = VERR_PARSE_ERROR;
}
/* Log any errors here but ignore the PDU. */
if (RT_FAILURE(rc))
{
LogRel(("iSCSI: Received malformed PDU from target %s (rc=%Rrc), ignoring\n", pImage->pszTargetName, rc));
rc = VINF_SUCCESS;
}
return rc;
}
/**
* Appends a key-value pair to the buffer. Normal ASCII strings (cbValue == 0) and large binary values
* of a given length (cbValue > 0) are directly supported. Other value types must be converted to ASCII
* by the caller. Strings must be in UTF-8 encoding.
*
* @returns VBOX status
* @param pbBuf Pointer to the key-value buffer.
* @param cbBuf Length of the key-value buffer.
* @param pcbBufCurr Currently used portion of the key-value buffer.
* @param pszKey Pointer to a string containing the key.
* @param pszValue Pointer to either a string containing the value or to a large binary value.
* @param cbValue Length of the binary value if applicable.
*/
static int iscsiTextAddKeyValue(uint8_t *pbBuf, size_t cbBuf, size_t *pcbBufCurr, const char *pcszKey,
const char *pcszValue, size_t cbValue)
{
size_t cbBufTmp = *pcbBufCurr;
size_t cbKey = strlen(pcszKey);
size_t cbValueEnc;
uint8_t *pbCurr;
if (cbValue == 0)
cbValueEnc = strlen(pcszValue);
else
cbValueEnc = cbValue * 2 + 2; /* 2 hex bytes per byte, 2 bytes prefix */
if (cbBuf < cbBufTmp + cbKey + 1 + cbValueEnc + 1)
{
/* Buffer would overflow, signal error. */
return VERR_BUFFER_OVERFLOW;
}
/*
* Append a key=value pair (zero terminated string) to the end of the buffer.
*/
pbCurr = pbBuf + cbBufTmp;
memcpy(pbCurr, pcszKey, cbKey);
pbCurr += cbKey;
*pbCurr++ = '=';
if (cbValue == 0)
{
memcpy(pbCurr, pcszValue, cbValueEnc);
pbCurr += cbValueEnc;
}
else
{
*pbCurr++ = '0';
*pbCurr++ = 'x';
for (uint32_t i = 0; i < cbValue; i++)
{
uint8_t b;
b = pcszValue[i];
*pbCurr++ = NUM_2_HEX(b >> 4);
*pbCurr++ = NUM_2_HEX(b & 0xf);
}
}
*pbCurr = '\0';
*pcbBufCurr = cbBufTmp + cbKey + 1 + cbValueEnc + 1;
return VINF_SUCCESS;
}
/**
* Retrieve the value for a given key from the key=value buffer.
*
* @returns VBOX status.
* @param pbBuf Buffer containing key=value pairs.
* @param cbBuf Length of buffer with key=value pairs.
* @param pszKey Pointer to key for which to retrieve the value.
* @param ppszValue Pointer to value string pointer.
*/
static int iscsiTextGetKeyValue(const uint8_t *pbBuf, size_t cbBuf, const char *pcszKey, const char **ppcszValue)
{
size_t cbKey = strlen(pcszKey);
while (cbBuf != 0)
{
size_t cbKeyValNull = strlen((const char *)pbBuf) + 1;
if (strncmp(pcszKey, (const char *)pbBuf, cbKey) == 0 && pbBuf[cbKey] == '=')
{
*ppcszValue = (const char *)(pbBuf + cbKey + 1);
return VINF_SUCCESS;
}
pbBuf += cbKeyValNull;
cbBuf -= cbKeyValNull;
}
return VERR_INVALID_NAME;
}
/**
* Convert a long-binary value from a value string to the binary representation.
*
* @returns VBOX status
* @param pszValue Pointer to a string containing the textual value representation.
* @param pbValue Pointer to the value buffer for the binary value.
* @param pcbValue In: length of value buffer, out: actual length of binary value.
*/
static int iscsiStrToBinary(const char *pcszValue, uint8_t *pbValue, size_t *pcbValue)
{
size_t cbValue = *pcbValue;
char c1, c2, c3, c4;
Assert(cbValue >= 1);
if (strlen(pcszValue) < 3)
return VERR_PARSE_ERROR;
if (*pcszValue++ != '0')
return VERR_PARSE_ERROR;
switch (*pcszValue++)
{
case 'x':
case 'X':
if (strlen(pcszValue) & 1)
{
c1 = *pcszValue++;
*pbValue++ = HEX_2_NUM(c1);
cbValue--;
}
while (*pcszValue != '\0')
{
if (cbValue == 0)
return VERR_BUFFER_OVERFLOW;
c1 = *pcszValue++;
if ((c1 < '0' || c1 > '9') && (c1 < 'a' || c1 > 'f') && (c1 < 'A' || c1 > 'F'))
return VERR_PARSE_ERROR;
c2 = *pcszValue++;
if ((c2 < '0' || c2 > '9') && (c2 < 'a' || c2 > 'f') && (c2 < 'A' || c2 > 'F'))
return VERR_PARSE_ERROR;
*pbValue++ = (HEX_2_NUM(c1) << 4) | HEX_2_NUM(c2);
cbValue--;
}
*pcbValue -= cbValue;
break;
case 'b':
case 'B':
if ((strlen(pcszValue) & 3) != 0)
return VERR_PARSE_ERROR;
while (*pcszValue != '\0')
{
uint32_t temp;
if (cbValue == 0)
return VERR_BUFFER_OVERFLOW;
c1 = *pcszValue++;
if ((c1 < 'A' || c1 > 'Z') && (c1 < 'a' || c1 >'z') && (c1 < '0' || c1 > '9') && (c1 != '+') && (c1 != '/'))
return VERR_PARSE_ERROR;
c2 = *pcszValue++;
if ((c2 < 'A' || c2 > 'Z') && (c2 < 'a' || c2 >'z') && (c2 < '0' || c2 > '9') && (c2 != '+') && (c2 != '/'))
return VERR_PARSE_ERROR;
c3 = *pcszValue++;
if ((c3 < 'A' || c3 > 'Z') && (c3 < 'a' || c3 >'z') && (c3 < '0' || c3 > '9') && (c3 != '+') && (c3 != '/') && (c3 != '='))
return VERR_PARSE_ERROR;
c4 = *pcszValue++;
if ( (c3 == '=' && c4 != '=')
|| ((c4 < 'A' || c4 > 'Z') && (c4 < 'a' || c4 >'z') && (c4 < '0' || c4 > '9') && (c4 != '+') && (c4 != '/') && (c4 != '=')))
return VERR_PARSE_ERROR;
temp = (B64_2_NUM(c1) << 18) | (B64_2_NUM(c2) << 12);
if (c3 == '=') {
if (*pcszValue != '\0')
return VERR_PARSE_ERROR;
*pbValue++ = temp >> 16;
cbValue--;
} else {
temp |= B64_2_NUM(c3) << 6;
if (c4 == '=') {
if (*pcszValue != '\0')
return VERR_PARSE_ERROR;
if (cbValue < 2)
return VERR_BUFFER_OVERFLOW;
*pbValue++ = temp >> 16;
*pbValue++ = (temp >> 8) & 0xff;
cbValue -= 2;
}
else
{
temp |= B64_2_NUM(c4);
if (cbValue < 3)
return VERR_BUFFER_OVERFLOW;
*pbValue++ = temp >> 16;
*pbValue++ = (temp >> 8) & 0xff;
*pbValue++ = temp & 0xff;
cbValue -= 3;
}
}
}
*pcbValue -= cbValue;
break;
default:
return VERR_PARSE_ERROR;
}
return VINF_SUCCESS;
}
/**
* Retrieve the relevant parameter values and update the initiator state.
*
* @returns VBOX status.
* @param pImage Current iSCSI initiator state.
* @param pbBuf Buffer containing key=value pairs.
* @param cbBuf Length of buffer with key=value pairs.
*/
static int iscsiUpdateParameters(PISCSIIMAGE pImage, const uint8_t *pbBuf, size_t cbBuf)
{
int rc;
const char *pcszMaxRecvDataSegmentLength = NULL;
const char *pcszMaxBurstLength = NULL;
const char *pcszFirstBurstLength = NULL;
rc = iscsiTextGetKeyValue(pbBuf, cbBuf, "MaxRecvDataSegmentLength", &pcszMaxRecvDataSegmentLength);
if (rc == VERR_INVALID_NAME)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
return VERR_PARSE_ERROR;
rc = iscsiTextGetKeyValue(pbBuf, cbBuf, "MaxBurstLength", &pcszMaxBurstLength);
if (rc == VERR_INVALID_NAME)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
return VERR_PARSE_ERROR;
rc = iscsiTextGetKeyValue(pbBuf, cbBuf, "FirstBurstLength", &pcszFirstBurstLength);
if (rc == VERR_INVALID_NAME)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
return VERR_PARSE_ERROR;
if (pcszMaxRecvDataSegmentLength)
{
uint32_t cb = pImage->cbSendDataLength;
rc = RTStrToUInt32Full(pcszMaxRecvDataSegmentLength, 0, &cb);
AssertRC(rc);
pImage->cbSendDataLength = RT_MIN(pImage->cbSendDataLength, cb);
}
if (pcszMaxBurstLength)
{
uint32_t cb = pImage->cbSendDataLength;
rc = RTStrToUInt32Full(pcszMaxBurstLength, 0, &cb);
AssertRC(rc);
pImage->cbSendDataLength = RT_MIN(pImage->cbSendDataLength, cb);
}
if (pcszFirstBurstLength)
{
uint32_t cb = pImage->cbSendDataLength;
rc = RTStrToUInt32Full(pcszFirstBurstLength, 0, &cb);
AssertRC(rc);
pImage->cbSendDataLength = RT_MIN(pImage->cbSendDataLength, cb);
}
return VINF_SUCCESS;
}
static bool serial_number_less(uint32_t s1, uint32_t s2)
{
return (s1 < s2 && s2 - s1 < 0x80000000) || (s1 > s2 && s1 - s2 > 0x80000000);
}
static bool serial_number_greater(uint32_t s1, uint32_t s2)
{
return (s1 < s2 && s2 - s1 > 0x80000000) || (s1 > s2 && s1 - s2 < 0x80000000);
}
#ifdef IMPLEMENT_TARGET_AUTH
static void chap_md5_generate_challenge(uint8_t *pbChallenge, size_t *pcbChallenge)
{
uint8_t cbChallenge;
cbChallenge = RTrand_U8(CHAP_MD5_CHALLENGE_MIN, CHAP_MD5_CHALLENGE_MAX);
RTrand_bytes(pbChallenge, cbChallenge);
*pcbChallenge = cbChallenge;
}
#endif
static void chap_md5_compute_response(uint8_t *pbResponse, uint8_t id, const uint8_t *pbChallenge, size_t cbChallenge,
const uint8_t *pbSecret, size_t cbSecret)
{
RTMD5CONTEXT ctx;
uint8_t bId;
bId = id;
RTMd5Init(&ctx);
RTMd5Update(&ctx, &bId, 1);
RTMd5Update(&ctx, pbSecret, cbSecret);
RTMd5Update(&ctx, pbChallenge, cbChallenge);
RTMd5Final(pbResponse, &ctx);
}
/**
* Internal. - Wrapper around the extended select callback of the net interface.
*/
DECLINLINE(int) iscsiIoThreadWait(PISCSIIMAGE pImage, RTMSINTERVAL cMillies, uint32_t fEvents, uint32_t *pfEvents)
{
return pImage->pInterfaceNetCallbacks->pfnSelectOneEx(pImage->Socket, fEvents, pfEvents, cMillies);
}
/**
* Internal. - Pokes a thread waiting for I/O.
*/
DECLINLINE(int) iscsiIoThreadPoke(PISCSIIMAGE pImage)
{
return pImage->pInterfaceNetCallbacks->pfnPoke(pImage->Socket);
}
/**
* Internal. - Get the next request from the queue.
*/
DECLINLINE(PISCSICMD) iscsiCmdGet(PISCSIIMAGE pImage)
{
int rc;
PISCSICMD pIScsiCmd = NULL;
rc = RTSemMutexRequest(pImage->MutexReqQueue, RT_INDEFINITE_WAIT);
AssertRC(rc);
pIScsiCmd = pImage->pScsiReqQueue;
if (pIScsiCmd)
{
pImage->pScsiReqQueue = pIScsiCmd->pNext;
pIScsiCmd->pNext = NULL;
}
rc = RTSemMutexRelease(pImage->MutexReqQueue);
AssertRC(rc);
return pIScsiCmd;
}
/**
* Internal. - Adds the given command to the queue.
*/
DECLINLINE(int) iscsiCmdPut(PISCSIIMAGE pImage, PISCSICMD pIScsiCmd)
{
int rc = RTSemMutexRequest(pImage->MutexReqQueue, RT_INDEFINITE_WAIT);
AssertRC(rc);
pIScsiCmd->pNext = pImage->pScsiReqQueue;
pImage->pScsiReqQueue = pIScsiCmd;
rc = RTSemMutexRelease(pImage->MutexReqQueue);
AssertRC(rc);
iscsiIoThreadPoke(pImage);
return rc;
}
/**
* Internal. - Completes the request with the appropriate action.
* Synchronous requests are completed with waking up the thread
* and asynchronous ones by continuing the associated I/O context.
*/
static void iscsiCmdComplete(PISCSIIMAGE pImage, PISCSICMD pIScsiCmd, int rcCmd)
{
LogFlowFunc(("pImage=%#p pIScsiCmd=%#p rcCmd=%Rrc\n", pImage, pIScsiCmd, rcCmd));
/* Remove from the table first. */
iscsiCmdRemove(pImage, pIScsiCmd->Itt);
/* Call completion callback. */
pIScsiCmd->pfnComplete(pImage, rcCmd, pIScsiCmd->pvUser);
/* Free command structure. */
#ifdef DEBUG
memset(pIScsiCmd, 0xff, sizeof(ISCSICMD));
#endif
RTMemFree(pIScsiCmd);
}
/**
* Reattaches the to the target after an error aborting
* pending commands and resending them.
*
* @param pImage iSCSI connection state.
*/
static void iscsiReattach(PISCSIIMAGE pImage)
{
int rc = VINF_SUCCESS;
PISCSICMD pIScsiCmdHead = NULL;
PISCSICMD pIScsiCmd = NULL;
PISCSICMD pIScsiCmdCur = NULL;
PISCSIPDUTX pIScsiPDUTx = NULL;
/* Close connection. */
iscsiTransportClose(pImage);
pImage->state = ISCSISTATE_FREE;
/* Reset PDU we are receiving. */
iscsiRecvPDUReset(pImage);
/*
* Abort all PDUs we are about to transmit,
* the command need a new Itt if the relogin is successful.
*/
while (pImage->pIScsiPDUTxHead)
{
pIScsiPDUTx = pImage->pIScsiPDUTxHead;
pImage->pIScsiPDUTxHead = pIScsiPDUTx->pNext;
pIScsiCmd = pIScsiPDUTx->pIScsiCmd;
if (pIScsiCmd)
{
/* Place on command list. */
pIScsiCmd->pNext = pIScsiCmdHead;
pIScsiCmdHead = pIScsiCmd;
}
RTMemFree(pIScsiPDUTx);
}
/* Clear the tail pointer (safety precaution). */
pImage->pIScsiPDUTxTail = NULL;
/* Clear the current PDU too. */
if (pImage->pIScsiPDUTxCur)
{
pIScsiPDUTx = pImage->pIScsiPDUTxCur;
pImage->pIScsiPDUTxCur = NULL;
pIScsiCmd = pIScsiPDUTx->pIScsiCmd;
if (pIScsiCmd)
{
pIScsiCmd->pNext = pIScsiCmdHead;
pIScsiCmdHead = pIScsiCmd;
}
RTMemFree(pIScsiPDUTx);
}
/*
* Get all commands which are waiting for a response
* They need to be resend too after a successful reconnect.
*/
pIScsiCmd = iscsiCmdRemoveAll(pImage);
if (pIScsiCmd)
{
pIScsiCmdCur = pIScsiCmd;
while (pIScsiCmdCur->pNext)
pIScsiCmdCur = pIScsiCmdCur->pNext;
/*
* Place them in front of the list because they are the oldest requests
* and need to be processed first to minimize the risk to time out.
*/
pIScsiCmdCur->pNext = pIScsiCmdHead;
pIScsiCmdHead = pIScsiCmd;
}
/* Try to attach. */
rc = iscsiAttach(pImage);
if (RT_SUCCESS(rc))
{
/* Phew, we have a connection again.
* Prepare new PDUs for the aborted commands.
*/
while (pIScsiCmdHead)
{
pIScsiCmd = pIScsiCmdHead;
pIScsiCmdHead = pIScsiCmdHead->pNext;
pIScsiCmd->pNext = NULL;
rc = iscsiPDUTxPrepare(pImage, pIScsiCmd);
AssertRC(rc);
}
}
else
{
/*
* Still no luck, complete commands with error so the caller
* has a chance to inform the user and maybe resend the command.
*/
while (pIScsiCmdHead)
{
pIScsiCmd = pIScsiCmdHead;
pIScsiCmdHead = pIScsiCmdHead->pNext;
iscsiCmdComplete(pImage, pIScsiCmd, VERR_BROKEN_PIPE);
}
}
}
/**
* Internal. Main iSCSI I/O worker.
*/
static DECLCALLBACK(int) iscsiIoThreadWorker(RTTHREAD ThreadSelf, void *pvUser)
{
PISCSIIMAGE pImage = (PISCSIIMAGE)pvUser;
/* Initialize the initial event mask. */
pImage->fPollEvents = VD_INTERFACETCPNET_EVT_READ | VD_INTERFACETCPNET_EVT_ERROR;
while (pImage->fRunning)
{
uint32_t fEvents;
int rc;
fEvents = 0;
/* Wait for work or for data from the target. */
RTMSINTERVAL msWait;
if (pImage->cCmdsWaiting)
{
pImage->fPollEvents &= ~VD_INTERFACETCPNET_HINT_INTERRUPT;
msWait = pImage->uReadTimeout;
}
else
{
pImage->fPollEvents |= VD_INTERFACETCPNET_HINT_INTERRUPT;
msWait = RT_INDEFINITE_WAIT;
}
LogFlow(("Waiting for events fPollEvents=%#x\n", pImage->fPollEvents));
rc = iscsiIoThreadWait(pImage, msWait, pImage->fPollEvents, &fEvents);
if (rc == VERR_INTERRUPTED)
{
/* Check the queue. */
PISCSICMD pIScsiCmd = iscsiCmdGet(pImage);
while (pIScsiCmd)
{
switch (pIScsiCmd->enmCmdType)
{
case ISCSICMDTYPE_REQ:
{
/* If there is no connection complete the command with an error. */
if (RT_LIKELY(iscsiIsClientConnected(pImage)))
{
rc = iscsiPDUTxPrepare(pImage, pIScsiCmd);
AssertRC(rc);
}
else
iscsiCmdComplete(pImage, pIScsiCmd, VERR_NET_CONNECTION_REFUSED);
break;
}
case ISCSICMDTYPE_EXEC:
{
rc = pIScsiCmd->CmdType.Exec.pfnExec(pIScsiCmd->CmdType.Exec.pvUser);
iscsiCmdComplete(pImage, pIScsiCmd, rc);
break;
}
default:
AssertMsgFailed(("Invalid command type %d\n", pIScsiCmd->enmCmdType));
}
pIScsiCmd = iscsiCmdGet(pImage);
}
}
else if (rc == VERR_TIMEOUT && pImage->cCmdsWaiting)
{
/*
* We are waiting for a response from the target but
* it didn't answered yet.
* We assume the connection is broken and try to reconnect.
*/
LogFlow(("Timed out while waiting for an answer from the target, reconnecting\n"));
iscsiReattach(pImage);
}
else if (RT_SUCCESS(rc) || rc == VERR_TIMEOUT)
{
Assert(pImage->state == ISCSISTATE_NORMAL);
LogFlow(("Got socket events %#x\n", fEvents));
if (fEvents & VD_INTERFACETCPNET_EVT_READ)
{
/* Continue or start a new PDU receive task */
LogFlow(("There is data on the socket\n"));
rc = iscsiRecvPDUAsync(pImage);
if (rc == VERR_BROKEN_PIPE)
iscsiReattach(pImage);
else if (RT_FAILURE(rc))
iscsiLogRel(pImage, "iSCSI: Handling incoming request failed %Rrc\n", rc);
}
if (fEvents & VD_INTERFACETCPNET_EVT_WRITE)
{
LogFlow(("The socket is writable\n"));
rc = iscsiSendPDUAsync(pImage);
if (RT_FAILURE(rc))
{
/*
* Something unexpected happened, log the error and try to reset everything
* by reattaching to the target.
*/
iscsiLogRel(pImage, "iSCSI: Sending PDU failed %Rrc\n", rc);
iscsiReattach(pImage);
}
}
if (fEvents & VD_INTERFACETCPNET_EVT_ERROR)
{
LogFlow(("An error ocurred\n"));
iscsiReattach(pImage);
}
}
else
iscsiLogRel(pImage, "iSCSI: Waiting for I/O failed rc=%Rrc\n", rc);
}
return VINF_SUCCESS;
}
/**
* Internal. - Enqueues a request asynchronously.
*/
static int iscsiCommandAsync(PISCSIIMAGE pImage, PSCSIREQ pScsiReq,
PFNISCSICMDCOMPLETED pfnComplete, void *pvUser)
{
int rc;
if (pImage->fExtendedSelectSupported)
{
PISCSICMD pIScsiCmd = (PISCSICMD)RTMemAllocZ(sizeof(ISCSICMD));
if (!pIScsiCmd)
return VERR_NO_MEMORY;
/* Init the command structure. */
pIScsiCmd->pNext = NULL;
pIScsiCmd->enmCmdType = ISCSICMDTYPE_REQ;
pIScsiCmd->pfnComplete = pfnComplete;
pIScsiCmd->pvUser = pvUser;
pIScsiCmd->CmdType.ScsiReq.pScsiReq = pScsiReq;
rc = iscsiCmdPut(pImage, pIScsiCmd);
if (RT_FAILURE(rc))
RTMemFree(pIScsiCmd);
}
else
rc = VERR_NOT_SUPPORTED;
return rc;
}
static void iscsiCommandCompleteSync(PISCSIIMAGE pImage, int rcReq, void *pvUser)
{
PISCSICMDSYNC pIScsiCmdSync = (PISCSICMDSYNC)pvUser;
pIScsiCmdSync->rcCmd = rcReq;
int rc = RTSemEventSignal(pIScsiCmdSync->EventSem);
AssertRC(rc);
}
/**
* Internal. - Enqueues a request in a synchronous fashion
* i.e. returns when the request completed.
*/
static int iscsiCommandSync(PISCSIIMAGE pImage, PSCSIREQ pScsiReq, bool fRetry, int rcSense)
{
int rc;
if (pImage->fExtendedSelectSupported)
{
ISCSICMDSYNC IScsiCmdSync;
/* Create event semaphore. */
rc = RTSemEventCreate(&IScsiCmdSync.EventSem);
if (RT_FAILURE(rc))
return rc;
if (fRetry)
{
for (unsigned i = 0; i < 10; i++)
{
rc = iscsiCommandAsync(pImage, pScsiReq, iscsiCommandCompleteSync, &IScsiCmdSync);
if (RT_FAILURE(rc))
break;
rc = RTSemEventWait(IScsiCmdSync.EventSem, RT_INDEFINITE_WAIT);
AssertRC(rc);
rc = IScsiCmdSync.rcCmd;
if ( (RT_SUCCESS(rc) && !pScsiReq->cbSense)
|| RT_FAILURE(rc))
break;
rc = rcSense;
}
}
else
{
rc = iscsiCommandAsync(pImage, pScsiReq, iscsiCommandCompleteSync, &IScsiCmdSync);
if (RT_SUCCESS(rc))
{
rc = RTSemEventWait(IScsiCmdSync.EventSem, RT_INDEFINITE_WAIT);
AssertRC(rc);
rc = IScsiCmdSync.rcCmd;
if (RT_FAILURE(rc) || pScsiReq->cbSense > 0)
rc = rcSense;
}
}
RTSemEventDestroy(IScsiCmdSync.EventSem);
}
else
{
if (fRetry)
{
for (unsigned i = 0; i < 10; i++)
{
rc = iscsiCommand(pImage, pScsiReq);
if ( (RT_SUCCESS(rc) && !pScsiReq->cbSense)
|| RT_FAILURE(rc))
break;
rc = rcSense;
}
}
else
{
rc = iscsiCommand(pImage, pScsiReq);
if (RT_SUCCESS(rc) && pScsiReq->cbSense > 0)
rc = rcSense;
}
}
return rc;
}
/**
* Internal. - Executes a given function in a synchronous fashion
* on the I/O thread if available.
*/
static int iscsiExecSync(PISCSIIMAGE pImage, PFNISCSIEXEC pfnExec, void *pvUser)
{
int rc;
if (pImage->fExtendedSelectSupported)
{
ISCSICMDSYNC IScsiCmdSync;
PISCSICMD pIScsiCmd = (PISCSICMD)RTMemAllocZ(sizeof(ISCSICMD));
if (!pIScsiCmd)
return VERR_NO_MEMORY;
/* Create event semaphore. */
rc = RTSemEventCreate(&IScsiCmdSync.EventSem);
if (RT_FAILURE(rc))
{
RTMemFree(pIScsiCmd);
return rc;
}
/* Init the command structure. */
pIScsiCmd->pNext = NULL;
pIScsiCmd->enmCmdType = ISCSICMDTYPE_EXEC;
pIScsiCmd->pfnComplete = iscsiCommandCompleteSync;
pIScsiCmd->pvUser = &IScsiCmdSync;
pIScsiCmd->CmdType.Exec.pfnExec = pfnExec;
pIScsiCmd->CmdType.Exec.pvUser = pvUser;
rc = iscsiCmdPut(pImage, pIScsiCmd);
if (RT_FAILURE(rc))
RTMemFree(pIScsiCmd);
else
{
rc = RTSemEventWait(IScsiCmdSync.EventSem, RT_INDEFINITE_WAIT);
AssertRC(rc);
rc = IScsiCmdSync.rcCmd;
}
RTSemEventDestroy(IScsiCmdSync.EventSem);
}
else
{
/* No I/O thread, execute in the current thread. */
rc = pfnExec(pvUser);
}
return rc;
}
static void iscsiCommandAsyncComplete(PISCSIIMAGE pImage, int rcReq, void *pvUser)
{
bool fComplete = true;
size_t cbTransfered = 0;
PSCSIREQASYNC pReqAsync = (PSCSIREQASYNC)pvUser;
PSCSIREQ pScsiReq = pReqAsync->pScsiReq;
if ( RT_SUCCESS(rcReq)
&& pScsiReq->cbSense > 0)
{
/* Try again if possible. */
if (pReqAsync->cSenseRetries > 0)
{
pReqAsync->cSenseRetries--;
pScsiReq->cbSense = sizeof(pReqAsync->abSense);
int rc = iscsiCommandAsync(pImage, pScsiReq, iscsiCommandAsyncComplete, pReqAsync);
if (RT_SUCCESS(rc))
fComplete = false;
else
rcReq = pReqAsync->rcSense;
}
else
rcReq = pReqAsync->rcSense;
}
if (fComplete)
{
if (pScsiReq->enmXfer == SCSIXFER_FROM_TARGET)
cbTransfered = pScsiReq->cbT2IData;
else if (pScsiReq->enmXfer == SCSIXFER_TO_TARGET)
cbTransfered = pScsiReq->cbI2TData;
else
AssertMsg(pScsiReq->enmXfer == SCSIXFER_NONE, ("To/From transfers are not supported yet\n"));
/* Continue I/O context. */
pImage->pInterfaceIoCallbacks->pfnIoCtxCompleted(pImage->pInterfaceIo->pvUser,
pReqAsync->pIoCtx, rcReq,
cbTransfered);
RTMemFree(pScsiReq);
RTMemFree(pReqAsync);
}
}
/**
* Internal. Free all allocated space for representing an image, and optionally
* delete the image from disk.
*/
static int iscsiFreeImage(PISCSIIMAGE pImage, bool fDelete)
{
int rc = VINF_SUCCESS;
Assert(!fDelete); /* This MUST be false, the flag isn't supported. */
/* Freeing a never allocated image (e.g. because the open failed) is
* not signalled as an error. After all nothing bad happens. */
if (pImage)
{
if (pImage->Mutex != NIL_RTSEMMUTEX)
{
/* Detaching only makes sense when the mutex is there. Otherwise the
* failure happened long before we could attach to the target. */
iscsiExecSync(pImage, iscsiDetach, pImage);
RTSemMutexDestroy(pImage->Mutex);
pImage->Mutex = NIL_RTSEMMUTEX;
}
if (pImage->hThreadIo != NIL_RTTHREAD)
{
ASMAtomicXchgBool(&pImage->fRunning, false);
rc = iscsiIoThreadPoke(pImage);
AssertRC(rc);
/* Wait for the thread to terminate. */
rc = RTThreadWait(pImage->hThreadIo, RT_INDEFINITE_WAIT, NULL);
AssertRC(rc);
}
/* Destroy the socket. */
if (pImage->Socket != NIL_VDSOCKET)
{
pImage->pInterfaceNetCallbacks->pfnSocketDestroy(pImage->Socket);
}
if (pImage->MutexReqQueue != NIL_RTSEMMUTEX)
{
RTSemMutexDestroy(pImage->MutexReqQueue);
pImage->MutexReqQueue = NIL_RTSEMMUTEX;
}
if (pImage->pszTargetName)
{
RTMemFree(pImage->pszTargetName);
pImage->pszTargetName = NULL;
}
if (pImage->pszInitiatorName)
{
if (pImage->fAutomaticInitiatorName)
RTStrFree(pImage->pszInitiatorName);
else
RTMemFree(pImage->pszInitiatorName);
pImage->pszInitiatorName = NULL;
}
if (pImage->pszInitiatorUsername)
{
RTMemFree(pImage->pszInitiatorUsername);
pImage->pszInitiatorUsername = NULL;
}
if (pImage->pbInitiatorSecret)
{
RTMemFree(pImage->pbInitiatorSecret);
pImage->pbInitiatorSecret = NULL;
}
if (pImage->pszTargetUsername)
{
RTMemFree(pImage->pszTargetUsername);
pImage->pszTargetUsername = NULL;
}
if (pImage->pbTargetSecret)
{
RTMemFree(pImage->pbTargetSecret);
pImage->pbTargetSecret = NULL;
}
if (pImage->pvRecvPDUBuf)
{
RTMemFree(pImage->pvRecvPDUBuf);
pImage->pvRecvPDUBuf = NULL;
}
pImage->cbRecvPDUResidual = 0;
}
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/**
* Internal: Open an image, constructing all necessary data structures.
*/
static int iscsiOpenImage(PISCSIIMAGE pImage, unsigned uOpenFlags)
{
int rc;
char *pszLUN = NULL, *pszLUNInitial = NULL;
bool fLunEncoded = false;
uint32_t uWriteSplitDef = 0;
uint32_t uTimeoutDef = 0;
uint64_t uHostIPTmp = 0;
bool fHostIPDef = 0;
rc = RTStrToUInt32Full(s_iscsiConfigDefaultWriteSplit, 0, &uWriteSplitDef);
AssertRC(rc);
rc = RTStrToUInt32Full(s_iscsiConfigDefaultTimeout, 0, &uTimeoutDef);
AssertRC(rc);
rc = RTStrToUInt64Full(s_iscsiConfigDefaultHostIPStack, 0, &uHostIPTmp);
AssertRC(rc);
fHostIPDef = !!uHostIPTmp;
pImage->uOpenFlags = uOpenFlags;
/* Get error signalling interface. */
pImage->pInterfaceError = VDInterfaceGet(pImage->pVDIfsDisk, VDINTERFACETYPE_ERROR);
if (pImage->pInterfaceError)
pImage->pInterfaceErrorCallbacks = VDGetInterfaceError(pImage->pInterfaceError);
/* Get TCP network stack interface. */
pImage->pInterfaceNet = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_TCPNET);
if (pImage->pInterfaceNet)
pImage->pInterfaceNetCallbacks = VDGetInterfaceTcpNet(pImage->pInterfaceNet);
else
{
rc = iscsiError(pImage, VERR_VD_ISCSI_UNKNOWN_INTERFACE,
RT_SRC_POS, N_("iSCSI: TCP network stack interface missing"));
goto out;
}
/* Get configuration interface. */
pImage->pInterfaceConfig = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_CONFIG);
if (pImage->pInterfaceConfig)
pImage->pInterfaceConfigCallbacks = VDGetInterfaceConfig(pImage->pInterfaceConfig);
else
{
rc = iscsiError(pImage, VERR_VD_ISCSI_UNKNOWN_INTERFACE,
RT_SRC_POS, N_("iSCSI: configuration interface missing"));
goto out;
}
/* Get I/O interface. */
pImage->pInterfaceIo = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_IOINT);
if (pImage->pInterfaceIo)
pImage->pInterfaceIoCallbacks = VDGetInterfaceIOInt(pImage->pInterfaceIo);
else
{
rc = iscsiError(pImage, VERR_VD_ISCSI_UNKNOWN_INTERFACE,
RT_SRC_POS, N_("iSCSI: I/O interface missing"));
goto out;
}
/* This ISID will be adjusted later to make it unique on this host. */
pImage->ISID = 0x800000000000ULL | 0x001234560000ULL;
pImage->cISCSIRetries = 10;
pImage->state = ISCSISTATE_FREE;
pImage->pvRecvPDUBuf = RTMemAlloc(ISCSI_RECV_PDU_BUFFER_SIZE);
pImage->cbRecvPDUBuf = ISCSI_RECV_PDU_BUFFER_SIZE;
if (pImage->pvRecvPDUBuf == NULL)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->Mutex = NIL_RTSEMMUTEX;
pImage->MutexReqQueue = NIL_RTSEMMUTEX;
rc = RTSemMutexCreate(&pImage->Mutex);
if (RT_FAILURE(rc))
goto out;
rc = RTSemMutexCreate(&pImage->MutexReqQueue);
if (RT_FAILURE(rc))
goto out;
/* Validate configuration, detect unknown keys. */
if (!VDCFGAreKeysValid(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"TargetName\0InitiatorName\0LUN\0TargetAddress\0InitiatorUsername\0InitiatorSecret\0TargetUsername\0TargetSecret\0WriteSplit\0Timeout\0HostIPStack\0"))
{
rc = iscsiError(pImage, VERR_VD_ISCSI_UNKNOWN_CFG_VALUES, RT_SRC_POS, N_("iSCSI: configuration error: unknown configuration keys present"));
goto out;
}
/* Query the iSCSI upper level configuration. */
rc = VDCFGQueryStringAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"TargetName", &pImage->pszTargetName);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read TargetName as string"));
goto out;
}
rc = VDCFGQueryStringAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"InitiatorName", &pImage->pszInitiatorName);
if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
{
pImage->fAutomaticInitiatorName = true;
rc = VINF_SUCCESS;
}
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read InitiatorName as string"));
goto out;
}
rc = VDCFGQueryStringAllocDef(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"LUN", &pszLUN, s_iscsiConfigDefaultLUN);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read LUN as string"));
goto out;
}
pszLUNInitial = pszLUN;
if (!strncmp(pszLUN, "enc", 3))
{
fLunEncoded = true;
pszLUN += 3;
}
rc = RTStrToUInt64Full(pszLUN, 0, &pImage->LUN);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to convert LUN to integer"));
goto out;
}
if (!fLunEncoded)
{
if (pImage->LUN <= 255)
{
pImage->LUN = pImage->LUN << 48; /* uses peripheral device addressing method */
}
else if (pImage->LUN <= 16383)
{
pImage->LUN = (pImage->LUN << 48) | RT_BIT_64(62); /* uses flat space addressing method */
}
else
{
rc = VERR_OUT_OF_RANGE;
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: LUN number out of range (0-16383)"));
goto out;
}
}
rc = VDCFGQueryStringAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"TargetAddress", &pImage->pszTargetAddress);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read TargetAddress as string"));
goto out;
}
pImage->pszInitiatorUsername = NULL;
rc = VDCFGQueryStringAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"InitiatorUsername",
&pImage->pszInitiatorUsername);
if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read InitiatorUsername as string"));
goto out;
}
pImage->pbInitiatorSecret = NULL;
pImage->cbInitiatorSecret = 0;
rc = VDCFGQueryBytesAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"InitiatorSecret",
(void **)&pImage->pbInitiatorSecret,
&pImage->cbInitiatorSecret);
if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read InitiatorSecret as byte string"));
goto out;
}
pImage->pszTargetUsername = NULL;
rc = VDCFGQueryStringAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"TargetUsername",
&pImage->pszTargetUsername);
if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read TargetUsername as string"));
goto out;
}
pImage->pbTargetSecret = NULL;
pImage->cbTargetSecret = 0;
rc = VDCFGQueryBytesAlloc(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"TargetSecret", (void **)&pImage->pbTargetSecret,
&pImage->cbTargetSecret);
if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT)
rc = VINF_SUCCESS;
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read TargetSecret as byte string"));
goto out;
}
rc = VDCFGQueryU32Def(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"WriteSplit", &pImage->cbWriteSplit,
uWriteSplitDef);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read WriteSplit as U32"));
goto out;
}
pImage->pszHostname = NULL;
pImage->uPort = 0;
pImage->Socket = NIL_VDSOCKET;
/* Query the iSCSI lower level configuration. */
rc = VDCFGQueryU32Def(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"Timeout", &pImage->uReadTimeout,
uTimeoutDef);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read Timeout as U32"));
goto out;
}
rc = VDCFGQueryBoolDef(pImage->pInterfaceConfigCallbacks,
pImage->pInterfaceConfig->pvUser,
"HostIPStack", &pImage->fHostIP,
fHostIPDef);
if (RT_FAILURE(rc))
{
rc = iscsiError(pImage, rc, RT_SRC_POS, N_("iSCSI: configuration error: failed to read HostIPStack as boolean"));
goto out;
}
/* Don't actually establish iSCSI transport connection if this is just an
* open to query the image information and the host IP stack isn't used.
* Even trying is rather useless, as in this context the InTnet IP stack
* isn't present. Returning dummies is the best possible result anyway. */
if ((uOpenFlags & VD_OPEN_FLAGS_INFO) && !pImage->fHostIP)
{
LogFunc(("Not opening the transport connection as IntNet IP stack is not available. Will return dummies\n"));
goto out;
}
memset(pImage->aCmdsWaiting, 0, sizeof(pImage->aCmdsWaiting));
pImage->cbRecvPDUResidual = 0;
/* Create the socket structure. */
rc = pImage->pInterfaceNetCallbacks->pfnSocketCreate(VD_INTERFACETCPNET_CONNECT_EXTENDED_SELECT,
&pImage->Socket);
if (RT_SUCCESS(rc))
{
pImage->fExtendedSelectSupported = true;
pImage->fRunning = true;
rc = RTThreadCreate(&pImage->hThreadIo, iscsiIoThreadWorker, pImage, 0,
RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "iSCSI-Io");
if (RT_FAILURE(rc))
{
LogFunc(("Creating iSCSI I/O thread failed rc=%Rrc\n", rc));
goto out;
}
}
else if (rc == VERR_NOT_SUPPORTED)
{
/* Async I/O is not supported without extended select. */
if ((uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO))
{
LogFunc(("Extended select is not supported by the interface but async I/O is requested -> %Rrc\n", rc));
goto out;
}
else
{
pImage->fExtendedSelectSupported = false;
rc = pImage->pInterfaceNetCallbacks->pfnSocketCreate(0, &pImage->Socket);
if (RT_FAILURE(rc))
{
LogFunc(("Creating socket failed -> %Rrc\n", rc));
goto out;
}
}
}
else
{
LogFunc(("Creating socket failed -> %Rrc\n", rc));
goto out;
}
/*
* Attach to the iSCSI target. This implicitly establishes the iSCSI
* transport connection.
*/
rc = iscsiExecSync(pImage, iscsiAttach, pImage);
if (RT_FAILURE(rc))
{
LogRel(("iSCSI: could not open target %s, rc=%Rrc\n", pImage->pszTargetName, rc));
goto out;
}
LogFlowFunc(("target '%s' opened successfully\n", pImage->pszTargetName));
SCSIREQ sr;
RTSGSEG DataSeg;
uint8_t sense[96];
uint8_t data8[8];
uint8_t data12[12];
/*
* Inquire available LUNs - purely dummy request.
*/
uint8_t CDB_rlun[12];
uint8_t rlundata[16];
CDB_rlun[0] = SCSI_REPORT_LUNS;
CDB_rlun[1] = 0; /* reserved */
CDB_rlun[2] = 0; /* reserved */
CDB_rlun[3] = 0; /* reserved */
CDB_rlun[4] = 0; /* reserved */
CDB_rlun[5] = 0; /* reserved */
CDB_rlun[6] = sizeof(rlundata) >> 24;
CDB_rlun[7] = (sizeof(rlundata) >> 16) & 0xff;
CDB_rlun[8] = (sizeof(rlundata) >> 8) & 0xff;
CDB_rlun[9] = sizeof(rlundata) & 0xff;
CDB_rlun[10] = 0; /* reserved */
CDB_rlun[11] = 0; /* control */
DataSeg.pvSeg = rlundata;
DataSeg.cbSeg = sizeof(rlundata);
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = sizeof(CDB_rlun);
sr.pvCDB = CDB_rlun;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = DataSeg.cbSeg;
sr.paT2ISegs = &DataSeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, false, VERR_INVALID_STATE);
if (RT_FAILURE(rc))
{
LogRel(("iSCSI: Could not get LUN info for target %s, rc=%Rrc\n", pImage->pszTargetName, rc));
return rc;
}
/*
* Inquire device characteristics - no tapes, scanners etc., please.
*/
uint8_t CDB_inq[6];
CDB_inq[0] = SCSI_INQUIRY;
CDB_inq[1] = 0; /* reserved */
CDB_inq[2] = 0; /* reserved */
CDB_inq[3] = 0; /* reserved */
CDB_inq[4] = sizeof(data8);
CDB_inq[5] = 0; /* control */
DataSeg.pvSeg = data8;
DataSeg.cbSeg = sizeof(data8);
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = sizeof(CDB_inq);
sr.pvCDB = CDB_inq;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = DataSeg.cbSeg;
sr.paT2ISegs = &DataSeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, true /* fRetry */, VERR_INVALID_STATE);
if (RT_SUCCESS(rc))
{
uint8_t devType = (sr.cbT2IData > 0) ? data8[0] & SCSI_DEVTYPE_MASK : 255;
if (devType != SCSI_DEVTYPE_DISK)
{
rc = iscsiError(pImage, VERR_VD_ISCSI_INVALID_TYPE,
RT_SRC_POS, N_("iSCSI: target address %s, target name %s, SCSI LUN %lld reports device type=%u"),
pImage->pszTargetAddress, pImage->pszTargetName,
pImage->LUN, devType);
LogRel(("iSCSI: Unsupported SCSI peripheral device type %d for target %s\n", devType & SCSI_DEVTYPE_MASK, pImage->pszTargetName));
goto out;
}
uint8_t uCmdQueue = (sr.cbT2IData >= 8) ? data8[7] & SCSI_INQUIRY_CMDQUE_MASK : 0;
if (uCmdQueue > 0)
pImage->fCmdQueuingSupported = true;
else if (uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO)
{
rc = VERR_NOT_SUPPORTED;
goto out;
}
LogRel(("iSCSI: target address %s, target name %s, %s command queuing\n",
pImage->pszTargetAddress, pImage->pszTargetName,
pImage->fCmdQueuingSupported ? "supports" : "doesn't support"));
}
else
{
LogRel(("iSCSI: Could not get INQUIRY info for target %s, rc=%Rrc\n", pImage->pszTargetName, rc));
goto out;
}
/*
* Query write disable bit in the device specific parameter entry in the
* mode parameter header. Refuse read/write opening of read only disks.
*/
uint8_t CDB_ms[6];
uint8_t data4[4];
CDB_ms[0] = SCSI_MODE_SENSE_6;
CDB_ms[1] = 0; /* dbd=0/reserved */
CDB_ms[2] = 0x3f; /* pc=0/page code=0x3f, ask for all pages */
CDB_ms[3] = 0; /* subpage code=0, return everything in page_0 format */
CDB_ms[4] = sizeof(data4); /* allocation length=4 */
CDB_ms[5] = 0; /* control */
DataSeg.pvSeg = data4;
DataSeg.cbSeg = sizeof(data4);
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = sizeof(CDB_ms);
sr.pvCDB = CDB_ms;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = DataSeg.cbSeg;
sr.paT2ISegs = &DataSeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, true /* fRetry */, VERR_INVALID_STATE);
if (RT_SUCCESS(rc))
{
if (!(uOpenFlags & VD_OPEN_FLAGS_READONLY) && data4[2] & 0x80)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
}
else
{
LogRel(("iSCSI: Could not get MODE SENSE info for target %s, rc=%Rrc\n", pImage->pszTargetName, rc));
goto out;
}
/*
* Determine sector size and capacity of the volume immediately.
*/
uint8_t CDB_cap[16];
RT_ZERO(data12);
RT_ZERO(CDB_cap);
CDB_cap[0] = SCSI_SERVICE_ACTION_IN_16;
CDB_cap[1] = SCSI_SVC_ACTION_IN_READ_CAPACITY_16; /* subcommand */
CDB_cap[10+3] = sizeof(data12); /* allocation length (dword) */
DataSeg.pvSeg = data12;
DataSeg.cbSeg = sizeof(data12);
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = sizeof(CDB_cap);
sr.pvCDB = CDB_cap;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = DataSeg.cbSeg;
sr.paT2ISegs = &DataSeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, false /* fRetry */, VINF_SUCCESS);
if ( RT_SUCCESS(rc)
&& sr.status == SCSI_STATUS_OK)
{
pImage->cVolume = RT_BE2H_U64(*(uint64_t *)&data12[0]);
pImage->cVolume++;
pImage->cbSector = RT_BE2H_U32(*(uint32_t *)&data12[8]);
pImage->cbSize = pImage->cVolume * pImage->cbSector;
if (pImage->cVolume == 0 || pImage->cbSector != 512 || pImage->cbSize < pImage->cVolume)
{
rc = iscsiError(pImage, VERR_VD_ISCSI_INVALID_TYPE,
RT_SRC_POS, N_("iSCSI: target address %s, target name %s, SCSI LUN %lld reports media sector count=%llu sector size=%u"),
pImage->pszTargetAddress, pImage->pszTargetName,
pImage->LUN, pImage->cVolume, pImage->cbSector);
}
}
else
{
uint8_t CDB_capfb[10];
RT_ZERO(data8);
CDB_capfb[0] = SCSI_READ_CAPACITY;
CDB_capfb[1] = 0; /* reserved */
CDB_capfb[2] = 0; /* reserved */
CDB_capfb[3] = 0; /* reserved */
CDB_capfb[4] = 0; /* reserved */
CDB_capfb[5] = 0; /* reserved */
CDB_capfb[6] = 0; /* reserved */
CDB_capfb[7] = 0; /* reserved */
CDB_capfb[8] = 0; /* reserved */
CDB_capfb[9] = 0; /* control */
DataSeg.pvSeg = data8;
DataSeg.cbSeg = sizeof(data8);
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = sizeof(CDB_capfb);
sr.pvCDB = CDB_capfb;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = DataSeg.cbSeg;
sr.paT2ISegs = &DataSeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, false /* fRetry */, VINF_SUCCESS);
if (RT_SUCCESS(rc))
{
pImage->cVolume = (data8[0] << 24) | (data8[1] << 16) | (data8[2] << 8) | data8[3];
pImage->cVolume++;
pImage->cbSector = (data8[4] << 24) | (data8[5] << 16) | (data8[6] << 8) | data8[7];
pImage->cbSize = pImage->cVolume * pImage->cbSector;
if (pImage->cVolume == 0 || pImage->cbSector != 512)
{
rc = iscsiError(pImage, VERR_VD_ISCSI_INVALID_TYPE,
RT_SRC_POS, N_("iSCSI: fallback capacity detectio for target address %s, target name %s, SCSI LUN %lld reports media sector count=%llu sector size=%u"),
pImage->pszTargetAddress, pImage->pszTargetName,
pImage->LUN, pImage->cVolume, pImage->cbSector);
}
}
else
{
LogRel(("iSCSI: Could not determine capacity of target %s, rc=%Rrc\n", pImage->pszTargetName, rc));
goto out;
}
}
/*
* Check the read and write cache bits.
* Try to enable the cache if it is disabled.
*
* We already checked that this is a block access device. No need
* to do it again.
*/
uint8_t aCachingModePage[32];
uint8_t aCDBModeSense6[6];
memset(aCachingModePage, '\0', sizeof(aCachingModePage));
aCDBModeSense6[0] = SCSI_MODE_SENSE_6;
aCDBModeSense6[1] = 0;
aCDBModeSense6[2] = (0x00 << 6) | (0x08 & 0x3f); /* Current values and caching mode page */
aCDBModeSense6[3] = 0; /* Sub page code. */
aCDBModeSense6[4] = sizeof(aCachingModePage) & 0xff;
aCDBModeSense6[5] = 0;
DataSeg.pvSeg = aCachingModePage;
DataSeg.cbSeg = sizeof(aCachingModePage);
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = sizeof(aCDBModeSense6);
sr.pvCDB = aCDBModeSense6;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = DataSeg.cbSeg;
sr.paT2ISegs = &DataSeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, false /* fRetry */, VINF_SUCCESS);
if ( RT_SUCCESS(rc)
&& (sr.status == SCSI_STATUS_OK)
&& (aCachingModePage[0] >= 15)
&& (aCachingModePage[4 + aCachingModePage[3]] & 0x3f) == 0x08
&& (aCachingModePage[4 + aCachingModePage[3] + 1] > 3))
{
uint32_t Offset = 4 + aCachingModePage[3];
/*
* Check if the read and/or the write cache is disabled.
* The write cache is disabled if bit 2 (WCE) is zero and
* the read cache is disabled if bit 0 (RCD) is set.
*/
if (!ASMBitTest(&aCachingModePage[Offset + 2], 2) || ASMBitTest(&aCachingModePage[Offset + 2], 0))
{
/*
* Write Cache Enable (WCE) bit is zero or the Read Cache Disable (RCD) is one
* So one of the caches is disabled. Enable both caches.
* The rest is unchanged.
*/
ASMBitSet(&aCachingModePage[Offset + 2], 2);
ASMBitClear(&aCachingModePage[Offset + 2], 0);
uint8_t aCDBCaching[6];
aCDBCaching[0] = SCSI_MODE_SELECT_6;
aCDBCaching[1] = 0; /* Don't write the page into NV RAM. */
aCDBCaching[2] = 0;
aCDBCaching[3] = 0;
aCDBCaching[4] = sizeof(aCachingModePage) & 0xff;
aCDBCaching[5] = 0;
DataSeg.pvSeg = aCachingModePage;
DataSeg.cbSeg = sizeof(aCachingModePage);
sr.enmXfer = SCSIXFER_TO_TARGET;
sr.cbCDB = sizeof(aCDBCaching);
sr.pvCDB = aCDBCaching;
sr.cbI2TData = DataSeg.cbSeg;
sr.paI2TSegs = &DataSeg;
sr.cI2TSegs = 1;
sr.cbT2IData = 0;
sr.paT2ISegs = NULL;
sr.cT2ISegs = 0;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
sr.status = 0;
rc = iscsiCommandSync(pImage, &sr, false /* fRetry */, VINF_SUCCESS);
if ( RT_SUCCESS(rc)
&& (sr.status == SCSI_STATUS_OK))
{
LogRel(("iSCSI: Enabled read and write cache of target %s\n", pImage->pszTargetName));
}
else
{
/* Log failures but continue. */
LogRel(("iSCSI: Could not enable read and write cache of target %s, rc=%Rrc status=%#x\n",
pImage->pszTargetName, rc, sr.status));
LogRel(("iSCSI: Sense:\n%.*Rhxd\n", sr.cbSense, sense));
rc = VINF_SUCCESS;
}
}
}
else
{
/* Log errors but continue. */
LogRel(("iSCSI: Could not check write cache of target %s, rc=%Rrc, got mode page %#x\n", pImage->pszTargetName, rc,aCachingModePage[0] & 0x3f));
LogRel(("iSCSI: Sense:\n%.*Rhxd\n", sr.cbSense, sense));
rc = VINF_SUCCESS;
}
out:
if (RT_FAILURE(rc))
iscsiFreeImage(pImage, false);
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnCheckIfValid */
static int iscsiCheckIfValid(const char *pszFilename, PVDINTERFACE pVDIfsDisk,
PVDINTERFACE pVDIfsImage, VDTYPE *penmType)
{
LogFlowFunc(("pszFilename=\"%s\"\n", pszFilename));
/* iSCSI images can't be checked for validity this way, as the filename
* just can't supply enough configuration information. */
int rc = VERR_VD_ISCSI_INVALID_HEADER;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnOpen */
static int iscsiOpen(const char *pszFilename, unsigned uOpenFlags,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
VDTYPE enmType, void **ppBackendData)
{
LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p ppBackendData=%#p\n", pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, ppBackendData));
int rc;
PISCSIIMAGE pImage;
/* Check open flags. All valid flags are supported. */
if (uOpenFlags & ~VD_OPEN_FLAGS_MASK)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Check remaining arguments. */
if ( !VALID_PTR(pszFilename)
|| !*pszFilename
|| strchr(pszFilename, '"'))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
pImage = (PISCSIIMAGE)RTMemAllocZ(sizeof(ISCSIIMAGE));
if (!pImage)
{
rc = VERR_NO_MEMORY;
goto out;
}
pImage->pszFilename = pszFilename;
pImage->pszInitiatorName = NULL;
pImage->pszTargetName = NULL;
pImage->pszTargetAddress = NULL;
pImage->pszInitiatorUsername = NULL;
pImage->pbInitiatorSecret = NULL;
pImage->pszTargetUsername = NULL;
pImage->pbTargetSecret = NULL;
pImage->paCurrReq = NULL;
pImage->pvRecvPDUBuf = NULL;
pImage->pszHostname = NULL;
pImage->pVDIfsDisk = pVDIfsDisk;
pImage->pVDIfsImage = pVDIfsImage;
pImage->cLogRelErrors = 0;
rc = iscsiOpenImage(pImage, uOpenFlags);
if (RT_SUCCESS(rc))
{
LogFlowFunc(("target %s cVolume %d, cbSector %d\n", pImage->pszTargetName, pImage->cVolume, pImage->cbSector));
LogRel(("iSCSI: target address %s, target name %s, SCSI LUN %lld\n", pImage->pszTargetAddress, pImage->pszTargetName, pImage->LUN));
*ppBackendData = pImage;
}
else
RTMemFree(pImage);
out:
LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnCreate */
static int iscsiCreate(const char *pszFilename, uint64_t cbSize,
unsigned uImageFlags, const char *pszComment,
PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
PCRTUUID pUuid, unsigned uOpenFlags,
unsigned uPercentStart, unsigned uPercentSpan,
PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
PVDINTERFACE pVDIfsOperation, void **ppBackendData)
{
LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p ppBackendData=%#p", pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, ppBackendData));
int rc = VERR_NOT_SUPPORTED;
LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnClose */
static int iscsiClose(void *pBackendData, bool fDelete)
{
LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(!fDelete); /* This flag is unsupported. */
rc = iscsiFreeImage(pImage, fDelete);
RTMemFree(pImage);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnRead */
static int iscsiRead(void *pBackendData, uint64_t uOffset, void *pvBuf,
size_t cbToRead, size_t *pcbActuallyRead)
{
/** @todo reinstate logging of the target everywhere - dropped temporarily */
LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToRead=%zu pcbActuallyRead=%#p\n", pBackendData, uOffset, pvBuf, cbToRead, pcbActuallyRead));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
uint64_t lba;
uint16_t tls;
int rc;
Assert(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToRead % 512 == 0);
Assert(pImage->cbSector);
AssertPtr(pvBuf);
if ( uOffset + cbToRead > pImage->cbSize
|| cbToRead == 0)
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/*
* Clip read size to a value which is supported by the target.
*/
cbToRead = RT_MIN(cbToRead, pImage->cbRecvDataLength);
lba = uOffset / pImage->cbSector;
tls = (uint16_t)(cbToRead / pImage->cbSector);
SCSIREQ sr;
RTSGSEG T2ISeg;
size_t cbCDB;
uint8_t abCDB[16];
uint8_t sense[96];
if (pImage->cVolume < _4G)
{
cbCDB = 10;
abCDB[0] = SCSI_READ_10;
abCDB[1] = 0; /* reserved */
abCDB[2] = (lba >> 24) & 0xff;
abCDB[3] = (lba >> 16) & 0xff;
abCDB[4] = (lba >> 8) & 0xff;
abCDB[5] = lba & 0xff;
abCDB[6] = 0; /* reserved */
abCDB[7] = (tls >> 8) & 0xff;
abCDB[8] = tls & 0xff;
abCDB[9] = 0; /* control */
}
else
{
cbCDB = 16;
abCDB[0] = SCSI_READ_16;
abCDB[1] = 0; /* reserved */
abCDB[2] = (lba >> 56) & 0xff;
abCDB[3] = (lba >> 48) & 0xff;
abCDB[4] = (lba >> 40) & 0xff;
abCDB[5] = (lba >> 32) & 0xff;
abCDB[6] = (lba >> 24) & 0xff;
abCDB[7] = (lba >> 16) & 0xff;
abCDB[8] = (lba >> 8) & 0xff;
abCDB[9] = lba & 0xff;
abCDB[10] = 0; /* tls unused */
abCDB[11] = 0; /* tls unused */
abCDB[12] = (tls >> 8) & 0xff;
abCDB[13] = tls & 0xff;
abCDB[14] = 0; /* reserved */
abCDB[15] = 0; /* reserved */
}
T2ISeg.pvSeg = pvBuf;
T2ISeg.cbSeg = cbToRead;
sr.enmXfer = SCSIXFER_FROM_TARGET;
sr.cbCDB = cbCDB;
sr.pvCDB = abCDB;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = cbToRead;
sr.paT2ISegs = &T2ISeg;
sr.cT2ISegs = 1;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, true, VERR_READ_ERROR);
if (RT_FAILURE(rc))
{
LogFlow(("iscsiCommandSync(%s, %#llx) -> %Rrc\n", pImage->pszTargetName, uOffset, rc));
*pcbActuallyRead = 0;
}
else
*pcbActuallyRead = sr.cbT2IData;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnWrite */
static int iscsiWrite(void *pBackendData, uint64_t uOffset, const void *pvBuf,
size_t cbToWrite, size_t *pcbWriteProcess,
size_t *pcbPreRead, size_t *pcbPostRead, unsigned fWrite)
{
LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n", pBackendData, uOffset, pvBuf, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
uint64_t lba;
uint16_t tls;
int rc;
Assert(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToWrite % 512 == 0);
Assert(pImage->cbSector);
Assert(pvBuf);
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
*pcbPreRead = 0;
*pcbPostRead = 0;
/*
* Clip write size to a value which is supported by the target.
*/
cbToWrite = RT_MIN(cbToWrite, pImage->cbSendDataLength);
lba = uOffset / pImage->cbSector;
tls = (uint16_t)(cbToWrite / pImage->cbSector);
SCSIREQ sr;
RTSGSEG I2TSeg;
size_t cbCDB;
uint8_t abCDB[16];
uint8_t sense[96];
if (pImage->cVolume < _4G)
{
cbCDB = 10;
abCDB[0] = SCSI_WRITE_10;
abCDB[1] = 0; /* reserved */
abCDB[2] = (lba >> 24) & 0xff;
abCDB[3] = (lba >> 16) & 0xff;
abCDB[4] = (lba >> 8) & 0xff;
abCDB[5] = lba & 0xff;
abCDB[6] = 0; /* reserved */
abCDB[7] = (tls >> 8) & 0xff;
abCDB[8] = tls & 0xff;
abCDB[9] = 0; /* control */
}
else
{
cbCDB = 16;
abCDB[0] = SCSI_WRITE_16;
abCDB[1] = 0; /* reserved */
abCDB[2] = (lba >> 56) & 0xff;
abCDB[3] = (lba >> 48) & 0xff;
abCDB[4] = (lba >> 40) & 0xff;
abCDB[5] = (lba >> 32) & 0xff;
abCDB[6] = (lba >> 24) & 0xff;
abCDB[7] = (lba >> 16) & 0xff;
abCDB[8] = (lba >> 8) & 0xff;
abCDB[9] = lba & 0xff;
abCDB[10] = 0; /* tls unused */
abCDB[11] = 0; /* tls unused */
abCDB[12] = (tls >> 8) & 0xff;
abCDB[13] = tls & 0xff;
abCDB[14] = 0; /* reserved */
abCDB[15] = 0; /* reserved */
}
I2TSeg.pvSeg = (void *)pvBuf;
I2TSeg.cbSeg = cbToWrite;
sr.enmXfer = SCSIXFER_TO_TARGET;
sr.cbCDB = cbCDB;
sr.pvCDB = abCDB;
sr.cbI2TData = cbToWrite;
sr.paI2TSegs = &I2TSeg;
sr.cI2TSegs = 1;
sr.cbT2IData = 0;
sr.paT2ISegs = NULL;
sr.cT2ISegs = 0;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, true, VERR_WRITE_ERROR);
if (RT_FAILURE(rc))
{
LogFlow(("iscsiCommandSync(%s, %#llx) -> %Rrc\n", pImage->pszTargetName, uOffset, rc));
*pcbWriteProcess = 0;
}
else
*pcbWriteProcess = cbToWrite;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnFlush */
static int iscsiFlush(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
SCSIREQ sr;
uint8_t abCDB[10];
uint8_t sense[96];
abCDB[0] = SCSI_SYNCHRONIZE_CACHE;
abCDB[1] = 0; /* reserved */
abCDB[2] = 0; /* LBA 0 */
abCDB[3] = 0; /* LBA 0 */
abCDB[4] = 0; /* LBA 0 */
abCDB[5] = 0; /* LBA 0 */
abCDB[6] = 0; /* reserved */
abCDB[7] = 0; /* transfer everything to disk */
abCDB[8] = 0; /* transfer everything to disk */
abCDB[9] = 0; /* control */
sr.enmXfer = SCSIXFER_NONE;
sr.cbCDB = sizeof(abCDB);
sr.pvCDB = abCDB;
sr.cbI2TData = 0;
sr.paI2TSegs = NULL;
sr.cI2TSegs = 0;
sr.cbT2IData = 0;
sr.paT2ISegs = NULL;
sr.cT2ISegs = 0;
sr.cbSense = sizeof(sense);
sr.pvSense = sense;
rc = iscsiCommandSync(pImage, &sr, false, VINF_SUCCESS);
if (RT_FAILURE(rc))
AssertMsgFailed(("iscsiCommand(%s) -> %Rrc\n", pImage->pszTargetName, rc));
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetVersion */
static unsigned iscsiGetVersion(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
Assert(pImage);
NOREF(pImage);
return 0;
}
/** @copydoc VBOXHDDBACKEND::pfnGetSize */
static uint64_t iscsiGetSize(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
Assert(pImage);
if (pImage)
return pImage->cbSize;
else
return 0;
}
/** @copydoc VBOXHDDBACKEND::pfnGetFileSize */
static uint64_t iscsiGetFileSize(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
Assert(pImage);
NOREF(pImage);
if (pImage)
return pImage->cbSize;
else
return 0;
}
/** @copydoc VBOXHDDBACKEND::pfnGetPCHSGeometry */
static int iscsiGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_VD_GEOMETRY_NOT_SET;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetPCHSGeometry */
static int iscsiSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n", pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
rc = VERR_VD_GEOMETRY_NOT_SET;
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetLCHSGeometry */
static int iscsiGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_VD_GEOMETRY_NOT_SET;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetLCHSGeometry */
static int iscsiSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry)
{
LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n", pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
{
if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
{
rc = VERR_VD_IMAGE_READ_ONLY;
goto out;
}
rc = VERR_VD_GEOMETRY_NOT_SET;
}
else
rc = VERR_VD_NOT_OPENED;
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetImageFlags */
static unsigned iscsiGetImageFlags(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
unsigned uImageFlags;
Assert(pImage);
NOREF(pImage);
uImageFlags = VD_IMAGE_FLAGS_FIXED;
LogFlowFunc(("returns %#x\n", uImageFlags));
return uImageFlags;
}
/** @copydoc VBOXHDDBACKEND::pfnGetOpenFlags */
static unsigned iscsiGetOpenFlags(void *pBackendData)
{
LogFlowFunc(("pBackendData=%#p\n", pBackendData));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
unsigned uOpenFlags;
Assert(pImage);
if (pImage)
uOpenFlags = pImage->uOpenFlags;
else
uOpenFlags = 0;
LogFlowFunc(("returns %#x\n", uOpenFlags));
return uOpenFlags;
}
/** @copydoc VBOXHDDBACKEND::pfnSetOpenFlags */
static int iscsiSetOpenFlags(void *pBackendData, unsigned uOpenFlags)
{
LogFlowFunc(("pBackendData=%#p\n uOpenFlags=%#x", pBackendData, uOpenFlags));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
/* Image must be opened and the new flags must be valid. */
if (!pImage || (uOpenFlags & ~(VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE | VD_OPEN_FLAGS_SEQUENTIAL)))
{
rc = VERR_INVALID_PARAMETER;
goto out;
}
/* Implement this operation via reopening the image if we actually need
* to do something. A read/write -> readonly transition doesn't need a
* reopen. In the other direction we don't have the necessary information
* as the "disk is readonly" flag is thrown away. Can be optimized too,
* but it's not worth the effort at the moment. */
if ( !(uOpenFlags & VD_OPEN_FLAGS_READONLY)
&& (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
{
iscsiFreeImage(pImage, false);
rc = iscsiOpenImage(pImage, uOpenFlags);
}
else
{
pImage->uOpenFlags = uOpenFlags;
rc = VINF_SUCCESS;
}
out:
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetComment */
static int iscsiGetComment(void *pBackendData, char *pszComment,
size_t cbComment)
{
LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc comment='%s'\n", rc, pszComment));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetComment */
static int iscsiSetComment(void *pBackendData, const char *pszComment)
{
LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetUuid */
static int iscsiGetUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetUuid */
static int iscsiSetUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
LogFlowFunc(("%RTuuid\n", pUuid));
Assert(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetModificationUuid */
static int iscsiGetModificationUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetModificationUuid */
static int iscsiSetModificationUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
LogFlowFunc(("%RTuuid\n", pUuid));
Assert(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentUuid */
static int iscsiGetParentUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentUuid */
static int iscsiSetParentUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
LogFlowFunc(("%RTuuid\n", pUuid));
Assert(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnGetParentModificationUuid */
static int iscsiGetParentModificationUuid(void *pBackendData, PRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
Assert(pImage);
if (pImage)
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnSetParentModificationUuid */
static int iscsiSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid)
{
LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc;
LogFlowFunc(("%RTuuid\n", pUuid));
Assert(pImage);
if (pImage)
{
if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
rc = VERR_NOT_SUPPORTED;
else
rc = VERR_VD_IMAGE_READ_ONLY;
}
else
rc = VERR_VD_NOT_OPENED;
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnDump */
static void iscsiDump(void *pBackendData)
{
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
Assert(pImage);
if (pImage)
{
/** @todo put something useful here */
iscsiMessage(pImage, "Header: cVolume=%u\n", pImage->cVolume);
}
}
/** @copydoc VBOXHDDBACKEND::pfnIsAsyncIOSupported */
static bool iscsiIsAsyncIOSupported(void *pBackendData)
{
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
return pImage->fCmdQueuingSupported;
}
/** @copydoc VBOXHDDBACKEND::pfnAsyncRead */
static int iscsiAsyncRead(void *pBackendData, uint64_t uOffset, size_t cbToRead,
PVDIOCTX pIoCtx, size_t *pcbActuallyRead)
{
LogFlowFunc(("pBackendData=%p uOffset=%#llx pIoCtx=%#p cbToRead=%u pcbActuallyRead=%p\n",
pBackendData, uOffset, pIoCtx, cbToRead, pcbActuallyRead));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc = VINF_SUCCESS;
if (uOffset + cbToRead > pImage->cbSize)
return VERR_INVALID_PARAMETER;
/*
* Clip read size to a value which is supported by the target.
*/
cbToRead = RT_MIN(cbToRead, pImage->cbRecvDataLength);
unsigned cT2ISegs = 0;
size_t cbSegs = 0;
/* Get the number of segments. */
cbSegs = pImage->pInterfaceIoCallbacks->pfnIoCtxSegArrayCreate(pImage->pInterfaceIo->pvUser, pIoCtx,
NULL, &cT2ISegs, cbToRead);
Assert(cbSegs == cbToRead);
PSCSIREQASYNC pReqAsync = (PSCSIREQASYNC)RTMemAllocZ(RT_OFFSETOF(SCSIREQASYNC, aSegs[cT2ISegs]));
if (RT_LIKELY(pReqAsync))
{
PSCSIREQ pReq = (PSCSIREQ)RTMemAllocZ(sizeof(SCSIREQ));
if (pReq)
{
uint64_t lba;
uint16_t tls;
uint8_t *pbCDB = &pReqAsync->abCDB[0];
size_t cbCDB;
lba = uOffset / pImage->cbSector;
tls = (uint16_t)(cbToRead / pImage->cbSector);
cbSegs = pImage->pInterfaceIoCallbacks->pfnIoCtxSegArrayCreate(pImage->pInterfaceIo->pvUser, pIoCtx,
&pReqAsync->aSegs[0],
&cT2ISegs, cbToRead);
Assert(cbSegs == cbToRead);
pReqAsync->cT2ISegs = cT2ISegs;
pReqAsync->pIoCtx = pIoCtx;
pReqAsync->pScsiReq = pReq;
pReqAsync->cSenseRetries = 10;
pReqAsync->rcSense = VERR_READ_ERROR;
if (pImage->cVolume < _4G)
{
cbCDB = 10;
pbCDB[0] = SCSI_READ_10;
pbCDB[1] = 0; /* reserved */
pbCDB[2] = (lba >> 24) & 0xff;
pbCDB[3] = (lba >> 16) & 0xff;
pbCDB[4] = (lba >> 8) & 0xff;
pbCDB[5] = lba & 0xff;
pbCDB[6] = 0; /* reserved */
pbCDB[7] = (tls >> 8) & 0xff;
pbCDB[8] = tls & 0xff;
pbCDB[9] = 0; /* control */
}
else
{
cbCDB = 16;
pbCDB[0] = SCSI_READ_16;
pbCDB[1] = 0; /* reserved */
pbCDB[2] = (lba >> 56) & 0xff;
pbCDB[3] = (lba >> 48) & 0xff;
pbCDB[4] = (lba >> 40) & 0xff;
pbCDB[5] = (lba >> 32) & 0xff;
pbCDB[6] = (lba >> 24) & 0xff;
pbCDB[7] = (lba >> 16) & 0xff;
pbCDB[8] = (lba >> 8) & 0xff;
pbCDB[9] = lba & 0xff;
pbCDB[10] = 0; /* tls unused */
pbCDB[11] = 0; /* tls unused */
pbCDB[12] = (tls >> 8) & 0xff;
pbCDB[13] = tls & 0xff;
pbCDB[14] = 0; /* reserved */
pbCDB[15] = 0; /* reserved */
}
pReq->enmXfer = SCSIXFER_FROM_TARGET;
pReq->cbCDB = cbCDB;
pReq->pvCDB = pReqAsync->abCDB;
pReq->cbI2TData = 0;
pReq->paI2TSegs = NULL;
pReq->cI2TSegs = 0;
pReq->cbT2IData = cbToRead;
pReq->paT2ISegs = &pReqAsync->aSegs[pReqAsync->cI2TSegs];
pReq->cT2ISegs = pReqAsync->cT2ISegs;
pReq->cbSense = sizeof(pReqAsync->abSense);
pReq->pvSense = pReqAsync->abSense;
rc = iscsiCommandAsync(pImage, pReq, iscsiCommandAsyncComplete, pReqAsync);
if (RT_FAILURE(rc))
AssertMsgFailed(("iscsiCommand(%s, %#llx) -> %Rrc\n", pImage->pszTargetName, uOffset, rc));
else
{
*pcbActuallyRead = cbToRead;
return VERR_VD_IOCTX_HALT; /* Halt the I/O context until further notification from the I/O thread. */
}
RTMemFree(pReq);
}
else
rc = VERR_NO_MEMORY;
RTMemFree(pReqAsync);
}
else
rc = VERR_NO_MEMORY;
LogFlowFunc(("returns rc=%Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnAsyncWrite */
static int iscsiAsyncWrite(void *pBackendData, uint64_t uOffset, size_t cbToWrite,
PVDIOCTX pIoCtx,
size_t *pcbWriteProcess, size_t *pcbPreRead,
size_t *pcbPostRead, unsigned fWrite)
{
LogFlowFunc(("pBackendData=%p uOffset=%llu pIoCtx=%#p cbToWrite=%u pcbWriteProcess=%p pcbPreRead=%p pcbPostRead=%p fWrite=%u\n",
pBackendData, uOffset, pIoCtx, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead, fWrite));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc = VINF_SUCCESS;
AssertPtr(pImage);
Assert(uOffset % 512 == 0);
Assert(cbToWrite % 512 == 0);
if (uOffset + cbToWrite > pImage->cbSize)
return VERR_INVALID_PARAMETER;
/*
* Clip read size to a value which is supported by the target.
*/
cbToWrite = RT_MIN(cbToWrite, pImage->cbSendDataLength);
unsigned cI2TSegs = 0;
size_t cbSegs = 0;
/* Get the number of segments. */
cbSegs = pImage->pInterfaceIoCallbacks->pfnIoCtxSegArrayCreate(pImage->pInterfaceIo->pvUser, pIoCtx,
NULL, &cI2TSegs, cbToWrite);
Assert(cbSegs == cbToWrite);
PSCSIREQASYNC pReqAsync = (PSCSIREQASYNC)RTMemAllocZ(RT_OFFSETOF(SCSIREQASYNC, aSegs[cI2TSegs]));
if (RT_LIKELY(pReqAsync))
{
PSCSIREQ pReq = (PSCSIREQ)RTMemAllocZ(sizeof(SCSIREQ));
if (pReq)
{
uint64_t lba;
uint16_t tls;
uint8_t *pbCDB = &pReqAsync->abCDB[0];
size_t cbCDB;
lba = uOffset / pImage->cbSector;
tls = (uint16_t)(cbToWrite / pImage->cbSector);
cbSegs = pImage->pInterfaceIoCallbacks->pfnIoCtxSegArrayCreate(pImage->pInterfaceIo->pvUser, pIoCtx,
&pReqAsync->aSegs[0],
&cI2TSegs, cbToWrite);
Assert(cbSegs == cbToWrite);
pReqAsync->cI2TSegs = cI2TSegs;
pReqAsync->pIoCtx = pIoCtx;
pReqAsync->pScsiReq = pReq;
pReqAsync->cSenseRetries = 10;
pReqAsync->rcSense = VERR_WRITE_ERROR;
if (pImage->cVolume < _4G)
{
cbCDB = 10;
pbCDB[0] = SCSI_WRITE_10;
pbCDB[1] = 0; /* reserved */
pbCDB[2] = (lba >> 24) & 0xff;
pbCDB[3] = (lba >> 16) & 0xff;
pbCDB[4] = (lba >> 8) & 0xff;
pbCDB[5] = lba & 0xff;
pbCDB[6] = 0; /* reserved */
pbCDB[7] = (tls >> 8) & 0xff;
pbCDB[8] = tls & 0xff;
pbCDB[9] = 0; /* control */
}
else
{
cbCDB = 16;
pbCDB[0] = SCSI_WRITE_16;
pbCDB[1] = 0; /* reserved */
pbCDB[2] = (lba >> 56) & 0xff;
pbCDB[3] = (lba >> 48) & 0xff;
pbCDB[4] = (lba >> 40) & 0xff;
pbCDB[5] = (lba >> 32) & 0xff;
pbCDB[6] = (lba >> 24) & 0xff;
pbCDB[7] = (lba >> 16) & 0xff;
pbCDB[8] = (lba >> 8) & 0xff;
pbCDB[9] = lba & 0xff;
pbCDB[10] = 0; /* tls unused */
pbCDB[11] = 0; /* tls unused */
pbCDB[12] = (tls >> 8) & 0xff;
pbCDB[13] = tls & 0xff;
pbCDB[14] = 0; /* reserved */
pbCDB[15] = 0; /* reserved */
}
pReq->enmXfer = SCSIXFER_TO_TARGET;
pReq->cbCDB = cbCDB;
pReq->pvCDB = pReqAsync->abCDB;
pReq->cbI2TData = cbToWrite;
pReq->paI2TSegs = &pReqAsync->aSegs[0];
pReq->cI2TSegs = pReqAsync->cI2TSegs;
pReq->cbT2IData = 0;
pReq->paT2ISegs = NULL;
pReq->cT2ISegs = 0;
pReq->cbSense = sizeof(pReqAsync->abSense);
pReq->pvSense = pReqAsync->abSense;
rc = iscsiCommandAsync(pImage, pReq, iscsiCommandAsyncComplete, pReqAsync);
if (RT_FAILURE(rc))
AssertMsgFailed(("iscsiCommand(%s, %#llx) -> %Rrc\n", pImage->pszTargetName, uOffset, rc));
else
{
*pcbWriteProcess = cbToWrite;
return VERR_VD_IOCTX_HALT; /* Halt the I/O context until further notification from the I/O thread. */
}
RTMemFree(pReq);
}
else
rc = VERR_NO_MEMORY;
RTMemFree(pReqAsync);
}
else
rc = VERR_NO_MEMORY;
LogFlowFunc(("returns rc=%Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnAsyncFlush */
static int iscsiAsyncFlush(void *pBackendData, PVDIOCTX pIoCtx)
{
LogFlowFunc(("pBackendData=%p pIoCtx=%#p\n", pBackendData, pIoCtx));
PISCSIIMAGE pImage = (PISCSIIMAGE)pBackendData;
int rc = VINF_SUCCESS;
PSCSIREQASYNC pReqAsync = (PSCSIREQASYNC)RTMemAllocZ(sizeof(SCSIREQASYNC));
if (RT_LIKELY(pReqAsync))
{
PSCSIREQ pReq = (PSCSIREQ)RTMemAllocZ(sizeof(SCSIREQ));
if (pReq)
{
uint8_t *pbCDB = &pReqAsync->abCDB[0];
pReqAsync->pIoCtx = pIoCtx;
pReqAsync->pScsiReq = pReq;
pReqAsync->cSenseRetries = 0;
pReqAsync->rcSense = VINF_SUCCESS;
pbCDB[0] = SCSI_SYNCHRONIZE_CACHE;
pbCDB[1] = 0; /* reserved */
pbCDB[2] = 0; /* reserved */
pbCDB[3] = 0; /* reserved */
pbCDB[4] = 0; /* reserved */
pbCDB[5] = 0; /* reserved */
pbCDB[6] = 0; /* reserved */
pbCDB[7] = 0; /* reserved */
pbCDB[8] = 0; /* reserved */
pbCDB[9] = 0; /* control */
pReq->enmXfer = SCSIXFER_NONE;
pReq->cbCDB = 10;
pReq->pvCDB = pReqAsync->abCDB;
pReq->cbI2TData = 0;
pReq->paI2TSegs = NULL;
pReq->cI2TSegs = 0;
pReq->cbT2IData = 0;
pReq->paT2ISegs = NULL;
pReq->cT2ISegs = 0;
pReq->cbSense = sizeof(pReqAsync->abSense);
pReq->pvSense = pReqAsync->abSense;
rc = iscsiCommandAsync(pImage, pReq, iscsiCommandAsyncComplete, pReqAsync);
if (RT_FAILURE(rc))
AssertMsgFailed(("iscsiCommand(%s) -> %Rrc\n", pImage->pszTargetName, rc));
else
return VERR_VD_IOCTX_HALT; /* Halt the I/O context until further notification from the I/O thread. */
RTMemFree(pReq);
}
else
rc = VERR_NO_MEMORY;
RTMemFree(pReqAsync);
}
else
rc = VERR_NO_MEMORY;
LogFlowFunc(("returns rc=%Rrc\n", rc));
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnComposeLocation */
static int iscsiComposeLocation(PVDINTERFACE pConfig, char **pszLocation)
{
char *pszTarget = NULL;
char *pszLUN = NULL;
char *pszAddress = NULL;
int rc = VDCFGQueryStringAlloc(VDGetInterfaceConfig(pConfig), pConfig->pvUser, "TargetName", &pszTarget);
if (RT_SUCCESS(rc))
{
rc = VDCFGQueryStringAlloc(VDGetInterfaceConfig(pConfig), pConfig->pvUser, "LUN", &pszLUN);
if (RT_SUCCESS(rc))
{
rc = VDCFGQueryStringAlloc(VDGetInterfaceConfig(pConfig), pConfig->pvUser, "TargetAddress", &pszAddress);
if (RT_SUCCESS(rc))
{
if (RTStrAPrintf(pszLocation, "iscsi://%s/%s/%s",
pszAddress, pszTarget, pszLUN) < 0)
rc = VERR_NO_MEMORY;
}
}
}
RTMemFree(pszTarget);
RTMemFree(pszLUN);
RTMemFree(pszAddress);
return rc;
}
/** @copydoc VBOXHDDBACKEND::pfnComposeName */
static int iscsiComposeName(PVDINTERFACE pConfig, char **pszName)
{
char *pszTarget = NULL;
char *pszLUN = NULL;
char *pszAddress = NULL;
int rc = VDCFGQueryStringAlloc(VDGetInterfaceConfig(pConfig), pConfig->pvUser, "TargetName", &pszTarget);
if (RT_SUCCESS(rc))
{
rc = VDCFGQueryStringAlloc(VDGetInterfaceConfig(pConfig), pConfig->pvUser, "LUN", &pszLUN);
if (RT_SUCCESS(rc))
{
rc = VDCFGQueryStringAlloc(VDGetInterfaceConfig(pConfig), pConfig->pvUser, "TargetAddress", &pszAddress);
if (RT_SUCCESS(rc))
{
/** @todo think about a nicer looking location scheme for iSCSI */
if (RTStrAPrintf(pszName, "%s/%s/%s",
pszAddress, pszTarget, pszLUN) < 0)
rc = VERR_NO_MEMORY;
}
}
}
RTMemFree(pszTarget);
RTMemFree(pszLUN);
RTMemFree(pszAddress);
return rc;
}
VBOXHDDBACKEND g_ISCSIBackend =
{
/* pszBackendName */
"iSCSI",
/* cbSize */
sizeof(VBOXHDDBACKEND),
/* uBackendCaps */
VD_CAP_CONFIG | VD_CAP_TCPNET | VD_CAP_ASYNC,
/* papszFileExtensions */
NULL,
/* paConfigInfo */
s_iscsiConfigInfo,
/* hPlugin */
NIL_RTLDRMOD,
/* pfnCheckIfValid */
iscsiCheckIfValid,
/* pfnOpen */
iscsiOpen,
/* pfnCreate */
iscsiCreate,
/* pfnRename */
NULL,
/* pfnClose */
iscsiClose,
/* pfnRead */
iscsiRead,
/* pfnWrite */
iscsiWrite,
/* pfnFlush */
iscsiFlush,
/* pfnGetVersion */
iscsiGetVersion,
/* pfnGetSize */
iscsiGetSize,
/* pfnGetFileSize */
iscsiGetFileSize,
/* pfnGetPCHSGeometry */
iscsiGetPCHSGeometry,
/* pfnSetPCHSGeometry */
iscsiSetPCHSGeometry,
/* pfnGetLCHSGeometry */
iscsiGetLCHSGeometry,
/* pfnSetLCHSGeometry */
iscsiSetLCHSGeometry,
/* pfnGetImageFlags */
iscsiGetImageFlags,
/* pfnGetOpenFlags */
iscsiGetOpenFlags,
/* pfnSetOpenFlags */
iscsiSetOpenFlags,
/* pfnGetComment */
iscsiGetComment,
/* pfnSetComment */
iscsiSetComment,
/* pfnGetUuid */
iscsiGetUuid,
/* pfnSetUuid */
iscsiSetUuid,
/* pfnGetModificationUuid */
iscsiGetModificationUuid,
/* pfnSetModificationUuid */
iscsiSetModificationUuid,
/* pfnGetParentUuid */
iscsiGetParentUuid,
/* pfnSetParentUuid */
iscsiSetParentUuid,
/* pfnGetParentModificationUuid */
iscsiGetParentModificationUuid,
/* pfnSetParentModificationUuid */
iscsiSetParentModificationUuid,
/* pfnDump */
iscsiDump,
/* pfnGetTimeStamp */
NULL,
/* pfnGetParentTimeStamp */
NULL,
/* pfnSetParentTimeStamp */
NULL,
/* pfnGetParentFilename */
NULL,
/* pfnSetParentFilename */
NULL,
/* pfnIsAsyncIOSupported */
iscsiIsAsyncIOSupported,
/* pfnAsyncRead */
iscsiAsyncRead,
/* pfnAsyncWrite */
iscsiAsyncWrite,
/* pfnAsyncFlush */
iscsiAsyncFlush,
/* pfnComposeLocation */
iscsiComposeLocation,
/* pfnComposeName */
iscsiComposeName,
/* pfnCompact */
NULL,
/* pfnResize */
NULL
};